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Abstract

The Paris Agreement established a new mechanism by which a country can offset some

of its emissions reductions in other countries. Its design is still under negotiation. While

taking advantage of cheaper abatement opportunities enables efficiency gains, the impact

on the price volatility in the emission trading schemes is unclear. We conduct an empirical

analysis of the short-term impacts of these credits on the standard carbon markets, using

the European Union experience with accepting credits for compliance in the second phase of

its scheme. With vector-autoregressive models allowing regime changes at a priori unknown

dates, we analyze the structural relationship between the prices of allowances and credits.

Although one might expect that the allowance and credit markets influence one another, we

find that, before November 2011, knowing the credit price variations helps to better predict

the allowance price variations while, after November 2011, it is the opposite. We explain

this by expectations and restrictions regarding credits. For the transmission of shocks and

the impact on volatility, the influence is mainly from allowances to credits. The allowance

price volatility explains between 56% and 72% of the credit volatility whereas the latter

explains less than 2% of the former.
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1 Introduction

In the Paris Agreement reached within the United Nations Framework Convention on climate change

(UNFCCC), the Parties agreed upon principles for voluntary market mechanisms. This includes Article

6.4, which establishes a mechanism that makes it possible for activities contributing to emissions

reductions in a host Party to be used by another Party to fulfill its nationally determined contributions

(NDCs). The aim of such an offsetting scheme is to support mitigation efforts and foster sustainable

development. As we are writing this paper, the exact design of this mechanism is still being negotiated.1

In particular, the transition from the current international carbon credit system as well as accounting

rules are still debated.

Developping international cooperation on emissions trading offers possibilities of efficiency gains by

taking advantage of cheaper abatement opportunities. Reducing the cost of abatement in the jurisdic-

tions where abatement is more expensive and avoiding distortions and leakages induced by heterogenous

carbon pricing are the main motivations for supporting the development of a worldwide carbon market

(Tirole, 2012) or internationally uniform carbon pricing (Gollier and Tirole, 2015). A number of factors

may, however, impact the efficiency gains that are expected from linking carbon markets. In the case

of bilateral and sequential trading of emissions, Burtraw et al. (1998) show that the sequence of trade

may undermine the cost savings. The efficiency gains may also be affected by the initial allocation of

allowances (Lange, 2012).2,3 In the case of a project-based supply of international credits, the potential

frictions in the permit supply may reduce the cost savings (Liski and Virrankoski, 2004). In the case

of a sector-based supply of international credits, the carbon price equalization may actually result in

a welfare loss for the developing country involved (Hamdi-Cherif et al., 2011; Gavard et al., 2011). A

limit on the amount of permits traded would mitigate this effect (Gavard et al., 2016).4

Besides these efficiency considerations, the impact of such international mechanisms on the volatility

of the permit prices is an important aspect to consider as it may impact the companies covered by

emission trading schemes (ETS). Much of the existing literature consists in theoretical and numerical

1No agreement on Article 6 could be finalized at the 24th and 25th Conferences of the Parties (COP) (respectively
hold in Katowice in 2018 and in Madrid in 2019). The negotiations will continue in the following UNFCCC sessions.
Due to the Covid pandemic, the next Conference of the Parties where a draft decision could be considered will not take
place before the end of 2021.

2In particular, in the presence of frictions in the emissions market, this initial allocation may impact the market size
and trading costs (Liski, 2001).

3Habla and Winkler (2018) theoretically show that strategic delegation incentives may also reduce the attractiveness
of linkages.

4Besides volume restrictions, temporary restrictions are suggested as intermediary steps towards full linkage (Quemin
and de Perthuis, 2018).
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studies and has focused on linkages between standard ETSs. It suggests that the effect of carbon

market coupling is uncertain.5 A trade-off between efficiency gains and uncertainty increase might be

required. There is a need for more empirical analyses of the impact of offsetting on the permit price

return6 and volatility to draw lessons for the design of new international carbon credit schemes.

We empirically examine the short-term impacts of international credits on the standard carbon markets,

including with regard to the transmission of shocks and the effect on the permit volatilities. As the

European Union Emissions Trading Scheme (EU ETS) is the largest carbon market to have accepted

offsets, we take advantage of this experience to analyze the impacts to expect on the ETSs by focusing

on the second phase of the EU ETS, which is the time period when credits were accepted in Europe

before type restrictions were introduced.7 Our analysis takes account of potential interactions between

the two price series as well as potential regime changes in the relationship. Indeed, in the case of an

emissions trading scheme, even if the supply of permits is fixed, set by a cap that is decided at a political

level, the demand for allowances might be influenced by the acceptance of international carbon credits.

For the latter, the supply is impacted by international energy prices as well as investment support and

the demand is a function of the standard ETSs. In addition, policy announcements that took place

regarding the acceptance of credits in the second phase of the ETS as well as external factors such as

the 2008 economic crisis are also likely to have impacted the interactions between the two price series.

For these reasons, our structural analysis of their relationship employs a vector autoregressive model

(VAR) and we use the approach developed by Qu and Perron (2007) to allow for potential and a priori

unknown regime changes and detect them. For each identified regime, we use the estimations from the

VAR analysis to test the existence of a causality relationship in the sense of Granger, examine how

shocks are transmitted between the prices of allowances and credits and analyze how their variances

mutually influence one another. We discuss the variations across regimes.

While the functioning of the allowance and credit markets described above could imply a bi-directional

relationship between their price returns, we actually find a uni-directional structural relationship which

changes over time. Before November 2011, knowing the credit price variations enables to better predict

5Based on a theoretical and numerical approach, Doda et al. (2019) suggest that, while linkage should lower price
volatility on average, this may not always be the case for individual jurisdictions. The uncertainty implied by the
possibility for couplings to be terminated may induce costs and cause price divergence (Pizer and Yates, 2015). Together
with the market sizes, the sunk costs of linking as well as the jurisdiction characteristics, such uncertainties impact the
actual economic advantages of linking (Doda and Taschini, 2017).

6In this paper, "return" refers to the daily price variation.
7Before 2008, no international credits were used in the EU ETS due to the excess of EU allowances in Phase I of

the scheme (Ellerman et al., 2016). From 2013 onwards, the type of credits that could be used in the European system
were strongly restricted.
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the allowance return. After November 2011, it is the opposite. We explain this relationship change by

the general economic activity as well as expectations and restrictions regarding international credits.

For the transmission of shocks and the impact on the volatility, we find that the influence is in the

same direction for both regimes: shocks in the allowance price are immediately transmitted to the

credit price but shocks in the credit price are hardly transmitted to the allowance price. The allowance

price volatility explains more than 56% of the credit price volatility while the latter explains less than

2% of the former.

Much of the existing empirical literature on the price interactions between emission trading schemes and

international offsets has focused on the spread between the prices of European allowances (EUAs) and

Certified Emission Reductions (CERs) generated under the Clean Development Mechanism (CDM).

Nazifi (2013), Mizrach (2012), Mansanet-Bataller et al. (2011) and Chevallier (2010) indicate that the

price of international credits has been largely influenced by the European carbon market, due to the

fact that it has been the largest in the world to accept international credits for compliance (Ellerman

et al., 2010; Mansanet-Bataller et al., 2011). These studies have focused on shorter time ranges than

the one we consider. More recently, Hintermann and Gronwald (2019) developed a model to explain

the spread between the EUA and CER price series. They indicate that the CER price formation is

dominated by the uncertainty about offset demand and supply. The impact of these credits on the

standard schemes still needs to be quantified (Trotignon, 2012). The literature on the impact of the

carbon market volatility has mostly consisted in theoretical and numerical studies and rather focused

on coupling between cap and trade systems. Our empirical analysis is important to better understand

the impacts to expect from a more extended use of international carbon credits as a step towards more

globally harmonized carbon pricing.

The following section presents the institutional background of this work. Section 3 describes the data

we used. Section 4 presents the methodology used for the structural analysis and the detection of regime

changes with Qu and Perron’s approach. Section 5 discusses the results and Section 6 concludes.

