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Online Signal Extra
tionby Robust Linear RegressionUrsula Gather1, Karen S
hettlinger1 and Roland Fried21 Department of Statisti
s, University of Dortmund, 44221 Dortmund, Germany2 Department of Statisti
s, University Carlos III, 28903 Getafe (Madrid), Spain
Abstra
tIn intensive 
are, time series of vital parameters have to be analysedonline, i.e. without any time delay, sin
e there may be serious 
on-sequen
es for the patient otherwise. Su
h time series show trends,slope 
hanges and sudden level shifts, and they are overlaid bystrong noise and many measurement artefa
ts. The developmentof update algorithms and the resulting in
rease in 
omputationalspeed allows to apply robust regression te
hniques to moving timewindows for online signal extra
tion. By simulations and appli
a-tions we 
ompare the performan
e of least median of squares, leasttrimmed squares, repeated median and deepest regression for onlinesignal extra
tion.Keywords: Robust �ltering, least median of squares, least trimmed squares,repeated median, deepest regression, breakdown point.1 Introdu
tionThe online analysis of vital parameters in intensive 
are requires fast andreliable methods as a small fault 
an yield life-threatening 
onsequen
es forthe patient. Methods need to be able to deal with a high level of noise andmeasurement artefa
ts and provide robustness against outliers. The variablesin question in
lude for example heart rate, pulse, temperature and di�erentblood pressures.Davies, Fried and Gather (2004) apply robust regression te
hniques to mov-ing time windows to extra
t a signal 
ontaining 
onstant periods, monotoni
trends with time-varying slopes and sudden level shifts. In this 
ontext, they1




ompare L1, repeated median (RM), and least median of squares (LMS) re-gression. They report that repeated median regression is preferable to L1 inmost respe
ts; opposed to these methods, LMS regression tends to instabili-ties and it is slower, but it tra
es level shifts better and it is less biased in thepresen
e of many large outliers.These �ndings 
on
ern the signal approximation in the 
entre of ea
h timewindow, i.e. with some time delay. Sin
e fast rea
tion is of utmost importan
ein intensive 
are, we exploit online versions of su
h pro
edures. Resuming thework from Davies et al. (2004) we 
ompare four regression methods here:In Rousseeuw, Van Aelst and Hubert (1999, p. 425), Rousseeuw points outthat he 
onsiders LMS to be outperformed by least trimmed squares (LTS)regression be
ause of its smoother obje
tive fun
tion whi
h results in a highere�
ien
y; the only advantage of LMS would be its minimax bias among allresidual-based estimators. It is of interest here whether LTS regression mayoutmat
h LMS with respe
t to stability. Additionally, we investigate deepestregression (DR), whi
h is expe
ted to deal well with asymmetri
 and het-eros
edasti
 errors (Rousseeuw and Hubert 1999) and 
ompare it to RM re-gression whi
h showed best performan
e for delayed signal extra
tion.Se
tion 2 introdu
es the methods of interest and dis
usses some of their proper-ties. In Se
tion 3, a simulation study is 
arried out in order to investigate theperforman
e of the methods in di�erent data situations. Se
tion 4 des
ribesappli
ations to some time series from intensive 
are, and �nally, Se
tion 5
loses with some 
on
luding remarks.
2 Pro
edures for Online Signal Extra
tionIn the following, we 
onsider a real valued time series (yt)t∈Z observed attime points t = 1, . . . , N . For the appli
ability of robust regression methods,we assume the data to be lo
ally well approximated by a linear trend. Thismeans, within time windows of �xed length n = 2m + 1 we assume a model

yt+i = µt + βti + εt,i, i = −m, . . . ,m, (1)2



where µt denotes the underlying level of the signal and βt the slope at time
t; εt,i denote independent error terms with zero median. Below, we 
onsiderdi�erent distributional assumptions for εt,i.Regarding only one time window, we may drop the index t for simpli
ity.Hen
e, for a time window 
entred at time t we write yi = µ + βi + εi for
i = −m, . . . ,m. The window width n is 
hosen based on statisti
al and medi
alarguments as explained in Se
tion 3.2.1 Methods for Robust RegressionLet now y = (y−m, . . . , ym)′ denote a time window of width n from (yt)t∈Z,and let ri = yi − (µ̃ + β̃i), i = −m, . . . ,m, denote the 
orresponding residuals.For estimation of the level µ of the signal and the slope β we 
onsider thefollowing robust regression fun
tionals T : R

n → R
2:1. Least Median of Squares (Rousseeuw 1984)

