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Un
ertainty of the Optimum In
uen
e Fa
tor Levels inMulti
riteria Optimization Using the Con
ept of DesirabilityHeike Trautmann and Claus WeihsDepartment of Statisti
s, University of Dortmunde-mail: weber�statistik.uni-dortmund.deMar
h 2004Abstra
t:The Desirability Index (DI) is a widely used method for multi
riteria optimization inindustrial quality 
ontrol, by whi
h optimal levels of the pro
ess in
uen
ing fa
tors aredetermined in order to a
hieve maximum pro
ess quality. In pra
ti
e however situationsmay o

ur in whi
h slight 
hanges of these fa
tor levels lead to lower produ
tion 
osts orto a fa
ilitation of the produ
tion pro
ess and therefore would be preferred. In this paperan innovative approa
h for measuring the e�e
t of these 
hanges on the DI based on itsdistribution is introdu
ed.1 Introdu
tionThe approa
h for multi
riteria optimization based on the 
on
ept of desirabilities andintrodu
ed by [HAR65℄ has be
ome an appropriate means in the range of Multi
riteriaDe
ision Making Te
hniques (see [HEN92℄ for a review). It 
onsists of a 
omplexity redu
-tion in industrial quality optimization and furthermore makes use of design of experimentmethods, by whi
h polynomial models are set up re
e
ting the fun
tional relationshipsbetween the quality measures and the pro
ess in
uen
ing fa
tors. In the �rst step De-sirability Fun
tions (DFs) transfer the values of the quality measures into desirabilitiesonto a unitless s
ale in the domain [0; 1℄ regarding the desirability of their feasible rea-lizations. The Desirability Index (DI) then represents a univariate and unitless measurefor the overall pro
ess quality by 
ombining the individual desirabilities usually using thegeometri
 mean. The 
loser its value 
omes to the maximum value of 1 the more satisfy-ing the pro
ess quality proves. As the DI is not only a fun
tion of the quality measures



2 HARRINGTON'S DESIRABILITY FUNCTIONS AND THE DESIRABILITY INDEX2but also of the in
uen
e fa
tors | using their fun
tional relationships with the qualitymeasures resulting from the design of experiment phase | the DI and thus the overallpro
ess quality 
an be optimized by nonlinear optimization of the levels of the in
uen
efa
tors, optimizing all often 
ompeting quality measures simultaneously.Usually the pro
ess then is set up based on the optimal levels of the in
uen
e fa
tors.Regarding the 
onvenien
e of the pro
ess 
ow or the produ
tion 
osts however sometimesslight modi�
ations of these levels would be preferred in pra
ti
e. In this paper an in-novative approa
h for measuring the e�e
t of these 
hanges on the DI in the 
ourse ofthe pro
ess is introdu
ed, whi
h makes use of the distribution of the DI ([WEB03℄) andresults in ranges of the in
uen
e fa
tors that ensure that the predi
tion interval of theoptimized DI still 
overs the values of the DI in the ongoing pro
ess with a prede�nedprobability.Chapter 2 reviews the type of the DF and the DI introdu
ed by [HAR65℄, whereas inChapter 3 an overview of the proposed approa
h is given. Afterwards the latter is illus-trated in detail by two simulated pra
ti
al examples in Chapters 4 and 5. Con
lusionsand a short summary are provided in Chapter 6.2 Harrington's Desirability Fun
tions and the Desirability In-dexHarrington introdu
ed two types of DFs, whi
h transform the quality measures ontoa unitless s
ale between 0 and 1. One aimes at maximization of the quality measure(one-sided spe
i�
ation) whereas the other one re
e
ts a target value problem (two-sidedspe
i�
ation) (Fig. 1).1. Two-Sided Spe
i�
ation: For a quality measure Yi (i = 1; : : : ; k) the transfor-mation requires two spe
i�
ation limits (LSLi, USLi) symmetri
ally around thetarget value, whi
h are asso
iated with a desirability of 1=e. Then the DF resultingin desirabilites di is de�ned as:di(Y 0i ) = e�jY 0i jni ; i = 1; : : : ; k; 0 < ni <1 with (1)Y 0i = 2Yi � (USLi + LSLi)USLi � LSLi ; i = 1; : : : ; k: (2)
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Figure 1: Harrington's one- and two-sided DFs with n as in (1). Prede�ned points (Yi; di) for one-sidedDF are marked.The parameter ni is to be 
hosen so that the resulting kurtosis of the fun
tion ade-quately meets the expert's preferen
es.2. One-Sided Spe
i�
ation: The one-sided DF uses a spe
ial form of the Gompertz-Curve:di(Y 0i ) = e�e�Y 0i ; i = 1; : : : ; k; (3)whereby the kurtosis of the fun
tion is determined by the solution of a system oftwo linear equations that require two values of Yi and asso
iated values of di usingY 0i = �[ln(� ln di)℄ = b0i + b1iYi; i = 1; : : : ; k: (4)The DI 
ombines the k individual desirabilities into one overall quality value byD := ( kYi=1 di)1=k or as a modi�
ation of Harrington's approa
h (5)D := mini=1;:::;k di ([KIM00℄): (6)A 
entral element of the approa
h proposed is the knowledge of the distribution of the DI.In [WEB03℄ the distributions of the above two types of DIs, namely the geometri
 mean(5) and the minimum of the DFs (6) based on Harrington's one-sided or two-sided DFsare derived. When using the geometri
 mean an approximative approa
h arises as mostsuitable for the one-sided 
ase, whereas for the two-sided 
ase the distribution of the DI



