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Online Signal Extrationby Robust Linear RegressionUrsula Gather1, Karen Shettlinger1 and Roland Fried21 Department of Statistis, University of Dortmund, 44221 Dortmund, Germany2 Department of Statistis, University Carlos III, 28903 Getafe (Madrid), Spain
AbstratIn intensive are, time series of vital parameters have to be analysedonline, i.e. without any time delay, sine there may be serious on-sequenes for the patient otherwise. Suh time series show trends,slope hanges and sudden level shifts, and they are overlaid bystrong noise and many measurement artefats. The developmentof update algorithms and the resulting inrease in omputationalspeed allows to apply robust regression tehniques to moving timewindows for online signal extration. By simulations and applia-tions we ompare the performane of least median of squares, leasttrimmed squares, repeated median and deepest regression for onlinesignal extration.Keywords: Robust �ltering, least median of squares, least trimmed squares,repeated median, deepest regression, breakdown point.1 IntrodutionThe online analysis of vital parameters in intensive are requires fast andreliable methods as a small fault an yield life-threatening onsequenes forthe patient. Methods need to be able to deal with a high level of noise andmeasurement artefats and provide robustness against outliers. The variablesin question inlude for example heart rate, pulse, temperature and di�erentblood pressures.Davies, Fried and Gather (2004) apply robust regression tehniques to mov-ing time windows to extrat a signal ontaining onstant periods, monotonitrends with time-varying slopes and sudden level shifts. In this ontext, they1



ompare L1, repeated median (RM), and least median of squares (LMS) re-gression. They report that repeated median regression is preferable to L1 inmost respets; opposed to these methods, LMS regression tends to instabili-ties and it is slower, but it traes level shifts better and it is less biased in thepresene of many large outliers.These �ndings onern the signal approximation in the entre of eah timewindow, i.e. with some time delay. Sine fast reation is of utmost importanein intensive are, we exploit online versions of suh proedures. Resuming thework from Davies et al. (2004) we ompare four regression methods here:In Rousseeuw, Van Aelst and Hubert (1999, p. 425), Rousseeuw points outthat he onsiders LMS to be outperformed by least trimmed squares (LTS)regression beause of its smoother objetive funtion whih results in a highere�ieny; the only advantage of LMS would be its minimax bias among allresidual-based estimators. It is of interest here whether LTS regression mayoutmath LMS with respet to stability. Additionally, we investigate deepestregression (DR), whih is expeted to deal well with asymmetri and het-erosedasti errors (Rousseeuw and Hubert 1999) and ompare it to RM re-gression whih showed best performane for delayed signal extration.Setion 2 introdues the methods of interest and disusses some of their proper-ties. In Setion 3, a simulation study is arried out in order to investigate theperformane of the methods in di�erent data situations. Setion 4 desribesappliations to some time series from intensive are, and �nally, Setion 5loses with some onluding remarks.
2 Proedures for Online Signal ExtrationIn the following, we onsider a real valued time series (yt)t∈Z observed attime points t = 1, . . . , N . For the appliability of robust regression methods,we assume the data to be loally well approximated by a linear trend. Thismeans, within time windows of �xed length n = 2m + 1 we assume a model

yt+i = µt + βti + εt,i, i = −m, . . . ,m, (1)2



where µt denotes the underlying level of the signal and βt the slope at time
t; εt,i denote independent error terms with zero median. Below, we onsiderdi�erent distributional assumptions for εt,i.Regarding only one time window, we may drop the index t for simpliity.Hene, for a time window entred at time t we write yi = µ + βi + εi for
i = −m, . . . ,m. The window width n is hosen based on statistial and medialarguments as explained in Setion 3.2.1 Methods for Robust RegressionLet now y = (y−m, . . . , ym)′ denote a time window of width n from (yt)t∈Z,and let ri = yi − (µ̃ + β̃i), i = −m, . . . ,m, denote the orresponding residuals.For estimation of the level µ of the signal and the slope β we onsider thefollowing robust regression funtionals T : R

n → R
2:1. Least Median of Squares (Rousseeuw 1984)