TLMS(y) = (µ̃LMS, β̃LMS) = argmin
µ̃,β̃

{

med
(

r2

i ; i = −m, . . . ,m
)}

.2. Least Trimmed Squares (Rousseeuw 1983)
TLTS(y) = (µ̃LTS, β̃LTS) = argmin

µ̃,β̃

h
∑

k=1

(r2)k:n ,where (r2)k:n denotes the kth ordered squared residual for the 
urrenttime window, i.e. (r2)1:n ≤ . . . ≤ (r2)k:n ≤ . . . ≤ (r2)n:n for any
k ∈ {1, . . . , n}, and h is a trimming proportion. We take h = ⌊n/2⌋ + 1below.3. Repeated Median (Siegel 1982)

TRM(y) = (µ̃RM , β̃RM )with β̃RM = medi

(

medj 6=i
yi − yj

i − j
; i, j = −m, . . . ,m

)and µ̃RM = medi

(

yi − β̃RM i ; i = −m, . . . ,m
)

,where the median for an even sample size is de�ned as the mean of thetwo midmost observations. 3



4. Deepest Regression (Rousseeuw and Hubert 1999)
TDR(y) = (µ̃DR, β̃DR) = argmax

µ̃,β̃

{

rdepth
(

(µ̃, β̃),y
)}

,where the regression depth of a �t (µ̃, β̃) to a sample y is de�ned as
rdepth

(

(µ̃, β̃),y
)

= min
−m≤i≤m

{

min{L+(i) + R−(i), R+(i) + L−(i)}
}with L+(i) = L+

µ̃,β̃
(i) = #

{

j ∈ {−m, . . . , i } : rj(µ̃, β̃) ≥ 0
}and R−(i) = R−

µ̃,β̃
(i) = #

{

j ∈ {i + 1, . . . ,m} : rj(µ̃, β̃) < 0
}

.

L−(i) and R+(i) are de�ned analogously.Applying su
h regression fun
tionals, we estimate the level of the signal and itsslope in the 
entre of the 
urrent time window, as in Davies, Fried and Gather(2004). This implies a delay of m time units for the 
urrent estimation. Aswe are rather interested in the level at the most re
ent time point, whi
h is atthe end of the window, we investigate the behaviour of the online estimatesde�ned as µ̃online = µ̃ + β̃m.2.2 Algorithms and Computational SpeedWe use update algorithms for all estimates (Bernholt 2004), whi
h prevents
al
ulating the new value for ea
h time window from s
rat
h and thus enhan
esthe 
omputational speed.The algorithms for LMS and LTS regression are based on the results of Edels-brunner and Souvaine (1990). The repeated median algorithm is des
ribed indetail by Bernholt and Fried (2003), and the deepest regression estimates are
omputed by an update algorithm based on results from van Kreveld, Mit
hell,Rousseeuw, Sharir, Snoeyink and Spe
kmann (1999). This algorithm does nottake the average over all deepest regression �ts, if there are several, but 
hoosesone of the deepest �ts at random whi
h in
reases the speed of 
omputationbut might lead to some loss of e�
ien
y.Table 1 shows the 
omputational 
omplexities of the resulting update algo-rithms. However, these values only re�e
t asymptoti
 behaviour. Therefore,4



