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Lyapunov exponent for Sto
hasti
 Time SeriesAnja M. Busse�Fa
hberei
h Statistik, Universit�at Dortmund, GermanyClaus WeihsFa
hberei
h Statistik, Universit�at Dortmund, GermanyMai, 2004Abstra
tThis paper deals with the problem of the dis
rimination betweenstable and unstable time series. One 
riterion for the separation isgiven by the size of the Lyapunov exponent, whi
h was originallyde�ned for deterministi
 systems. However, this paper will show, thatthe Lyapunov exponent 
an also be analyzed and used for ergodi
sto
hasti
 time series. Experimental results illustrate the 
lassi�
ationby the Lyapunov exponent.Although the Lyapunov exponent is a dis
riminatory parameterof the asymptoti
 behavior and 
an be interpreted as a parameterof the asymptoti
 distribution in the sto
hasti
 
ase, it has to beestimated from a given time series, where the pro
ess might still bein the transient state. Experimental results will show that in spe
ial
ases the estimation leads to mis
lassi�
ations of the time series andthe underlying pro
ess due to the un
ertainty of estimators for theLyapunov exponent.1 Introdu
tionIn 
onne
tion with the des
ription and the analysis of time series the Lya-punov exponent 
an be used for the determination of the predi
tability of�email:busse�statistik.uni-dortmund.de 1



time series (Busse et al. 2001). Another possible �eld of appli
ation is to dis-
riminate between ergodi
 sto
hasti
 pro
esses with stationary distributionsand pro
esses, like 
haoti
 systems, with lo
al "instability" of the asymptoti
distribution.A formal dis
rimination between stable and unstable time series 
an bea
hieved by analyzing the Lyapunov exponent, whi
h was suggested in 
on-ne
tion with the predi
tability of deterministi
 pro
esses and sto
hasti
 timeseries with additive noise (Busse et al. 2001).Although the Lyapunov exponent is a dis
riminatory parameter of theasymptoti
 distribution, it has to be estimated from a given �nite time se-ries. Consequently the estimation 
auses the main problem, if the Lyapunovexponent should distinguish between the di�erent kinds of time series. If thesample size does not suÆ
e or the time series is strongly disturbed by noisethe estimation may be biased. In the literature various approa
hes for theseparation 
riterion estimation have been suggested (Kantz and S
hreiber(1997), Gen
ay (1996), Sano and Sawada (1985), E
kmann et al. (1986).However, all these methods are sus
eptible to interferen
e. Noisy time se-ries, missing numeri
al stability or limited number of data often yield a badestimator. Consequently the 
lassi�
ation into a stable or unstable system
ould be possibly in
orre
t.The remainder of this paper is organized as follows. Ne
essary notationis des
ribed in Se
. 2. After an introdu
tion of the Lyapunov exponent (Se
.3) we will show the 
onne
tion between stable and unstable pro
esses andthe value of the Lyapunov exponent (Se
. 4). Be
ause of this, it is possibleto analyze deterministi
 or sto
hasti
 pro
esses with non-ne
essarily additivenoise.Experimental results with stable and unstable pro
esses demonstrate theseparation by the Lyapunov exponent (see Se
. 5). Additional experimentalresults illustrate the method of dis
rimination by the Lyapunov exponentand the possible mis
lassi�
ation, if the sample size is not large enough. A
on
lusion is drawn in Se
. 6.2 Deterministi
 and sto
hasti
 pro
essesAn intuitive separation between deterministi
 and sto
hasti
 pro
esses in-
ludes the aspe
ts of fun
tional relationships with and without random errors2