TLMS(y) = (µ̃LMS, β̃LMS) = argmin
µ̃,β̃

{

med
(

r2

i ; i = −m, . . . ,m
)}

.2. Least Trimmed Squares (Rousseeuw 1983)
TLTS(y) = (µ̃LTS, β̃LTS) = argmin

µ̃,β̃

h
∑

k=1

(r2)k:n ,where (r2)k:n denotes the kth ordered squared residual for the urrenttime window, i.e. (r2)1:n ≤ . . . ≤ (r2)k:n ≤ . . . ≤ (r2)n:n for any
k ∈ {1, . . . , n}, and h is a trimming proportion. We take h = ⌊n/2⌋ + 1below.3. Repeated Median (Siegel 1982)

TRM(y) = (µ̃RM , β̃RM )with β̃RM = medi

(

medj 6=i
yi − yj

i − j
; i, j = −m, . . . ,m

)and µ̃RM = medi

(

yi − β̃RM i ; i = −m, . . . ,m
)

,where the median for an even sample size is de�ned as the mean of thetwo midmost observations. 3



4. Deepest Regression (Rousseeuw and Hubert 1999)
TDR(y) = (µ̃DR, β̃DR) = argmax

µ̃,β̃

{

rdepth
(

(µ̃, β̃),y
)}

,where the regression depth of a �t (µ̃, β̃) to a sample y is de�ned as
rdepth

(

(µ̃, β̃),y
)

= min
−m≤i≤m

{

min{L+(i) + R−(i), R+(i) + L−(i)}
}with L+(i) = L+

µ̃,β̃
(i) = #

{

j ∈ {−m, . . . , i } : rj(µ̃, β̃) ≥ 0
}and R−(i) = R−

µ̃,β̃
(i) = #

{

j ∈ {i + 1, . . . ,m} : rj(µ̃, β̃) < 0
}

.

L−(i) and R+(i) are de�ned analogously.Applying suh regression funtionals, we estimate the level of the signal and itsslope in the entre of the urrent time window, as in Davies, Fried and Gather(2004). This implies a delay of m time units for the urrent estimation. Aswe are rather interested in the level at the most reent time point, whih is atthe end of the window, we investigate the behaviour of the online estimatesde�ned as µ̃online = µ̃ + β̃m.2.2 Algorithms and Computational SpeedWe use update algorithms for all estimates (Bernholt 2004), whih preventsalulating the new value for eah time window from srath and thus enhanesthe omputational speed.The algorithms for LMS and LTS regression are based on the results of Edels-brunner and Souvaine (1990). The repeated median algorithm is desribed indetail by Bernholt and Fried (2003), and the deepest regression estimates areomputed by an update algorithm based on results from van Kreveld, Mithell,Rousseeuw, Sharir, Snoeyink and Spekmann (1999). This algorithm does nottake the average over all deepest regression �ts, if there are several, but hoosesone of the deepest �ts at random whih inreases the speed of omputationbut might lead to some loss of e�ieny.Table 1 shows the omputational omplexities of the resulting update algo-rithms. However, these values only re�et asymptoti behaviour. Therefore,4



LMS LTS RM DRtime O(n2) O(n2) O(n) O(n log2 n)memory spae O(n2) O(n2) O(n2) O(n)Table 1: Computational omplexity of the onsidered algorithms.
LMS LTS RM DR

n = 21 0.161 0.161 0.035 0.747
n = 31 0.323 0.324 0.049 0.956Table 2: Mean omputation time of 10000 updates in mse.Table 2 shows the mean time needed for an update in milliseonds for smallsample sizes, measured on a PC with Pentium IV proessor with 2.4 GHz and512 MB memory.It turns out that, when using these update algorithms, the repeated medianis by far the fastest method for the onsidered sample sizes. In ontrast to itslow asymptoti omputation time, an update of the DR estimate takes about