2 HARRINGTON'S DESIRABILITY FUNCTIONS AND THE DESIRABILITY INDEX4is made available only for two quality measures Yi (i=1,2) and ni = 1 8i.As the proposed pro
edure is based on the distribution fun
tion of the DI, as a reviewonly this is presented in the following for di�erent types of DIs.Theorem 1 (DI Geometri
 Mean) Given k quality measures Yi (i = 1; : : : ; k) withYi � N (�i; �2i ) and DFs di (1) resp. (3), the DI de�ned as D := (Qki=1 di)1=k has thefollowing distribution fun
tion:FD(D) � 1� � � log(k) + log(� log(D))� ���� � with �� and ��2as de�ned in [SCH82℄resp. [WEB03℄ in the one-sided 
ase;and in the two-sided 
ase for k = 2 and ni = 1 (i = 1; 2)FD(D) = Z D0 fD(D)d(D) withfD(D) = p22Dp�( ~�22 + ~�12) ��exp��(�2 log(D)� ~�1 � ~�2)22( ~�22 + ~�12) ��erf  ((�2 log(D)) ~�22 � ~�1 ~�22 + ~�2 ~�12)~�2 ~�1p2p ~�22 + ~�12 !
+exp��(�2 log(D)� ~�1 + ~�2)22( ~�22 + ~�12) � erf  ((�2 log(D)) ~�22 � ~�1 ~�22 � ~�2 ~�12)~�2 ~�1p2p ~�22 + ~�12 !
+exp��(�2 log(D) + ~�1 � ~�2)22( ~�22 + ~�12) � erf  ((�2 log(D)) ~�22 + ~�1 ~�22 + ~�2 ~�12)~�2 ~�1p2p ~�22 + ~�12 !
+exp��(�2 log(D) + ~�1 + ~�2)22( ~�22 + ~�12) � erf  ((�2 log(D)) ~�22 + ~�1 ~�22 � ~�2 ~�12)~�2 ~�1p2p ~�22 + ~�12 !
+exp��(�2 log(D)� ~�1 � ~�2)22( ~�22 + ~�12) � erf  ((�2 log(D)) ~�12 + ~�1 ~�22 � ~�2 ~�12)~�2 ~�1p2p ~�22 + ~�12 !
+exp��(�2 log(D)� ~�1 + ~�2)22( ~�22 + ~�12) � erf  ((�2 log(D)) ~�12 + ~�1 ~�22 + ~�2 ~�12)~�2 ~�1p2p ~�22 + ~�12 !
+exp��(�2 log(D) + ~�1 � ~�2)22( ~�22 + ~�12) � erf  ((�2 log(D)) ~�12 � ~�1 ~�22 � ~�2 ~�12)~�2 ~�1p2p ~�22 + ~�12 !
+exp��(�2 log(D) + ~�1 + ~�2)22( ~�22 + ~�12) � erf  ((�2 log(D)) ~�12 � ~�1 ~�22 + ~�2 ~�12)~�2 ~�1p2p ~�22 + ~�12 !!and