(Tong 1993). The dynami
s of deterministi
 pro
esses is de�ned byxt+1 = ft(x0) = f(xt) ; (1)with initial point or initial state x0 2 IRk, xt des
ribes the state at time t.The fun
tional relationship is des
ribed by f and it is assumed that f isdi�erentiable everywhere.A 
haoti
 pro
ess 
an be represented by a deterministi
 pro
ess theasymptoti
 behavior of whi
h is lo
ally unstable in 
ontrast to a regulardeterministi
 or to an ergodi
 sto
hasti
 system (Abarbanel 1996), (Tong1993), (E
kmann and Ruelle 1982).As a formal de�nition of stability of a series xt we use:A series xt is de�ned to be asymptoti
ally stable if all �xed points or period-i
al orbits are asymptoti
ally stable in the following sense (Jets
hke (1989),p. 59-60):a) A �xed point x0 = f(x0) is said to be asymptoti
ally stable if9 Æ > 0; so that 8x0 with k x0 � x0 k< Æ :limN!1 k xN � x0 k= 0: (2)b) A traje
tory (xi)N�1i=0 of a pro
ess (Xt) is said to be a periodi
al orbit, iffN(x0) = x0 and f i(x0) 6= x0 for i = 1; : : : ; (N�1) and f i = f Æ � � � Æ f| {z }i times .A periodi
al orbit C is asymptoti
ally stable, if a point x 2 C is anasymptoti
ally stable �xed point of fN .We 
all a deterministi
 pro
ess stable, if all �xed points and periodi
alorbits are asymptoti
ally stable and the pro
ess is unstable if there is a �xedpoint or the periodi
al orbit whi
h is not asymptoti
ally stable or no �xedpoint exists.In 
ontrast to deterministi
 pro
esses a sto
hasti
 pro
ess is a fun
tionalrelationship with random noise, whi
h readsXt+1 = ft(X0; �) = f(Xt; �): (3)It is assumed that su
h a pro
ess is a sequen
e of random variables, where X0is the random variable realized in the initial point x0. The random variableXt des
ribes the state at time t, the realization or observation of whi
h is3



denoted by xt. The fun
tional relationship f is sto
hasti
ally disturbed withnon-ne
essarily additive noise �. The asymptoti
 behavior of a sto
hasti
pro
ess should ideally be independent of the initial state.We transmit the de�nition of a deterministi
 stable pro
ess to sto
hasti
pro
esses. The proper asymptoti
al stability for a �xed point or periodi
alorbit is not demanded. We use the asymptoti
al sto
hasti
al stability for thede�nition of a stable sto
hasti
 pro
ess. Starting from equation (2) we de�neasymptoti
al sto
hasti
al stability in the following sense:a) A �xed point x0 = f(x0) is said to be asymptoti
ally sto
hasti
allystable if 9 Æ > 0; so that 8x0 mit k x0 � x0 k< Æ :P  limN!1 1N N�1Xt=0 Xt � x0 = 0! = 1: (4)b) A traje
tory (xi)N�1i=0 of a sto
hasti
 pro
ess (Xt)t2T is said to be asto
hasti
ally periodi
al orbit, if jjfN(x0)� x0jj < Æ andjjf i(x0)� x0jj � Æ for i = 1; : : : ; (N � 1) and f i = f Æ � � � Æ f| {z }i times .A periodi
al orbit C is asymptoti
ally sto
hasti
ally stable, if a pointx 2 C is an asymptoti
ally sto
hasti
ally stable �xed point of fN .The de�nition of asymptoti
al sto
hasti
al stability (eq. (4)) is relatedto the de�nition for deterministi
 pro
esses(eq. 2).Again, we 
all a sto
hasti
 pro
ess stable, if all �xed points and periodi
alorbits are asymptoti
al sto
hasti
al stable and the pro
ess is unstable if thereis a �xed point or the periodi
al orbit whi
h is not asymptoti
ally stable orno �xed point exists.A spe
i�
 sto
hasti
 pro
ess is an ergodi
 sto
hasti
 pro
ess, the asymp-toti
 behavior of whi
h is uniform and stable and independent of the initialstate. In this 
ontext a mean stationary dis
rete random pro
ess Xt withmean EP (X) is 
alled ergodi
 (S
hlittgen and Streitberg (1994)), ifP  limN!1 1N N�1Xt=0 Xt = EP (X)! = 1: (5)4