2 Institutional background

According to the World Bank (WB, 2019), as of April 2019, 57 carbon pricing initiatives, including

28 emissions trading schemes, are in operation or planned in the world. These include, for example,

carbon markets in China, Europe, Australia, California, Korea, Canada, New Zealand, Kazakhstan,
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and Ukraine. The European system started in 2005. It is the largest one after the more recent Chinese

scheme. EUA are issued annually at the EU level. Their volume is defined by the European cap and,

each year, installations covered by the European trading scheme have to surrender carbon allowances

in a volume equivalent to the volume of their verified emissions that year.

Under the United Nations Framework Convention on Climate Change (UNFCCC), offsetting mech-

anisms have been put in place, initially in the framework of the Kyoto Protocol. With the Clean

Development Mechanism, CER issued for approved projects in developing countries (Lecocq and Am-

brosi, 2007) can be used by industrialized countries to meet their emission reduction target under the

Kyoto Protocol. Under the Joint Implementation, Emission Reduction Units (ERU) from projects

in Annex B countries8 can be used by other Annex B countries to reach their emissions reduction

objectives. These international credits can be traded worldwide and there is no limit on the amount

of CERs issued annually.

At the Conference of the Parties in Paris in 2015, it was decided to establish a new mechanism by

which countries can conduct emission reductions in a host Party and take them into account to fulfil

their own nationally determined contributions. This so-called Article 6.4 mechanism could replace the

current Clean Development Mechanism.

Historically, the European Union Emissions Trading Scheme (EU ETS) has been the largest carbon

market to accept international credits for compliance. Companies covered by the scheme were given

the possibility to surrender Kyoto Protocol credits together with the EUAs to cover their emissions.

In the first phase of the scheme (2005-2007), given the lack of scarcity of EUAs, this option was not

chosen by companies, but, in the second phase (2008-2012), companies used offsets up to the limit

of 13% of the amount of EUA issued under the European cap. This experience provides a privileged

framework to empirically analyze the impact of international credits on emissions trading schemes.

8Countries included in Annex B to the Kyoto Protocol for the first commitment period were Australia, Austria,
Belgium, Bulgaria, Canada, Croatia, the Czech Republic, Denmark, Estonia, the European Union, Finland, France,
Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Latvia, Liechtenstein, Lithuania, Luxembourg, Monaco, the
Netherlands, New Zealand, Norway, Poland, Portugal, Romania, Russian Federation, Slovakia, Slovenia, Spain, Sweden,
Switzerland, Ukraine, the United Kingdom of Great Britain and Northern Ireland, and the United States of America.
Canada withdrew from the Kyoto Protocol in December 2012 and the United States never ratified the Protocol.
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3 Data

We focus our analysis on the EUA and CER prices in the second phase of the EU ETS. More specifically,

our analysis covers the time period from 14 March 2008 to 12 November 2012. The reason is that

this is the phase when offsets were accepted in the EU ETS without type restrictions. The data are

taken from the Intercontinental Exchange (ICE). As the market for carbon permits is dominated by

contracts for futures (the volume of spot contracts is relatively small), we generate the series by rolling

over futures contracts. Given the importance of energy prices for carbon markets, we also use coal and

natural gas price data from the ICE.9 The conversion from $ to e for the coal price and from £ to

e for the gas price requires using exchange rates. These are taken from the European Central Bank.

Finally, to take into account the effect of the general economic activity on the carbon market, we use

the Euro Stoxx 50 Index as a proxy, as done by Creti et al. (2012) and Bredin and Muckley (2011) for

other analyses of the EU ETS.10,11 The descriptive statistics of the daily variations of the logarithmic

price series are reported in Appendix A (see Table 10). Several stationarity tests are conducted and

reported in Appendix. They show that the series are not stationary but that the daily variations are.12

Figure 1 presents the EUA and CER futures price series while Figure 2 shows their daily variations.

The carbon market was strongly impacted by the economic and financial crisis in 2008. This is visible

in the drop in the EUA and CER price from September 2008 onwards as well as in the relatively high

volatility in their return from September 2008 to July 2009. This is correlated with the downward

trend and high volatility observed in coal and gas prices from September 2008 to July 2009 (see Figure

3). The carbon market was also affected by the recession in Europe in the third trimester of 2011.

This is observable in the drop in the EUA and CER price series as well as in their volatility increase

from July 2011 onwards.

In parallel, the CER market was influenced by policy announcements. As early as January 2009, the

European Commission announced that there would be restrictions on the type of credits accepted for

compliance in the European carbon market, but the list of credit types that would be recognized or not

was only published in January 2011. This might have contributed to the observed downward trend in

9For coal and natural gas, we employ the price series of month-ahead contracts. For coal, we use the price series of
API2 CIF (Cost, Insurance, Freight) with delivery in ARA (Amsterdam, Rotterdam and Antwerp).

10The use of this proxy has several justifications. It is difficult to find daily data on the industrial production or on
the electricity production or consumption for the whole of the EU. National daily data available for electricity display
seasonality patterns and do not well represent the economic activity.

11The Euro Stoxx 50 Index and its return are displayed in Figure 8 in Appendix A.
12A detailed discussion of these tests is provided in Gavard and Kirat (2018).
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Figure 1: Futures price series of European Emission Allowances and Certified Emissions Reductions
(in logarithm).

the CER price from July 2011 onwards13 but two additional mechanisms are likely to also explain this

drop in the offset price. On the one hand, the European institutions set a limit on the volume of credits

that each installation covered by the scheme could use for compliance. As installations progressively

reached their respective limits, the demand for these carbon permits gradually decreased. On the other

hand, there was also a supply effect: the CDM was becoming more mature and, as underlying projects

finally generated emission reductions, CER issuance increased sharply (oversupply due to the time lag

between investment decisions and CER issuance). This increase in the supply of CER is confirmed by

the figures of the volume of CERs issued annually under the Kyoto Protocol, as reported by Ellerman

et al. (2016) (see Table 1). In the years from May 2008 to April 2009 and from May 2009 to April

2010, there were less than 150 million CERs issued annually (148 and 119 million respectively for each

year). From 2010 onwards, as the gas price was increasing and recovering its pre-crisis level (see Figure

3a), we observe that the volume of CERs issued annually kept rising: it was close to 200 million for

13Visually, the downward trend in the CER price seems to start in July 2011. This date coincides with the launch of
the Sandbag’s report Buckle Up! 2011 Environmental Outlook for the EU ETS, on the occasion of which the Climate
Action Commissioner reminded her audience of several reforms regarding the use of offsets in the EU-ETS in a speech
she pronounced at the European Parliament (EC, 2011b). These reforms include the limitation of the use of offsets
in the EU ETS from 2013 onwards, the focus on credits coming from projects in least developed countries, and the
ban of controversial industrial gas projects. Her speech also indicated that the EU would push for a reform of this
Kyoto Protocol offset mechanism. Statistically, Gavard and Kirat (2018) detect a break in the CER price trend only in
November 2011.
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Figure 3: Energy prices (in logarithm) and corresponding returns (first differences of the logarithmic
series)

May 2010 - April 2011, more than 300 million for May 2011 - April 2012 and nearly 400 million for

May 2012 - April 2013. This increase in supply in addition to a reduction in demand is likely to have

contributed to the drop in the CER price from July 2011 onwards. Finally, we should also note that,

at the 17th COP in Durban in November 2011, the decision was taken to review existing market-based

mechanisms and to develop new ones to help emerging and developing countries in their emission

reduction efforts (KPMG, 2011). Together with the announcements and mechanisms described above,

this might have enhanced the uncertainty regarding offsets and hence their price volatility.