LMS LTS RM DRtime O(n2) O(n2) O(n) O(n log2 n)memory spa
e O(n2) O(n2) O(n2) O(n)Table 1: Computational 
omplexity of the 
onsidered algorithms.
LMS LTS RM DR

n = 21 0.161 0.161 0.035 0.747
n = 31 0.323 0.324 0.049 0.956Table 2: Mean 
omputation time of 10000 updates in mse
.Table 2 shows the mean time needed for an update in millise
onds for smallsample sizes, measured on a PC with Pentium IV pro
essor with 2.4 GHz and512 MB memory.It turns out that, when using these update algorithms, the repeated medianis by far the fastest method for the 
onsidered sample sizes. In 
ontrast to itslow asymptoti
 
omputation time, an update of the DR estimate takes about

20 times longer than that of the repeated median. The algorithms for LMSand LTS are faster than that for DR for the small sample sizes 
onsideredhere; the smaller asymptoti
 
omputation time of the latter seems to need
onsiderable sample sizes to be
ome dominant.2.3 Breakdown and Exa
t FitIn 
ase of normal errors, least squares is the most e�
ient regression method.However, least squares regression 
an be strongly in�uen
ed by a single outlier,resulting in a �nite sample repla
ement breakdown point of 1/n. Sin
e medi
aldata 
an 
ontain several outliers within short time spans, we prefer robustmethods whi
h show stable results and small bias even for a high per
entageof 
ontamination, preferably 
ombined with satisfa
tory e�
ien
y in periodswithout measurement problems and artefa
ts.
LMS, RM , and LTS (with h = ⌊n/2⌋+1) possess a �nite sample repla
ementbreakdown point of ⌊n/2⌋/n ≈ 50% whi
h is the highest possible value for a5



regression equivariant fun
tional (Rousseeuw and Leroy 1987). Rousseeuwand Hubert (1999) show that deepest regression has a breakdown point of atleast about one third in any 
ase. This raises the question if its breakdownis larger in 
ase of a �xed design, as it is here at hand. For example, the L1breakdown point is 1/n if 
ontamination in the explanatory variable is allowed,while it in
reases to about 29.3% in 
ase of an equally-spa
ed design. However,below we will provide eviden
e that even in this 
ase deepest regression onlyguarantees prote
tion against up to one third 
ontaminated observations inthe sample.Therefore, we �rst regard the exa
t �t property: Data from intensive 
areoften 
ontain repeated values as the measurements are on a dis
rete s
ale, andthe patient's physiologi
al parameters 
an stay steady for some time. In su
hsituations the exa
t �t property is informative.A regression fun
tional T : R
n → R

2 possesses the exa
t �t property if for some�t (µ̃, β̃) and k ∈ {0, 1, . . . , ⌈n/2⌉ − 1} the following is satis�ed: Whenever
yi = µ̃ + β̃i �ts at least n − k of the n observations exa
tly, then T = (µ̃, β̃)whatever the other k observations are. Roughly spoken: if the majority of thedata lies on a straight line, the solution of the fun
tional T will be exa
tly thisline (Rousseeuw and Leroy 1987, p. 122).The smallest possible fra
tion of 
ontamination whi
h 
an 
ause a regressionfun
tional T to deviate from (µ̃, β̃) is 
alled the exa
t �t point : 
onsider asample yn of size n su
h that yi = µ̃ + β̃i for all i, and let yk,n be a samplewhere k out of the n observations of yn are repla
ed by arbitrary values. Then,the exa
t �t point of T is de�ned as
δ∗n(T,yn) = min

k

{k

n

∣

∣

∣
there exists a sampleyk,n su
h thatT (yk,n) 6= (µ̃, β̃)

}

.For regression and s
ale equivariant fun
tionals as 
onsidered here, this valuegives an upper bound for the �nite sample repla
ement breakdown point ε∗n(Rousseeuw and Leroy 1987, pp. 122-124), i.e.
ε∗n(T,yn) ≤ δ∗n(T,yn).The exa
t �t point for LMS and LTS is ⌈n/2⌉

n
(Rousseeuw and Leroy 1987,Se
tion 3.4). For RM one less observation is needed to pull the �t away6



n 5 7 9 11 13 15 17 19 21 23 25 27
k 2 2 3 4 4 5 6 6 7 8 8 9
n 29 31 33 35 37 39 41 43 45 47 49 51
k 10 10 11 12 12 13 14 14 15 16 16 17Table 3: Upper bound for the exa
t �t point k/n of the deepest regressionfun
tional for sele
ted sample sizes n.