The de�nition of ergodi
 sto
hasti
 pro
esses is the same like the def-inition of ergodi
 deterministi
 pro
esses, if the pro
ess average EP (X) isinserted for the ensemble average.For ergodi
 pro
esses Xt it is true thatP  limN!1 1N N�1Xt=0 g(Xt) = E(g(X))! = 1 (6)for any measurable fun
tion g (Stout (1974), pp. 167, p. 182).It is 
on
eptually possible to transfer a deterministi
 observation seriesinto a sto
hasti
 time series by assuming a fun
tional relationship and a noise� with a one-point distribution (Busse 2003).3 The Lyapunov exponent in a sto
hasti

ontextOne possibility to distinguish between stable and unstable time series is givenby the 
omputation of the largest Lyapunov exponent (here as often brie
y
alled the Lyapunov exponent). The Lyapunov exponent �(x0) of a deter-ministi
 pro
ess is formally de�ned by E
kmann and Ruelle (1982):�(x0) := limN!1 1N N�1Xi=0 ln jf 0(xi)j: (7)This 
hara
teristi
 feature measures an average logarithmi
 expansion ratealong two di�erent traje
tories of the same underlying pro
ess. In Busseet al. (2001) it was been used for 
lassi�
ation of predi
table time series.For the separation it is ne
essary to analyze the Lyapunov exponent ina sto
hasti
 framework. Note that the random e�e
t has not to be ne
-essarily additive in the fun
tional expression of the dynami
s of sto
hasti
pro
esses. It will be shown that the Lyapunov exponent 
an be interpretedas the expe
ted value of the asymptoti
 distribution of an ergodi
 pro
ess.Let X0 be the random variable realized in the initial point x0. Let Xt bethe random variable, whi
h des
ribes the state at time t, the realization ofwhi
h is denoted by xt.The fun
tional relationship of the time series is denoted by f(x; �), thetime series is de�ned by xt+1 = f(xt; �) and the random e�e
t is not-ne
essarilyadditive (see Se
. 2). 5



Now, the Lyapunov exponent 
an be naturally generalized as the asymp-toti
 expe
tation (if existing) of a transformation of the given sto
hasti
pro
ess ~�(x0) := limt!1E[ln jf 0(Xt(x0))j℄: (8)However, this expe
ted value is mostly unknown and has to be estimated.One obvious possibility is the 
al
ulation of the long time average, whi
h isde�ned for dis
rete time pro
esses by�g(x0) := limN!1 1N N�1Xt=0 g(Xt(x0));where g is any arbitrary, measurable fun
tion. In the 
ase of the Lyapunovexponent estimation g(x) = ln jf 0(x)j. Note, this �g(x0) is the de�nition ofthe Lyapunov exponent for sto
hasti
 pro
esses in Busse et al. (2001).This long time average is allowed to be dependent on initial state x0.Be
ause of (6) following from ergodi
ity (Stout (1974),p. 181), however, inthe 
ase of ergodi
 pro
esses, this long time average is independent of x0 and�g(x0) a:s:= E(g(x)): (9)Thus for ergodi
 pro
esses the Lyapunov exponent ~�(x0) in (8) is inde-pendent of the initial state, and is the same as de�ned in Busse et al. (2001)for sto
hasti
 pro
esses with an additive noise. It 
an be written as~� = Z ln jf 0(x)jp(x)dx; (10)using g(x) = ln jf 0(x)j and p(x) as the density of the underlying pro
ess.The ensemble average 
an thus obviously be estimated by means of�̂ = 1N N�1Xi=0 ln jf 0(xi)j; (11)whi
h is also an estimator of the Lyapunov exponent in (7).Consequently, the Lyapunov exponent 
an be used for any given deter-ministi
 or sto
hasti
 time series. The problem of starting time dependen
evanishes due to the equality of the long time average and the ensemble aver-age under the 
ondition of ergodi
ity.6