We test the existence of a long-term relationship between the EUA and CER price series. Several

authors have found no evidence of cointegration between EUA and CER price series: Nazifi (2013)

for the time period from March 2008 to May 2009, Mizrach (2012) for the time period from June

2007 to April 2010.14 The observation of the EUA and CER prices over time (Figure 1) suggests the

absence of cointegration. Even if EUA and CER prices have common drivers and might influence one

14Mansanet-Bataller et al. (2011) and Chevallier (2010) find some cointegration between EUA and CER prices, but
Mizrah (2012) suggests that this is due to the fact that they use the Reuters index for the CER data and that this index
averages prices from different expiries.
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Table 1: Volume of CER issued under the Kyoto Protocol and surrendered in the EU ETS

Year
CER surrendered in the
EU ETS (millions)

CER issued under
the Kyoto Protocol
(millions)

Pre-2008 0 139

2008 84 148

2009 78 119

2010 117 198

2011 178 314

2012 220 388

Total 667 1,308

Adapted from Ellerman et al. (2016) based on UNEP Risø Centre
(2013) and EC (2015).
Note: ETS compliance years are from May of the year indicated
to April of the following year. They nearly coincide with the years
considered for CER issuance.

another, the Engle Granger test (see Schaffer, 2010), which takes account of breaks in the series, finds

no evidence of a long-term relationship between the EUA and CER prices on the time period from

March 2008 to November 2012. The results reported in Table 2 suggest that we cannot reject the null

hypothesis of no cointegration.

The Johansen test results presented in Table 315 requires more discussion. The trace and maximum

eigenvalue statistics do not allow to reject the null hypothesis of no cointegration when one uses

a specification with trend in the cointegration equation and the error correction equation, but this

null hypothesis can be rejected if one uses a specification with a constant and without trend for the

cointegration relationship. However, in that case, the estimation of the corresponding error correction

model indicates that the coefficient associated with the error correction term is not significant and

cannot bring the long-term relationship back to equilibrium. We hence conclude that the EUA and

CER price series are not cointegrated.16 We explain this result by the fact that, even if EUA and CER

prices are driven by similar factors, their long-term dynamics are different. The absence of evidence

of cointegration is a justification for using the first differences of the permit prices in the analysis that

follows.

15According to the Bayesian and Hannan-Quinn information criteria, we select one lag for inclusion in the error
correction model. We present the Johansen test results for several specifications. The likelihood ratio tests select the
model without constant as the most appropriate model.

16The graphical representation of the residuals of the regression of the CER price on the EUA price is reported in
Figure 9 in Appendix A. Its random walk aspect corroborates this conclusion.
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Table 2: Results of the Engle-Granger cointegration test.

Null hypothesis Test statistic 1% Critical value 5% Critical value

PCER
and PEUA

are not cointegrated 3.801 -3.906 -3.341

Note: the null hypothesis of no cointegration is rejected if the test statistic is below the critical value. Critical values are
taken from MacKinnon (1990, 2010).

Table 3: Results of the Johansen’s cointegration tests

Null hypothesis Trace Stat 5% critical value Maximum eigenvalue stat 5% critical value

Specification with trend in both the cointegration equation and the error correction equation

None 13.09 18.17 11.45 16.87

At most 1 1.64 3.74 1.64 3.74

Specification with trend in the cointegration equation

None 26.38** 25.32 22.28** 18.96

At most 1 4.10 12.25 4.10 12.52

Specification with a constant in both the cointegration equation and the error correction equation

None 22.62*** 15.41 22.23*** 14.07

At most 1 0.39 3.76 0.39 3.76

Specification with a constant in the cointegration equation

None 28.00*** 19.96 25.65*** 15.67

At most 1 2.34 9.42 2.34 9.24

Specification without constant

None 26.16*** 12.53 24.19*** 11.44

At most 1 1.96 3.84 1.96 3.84

Note: *** and ** respectively refer to the rejection of the null hypothesis at the 1% and 5% significance levels.

4 Method

In the case of an emissions trading scheme, the supply of permits is fixed, set by a cap that is decided

at a political level, while the demand for permits is a function of the general economic activity and

energy prices and might be influenced by the acceptance of international carbon credits. In contrast,

for the latter, the supply is influenced by international energy prices as well as investment support and

the demand is a function of the standard ETSs.

We first apply a standard VAR methodology to model the interrelationship between EUA and CER

price variations over the whole time period of the analysis. We then introduce the more sophisticated

methodology developed by Qu and Perron (2007) to allow for potential and a priori unknown regime

changes in this multivariate system and identify them. Indeed, given the policy announcements that

took place regarding CER acceptance in the second phase of the ETS and given the external factors

(e.g. the 2008 economic crisis) that impacted the market, we expect changes in the regime of inter-

actions between the two series during this phase. In a third step, we perform a structural analysis
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(Granger causality tests, impulse response functions and forecast-error variance decomposition) inside

each regime and discuss causality variations across regimes.

In the following, we present the methodology we use for the structural analysis of the causality re-

lationship between the EUA and CER markets. We then explain how we employ Qu and Perron’s

approach to allow and detect regime changes in this relationship as well as select the best model in

each identified regime.

4.1 Structural analysis of the EUA and CER relationship

The causality relationship between the EUA and CER prices (in logarithm) is first tested on the whole

sample duration with a two-dimensional VAR model with two lags.17 In principle, we can indeed

expect bi-directional interactions between the two price series, as the demand for CER is likely to be

largely driven the European carbon market, while the demand for EUA is also influenced by the use of

CERs in the EU scheme. Given the impact of energy prices and the economic activity on the carbon

price, we included these variables as exogenous controls, as presented below.





∆PEUA
t = α1 + β1∆PEUA

t−1 + γ1∆PEUA
t−2 + δ1∆PCER

t−1 + λ1∆PCER
t−2 + ζ1∆P

gas
t + η1∆P coal

t + θ1∆Gt + ε1t

∆PCER
t = α2 + β2∆PEUA

t−1 + γ2∆PEUA
t−2 + δ2∆PCER

t−1 + λ2∆PCER
t−2 + ζ2∆P

gas
t + η2∆P coal

t + θ2∆Gt + ε2t

where ∆PEUA
t , ∆PCER

t , ∆P
gas
t , ∆P coal

t are respectively the price variations of EUA, CER, gas and

coal in period t, ∆Gt the variation in the economic activity in period t, and ε1t and ε2t the error terms

corresponding to each relationship.

We tested specifications with energy prices and the economic activity as endogenous or exogenous vari-

ables, and variations with one or two lags for these variables. On the basis of the Akaike and Bayesian

information criteria, we found that including the energy prices and economic activity as endogenous

variables does not provide additional information compared to the specifications for which they are

included as exogenous variables. In particular, the estimation with the alternative specifications show

17The number of lags is chosen according to the Akaike and Hannan-Quinn information criteria.
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that the impact of EUA and CER prices on the energy prices and economic activity does not provide

any justification for including them as endogenous terms. We keep the simplest specification (with the

contemporaneous terms of energy prices and the economic activity included as exogenous variables)

and report the results for this.18

We employ the estimation results from the VAR analysis to perform a Granger causality test, conduct

an impulse response analysis and a decomposition of the forecast error variance (volatility decompo-

sition). The Granger causality test indicates whether the lagged values of the price of one type of

carbon permit improve the forecasting performance of the price of the other type. It informs on the

effect of the past values of one variable on the current value of the other one.

We then simulate a shock on the EUA price and look at the impact on the CER price, and, sym-

metrically, simulate a shock on the CER price and examine the impact on the EUA price. In order

to perform this impulse-response analysis, we employ the Cholesky decomposition to orthogonalize ε1

and ε2.

Finally, the forecast error variance decomposition tells us the proportion of the movement in the price

sequence of one permit type that is due to its own shocks or due to shocks to the other variable. The

variance decomposition of the EUA and CER prices indicates the share of the CER price volatility

that is explained by the EUA price volatility and, symmetrically, the share of the EUA price volatility

that is explained by the CER price volatility.

After detection of potential regime changes and model selection with Qu and Perron’s approach, we

perform a comparable analysis (Granger causality test, impulse-response functions and forecast-error

variance decomposition) on each specific regime.