from the line in 
ase of a sample of odd size, be
ause its slope 
omponent is
al
ulated by taking sets of two observations. Hen
e, its exa
t �t point is ⌊n/2⌋
nwhi
h is equal to its breakdown point.For deepest regression an upper bound for the exa
t �t point 
an be derivedas follows: 
onsider a sample yn,k of size n where n − k observations lie on astraight line l0 : yj = µ0+β0j, j = −m, . . . ,m. The exa
t �t point δ∗n equals thesmallest fra
tion k/n of values not lying on l0 su
h that the deepest regression�t departs from the line l0. This means we are sear
hing for a number k with

TDR(yn,k−1) = (µ0, β0) and TDR(yn,k) 6= (µ0, β0).W.l.o.g. we assume µ0 = 0 and β0 = 0. Furthermore, we take the �rst n − kobservations to lie on the line l0, i.e. we have yj = 0 for j = −m, . . . ,m − k,and we put the remaining k observations on another line l1 : yj = µ1 + β1j for
j = m− k + 1, . . . ,m, with µ1 = −n+1

2
and β1 = 1 6= β0. This guarantees that

l1 has a regression depth of at least k, be
ause at least k observations lie on
l1. Also, the residuals of these observations have the same (positive) sign withrespe
t to l0. In this way, the �t of l0 to the full sample yn,k is worsened within
reasing k. Table 3 gives the smallest number k of non-zero observationswhi
h, in this 
on�guration, for
es the deepest regression estimate away from
(0, 0) for small to moderate sample sizes.In this parti
ular data situation and for the 
onsidered sample sizes, we see thatthe departure of ⌊n+1

3
⌋ observations from l0 
an 
ause the deepest regression�t to do so too. 7



Hen
e, we 
an 
on
lude that the smallest k with TDR(yn,k) 6= (µ, β) is at most
⌊n+1

3
⌋ and thus

δ∗n(TDR,y) ≤
1

n
·

⌊

n + 1

3

⌋

.Rousseeuw and Hubert (1999) show that the breakdown point of the TDR atany data set is at least one third:
ε∗n(TDR,y) ≥

1

n

(⌈n

3

⌉

− 1
)

≈
1

3
.Thus,

1

n

(⌈n

3

⌉

− 1
)

≤ ε∗n(TDR,y) ≤ δ∗n(TDR,y) ≤
1

n
·

⌊

n + 1

3

⌋

.This leads to the 
laim that, even in 
ase of an equally-spa
ed design, thebreakdown point of the DR fun
tional equals 1/3.3 Monte Carlo StudyIn the following, we 
ompare the performan
e of the online estimates µ̃online =

µ̃ + β̃m in di�erent data situations. In parti
ular, we 
onsider s
enarios whi
hare of importan
e in the online monitoring 
ontext. The performan
e of the es-timates will be judged by their standard deviation, bias and root mean squarederror. For 
omparison, we also in
lude results for least squares (LS) regression.Data are generated from the simple linear model
Yi = µ + βi + εi, i = −m, . . . ,m.where for εi we 
onsider

• normal errors,
• heavy tailed errors,
• skewed errors,
• normal errors with additive outliers at random time points,
• normal errors with subsequent additive outliers.We set µ = β = 0 w.l.o.g., sin
e all methods 
onsidered here are regressionequivariant, and set the error varian
e to one w.l.o.g. be
ause of the s
aleequivarian
e. In ea
h 
ase S = 10000 independent samples are generated.8



On the one hand, the assumption of a linear trend within ea
h time windowbe
omes less reliable if a large window width is 
hosen: in this 
ase, even asmall bias in the estimation for the window 
entre 
an 
ause a 
onsiderablebias of the online estimates as these are based on linear extrapolation. On theother hand, a large window width stands for smaller variability and produ
essmoother estimates. As a 
ompromise, a 
hoi
e of m = 10 or m = 15 is
onsidered a