4 Stable and unstable pro
essesBased on se
tions 2 and 3 it is possible to use the Lyapunov exponent forthe separation between stable and unstable pro
esses, be
ause the Lyapunovexponent 
an be regarded as 
onvergen
e or divergen
e 
riterion. Thus anegative Lyapunov exponent suggests a stable pro
ess, be
ause of the in-dependen
e of the initial state the same asymptoti
 behavior is a
hieved.Whereas in the 
ase of a positive Lyapunov exponent the long time behavioris sensitive with regard to the initial state. In that 
ase we have an unstablepro
ess. Be
ause we have no information about the true fun
tional relation-ship, we suggest a default modeling in ea
h 
ase. This �rst modeling 
anbe regarded as starting point for a more detailed analysis of the underlyingpro
ess. More pre
isely:� Given a stable pro
ess, then �(x0) < 0 (see Appendix A).A stable pro
ess like a mean stationary and average ergodi
 pro
ess
ould be used for a default modeling.� Given a pro
ess like a random walk, then �(x0) � 0 (be
ause oflimN!1 1N PN�1i=0 ln j1j = 0).In this 
ase the random walk is a good 
hoi
e for the default modeling.� Given an unstable pro
ess, then �(x0) > 0.The traje
tories of two di�erent, nearby initial points diverge exponen-tially on average by a fa
tor of eN� after N iterations. In this 
ase, thelimiting behavior is not uniform, it is unstable and in literature it isdenoted by strange attra
tor (E
kmann and Ruelle 1982), (Grassbergerand Pro
a

ia 1983a) (Grassberger and Pro
a

ia 1983b).An unstable pro
ess lika a 
haoti
 pro
ess 
ould be used for a defaultmodeling (see details about 
haoti
 time series in (Tong 1993)).5 Experimental resultsThe Lyapunov exponent gives a 
lue for the 
lassi�
ation between stableand unstable pro
esses. Its 
omputation is manageable, if the fun
tionalrelationship of the time series is given. However, the underlying pro
ess isgenerally unknown in 
ase of real-world problems, i.e. the derivative f 0 in7



equation 7 of the fun
tion f is often unknown. Consequently, it is ne
essaryto evaluate a proper estimator from the given time series. On the one handf 0 
an be numeri
ally evaluated, on the other hand the divergen
e of twonearby traje
tories 
an be graphi
ally 
onsidered. Various approa
hes aresuggested in the literature (for more details see Abarbanel (1996), E
kmannand Ruelle (1982), Sano and Sawada (1985), Gen
ay (1996) Wolf, Swinney,and Vastan (1985)), Kantz and S
hreiber (1997)). The method, whi
h wasimplemented by Kantz and S
hreiber (1997), is applied to the estimation ofthe Lyapunov exponent in the following examples.Note, the Lyapunov exponent is a 
hara
teristi
 of the asymptoti
 behav-ior. This property implies that the observations should not be taken in theso-
alled transient status. The series has to be in the asymptoti
 state for thedata to be used for the evaluation of f 0. An inadequate evaluation of f 0 maybe due to the observation series still lasting in transient state. Therefore, itis possible that the estimation leads to mis
lassi�
ations between stable andunstable time series, if noisy data or short time series are given.5.1 Experiments with stable and unstable data setsWe applied the method of Lyapunov exponent estimation to di�erent fun
-tions (see equations (12) and (13)). These fun
tions have the advantage thatthe exa
t Lyapunov exponent 
an be evaluated analyti
ally.To generate an ergodi
, mean stationary sto
hasti
 pro
ess as an exampleof a stable pro
ess a uniformly distributed noise term, U [0; 1℄, is added tothe fun
tional relationship as follows:xt = (0:9xt�1 + 0:05�); � � U [0; 1℄: (12)A deterministi
 
haoti
 time series as an example of an unstable pro
ess is
reated by xt = (2:5xt�1) mod 1: (13)In both 
ases the initial point x0 = 0:699 is used and a sample size of 1024.The estimation of the Lyapunov exponent yields good results with re-spe
t to separation. For the ergodi
 sto
hasti
 pro
ess it was estimated�̂ = �0:0945 with a real Lyapunov exponent of � = �0:11, i.e. �̂ < 0, whi
hdes
ribes stable sto
hasti
 behavior. For the 
haoti
 pro
ess the estimationof the Lyapunov exponent leads to �̂ = 0:92 (� = 0:92), i.e. the propertyof �̂ � 0 is ful�lled. These examples show, that the Lyapunov exponentestimations 
an 
orre
tly 
lassify the di�erent pro
esses.8