4.2 Detection of potential regime changes and model selection in a multi-

variate system

There are several well-documented methods to identify structural changes in a single regression model.19

Only a limited number of studies adress the issue of structural breaks for multivariate systems. We

follow Qu and Perron’s approach (2007) to detect potential regime changes in the short-term relation-

ship between the EUA and CER prices and select the relevant model for these multivariate regressions.

18The results with the alternative specifications are available upon request.
19For example, Bai and Perron (1998) develop a methodology to detect multiple breaks occurring at unknown dates

in a single linear equation.
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This method considers the number of breaks and their dates a priori unknown. They are detected

rather than imposed in an ad hoc manner. Ahamada and Diaz Sanchez (2013) provide a very good

summary of the method. We use the same structure and notations to summarize the method below

but refer to the original paper for the details.

4.2.1 The model

We consider a VAR model with two real components, yt = (y1t, y2t)
′ǫℜ2, and one lag.Below, T and

m respectively represent the sample size and the total number of structural changes. The vector

Γ = (T1, ..., Tm) is composed of the unknown break dates and we set T0 = 1 and Tm+1 = T . This

means that there are m + 1 unknown subperiods : Tj−1 + 1 ≤ t ≤ Tj , with 1 ≤ j ≤ m + 1. We can

present the model as:

yt = πj0 + πj1yt−1 + εt (1)

where:

yt = (y1t, y2t)
′ǫℜ2,

πj0 = (π
(i)
j0 )i=1,2 ǫℜ2 is the vector of constant parameters and varies between subperiods,

πj1 = (π
(kl)
j1 )k=1,2; l=1,2 indicates the 2 × 2 matrix of the VAR parameters and varies between

subperiods,

and εt ǫℜ
2 are the residuals with mean zero and covariance matrix denoted by Σj .

We aim at estimating Λ =
{
m̂, T̂1, ..., T̂m, β̂j=1,..,m+1, Σ̂j=1,...,m+1

}
where:

βj =
(
π
(1)
j0 , π

(11)
j1, π

(12)
j1 , π

(2)
j0 , π

(21)
j1, π

(22)
j1

)′

ǫℜ6.

We first assume that m is known and discuss its estimation in Section 4.2.2. To estimate the model

introduced in Equation (1), we present it as:

yt = x′
tβj + εt (2)

where x′
t = (I2 ⊗ (1, y1t−1, y2t−1)). We employ the restricted quasi-maximum likelihood estimation

method. Given the break dates Γ = (T1, ..., Tm), the Gaussian quasi-likelihood function is:
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LRT =
Πm+1

j=1 Π
Tj

t=Tj−1+1f (yt|xt;βj ,Σj)

Πm+1
j=1 Π

T 0
j

t=T 0
j−1

+1
f
(
yt|xt;β0

j ,Σ
0
j

) (3)

where f (yt|xt;βj ,Σj) = (2π)
−n/2

|Σj |
−1/2

exp
{
− 1

2 [yt − x′
tβj ]

′
Σ−1

j [yt − x′
tβj ]

}
with n = 2.

Γ0 = (T 0
1 , ..., T

0
m), β0

j and Σ0
j represent the true unknown parameters. The denominator of (3) is

supposed to be constant. The Qu and Perron’s approach allows restriction in β = (β′
1, ..., β

′
m+1)

′ and

Σ = (Σ1, ...,Σm+1). For instance, imposing that a subset of βj is kept identical for all j would imply

a partial structural change model. We represent by g (β, vec(Σ)) = 0 the form of some restrictions in

β and/or Σ where g(.) is an r-dimensional vector and r the number of restrictions. We deduct the

restricted log-likelihood ratio:

rlrT = log(LRT ) + λ′g (β, vec(Σ)) (4)

and the estimates:

{T̂1, ..., T̂m, β̂, Σ̂} = arg max
(T1,...,Tm,β,Σ)

rlrT (5)

The maximization (5) is conducted over all partitions Γ = (T1, ..., Tm) such that |Tj − Tj−1| ≥ [δT ]

and Tm ≤ [T (1− δ)] where δ is an arbitrary small positive number and [] represents the integer part

of argument. As trimming parameter, δ imposes a minimal time-length for each regime. A major

implication is that, “under more general assumptions, the estimates of the break dates Γ = (T1, ..., Tm)

and the coefficients (β,Σ) are asymptotically independent and valid restrictions on the latter do not

affect the distribution of the former.” This result is useful for the model selection and the inclusion of

exogenous regressors in our application.

4.2.2 Selection of the number of breaks

In order to identify m, the number of breaks, we use the likelihood ratio test of no structural change

versus a particular number of changes k. Following Qu and Perron (2007), this can be defined as:

supLRT (k, pb, nbd, nbo, ε) = 2
[
log L̂T

(
T̂1, ..., T̂k

)
− log L̃T

]

where log L̂T

(
T̂1, ..., T̂k

)
is the maximum log-likelihood found with the optimal partition {T̂1, ..., T̂k},
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log L̃T is the maximum “log-likelihood under the null hypothesis of no structural change, pb the total

number of coefficients that can change (not including the coefficients of the variance-covariance matrix),

nbd and nbo indicate, respectively, the number of parameters that can vary in the diagonal and off-

diagonal coefficients of the variance-covariance matrix.” ε imposes a minimal time-length for each

regime. The limiting distribution of supLRT is discussed in more details by the authors and is

function of the parameters described above. “This testing procedure can adjust to a diversity of types

of structural changes: (a) changes only in the coefficients of the conditional mean (nbd = 0, nbo = 0);

(b) changes only in the coefficients of the covariance matrix of residuals (pb = 0); (c) changes in all of

the coefficients (pb 6= 0, nbd 6= 0, nbo 6= 0).

The test for no change versus an unknown number of breaks can also be considered given some upper-

bound M for k. These types of tests are called double maximum tests and the statistic is defined for

some fixed weights W = {a1, ..., aM} as:”

D max LRT (M) = max
1≤k≤M

[am supLRT (k, pb, nbd, nbo, ε)].

The weights W = {a1, ..., aM} reflect the imposition of some priors on the likelihood of various numbers

of structural breaks. Following Bai and Perron (1998), uniform double maximum tests (UD) (ai = 1 for

1 ≤ i = 1 ≤ M,) and weighted double maximum tests (WD) can be employed. For more explanations

about these types of tests, we refer to the originql paper.

Another possibility is to use the so-called sequential test based on the null hypothesis of l breaks dates

versus l + 1 breaks. The statistic can be written as:

SEQT (l + 1|l) = max
1≤j≤l+1

sup
τǫΛj,ε

lrT

(
T̂1, ..., T̂j−1, τ, T̂j , ..., T̂l

)
− lrT

(
T̂1, ..., T̂l

)

where:

lrT (.) denotes the log of the likelihood ratio,

{T̂1, ..., T̂l} is the optimal partition if we assume l breaks,

and Λj,ε is the set of possible additional break dates given (T̂1, ..., T̂l):

Λj,ε = {τ ; T̂j−1 + (T̂j − T̂j−1)ε ≤ τ ≤ T̂j − (T̂j − T̂j−1)ε}.

The limiting distribution of the test is a function of the number of coefficients that can vary. In
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practice, the preferred strategy to define the number of breaks is to first look at the UD max LRT (M)

or WD max LRT (M) tests to know if there is at least one structural break. We then find the number

of breaks by examining the SEQT (l + 1|l) statistics. We select the number of breaks m such that the

tests SEQT (l + 1|l) are non-significant for any l ≥ m. Bai and Perron (2003) recommend this method

for empirical analyses.

4.2.3 Selection of the number of lags

The presence of structural changes in multivariate models introduces nonlinearities. The Akaike and

Byesian information criteria (AIC and BIC) usually employed for model selection are hence not valid.