20 times longer than that of the repeated median. The algorithms for LMSand LTS are faster than that for DR for the small sample sizes onsideredhere; the smaller asymptoti omputation time of the latter seems to needonsiderable sample sizes to beome dominant.2.3 Breakdown and Exat FitIn ase of normal errors, least squares is the most e�ient regression method.However, least squares regression an be strongly in�uened by a single outlier,resulting in a �nite sample replaement breakdown point of 1/n. Sine medialdata an ontain several outliers within short time spans, we prefer robustmethods whih show stable results and small bias even for a high perentageof ontamination, preferably ombined with satisfatory e�ieny in periodswithout measurement problems and artefats.
LMS, RM , and LTS (with h = ⌊n/2⌋+1) possess a �nite sample replaementbreakdown point of ⌊n/2⌋/n ≈ 50% whih is the highest possible value for a5



regression equivariant funtional (Rousseeuw and Leroy 1987). Rousseeuwand Hubert (1999) show that deepest regression has a breakdown point of atleast about one third in any ase. This raises the question if its breakdownis larger in ase of a �xed design, as it is here at hand. For example, the L1breakdown point is 1/n if ontamination in the explanatory variable is allowed,while it inreases to about 29.3% in ase of an equally-spaed design. However,below we will provide evidene that even in this ase deepest regression onlyguarantees protetion against up to one third ontaminated observations inthe sample.Therefore, we �rst regard the exat �t property: Data from intensive areoften ontain repeated values as the measurements are on a disrete sale, andthe patient's physiologial parameters an stay steady for some time. In suhsituations the exat �t property is informative.A regression funtional T : R
n → R

2 possesses the exat �t property if for some�t (µ̃, β̃) and k ∈ {0, 1, . . . , ⌈n/2⌉ − 1} the following is satis�ed: Whenever
yi = µ̃ + β̃i �ts at least n − k of the n observations exatly, then T = (µ̃, β̃)whatever the other k observations are. Roughly spoken: if the majority of thedata lies on a straight line, the solution of the funtional T will be exatly thisline (Rousseeuw and Leroy 1987, p. 122).The smallest possible fration of ontamination whih an ause a regressionfuntional T to deviate from (µ̃, β̃) is alled the exat �t point : onsider asample yn of size n suh that yi = µ̃ + β̃i for all i, and let yk,n be a samplewhere k out of the n observations of yn are replaed by arbitrary values. Then,the exat �t point of T is de�ned as
δ∗n(T,yn) = min

k

{k

n

∣

∣

∣
there exists a sampleyk,n suh thatT (yk,n) 6= (µ̃, β̃)

}

.For regression and sale equivariant funtionals as onsidered here, this valuegives an upper bound for the �nite sample replaement breakdown point ε∗n(Rousseeuw and Leroy 1987, pp. 122-124), i.e.
ε∗n(T,yn) ≤ δ∗n(T,yn).The exat �t point for LMS and LTS is ⌈n/2⌉

n
(Rousseeuw and Leroy 1987,Setion 3.4). For RM one less observation is needed to pull the �t away6



n 5 7 9 11 13 15 17 19 21 23 25 27
k 2 2 3 4 4 5 6 6 7 8 8 9
n 29 31 33 35 37 39 41 43 45 47 49 51
k 10 10 11 12 12 13 14 14 15 16 16 17Table 3: Upper bound for the exat �t point k/n of the deepest regressionfuntional for seleted sample sizes n.

from the line in ase of a sample of odd size, beause its slope omponent isalulated by taking sets of two observations. Hene, its exat �t point is ⌊n/2⌋
nwhih is equal to its breakdown point.For deepest regression an upper bound for the exat �t point an be derivedas follows: onsider a sample yn,k of size n where n − k observations lie on astraight line l0 : yj = µ0+β0j, j = −m, . . . ,m. The exat �t point δ∗n equals thesmallest fration k/n of values not lying on l0 suh that the deepest regression�t departs from the line l0. This means we are searhing for a number k with