5.2 Experiments with short time seriesIn order to study the in
uen
e of di�erent lengths of time series, variouslengths were generated from the fun
tions (12) and (13). The aim is toverify the separation in dependen
e on the length of the data sets. Theevaluation of the Lyapunov exponent 
an yield bad estimators, if the timeseries is too short, sin
e in this 
ase the pro
esses are likely to be in transientstates. Thus, for short time series it is to de
ide, whether a 
lassi�
ation isstill possible.
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Figure 1: Classi�
ations with respe
t to the estimation of the Lyapunovexponent for the well-predi
table pro
ess (12) are 
orre
t for all sample sizes.We applied the method of Lyapunov exponent estimation to sample sizes10, 20, 30, 40, 50, 100, 150, 200; : : : ; 900 independent realizations of thesto
hasti
 pro
ess. Fig. 1 illustrates the estimated Lyapunov exponents independen
e on the sample sizes. The dashed line indi
ates the 
lassi�
ation
riterion. Estimates above this line lead to mis
lassi�
ation, estimationsbelow 
lassify 
orre
tly. The solid line labels the true Lyapunov exponent.It is shown, that every estimation leads to the 
orre
t 
lassi�
ation, evenif the values di�er from the true Lyapunov exponent. However, the samplesizes of 10; 20 and 30 are too small for a reliable 
lassi�
ation.For the 
haoti
 time series (13), again sample sizes of 10, 20, 30, 40,9
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Figure 2: The results of the Lyapunov exponent estimation for the 
haoti
time series (13) show 
orre
t 
lassi�
ation only for sample sizes greater than200.50, 100, 150, 200; : : : ; 900 are used. Again, the dashed line des
ribes the
lassi�
ation line. Estimations below this line yield mis
lassi�
ation. Thesolid line indi
ates the true Lyapunov exponent.It is shown, that short time series lead to mis
lassi�
ations of the under-lying pro
ess. The sample sizes of 10 to 200 yield non-
orre
t 
lassi�
ations.However, sample sizes of 250 to 900 
hara
terize the time series 
orre
tly.Good and nearly exa
t estimators are generated by sample sizes of 500 andmore.6 Con
lusionThe Lyapunov exponent was been analyzed for sto
hasti
 pro
esses with non-ne
essarily additive noise in the 
ontext of a separation between stable andunstable time series. This 
riterion 
hara
terizes the asymptoti
 behaviorof a pro
ess. It was shown that the statisti
al de�nition of the Lyapunovexponent 
an be interpreted as an asymptoti
 
hara
terization of the givensto
hasti
 pro
ess. Under the 
ondition of ergodi
ity the ensemble average,is equal to the long time average, and 
an be used for the Lyapunov exponent10



estimation.In this arti
le examples of sto
hasti
 and 
haoti
 fun
tions were inspe
tedwith respe
t to separation. It was shown that the estimation yields 
orre
t
lassi�
ations both for ergodi
 sto
hasti
 and 
haoti
 pro
esses. In 
ase ofunstable time series the estimator was even evaluated exa
tly with respe
tto the true Lyapunov exponent.Several sample sizes were studied in order to analyze the e�e
t of shorttime series. It 
ould not be expe
ted due to the transient state that theseparation would be always 
orre
tly evaluated. In fa
t short 
haoti
 timeseries yield mis
lassi�
ations. However, in the 
ase of ergodi
 sto
hasti
 timeseries the estimations never lead to mis
lassi�
ations.A
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 or sto
hasti
 pro
ess is smallerthan 0 (see Se
. 4).Extended Proof: We distinguish between deterministi
 and sto
hasti
 pro
essesand between a �xed point and a periodi
al orbit.a) Deterministi
 pro
ess, �xed point:Given a deterministi
 pro
ess xt+1 = ft(x0) = f(xt) (
p. equation (1)). Theinitial point x0 belongs to the attra
tion zone of the �xed point x0 implies
12