To overcome this issue, we use a practical result from Qu and Perron (2007) which states that “the

limited distribution of the estimates of the break points is not affected by the imposition of valid

restrictions on the parameters.” It follows that a non-linear VAR model with p lags can be considered

as a valid restriction of a non-linear VAR model with p+ 1 lags, if the break-dates in the two models

remain unchanged. We apply this result to select the number of lags in our empirical analysis.20

5 Results and discussion

5.1 Structural analysis on the whole time period

The results of the Granger causality tests on the whole time period are presented in Table 4. They

provide indications on how knowing the price variations of one type of permits enables to better

predict the price variation of the other type. While there would be reasons to expect a bi-directional

relationship between the two price series (see Section 4.1), the analysis on the whole time period

suggests a unidirectional influence from the EUA to the CER price. We find that the short-term

variations in the EUA price cause variations in the CER price, but that the opposite is not true. The

null hypothesis that variations in the price of EUAs do not cause variations in the price of CERs is

rejected, while the hypothesis that variations in the price of CERs does not cause variations in the

price of EUAs is not. These results seem to indicate that knowing the EUA price variations allows to

20Together with this practical result, one may use the modified Akaike (MAIC) and Bayesian (MBIC) information
criteria developed by Kurozumi and Tuvaandorj (2011). These criteria enable to select the number of regressors and the
number of structural breaks in multivariate regression models, possibly with lagged dependent variables as regressors
and multiple structural changes in both the coefficients and the variance matrices. The modified BIC consistently selects
the regressors and the number of breaks whereas both modified information criteria perform well in finite samples.
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better predict the CER price variations whereas the knowledge of the past values of the CER price

variations does not reduce the forecast error variance of the EUA price variations.

Table 4: Results of the Granger causality tests.

Null hypothesis LR statistic Granger causality test (Prob >χ
2)

∆PEUA
does not Granger cause ∆PCER

17.21 0.000***

∆PCER
does not Granger cause ∆PEUA

3.75 0.153

Note: *** and ** respectively refer to rejection of the null hypothesis at the 1% and 5% significance

levels.

Regarding the transmission of shocks between the EUA and CER prices, we use the Cholesky decom-

position to proceed to an impulse-response analysis (see results in Figures 4 and 5) and to the variance

decomposition of the two series (see results in Table 5). We observe that a shock on the EUA price

is immediately transmitted to the CER price. This effect is amortized in two days and it disappears

after four days. On the contrary, a shock on the CER price has no significant impact on the EUA

price.

−.01

0

.01

.02

.03

.04

.05

0 2 4 6 8

95% Confidence interval Orthogonalized impulse response function

Time (days)

Figure 4: Response in the variation of the logarithmic CER price to an impulse in the variation of the
logarithmic EUA price.

The variance decomposition of the EUA and CER prices indicates the share of the CER price volatility

that is explained by the EUA price volatility and, symetrically, the share of the EUA price volatility

that is explained by the CER price volatility. The results for the analysis on the whole time period are

presented in Table 5. We find that the EUA price volatility explains 60% of the CER price volatility,
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Figure 5: Response in the variation of the logarithmic CER price to an impulse in the variation of the
logarithmic EUA price

while the CER price volatility has no impact on the EUA price volatility. In line with what is observed

in the impulse-response analysis, the CER price variations do not seem to have a contemporaneous

impact on the EUA price variations. This would lead to the conclusion that the EUA price variations

evolve independently of the CER price variations.

Table 5: Variance decomposition of the forecasted errors for the whole time period.

Variance decomposition of ∆PEUA Variance decomposition of ∆PCER

Days ∆PEUA ∆PCER ∆PEUA ∆PCER

1 100% 0% 60.48% 39.52%

2 99.72% 0.28% 58.96% 41.04%

3 99.72% 0.28% 59.00% 41.00%

4 99.71% 0.29% 59.03% 40.97%

5 99.71% 0.29% 59.02% 40.98%

6 99.71% 0.29% 59.02% 40.98%

7 99.71% 0.29% 59.02% 40.98%

8 99.71% 0.29% 59.02% 40.98%

All these results on the whole time period seem to suggest a unidirectional influence of the EUA on the

CER. There are three possible explanations for this. First, the EUA market is much larger than the

CER market: the number of EUA issued annually (more than 2 billion in 2013) is in the same order

of magnitude as the cumulative number of CER generated since the mechanism was established (more

19



than 1.3 billion indicated on the CDM pipeline21 at the end of Phase II). Second, the demand for CER

has come mainly from the EU ETS. Third, the volume of CER that could be used for compliance in

the EU ETS was limited to 13% of the overall cap in the second phase of the scheme.

However, given the policy announcements regarding the acceptance of CER in the EU ETS during the

second phase and given the external factors that impacted the European carbon market or the credit

market (e.g. the 2008 economic crisis or changes in global fossil energy prices), we expect changes in

the regime of interactions between the two price series. For this reason, in the following, we conduct

a VAR analysis allowing for a priori unkown regime changes.

5.2 Detection of regime changes and model selection with the Qu and

Perron’s approach

We now apply the method developed by Qu and Perron to detect potential regime changes in the

relationship between the EUA and CER price. For this, we consider the following VAR model with p

lag length:




∆PEUA
t

∆PCER
t


 =




π1
j0

π2
j0


+

p∑

i=1




π11
ji π12

ji

π21
ji π22

ji







∆PEUA
t−i

∆PCER
t−i


+




ε1t

ε2t


 (6)

where:

Tj−1 + 1 ≤ t ≤ Tj , j = 1, ...,m+ 1,

∆PEUA
t and ∆PCER

t are respectively the EUA and CER price variations,

and




ε1t

ε2t


 is the vector of the residuals with zero mean and constant covariance-matrix.

We only consider the case of a structural change in the coefficients of the VAR model equations. All

the tests are carried out with m = 5. We first estimate a VAR model with one lag only. We also choose

a trimming of 0.15.22 This imposes a minimum time length of 177 observations for each regime. Since

21Detailed information on CDM projects is provided by the Centre on Energy, Climate and Sustainable Development:
UNEP DTU CDM/JI Pipeline Analysis and Database (UNEP Risø Centre, 2013).

22The trimming value imposes a minimal length for each regime and the limiting distributions of the different tests
are affected by this value. As a robustness exercise, we experiment with three different values: 0.10, 0.15, and 0.20.
These values are considered in many empirical papers and Monte Carlo simulations. We find that results are statistically
unaffected.
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Table 6: The sequential test of (l+1) breaks against (l) breaks for a VAR(1) with no linear restrictions

Statistic 5% critical value Significant break 95% confidence interval for break dates

Seq(2|1) 3.85 22.64 November 22, 2011 [September 27, 2011; January 20, 2012 ]

Seq(3|2) 18.58 23.56

Seq(4|3) 8.41 24.18

Seq(4|5) 0.00 24.67
.

we do not know the true lag length, we first estimate the number of breaks with the testing procedure

presented in Section 4.2.2, a procedure which is robust to heteroskedasticity and autocorrelation. We

then estimate the lag length using the estimated number of breaks. More precisely, we first test for

the null of no break using the double maximum (WD max LRT (M)) tests at the 5% significance level

allowing different second moments of the regressors as well as the heterogeneity of the variances. If the

null hypothesis is rejected, we use the sequential test based on the null hypothesis of l breaks dates

versus l+1 breaks until it cannot reject the null hypothesis. Once the number of breaks m is estimated,

the lag length is estimated through model selection stage which includes two main steps. The first step

is based on an important result of the Qu and Perron’s approach stating that the limiting distribution

of the estimates of the break dates is unaffected by the imposition of valid restrictions on the other

parameters of the model. In order to filter out models with invalid restrictions, we check whether the

estimated break dates in reduced VARs are within the confidence intervals of those in the full VAR. The

second step serves as a robustness check analysis and minimizes modified information criteria to select

the most appropriate model among the candidates. We minimize the modified Akaike and Bayesian

information criteria (MAIC and MBIC respectively), developed by Kurozumi and Tuvaandorj’s (2011)

with a number of breaks m already estimated. 23

The results of the WD max LRT (M) test on a VAR model with lag length equal to 1 suggest the

rejection of the null hypothesis of no structural change at the 5% level. The value of the WD max

LRT (M) statistic is 60.14. It exceeds 21.83, the critical value at the 5% level. Hence, there is at least

one structural break in the VAR model with lag length equal to 1. Table 6 shows the results of the

SEQT (l + 1|l) test along with the estimated break date with its 95% confidence interval. We cannot

reject the null hypothesis of one break against the alternative of two breaks as SEQT (2|1) = 3.85 with

the 5% critical value being 22.64. The performed tests thus lead us to conclude that there is only one

significant structural break in the considered VAR system with one lag.