eptable for the physiologi
al data we have in mind, leading towindow widths of n = 21 or n = 31 respe
tively, with the time units beingminutes.3.1 Standard Normal ErrorsIn the ideal situation of normal errors all methods yield unbiased results, dueto the symmetry of the underlying error distribution.Repeated median and deepest regression do not perform mu
h worse than leastsquares (LS) regression whilst the LMS and LTS estimates spread mu
h fur-ther (
f. Table 4). The similar behaviour of LMS and LTS 
an be explainedby the fa
t that both pi
k about 50% of the observations whi
h 
an be op-timally des
ribed by a straight line, without restri
tions for symmetry, while
RM and DR seek for a balan
ed �t.As a result, the LMS and LTS online estimates are only slightly more than
20% as e�
ient as LS, while for DR we have about 61%, and for RM ap-proximately 70% e�
ien
y. This is 
onsistent with previous resear
h, and theresults here even re�e
t the fa
t that for small samples LMS regression isslightly more e�
ient than LTS regression (Rousseeuw and Leroy 1987).3.2 Heavy Tails and SkewnessAs real data sets may 
ontain large aberrant values, the normal distribution isoften not appropriate to model the error term. Therefore, we examine errorsfrom a re-s
aled t-distribution with three degrees of freedom and unit varian
eas well as errors from a shifted lognormal distribution with zero median andunit varian
e. 9



LMS LTS RM DR LSstandard normal n = 21 0.875 0.887 0.500 0.533 0.420errors n = 31 0.767 0.785 0.422 0.450 0.352heavy tailed n = 21 0.544 0.551 0.345 0.354 0.413errors n = 31 0.450 0.455 0.279 0.287 0.342skewed n = 21 0.489 0.495 0.353 0.384 0.429errors n = 31 0.389 0.399 0.285 0.317 0.350Table 4: Standard deviations for the estimates at standard normal, re-s
aled
t3 distributed and re-s
aled lognormal data.At the t3-distribution, all methods yield unbiased results be
ause of symmetry.Again, the results for LMS and LTS regression are similar, like those for RMand DR. The standard deviations (
f. Table 4) show that 
ompared to thestandard normal situation the variability has de
reased for all robust methods,while for least squares it remains about the same sin
e its standard deviationonly depends on the error varian
e.A larger window width 
auses less variability, but the proportions of the out-
omes from the di�erent methods stay approximately the same for di�erentwindow widths. The LMS and LTS standard deviations are about 60% thesize of their values in the standard normal 
ase, but nevertheless they are stilloutperformed by LS. This is not true for RM and DR, having standard devia-tions about 66% of their former size, with repeated median regression showingthe smallest variability here.Figure 1 shows boxplots of the results for the online estimates at lognormalerrors with a window width of n = 31. The bla
k line in the box denotes themedian, the grey line the arithmeti
 mean.The �gure 
learly shows systemati
 di�eren
es among the 
onsidered methods.Rousseeuw, Van Aelst and Hubert (1999) point out that LMS and LTS are'mode-seeking' in 
ontrast to the 'median-like' behaviour of deepest regressionand, as we want to add, the repeated median. Indeed, the least median ofsquares and least trimmed squares estimates lie mainly between the mode andthe median of the underlying error distribution, while repeated median and10



LMS LTS RM DR LS

Online Estimates for Lognormal Data

−1

mod(X) = −0.38

med(X) = 0
E[X] = 0.27

1

2

Figure 1: Boxplots of the simulation results for the window width n = 31.deepest regression yield results 
entred at the median and least squares at theexpe
tation.Sin
e the methods apparently estimate di�erent quantities, an examination ofbias is not sensible. Thus, we will only regard variability (
f. Table 4).The RM and DR standard deviations are only about 70% that for the stan-dard normal situation, and for LMS and LTS they are only about half aslarge. Comparing the results of the robust methods to least squares we seethat the RM standard deviation is only slightly more than 80% as large asthe 
orresponding least squares value, while the DR standard deviation is ap-proximately 90% as large. LMS and LTS on the other hand perform againworse than least squares where LTS shows a little more variability than LMS.Hen
e, again the repeated median provides the best results.3.3 Additive OutliersIn intensive 
are, data su�er from a broad variety of perturbations, either
aused by medi
al reasons or by external sour
es su
h as a loose 
able. Asthese disturban
es often produ
e similar deviations at several time points, weinvestigate the in�uen
e of additive outliers with same sign and size.11
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Figure 2: Standard deviation, bias and root mean squared error (RMSE) forthe online estimates at standard normal data with additive outliers at randomtime points.We generate samples from a standard normal model and add a value a ∈