3 OVERVIEW: STEPWISE APPROACH 5~�i = 2USLi � LSLi � �i � USLi + LSLiUSLi � LSLi and ~�2i = ( 2USLi � LSLi )2 � �2i ;erf(x) = 2 � �(p2x)� 1 (Gaussian Error Fun
tion);�(x) := Distribution fun
tion of N (0; 1):When using the minimum of the DFs (6) as a DI the distribution fun
tion of the DI 
omesout as follows:Theorem 2 (DI Minimum DFs) Given k quality measures Yi (i = 1; : : : ; k) withYi � N (�i; �2i ) and DFs di (1) resp. (3), the DI D de�ned as D := mini=1;:::;k di has thefollowing distribution fun
tion:FD(D) = 1� kYi=1 � �(log(� log(D))� ~�i)~�i � (One-sided DFs) with~�i = �(b0i + b1i � �i) and ~�2i = (b1i)2 � �2i ;FD(D) = 1� kYi=1 ��1 + � �((� log(D))1=ni � ~�i)~�i �+ � �((� log(D))1=ni + ~�i)~�i ��(Two-sided DFs ) with ~�i and ~�2i as de�ned in Theorem 1.In the 
ourse of time some alternative DFs were introdu
ed (e.g. [DER80℄, [CAS96℄,[NOB00℄), the most important one in form of more 
exible DFs that allow nonsymmetri
spe
i�
ations around the target value ([DER80℄). The pro
edure presented in the follow-ing 
hapter in prin
iple 
an be applied to all kind of DFs and DIs if the distribution ofthe DI is known or has been approximated a

urately enough. We fo
us on Harrington'sDFs as so far only for these an analyti
al representation for the distribution of the DIexists.3 Overview: Stepwise Approa
hAs a starting point a pro
ess is assumed, whi
h was optimized regarding k quality mea-sures Y1; : : : ; Yk using a DI D and Harrington's DFs (1) resp. (3). Optimal LevelsXopt1 ; :::; Xoptn of the pro
ess in
uen
ing fa
tors X1; :::; Xn are therefore assumed to begiven, whi
h have been determined via design of experiment methods and nonlinear op-timization te
hniques. Usually the optimization problem is stated asminX1;:::;Xn2F �D̂(X1; : : : ; Xn) = �D(d1(E(Y1)); : : : ; dn(E(Yn))); (7)



3 OVERVIEW: STEPWISE APPROACH 6with F spe
ifying the domain of X1; : : : ; Xn and Yi = f(X1; : : : ; Xn; "i) ("i � N (0; �2i ))determined by polynomial models resulting from design of experiment methods. By takingthe expe
tation E(Yi) and thus ignoring the varian
e of the error term biased and non-optimal optimization results may o

ur ([STE00℄). Therefore a more appropriate approa
his the optimization problemminX1;:::;Xn2F �E(D(X1; : : : ; Xn)) = �E(D(d1(Y1); : : : ; dn(Yn))); (8)whi
h 
an be handled knowing the distribution of the Desirability Index and simul-taneously taking into a

ount the model un
ertainty of the design of experiment phase.This optimization approa
h is therefore used in the examples of the following 
hapters. Adetailed overview of the advantages and drawba
ks of the usual optimization pro
eduresapplied is given in [STE00℄.Using the levels Xopt1 ; :::; Xoptn the expe
tation of D as well as the respe
tive predi
tioninterval 
an be 
al
ulated based on its distribution in order to measure the un
ertaintyof the optimization result. In order to determine how slight 
hanges of the in
uen
efa
tors Xopti (i 2 1; : : : ; n) a�e
t the probability that the predi
tion interval 
overs therealizations of the DI, the following pro
edure was developed, whi
h is illustrated viaexemplary pra
ti
al 
ases in the next 
hapters. Note that a simulation-based pro
edure isused due to the very 
ompli
ated distribution fun
tions of the DI. An analyti
al approa
htherefore seems to be impossible.1. At �rst determine the distribution fun
tion FD(D) of the DI D (see Theorem 1 resp.2) for Yi � N (�i; �2i ) (i = 1; :::; k) resulting from model building in the design ofexperiment phase, where polynomial models are 
al
ulated in order to re
e
t therelationship between the pro
ess in
uen
ing fa
tors and the quality measures usinglinear regression te
hniques (see [WEI95℄ or [WEI99℄ for a review).2. Compute [Q0:025; Q0:975℄ as a predi
tion interval for D, whi
h 
overs the true value ofthe DI in the optimum with a probability of 95 %, where Q� is the �-%-quantile ofFD(D). By means of this the un
ertainty of the optimization of the DI is expressed.3. Sele
t the kind of in
uen
e fa
tors whi
h are intended to be varied in prede�nedintervals [Xmini ; Xmaxi ℄ in order to determine the e�e
t on the DI and spe
ify thestep width within the intervals. Usually only sele
tive in
uen
e fa
tors are 
hosen,for whi
h slight modi�
ations would be more 
onvenient in the pro
ess 
ow.