TDR(yn,k−1) = (µ0, β0) and TDR(yn,k) 6= (µ0, β0).W.l.o.g. we assume µ0 = 0 and β0 = 0. Furthermore, we take the �rst n − kobservations to lie on the line l0, i.e. we have yj = 0 for j = −m, . . . ,m − k,and we put the remaining k observations on another line l1 : yj = µ1 + β1j for
j = m− k + 1, . . . ,m, with µ1 = −n+1

2
and β1 = 1 6= β0. This guarantees that

l1 has a regression depth of at least k, beause at least k observations lie on
l1. Also, the residuals of these observations have the same (positive) sign withrespet to l0. In this way, the �t of l0 to the full sample yn,k is worsened withinreasing k. Table 3 gives the smallest number k of non-zero observationswhih, in this on�guration, fores the deepest regression estimate away from
(0, 0) for small to moderate sample sizes.In this partiular data situation and for the onsidered sample sizes, we see thatthe departure of ⌊n+1

3
⌋ observations from l0 an ause the deepest regression�t to do so too. 7



Hene, we an onlude that the smallest k with TDR(yn,k) 6= (µ, β) is at most
⌊n+1

3
⌋ and thus

δ∗n(TDR,y) ≤
1

n
·

⌊

n + 1

3

⌋

.Rousseeuw and Hubert (1999) show that the breakdown point of the TDR atany data set is at least one third:
ε∗n(TDR,y) ≥

1

n

(⌈n

3

⌉

− 1
)

≈
1

3
.Thus,

1

n

(⌈n

3

⌉

− 1
)

≤ ε∗n(TDR,y) ≤ δ∗n(TDR,y) ≤
1

n
·

⌊

n + 1

3

⌋

.This leads to the laim that, even in ase of an equally-spaed design, thebreakdown point of the DR funtional equals 1/3.3 Monte Carlo StudyIn the following, we ompare the performane of the online estimates µ̃online =

µ̃ + β̃m in di�erent data situations. In partiular, we onsider senarios whihare of importane in the online monitoring ontext. The performane of the es-timates will be judged by their standard deviation, bias and root mean squarederror. For omparison, we also inlude results for least squares (LS) regression.Data are generated from the simple linear model
Yi = µ + βi + εi, i = −m, . . . ,m.where for εi we onsider

• normal errors,
• heavy tailed errors,
• skewed errors,
• normal errors with additive outliers at random time points,
• normal errors with subsequent additive outliers.We set µ = β = 0 w.l.o.g., sine all methods onsidered here are regressionequivariant, and set the error variane to one w.l.o.g. beause of the saleequivariane. In eah ase S = 10000 independent samples are generated.8



On the one hand, the assumption of a linear trend within eah time windowbeomes less reliable if a large window width is hosen: in this ase, even asmall bias in the estimation for the window entre an ause a onsiderablebias of the online estimates as these are based on linear extrapolation. On theother hand, a large window width stands for smaller variability and produessmoother estimates. As a ompromise, a hoie of m = 10 or m = 15 isonsidered aeptable for the physiologial data we have in mind, leading towindow widths of n = 21 or n = 31 respetively, with the time units beingminutes.3.1 Standard Normal ErrorsIn the ideal situation of normal errors all methods yield unbiased results, dueto the symmetry of the underlying error distribution.Repeated median and deepest regression do not perform muh worse than leastsquares (LS) regression whilst the LMS and LTS estimates spread muh fur-ther (f. Table 4). The similar behaviour of LMS and LTS an be explainedby the fat that both pik about 50% of the observations whih an be op-timally desribed by a straight line, without restritions for symmetry, while
RM and DR seek for a balaned �t.As a result, the LMS and LTS online estimates are only slightly more than
20% as e�ient as LS, while for DR we have about 61%, and for RM ap-proximately 70% e�ieny. This is onsistent with previous researh, and theresults here even re�et the fat that for small samples LMS regression isslightly more e�ient than LTS regression (Rousseeuw and Leroy 1987).3.2 Heavy Tails and SkewnessAs real data sets may ontain large aberrant values, the normal distribution isoften not appropriate to model the error term. Therefore, we examine errorsfrom a re-saled t-distribution with three degrees of freedom and unit varianeas well as errors from a shifted lognormal distribution with zero median andunit variane. 9