{2, 4, 6, 8, 10} to an in
reasing number k ∈ {1, . . . , 10} of observations 
hosenat random from the sample. Negative additive outliers would yield analogousresults. For the sake of brevity we only 
onsider the sample size n = 21.Outliers at random time points do not 
ause a bias for the slope, but forthe level estimation, whi
h also a�e
ts the online estimates. Figure 2 showsstandard deviation, bias and root mean squared error (RMSE) of the onlineestimates for outliers of size 2, 6 and 10. Results for outlier sizes of 4 and 8 liein between. 12



Again, the similarity of the RM and DR out
omes shows up 
learly, and thedi�eren
es in the results between LMS and LTS regression are negligible.
LTS is only slightly less variable than LMS for a large number of 9 − 10outliers. We also see that LMS and LTS are more heavily a�e
ted by smalleroutliers than by larger ones.Comparing repeated median and deepest regression, RM is preferable here asit yields a smaller standard deviation and bias for all 
onsidered numbers andsizes of outliers. However, this advantage is only signi�
ant in 
ase of sevenor more outliers in a

ordan
e with the lower breakdown point of deepestregression.Overall, LMS and LTS perform best in terms of bias although with respe
tto the RMSE they only outperform the other methods in 
ase of many largeoutliers. For small outliers or a small to moderate number of outliers therepeated median should be preferred as it has the smallest RMSE.3.4 Outlying Sequen
esFor online monitoring it is of spe
ial importan
e to tra
k sudden jumps inthe signal be
ause this may point at an abrupt 
hange of the patient's state.Looking at single time windows su
h a level shift is indi
ated by a pat
h ofoutlying values of the same size and sign at the end of a time window.We simulate su
h situations by generating positive additive outliers of the samesize as in the previous subse
tion - only that now the value a ∈ {2, 4, 6, 8, 10}is added to k ∈ {1, . . . , 10} subsequent values at the end of the time window.Again, only the 
ase n = 21 is investigated.As the online estimates approximate the level at the end of the window, asmall bias w.r.t. level in the 
entre of the time window is not ne
essarily whatwe aim at: in intensive 
are monitoring, as a medi
al rule of thumb a sequen
eof �ve or more largely deviating values is assumed to indi
ate a shift whereasa smaller number is typi
ally regarded as series of outliers (Imho�, Bauer,Gather and Fried 2003). Hen
e, a method performs well if it maintains the
entral level in 
ase of a few subsequent outliers but jumps up to the level13
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Figure 3: Standard deviation, bias and root mean squared error (RMSE) forthe online estimates at standard normal data with additive outliers, o

urringsubsequently at the end of the time window.of these largely deviant observations when their number is �ve or more - toestimate the new (higher) level rather than the former (lower) one in the 
entreof the window.Again, Figure 3 shows standard deviation, bias and RMSE only for outliersizes 2, 6 and 10 as the results for the sizes 4 and 8 lie in between.No method shows exa
tly the bias behaviour des
ribed above, although formedium-sized to large outliers the LMS and LTS bias 
urves remain 
on-stantly low for a smaller number of outliers and then show a sudden drasti
14