�(x0) = �(x0):�(x0) = limN!1 1N N�1Xi=0 ln jf 0(x0)j (Lyapunov exponent;started in the �xed point)= limN!1 1NN ln jf 0(x0)j (sum is independent of i)= limN!1 ln jf 0(x0)j= ln jf 0(x0)j (independen
e of N)= ln ���� limx!x0 f(x)� f(x0)x� x0 ����< ln �Æ (see equation (2) and the 
omment thatall observations of the traje
torylie in a �-neighborhoodof the �xed point for any Æ > � > 0)� ln 1 (� is smaller than Æ, see eq. (2))= 0
(14)

See Se
tion 2 and Jets
hke (1989), p.117.b) Sto
hasti
 pro
ess, �xed point:Given a sto
hasti
 pro
ess Xt+1 = ft(X0; �) = f(Xt; �) (
p. equation (3)).Let the initial point x0 belong to the attra
tion zone of the �xed point x0.Primarily we have to show that �(x0) � �(x0) in terms of unbiased estima-tions.

13



�(x0) = limN!1 1N N�1Xi=0 ln jf 0(xi)j (Lyapunov exponent,started in the initial point)= limN!1 1N N�1Xi=0 g(xi) (with transformation g(x) = ln jf 0(x)j)= E[g(X)℄ (
p. equation 6)� g[E(X)℄ (Jensen inequality with a 
on
ave fun
tion)= g(x0) (the expe
ted value of X is set to be x0; E(X) = x0)= ln jf 0(x0)j (ba
kward transformation)= �(x0) (
p. deterministi
 
ase) (15)The further proof is analogi
al to the deterministi
 
ase. The Lyapunovexponent started in the initial point is smaller than 0.
) Deterministi
 pro
ess, periodi
al orbit:Given a deterministi
 pro
ess xt+1 = ft(x0) = f(xt) (
p. equation (1)).The initial point x0 belongs to the attra
tion zone of a periodi
al orbit withperiod K, x1; :::; xK . For a periodi
al orbit holds true:xk = xk+K and xk+1 = xk+1+K and xk+2 = xk+2+K and so on.In addition, this means that:f 0(xk) = (fK+1)0(xk) and fK+1(xk) = fK(xk+1).It holds true:j(fK)0(xk+1)j = ����� lim�x!0 fK(xk+1 +�x)� fK(xk+1)�x ����� < 1 (periodi
al orbit,
p. deterministi
 pro
ess, �xed point)j(fK+1)0(xk)j < 1 (be
ause of fK+1(xk) = fK(xk+1))and the independen
e of k)jf 0(xk)j < 1 (be
ause of f 0(xk) = (fK+1)0(xk)): (16)
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For the Lyapunov exponent follows:�(x0) = 1K KXk=1 ln jf 0(xk)j (attra
tion zone of the periodi
al orbit)< 1K �K � ln 1 (
p. deterministi
 
ase, �xed point)< 0: (17)d) Sto
hasti
 pro
ess, periodi
al orbit:Given a sto
hasti
 pro
ess Xt+1 = ft(X0; �) = f(Xt; �) (
p. equation 3).The initial point x0 belongs to the attra
tion zone of a periodi
al orbit withthe period K, (x1); :::(xK) .Without loss of generality holds true�(x0) � �(xk) (
p. sto
hasti
 
ase, �xed point in a lo
al view).Consequently, for the Lyapunov exponent of a sto
hasti
 pro
ess with aperiodi
al orbit follows:�(x0) � 1K KXi=1 ln jf 0(xi)j (
p. deterministi
 
ase, periodi
al orbit)< 1K �K � ln 1 (
p. deterministi
 
ase, �xed point)< 0: (18)
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