LMS LTS RM DR LSstandard normal n = 21 0.875 0.887 0.500 0.533 0.420errors n = 31 0.767 0.785 0.422 0.450 0.352heavy tailed n = 21 0.544 0.551 0.345 0.354 0.413errors n = 31 0.450 0.455 0.279 0.287 0.342skewed n = 21 0.489 0.495 0.353 0.384 0.429errors n = 31 0.389 0.399 0.285 0.317 0.350Table 4: Standard deviations for the estimates at standard normal, re-saled
t3 distributed and re-saled lognormal data.At the t3-distribution, all methods yield unbiased results beause of symmetry.Again, the results for LMS and LTS regression are similar, like those for RMand DR. The standard deviations (f. Table 4) show that ompared to thestandard normal situation the variability has dereased for all robust methods,while for least squares it remains about the same sine its standard deviationonly depends on the error variane.A larger window width auses less variability, but the proportions of the out-omes from the di�erent methods stay approximately the same for di�erentwindow widths. The LMS and LTS standard deviations are about 60% thesize of their values in the standard normal ase, but nevertheless they are stilloutperformed by LS. This is not true for RM and DR, having standard devia-tions about 66% of their former size, with repeated median regression showingthe smallest variability here.Figure 1 shows boxplots of the results for the online estimates at lognormalerrors with a window width of n = 31. The blak line in the box denotes themedian, the grey line the arithmeti mean.The �gure learly shows systemati di�erenes among the onsidered methods.Rousseeuw, Van Aelst and Hubert (1999) point out that LMS and LTS are'mode-seeking' in ontrast to the 'median-like' behaviour of deepest regressionand, as we want to add, the repeated median. Indeed, the least median ofsquares and least trimmed squares estimates lie mainly between the mode andthe median of the underlying error distribution, while repeated median and10



LMS LTS RM DR LS

Online Estimates for Lognormal Data

−1

mod(X) = −0.38

med(X) = 0
E[X] = 0.27

1

2

Figure 1: Boxplots of the simulation results for the window width n = 31.deepest regression yield results entred at the median and least squares at theexpetation.Sine the methods apparently estimate di�erent quantities, an examination ofbias is not sensible. Thus, we will only regard variability (f. Table 4).The RM and DR standard deviations are only about 70% that for the stan-dard normal situation, and for LMS and LTS they are only about half aslarge. Comparing the results of the robust methods to least squares we seethat the RM standard deviation is only slightly more than 80% as large asthe orresponding least squares value, while the DR standard deviation is ap-proximately 90% as large. LMS and LTS on the other hand perform againworse than least squares where LTS shows a little more variability than LMS.Hene, again the repeated median provides the best results.3.3 Additive OutliersIn intensive are, data su�er from a broad variety of perturbations, eitheraused by medial reasons or by external soures suh as a loose able. Asthese disturbanes often produe similar deviations at several time points, weinvestigate the in�uene of additive outliers with same sign and size.11
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Figure 2: Standard deviation, bias and root mean squared error (RMSE) forthe online estimates at standard normal data with additive outliers at randomtime points.We generate samples from a standard normal model and add a value a ∈