23Kurozumi and Tuvaandorj’s (2011) modified the Akaike and Bayesian information criteria developed by Akaike
(1973) and Schwarz (1978) to allow comparing multivariate models with structural changes.
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Afterwards, we extend the model to include additional lags. We apply the tests using a VAR with a

lag fixed at p = 2. The value of the WD max LRT (M) statistic is 64.44, whereas the critical value

at the 5% level is 28.72. We thus reject the null hypothesis of no structural change in favor of at

least one break. According to the sequential SEQT (l + 1|l), we cannot reject the null hypothesis of

one break against the alternative of two breaks as SEQT (2|1) = 9.17 is lower than the 5% critical

value of 30.28. We find that the number and location of the break-date remain unchanged. The

VAR model with one lag can then be considered as a valid and parsimonious restriction of the VAR

model with two lags. The modified Akaike information criteria are MAIC(1, 1) = −12284.20 and

MAIC(1, 2) = −12284.06 for VAR models respectively with one lag and two lags. The corresponding

modified Bayesian information criteria are MBIC(1, 1) = −12199.95 and MBIC(1, 2) = −12159.23.

Both modified information criteria suggest to select the VAR model with one lag and consequently

confirm our previous conclusion about model selection. Table 6 reports the estimated break date and

its corresponding 95% confidence interval.

The detected date of regime change, November 22, 2011 can be explained by the economic situation as

well as policy announcements. At that time, as presented in Section 2, the carbon market was affected

by the recession in Europe (third trimester of 2011). This induced a drop in the EUA and CER price

series as well as an increase in their volatility from July 2011 onwards. In addition, at the 17th COP

in Durban in November 2011, the decision was taken to review existing market-based mechanisms

and to develop new ones to help emerging and developing countries in their emission reduction efforts

(KPMG, 2011). This followed announcements of stricter rules of acceptance of CDM credits in the EU

ETS in the course of the year 2011. In January 2011, the European Commission published the list of

credit types that would continue to be accepted under the EU ETS. This is part of stricter limitations

on the use of offsets in the EU ETS from 2013 onwards, including a focus on credits coming from

projects in least developed countries, and a ban of controversial industrial gas projects. In July 2011,

on the occasion of the launch of the Sandbag’s report Buckle Up! 2011 Environmental Outlook for the

EU ETS, the Climate Action Commissioner indicated to the European Parliament (EC, 2011b) that

the EU would push for a reform of this Kyoto Protocol offset mechanism.24

24All this happened in a context of decreasing demand for permits (due to limitations on the volume of credits
that each installation covered by the European scheme could use for compliance in Phase II) and increasing supply, as
explained in Section 2 (see Table 1). All together these events and announcements may explain the observed downward
trend in the CER price from July 2011 onwards, the enhanced uncertainty regarding offsets and hence their larger price
volatility.
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5.3 Structural analysis with regime changes

The results of the Granger causality test on the time periods before and after the regime change

are reported in Table 7. They show that, although for the whole time period, the dominant regime

suggests a unidirectional influence of the EUA on the CER price variations, this is not the case for

all subperiods. Not taking into account possible regime changes would result in neglecting non-linear

effects. Before 22 November 2011, knowing the price variations of CERs helps to better predict the

EUA price variations, but the opposite is not true. After 22 November 2011, the causality relationship

follows the opposite direction. We provide an explanation for these differences between regimes based

on the changes in the general economic activity, the policy announcements regarding CERs, and the

changes in their demand and supply.

Table 7: Results of the Granger causality tests per subperiod.

Time period Null hypothesis LR statistic
Granger causality test

(Prob >χ
2)

Before 22 November 2011 ∆PEUA
does not Granger cause ∆PCER

2.59 0.108

∆PCER
does not Granger cause ∆PEUA

18.92 0.000***

After 22 November 2011 ∆PEUA
does not Granger cause ∆PCER

6.10 0.014**

∆PCER
does not Granger cause ∆PEUA

0.066 0.797

Note: *** and ** respectively refer to rejection of the null hypothesis at the 1% and 5% significance levels.

While the link between the EU ETS and the international credit market could involve a bi-directional

influence between the EUA and CER price variations, we are now examining why the Granger causality

relationship is uni-directional, from the CER to the EUA price before November 2011 and from the

EUA to the CER price after November 2011.

For the time period after 22 November 2011 (T2), the Granger causality test indicates a unidirectional

influence from the EUA to the CER price. As explained above, the recession in Europe in the third

trimester of 2011, together with policy announcements regarding these Kyoto credits, reduced demand

from EU ETS installations25 and increased supply (as explained in Section 2) is likely to have caused

the CER price drop and its volatility increase. This uncertainty regarding the value of the offset

credits resulted in the EUA price becoming more independent from the CER price variations, hence

the uni-directional influence from the EUA to the CER.

25Back then it was uncertain whether the limit of offsets that could be accepted for compliance for the second phase
of the EU ETS would be reached.
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For the time period before 22 July 2011 (T1), i.e. for the majority of the second phase of the EU ETS,

the Granger causality test indicates that knowing the CER price variations helps to better predict the

EUA price changes, while the opposite is not true. We explain the absence of a Granger causality

relationship from the EUA to the CER by the impact of the 2008 economic crisis on the EU ETS. The

economic crisis of 2008 impacted energy and carbon prices. This as particularly visible in the drop

of the coal and gas prices until summer 2009 as well as in their respective volatilities which remained

high until summer 2009 for coal and even until summer 2010 for gas (see Figure 3). The gas price

and volatility were back to their pre-crisis level only during the course of the year 2011. While this

induced a lack of scarcity for carbon permits, the expectations regarding CERs were still high as the

second phase of the EU ETS marked the start of their acceptance in the European scheme. This would

explain the uni-directional Granger causality relationship from the CER to the EUA.
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Figure 6: Response in the variation of the logarithmic CER price to an impulse in the variation of the
logarithmic EUA price
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Figure 7: Response in the variation of the logarithmic EUA price to an impulse in the variation of the
logarithmic CER price

We now proceed to the Cholesky decomposition and perform the impulse-response analysis as well
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as the volatility decomposition. For both subperiods, we observe that a shock on the EUA price is

immediately transmitted to the CER series and amortized in two days (see Figure 6). The effect is the

strongest for the time period after 22 November 2011, which coincides with the time when the Granger

causality link is unidirectional from the EUA to the CER price series. On the contrary, an impulse in

the CER price is not transmitted to the EUA series in the second regime (see Figure 7), while there is

a slight transmission with a one-day delay in the first one. The shock is then absorbed in one day. We

note that the first regime is the one during which we observe a Granger causal influence of the CER

price on the EUA.

Table 8: Variance decomposition of the forecasted errors for the time period before 22 November 2011.

Variance decomposition of ∆PEUA Variance decomposition of ∆PCER

Days ∆PEUA ∆PCER ∆PEUA ∆PCER

1 100% 0% 71.65% 28.35%

2 98.10% 1.90% 70.72% 29.28%

3 98.00% 2.00% 70.69% 29.31%

4 98.00% 2.00% 70.69% 29.31%

5 98.00% 2.00% 70.69% 29.31%

6 98.00% 2.00% 70.69% 29.31%

7 98.00% 2.00% 70.69% 29.31%

8 98.00% 2.00% 70.69% 29.31%

Table 9: Variance decomposition of the forecasted errors for the time period after 22 November 2011.