in
rease. However, the number of outliers whi
h is ne
essary to make the LMSor LTS bias in
rease is the larger, the larger the size of the outliers is. In otherwords: the LMS and LTS online estimates follow a large level shift with a
onsiderable delay, in 
ontrast to the estimates obtained by these methods inthe window 
entre, see Davies et al. (2004). On the other hand, the RM and
DR estimates typi
ally smear a moderately large shift.Also, one 
an derive from Figure 3 that the standard deviations of RM and DRare always smaller than those of LMS and LTS regression, and further thatthey stay almost 
onstant. Again, the di�eren
e between LMS and LTS, andbetween RM and DR is negligible, both with respe
t to bias and variability,in spite of the di�erent breakdown points of the latter.
4 Appli
ation to Time SeriesIn this se
tion, we analyse the stability of the estimates as well as their abilityto tra
k trends, slope 
hanges and sudden level shifts by applying them to asimulated and to a real time series. In both 
ases we use a window width of
n = 21 observations.The simulated time series is 250 time units long and 
onsists of a signal 
ontain-ing 
onstant as well as trend periods and a level shift, plus additive standardnormal noise. 10% of the observations are repla
ed by positive additive outliersof size 6, whi
h are bundled in pat
hes of four subsequent outliers (twi
e), threeoutliers (twi
e), two outliers (three times), and single outliers (�ve times). Thestarting point of ea
h sequen
e is 
hosen at random.Figure 4 shows the online estimates and the underlying signal for the simulatedtimes series. All methods tra
e the trends and the slope 
hanges. Also, thesimilarity of the results from LMS and LTS regression as well as from repeatedmedian and deepest regression shows up 
learly.
RM and DR yield more stable results than LMS and LTS, and they are lessin�uen
ed by values deviating moderately from the underlying signal, e.g. seethe results around time points 50 − 60 and around time point 150.15
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Figure 4: Online estimates based on windows of size n = 21.As the online estimates are based on a linear extrapolation of the level esti-mates for the 
entre of the time window, the LMS and LTS estimates 
ontinuethe pre-level-shift trend until some time points after the level shift. This isdue to their small bias with respe
t to the 'old' level before the shift.Repeated median and deepest regression tra
e the level shift with a shorterdelay than LMS or LTS, but they do not 
apture the abruptness of thejump. Also, the RM and DR estimates are 
loser to the signal around thetimes of a slope 
hange - espe
ially around the times 150 and 200. After thetransition to the 'new' level, subsequent to the shift, all methods overestimatethe signal, due to the strongly positive slope estimates around the shift. Thisis a well-known phenomenon when using a lo
al linear �t, see e.g. Einbe
k andKauermann (2003).Finally, we apply the methods to a medi
al time series of length 250, repre-senting the mean pulmonary artery blood pressure of an intensive 
are patient.16
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Figure 5: Online estimates based on windows of size n = 21.
Figure 5 shows that RM and DR yield mu
h more stable results while LMSand LTS are a�e
ted by moderate variation in the data.The RM and DR method tra
e the level shift around time point 70 better than
LMS or LTS regression. Also, LMS and LTS overestimate the level rightafter the shift by far more drasti
ally. However, they 
apture the abruptness ofthe shifts better (e.g. around the times 150 and 175) while RM and DR smearthem. Here, the analyst must de
ide whether it is better to get a 'smeared'transition from one level to the other, or to 
at
h the suddenness of the jumpwith some time delay.Both examples show the superiority of repeated median and deepest regressionin terms of stability. Also, the repeated median does not overestimate thesignal after a shift as mu
h as deepest regression.17



5 Con
lusionsAll of the 
onsidered methods follow trends and slope 
hanges and tra
e levelshifts quite well. The di�eren
es in the out
omes from least median of squaresand least trimmed squares regression are negligible while repeated median anddeepest regression also show very similar results.For symmetri
, unimodal errors all methods provide unbiased estimates of themedian and the mode, whi
h are identi
al in this 
ase; in 
ase of unimodal,but skewed errors, the LMS and LTS estimates lie somewhere in between themedian and the mode while RM and DR estimate the median.
LMS and LTS are less biased than RM and DR in the presen
e of manylarge outliers. However, as explained in Se
tion 3.4, in 
ase of a level shift asmall bias does not mean better performan
e of the online estimates. Although
RM and DR smear a shift somewhat, these methods still might be preferredbe
ause LMS and LTS follow a shift with a longer delay - espe
ially if the shiftis large. In spite of the 
laim that deepest regression is parti
ularly appropriatefor skewed errors due to its 
onstru
tion, the repeated median performed evenbetter for lognormal errors.Further, repeated median and deepest regression yield a more stable signalextra
tion; and the LMS and LTS estimates are stronger in�uen
ed by smallor medium-sized outliers.Summarising, repeated median and deepest regression outperform LMS and
LTS regression w.r.t. online signal extra
tion without delay. Repeated me-dian regression yields the best results in most respe
ts: among these robustmethods, RM is the least variable in most of the 
onsidered situations; itgives stable estimations in the appli
ations and also, it is 
omputationally thefastest.A
knowledgement: We gratefully a
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