{2, 4, 6, 8, 10} to an inreasing number k ∈ {1, . . . , 10} of observations hosenat random from the sample. Negative additive outliers would yield analogousresults. For the sake of brevity we only onsider the sample size n = 21.Outliers at random time points do not ause a bias for the slope, but forthe level estimation, whih also a�ets the online estimates. Figure 2 showsstandard deviation, bias and root mean squared error (RMSE) of the onlineestimates for outliers of size 2, 6 and 10. Results for outlier sizes of 4 and 8 liein between. 12



Again, the similarity of the RM and DR outomes shows up learly, and thedi�erenes in the results between LMS and LTS regression are negligible.
LTS is only slightly less variable than LMS for a large number of 9 − 10outliers. We also see that LMS and LTS are more heavily a�eted by smalleroutliers than by larger ones.Comparing repeated median and deepest regression, RM is preferable here asit yields a smaller standard deviation and bias for all onsidered numbers andsizes of outliers. However, this advantage is only signi�ant in ase of sevenor more outliers in aordane with the lower breakdown point of deepestregression.Overall, LMS and LTS perform best in terms of bias although with respetto the RMSE they only outperform the other methods in ase of many largeoutliers. For small outliers or a small to moderate number of outliers therepeated median should be preferred as it has the smallest RMSE.3.4 Outlying SequenesFor online monitoring it is of speial importane to trak sudden jumps inthe signal beause this may point at an abrupt hange of the patient's state.Looking at single time windows suh a level shift is indiated by a path ofoutlying values of the same size and sign at the end of a time window.We simulate suh situations by generating positive additive outliers of the samesize as in the previous subsetion - only that now the value a ∈ {2, 4, 6, 8, 10}is added to k ∈ {1, . . . , 10} subsequent values at the end of the time window.Again, only the ase n = 21 is investigated.As the online estimates approximate the level at the end of the window, asmall bias w.r.t. level in the entre of the time window is not neessarily whatwe aim at: in intensive are monitoring, as a medial rule of thumb a sequeneof �ve or more largely deviating values is assumed to indiate a shift whereasa smaller number is typially regarded as series of outliers (Imho�, Bauer,Gather and Fried 2003). Hene, a method performs well if it maintains theentral level in ase of a few subsequent outliers but jumps up to the level13
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Figure 3: Standard deviation, bias and root mean squared error (RMSE) forthe online estimates at standard normal data with additive outliers, ourringsubsequently at the end of the time window.of these largely deviant observations when their number is �ve or more - toestimate the new (higher) level rather than the former (lower) one in the entreof the window.Again, Figure 3 shows standard deviation, bias and RMSE only for outliersizes 2, 6 and 10 as the results for the sizes 4 and 8 lie in between.No method shows exatly the bias behaviour desribed above, although formedium-sized to large outliers the LMS and LTS bias urves remain on-stantly low for a smaller number of outliers and then show a sudden drasti14