Variance decomposition of ∆PEUA Variance decomposition of ∆PCER

Days ∆PEUA ∆PCER ∆PEUA ∆PCER

1 99.98% 0.02% 59.72% 40.28%

2 99.97% 0.03% 57.02% 42.98%

3 99.97% 0.03% 56.73% 43.27%

4 99.97% 0.03% 56.70% 43.30%

5 99.97% 0.03% 56.70% 43.30%

6 99.97% 0.03% 56.70% 43.30%

7 99.97% 0.03% 56.70% 43.30%

8 99.97% 0.03% 56.70% 43.30%

The forecast error variance decomposition shows a trend that is common to all subperiods and consis-

tent with the observation on the whole time period (see Tables 8 and 9). Between 56% and 72% of the

CER price volatility is explained by the EUA price volatility, while less than 2% of the EUA volatility

is explained by the CER price volatility.

In conclusion, we observe a clear influence of the EUA price on the CER price with regard to the

transmission of shocks and the effect on volatility. A shock on the EUA price is immediately transmitted
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to the CER price and absorbed within two days. The volatility of the CER price is largely explained

by the EUA price volatility. On the contrary, we observed nearly no transmission of CER price shocks

to the EUA price and the volatility of the CER price has a very limited influence on the volatility in

the CER price. These observations are likely due to the market size difference between EUA and CER:

the volume of EUAs issued each year during the second phase of the EU ETS was larger than the total

volume of CERs issued since the establishment of the corresponding Kyoto Protocol mechanism. In

addition, the limit on the volume of CER accepted in the EU ETS as well as the fact that the demand

for CER had come mainly from the EU ETS reinforced the impact of this asymmetry between the two

markets on the price interaction.

However, the Granger causality relationship changes between the two regimes. It is unidirectional from

CERs to EUAs in first regime and from EUAs to CERs in the second one. The direction depends on

the general economic activity as well as the expectations and potential restrictions regarding offsets.

Before November 2011, we find a Granger causal impact from the CER to the EUA price variations.

This can be explained by the fact that, while the 2008 economic crisis induced a lack of scarcity for

permits, expectations regarding offsets were still high as the EU ETS phase II was the first time such

credits were accepted in the European carbon market. On the contrary, after November 2011, we

find a Granger causal effect from the EUA to the CER price variations. In 2011, the EU published

the list of restrictions on the use of credits in European scheme and reviews of the corresponding

Kyoto mechanism were decided in the international climate negotiations at the end of the year. As

expectations regarding CERs were severely affected, the demand for credits from European installations

declined. As the CER price dropped and its volatility increased, the EUA market became more

independent of the international offset market.

These results may have policy implications both for the international climate negotiations and for ETS

regulation. At a regional policy level, stricter restrictions on the acceptance of credits would involve

a larger independence of the emission trading schemes. For the design of new market mechanisms

under Article 6 of the Paris Agreement, stricter conditions for credit issuance (limit on the volume

or higher quality requirements) would improve the reliability of such permits, increase their expected

value, and also their potential impacts on the daily price variations in the standard emissions trading

systems. However, in all cases, if the volume of credits remains small in comparison with the volume of

certificates in the emission trading schemes, the price shocks of the credits do not have much influence

on the volatility in the standard carbon markets. It is rather the latter which largely drives the offset
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price volatility.

6 Conclusion

In this paper, we conduct an empirical analysis of the short-term impacts of international carbon

credits on standard emissions trading schemes. We take advantage of the European experience with

accepting offsets for compliance in the second phase of the EU ETS. We employ vector-autoregressive

models and allow for regime changes, which we detect with the approach developed by Qu and Perron.

For each identified regime, we characterize the structural relationship between the price variations of

each carbon permit type as well as the transmission of shocks between them and the impact of the

volatility of each type of permit on the other one. To the best of our knowledge, this is the first

time the structural relationship between daily prices variations of credits and European allowances is

empirically tested taking into account possible regime changes. More generally, this work is the first

empirical analysis of the impact of offsetting on the volatility in standard ETSs.

In principle, we could expect that the allowance and credit prices mutually influence one another.

However, we find that the structural relationship between the price variations of allowances and credits

is uni-directional and changes over time as a consequence of policy annoucements and expectations

regarding credits. Before November 2011, the price causality relationship is from credits to allowances,

while it is from allowances to credits afterwards. Before November 2011, while the 2008 economic crisis

involved a lack of scarcity for permits, expectations regarding credits were still high as the second phase

of the EU ETS was the first time that these credits were accepted in such a large trading scheme. At

the end of the year 2011, this reversed. The fall 2011 corresponds to a time of economic recession

in Europe but also to the COP17 UNFCCC meeting where the decision was made to review existing

market-based mechanisms and to develop new ones to help developing countries in their emission

reduction efforts. This follows announcements by the European Commission in the course of the year

2011 of stricter rules of acceptance of offsets in the European carbon market.

Regarding the transmission of shocks and the impact on the permit price volatilities, we find that the

influence is mainly from allowances to credits. A shock on the allowance price is always transmitted

to the credit price and absorbed in two days. A shock on the credit price is not transmitted to the

allowance price in the regime after November 2011. It is slightly transmitted in the first regime and
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also absorbed in two days. The allowance price volatility explains between 56% and 72% of the credit

price volatility, whereas the latter explains less than 2% of the former.

As the design of new carbon offseting mechanisms is being negotiated, in particular in the framework

of Article 6.4 of the Paris Agreement, our work has the following policy implications. The absence of

transmission of shocks from the offset market to the ETSs is a rather positive point. This is likely

due to the difference in market size between the two types of permits. Regarding the interactions

between their returns, setting a limit on the volume of international credits that can be accepted in an

ETS would tend to reduce their influence. This would, however, reduce the demand for offsets and, in

fine, undermine the support that such carbon offseting mechanisms are expected to provide for low-

carbon projects in developing countries. Strict conditions for the issuance of these credits (potentially

together with a global limit on the volume of international credits generated annually) would increase

their environmental quality and improve their acceptability by ETSs. A significant demand from these

would help avoiding the price of these credits to drop. It might increase their influence on ETSs but it

would tend to mitigate the risk of offsets contributing to a reduction of the carbon price in the latter.

This would hence reinforce the effectiveness of both types of climate policy instruments.
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Appendices

A. Data description

Table 10: Descriptive statistics of the daily variations of the logarithmic price series

Variable Nb. of Obs. Mean St. Dev. Min. Max.

EUA 1195 -0.00075 0.024 -0.093 0.193

CER 1182 -0.00234 0.031 -0.179 0.195

Gas 1195 0.0001495 0.03297 -0.1220 0.3600

Coal 1195 -0.0002768 0.02031 -0.2248 0.1631

Eurex 1195 -0.0003692 0.01823 -0.08208 0.1044
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Figure 8: Euro Stoxx 50 index (in logarithm) and returns (first differences of the logarithmic series)
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Table 11: Results of the Clemente Montañès and Reyes tests on EUA and CER permit prices (in
logarithms)

Test EUA future price CER future price

Procedure IO AO IO AO

Series Level Variation Level Variation Level Variation Level Variation

DU1 -0.016 0.002 -0.546 0.0036 -0.006 -0.005 -0.471 -0.021

(-4.67) (1.47) (-49.46) (1.955) (-1.90) (-0.669) (-22.90) (-2.79)

{0.000} {0.141} {0.000} {0.052} {0.058} {0.504} {0.000} {0.005}

DU2 -0.016 0.0005 -0.606 0.0011 -0.006 -0.0003 -1.298 0.016

(-4.82) (0.287) (-63.43) (0.608) (-1.39) (-0.038) (-72.74) (2.08)

{0.000} {0.774} {0.000} {0.543} {0.163} {0.970} {0.000} {0.037}

ρ-1 -0.028 0.925 -0.034 -0.895 -0.005 -0.899 -0.014 -0.904

(-5.36) (-25.43) (-4.67) (-10.66) (-1.427) (-24.34) (-2.473) (-10.12)

[-5.49] [-5.49] [-5.49] [-5.49] [-5.49] [-5.49] [-5.49] [-5.49]

Conclusion I(1) I(0) I(1) I(0) I(1) I(0) I(1) I(0)

Dates of 13/10/08 03/11/08 21/11/08 23/11/11

Breaks 15/09/11 28/11/11 28/11/11 16/12/11

Note: The values in () and [] are respectively the t-statistics and the critical values at the 5% significance level tabulated by

Clemente Montañès and Reyes. Values in {} are p-values.The null hypothesis of the unit root test is rejected when the t-statistic

is smaller than the critical value.
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Figure 9: Residuals of the regression of the CER price on the EUA price.
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Table 12: Stationarity tests in the presence of breaks applied to the gas price series (in log)

Test Clemente Montañès and Reyes test Perron Vogelsang test

Procedure IO AO IO AO

Series Level Variation Level Variation Level Variation Level Variation

DU1 -0.031*** -0.007** -0.824*** -0.004 0.004** -0.002 0.347*** 10
-5

(-5.37) (-2.13) (-65.4) (-1.35) (2.31) (1.52) (19.1) (0.002)

DU2 -0.026*** 0.008*** 0.665*** 0.006***

(5.87) (3.85) (65.6) (2.72)

ρ-1 -0.034 -1.14 -0.036 -1.14 -0.006 -0.955 -0.057 -1.16

(-5.74) (-21.4) (-3.89) (-20.4) (-2.13) (-18.0) (-1.77) (-20.4)

[-5.49] [-5.49] [-5.49] [-5.49] [-4.27] [-4.27] [-3.56] [-3.56]

Conclusion I(0) I(0) I(1) I(0) I(1) I(0) I(1) I(0)

Dates of 02/06/09 28/08/08 17/02/09 17/02/09 21/04/10 13/12/10

Breaks 22/04/10 27/08/09 25/05/10

Note: The values in () and [] are respectively the t-statistics and the critical values at the 5 % significance level, tabulated

by Clemente Montañès and Reyes on the one hand, and by Perron and Vogelsang on the other. The null hypothesis of unit

root is rejected when the t-statistic is smaller than the critical value. *, ** and *** respectively refer to the 10%, 5% and 1%

significance levels of the estimated coefficients. The test procedure is sequential. We first apply the Clemente Montañès and

Reyes test and check the significance of the estimated parameters of the dummy variables accounting for the structural breaks.

If they are significant, we interpret the unit root test. Otherwise, we run the Perron-Vogelsang unit root test and check for the

significance of the break before interpreting the unit root test. If the break date is also not significant, we apply standard unit

root tests without breaks.

Table 13: Stationarity tests in the presence of breaks applied to the coal price series (in log)

Test Clemente Montañès and Reyes test Perron Vogelsang test

Procedure IO AO IO AO

Series Level Variation Level Variation Level Variation Level Variation

DU1 -0.017*** -0.004 -0.700*** -0.006** -0.006*** -0.002* -0.458*** 0.002*

(-5.36) (-1.55) (-60.3) (-2.37) (-2.71) (1.88) (-25.1) (1.72)

DU2 0.008*** 0.004** 0.391*** 0.006***

(5.00) (2.06) (48.3) (2.92)

ρ-1 -0.019 -0.910 -0.029 -0.860 -0.007 -0.910 -0.005 -0.880

(-5.56) (-11.1) (-3.85) (-9.71) (-2.87) (-10.9) (-1.88) (-10.0)

[-5.49] [-5.49] [-5.49] [-5.49] [-4.27] [-4.27] [-3.56] [-3.56]

Conclusion I(0) I(0) I(1) I(0) I(1) I(0) I(1) I(0)

Dates of 10/09/08 27/02/09 31/10/08 28/10/08 05/09/08 22/10/08

Breaks 15/04/10 28/04/10 26/02/09

Note: The values in () and [] are respectively the t-statistics and the critical values at the 5 % significance level, tabulated

by Clemente Montañès and Reyes on the one hand, and by Perron and Vogelsang on the other. The null hypothesis of unit

root is rejected when the t-statistic is smaller than the critical value. *, ** and *** respectively refer to the 10%, 5% and 1%

significance levels of the estimated coefficients. The test procedure is sequential. We first apply the Clemente Montañès and

Reyes test and check the significance of the estimated parameters of the dummy variables accounting for the structural breaks.

If they are significant, we interpret the unit root test. Otherwise, we run the Perron-Vogelsang unit root test and check for the

significance of the break before interpreting the unit root test. If the break date is also not significant, we apply standard unit

root tests without breaks.
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Table 14: Stationarity tests in the presence of breaks applied to the equity index series (in log)

Test Clemente Montañès and Reyes test Perron Vogelsang test

Procedure IO AO IO AO

Series Level Variation Level Variation Level Variation Level Variation

DU1 0.002* -0.046*** -0.021** -0.046*** -0.002 0.002 -0.297*** 0.002

(1.81) (-5.08) (2.49) (-4.43) (-1.64) (1.58) (-32.1) (1.44)

DU2 -0.003** 0.047*** -0.183*** 0.048***

(-2.24) (5.31) (-21.1) (4.60)

ρ-1 -0.013 -1.31 -0.013 -1.26 -0.012 -1.28 -0.013 -1.22

(-3.05) (-13.5) (-2.84) (-10.3) (-2.93) (-13.1) (-2.35) (-11.6)

[-5.49] [-5.49] [-5.49] [-5.49] [-4.27] [-4.27] [-3.56] [-3.56]

Conclusion I(1) I(0) I(1) I(0) I(1) I(0) I(1) I(0)

Dates of 06/07/11 02/10/08 13/08/09 03/10/08 13/10/08

Breaks 09/10/08 19/07/11 08/10/08

Note: The values in () and [] are respectively the t-statistics and the critical values at the 5 % significance level, tabulated

by Clemente Montañès and Reyes on the one hand, and by Perron and Vogelsang on the other. The null hypothesis of unit

root is rejected when the t-statistic is smaller than the critical value. *, ** and *** respectively refer to the 10%, 5% and 1%

significance levels of the estimated coefficients. The test procedure is sequential. We first apply the Clemente Montañès and

Reyes test and check the significance of the estimated parameters of the dummy variables accounting for the structural breaks.

If they are significant, we interpret the unit root test. Otherwise, we run the Perron-Vogelsang unit root test and check for the

significance of the break before interpreting the unit root test. If the break date is also not significant, we apply standard unit

root tests without breaks.

Table 15: Unit root tests for the explanatory variables

Augmented Dickey-Fuller Philipps-Perron (PP) Kwiatkowski-Phillips

(ADF) -Schmidt-Shin (KPSS)

Series (in logarithm) Level Variation Level Variation Level Variation

Gas 0.060(1) -20.140(1)*** 0.013(1) -33.762(1)*** 1.220(2)$$$ 0.175(2)

Coal -0.625(1) -14.828(1)*** -0.653(1) -33.401(1)*** 0.646(2)$$ 0.154(2)

Eurex -2.419(2) -17.195(1)*** -2.753(2)* -35.348(1)*** 1.290(2)$$$ 0.142(2)

Note: (1) model without constant or trend; (2) model with constant; (3) model with constant and trend. For ADF and PP tests,

*, ** and *** respectively represent the rejection of the null hypothesis of a unit root at the 10, 5 and 1% significance levels.

For the KPSS test, the null hypothesis of stationarity is rejected if the test statistic is above the critical value. With Barlett

kernel and automatic selection of the number of lags, the critical values are 0.463 for 5% and 0.739 for 1% in the case without

trend, 0.146 for 5% and 0.216 for 1% in the case with trend. For this test, $$ and $$$ respectively represent the rejection of the

null hypothesis of stationarity at the 5% and 1% significance levels. The model choice in ADF and PP tests is made according

to a strategy of sequential tests from the most general to the most restricted one.
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