inrease. However, the number of outliers whih is neessary to make the LMSor LTS bias inrease is the larger, the larger the size of the outliers is. In otherwords: the LMS and LTS online estimates follow a large level shift with aonsiderable delay, in ontrast to the estimates obtained by these methods inthe window entre, see Davies et al. (2004). On the other hand, the RM and
DR estimates typially smear a moderately large shift.Also, one an derive from Figure 3 that the standard deviations of RM and DRare always smaller than those of LMS and LTS regression, and further thatthey stay almost onstant. Again, the di�erene between LMS and LTS, andbetween RM and DR is negligible, both with respet to bias and variability,in spite of the di�erent breakdown points of the latter.
4 Appliation to Time SeriesIn this setion, we analyse the stability of the estimates as well as their abilityto trak trends, slope hanges and sudden level shifts by applying them to asimulated and to a real time series. In both ases we use a window width of
n = 21 observations.The simulated time series is 250 time units long and onsists of a signal ontain-ing onstant as well as trend periods and a level shift, plus additive standardnormal noise. 10% of the observations are replaed by positive additive outliersof size 6, whih are bundled in pathes of four subsequent outliers (twie), threeoutliers (twie), two outliers (three times), and single outliers (�ve times). Thestarting point of eah sequene is hosen at random.Figure 4 shows the online estimates and the underlying signal for the simulatedtimes series. All methods trae the trends and the slope hanges. Also, thesimilarity of the results from LMS and LTS regression as well as from repeatedmedian and deepest regression shows up learly.
RM and DR yield more stable results than LMS and LTS, and they are lessin�uened by values deviating moderately from the underlying signal, e.g. seethe results around time points 50 − 60 and around time point 150.15
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Figure 4: Online estimates based on windows of size n = 21.As the online estimates are based on a linear extrapolation of the level esti-mates for the entre of the time window, the LMS and LTS estimates ontinuethe pre-level-shift trend until some time points after the level shift. This isdue to their small bias with respet to the 'old' level before the shift.Repeated median and deepest regression trae the level shift with a shorterdelay than LMS or LTS, but they do not apture the abruptness of thejump. Also, the RM and DR estimates are loser to the signal around thetimes of a slope hange - espeially around the times 150 and 200. After thetransition to the 'new' level, subsequent to the shift, all methods overestimatethe signal, due to the strongly positive slope estimates around the shift. Thisis a well-known phenomenon when using a loal linear �t, see e.g. Einbek andKauermann (2003).Finally, we apply the methods to a medial time series of length 250, repre-senting the mean pulmonary artery blood pressure of an intensive are patient.16
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Figure 5: Online estimates based on windows of size n = 21.
Figure 5 shows that RM and DR yield muh more stable results while LMSand LTS are a�eted by moderate variation in the data.The RM and DR method trae the level shift around time point 70 better than
LMS or LTS regression. Also, LMS and LTS overestimate the level rightafter the shift by far more drastially. However, they apture the abruptness ofthe shifts better (e.g. around the times 150 and 175) while RM and DR smearthem. Here, the analyst must deide whether it is better to get a 'smeared'transition from one level to the other, or to ath the suddenness of the jumpwith some time delay.Both examples show the superiority of repeated median and deepest regressionin terms of stability. Also, the repeated median does not overestimate thesignal after a shift as muh as deepest regression.17



5 ConlusionsAll of the onsidered methods follow trends and slope hanges and trae levelshifts quite well. The di�erenes in the outomes from least median of squaresand least trimmed squares regression are negligible while repeated median anddeepest regression also show very similar results.For symmetri, unimodal errors all methods provide unbiased estimates of themedian and the mode, whih are idential in this ase; in ase of unimodal,but skewed errors, the LMS and LTS estimates lie somewhere in between themedian and the mode while RM and DR estimate the median.
LMS and LTS are less biased than RM and DR in the presene of manylarge outliers. However, as explained in Setion 3.4, in ase of a level shift asmall bias does not mean better performane of the online estimates. Although
RM and DR smear a shift somewhat, these methods still might be preferredbeause LMS and LTS follow a shift with a longer delay - espeially if the shiftis large. In spite of the laim that deepest regression is partiularly appropriatefor skewed errors due to its onstrution, the repeated median performed evenbetter for lognormal errors.Further, repeated median and deepest regression yield a more stable signalextration; and the LMS and LTS estimates are stronger in�uened by smallor medium-sized outliers.Summarising, repeated median and deepest regression outperform LMS and
LTS regression w.r.t. online signal extration without delay. Repeated me-dian regression yields the best results in most respets: among these robustmethods, RM is the least variable in most of the onsidered situations; itgives stable estimations in the appliations and also, it is omputationally thefastest.Aknowledgement: We gratefully aknowledge the �nanial support of theDeutshe Forshungsgemeinshaft (SFB 475: 'Redution of Complexity forMultivariate Data Strutures').
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