3 OVERVIEW: STEPWISE APPROACH 74. Determine the distribution fun
tion FDshift(Dshift) for ea
h 
ombination of shiftedin
uen
e fa
tors (i.e. Yi � N (�i + 
i; �2i )), where Dshift is the DI when shiftedin
uen
e fa
tors are used, 
i 
aused by shifts in Xi.5. Compute the probability that D is yet 
overed by the original predi
tion intervalPint := P (Dshift 2 [Q0:025; Q0:975℄ jYi � N (�i + 
i; �2i ) 8 i)= FDshift(Q0:975)� FDshift(Q0:025):For visualizing the resulting probability surfa
e generate a plot (in
uen
e fa
torsvs. Pint) if up to two in
uen
e fa
tors have been sele
ted in Step 3. Otherwise theshift of the remaining fa
tors has to be set to a 
onstant value and usually severaldi�erent plots have to be prepared.6. Spe
ify lower limit Pmin as the least a

eptable value of Pint and generate a plot asabove with the restri
tion Pint > Pmin and a table with all 
ombinations of shifts ofthe in
uen
e fa
tors whi
h lead to a value of Pint in this region.7. Create a plot that visualizes the fa
tor region(s) whi
h result in an a

eptable pro-bability that D will be 
overed by the initially 
omputed interval [Q0:025; Q0:975℄ as inStep 1. Therefore the in
uen
e fa
tor regions whi
h ful�ll the 
ondition Pint > Pminare plotted against ea
h other.
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Figure 2: Desirability Fun
tions of 
avor (Y1) and pri
e (Y2)4 Example I: Fruit Jui
e MixtureA fruit jui
e mixture 
onsisting of watermelon (X1)-, pineapple (X2)-, orange (X3)- andgrapefruit-jui
e (X4) has to be optimized regarding the quality measures 
avor (Y1), mea-sured on a s
ale from 0 to 10, and pri
e (Y2), measured in Euros (see [WEI99℄, p. 177).For both quality measures Harrington's one-sided desirability fun
tions di (i=1,2) as in(3) are utilized in order to re
e
t the expert's preferen
es. As displayed in Fig. 2 maxi-mization of 
avor while simultaneously minimizing the pri
e is desired.For optimization purposes of the DI D := (Q2i=1 di)1=2 design of experiment methodswere used to determine polynomial models re
e
ting the relationship between the propor-tions of the in
uen
e fa
tors X1; : : : ; X4 and the quality measures on the side-
onditionP4i=1Xi = 100 (%):Ŷ1 = 4:713� 0:0927 �X1 + 0:0590 �X3 + 0:0933 �X4 (9)with standard deviation sd1 = 0:288; (10)Ŷ2 = 3:797� 0:0333 �X1 + 0:0212 �X3 + 0:0585 �X4 with sd2 = 0:239: (11)Thus assuming validity of these models, Yi � N (�i; �2i ) with �i = Ŷi and �i = sdi asspe
i�ed in (9) and (11), therefore the approximative distribution of the resulting DI 
anbe derived as follows using the results of [WEB03℄:fD(D) � � 1p2� � �� � log(D) �D � exp �� 12��2 (log(�2 � log(D))� ��)2� (12)with �� and ��2 as de�ned in [WEB03℄ resp. [SCH82℄ and



4 EXAMPLE I: FRUIT JUICE MIXTURE 9No. X1 X2 X3 X4 E(D) D(Ŷ1; Ŷ2)1 35 10 55 0 3.7 E-17 2.8 E-912 30 3 0 67 0.244 0.2263 68 7 25 0 2.5 E-82 04 30 3 0 67 0.244 0.2265 30 20 50 0 1.1 E-07 9.3 E-196 55 20 0 25 1.4 E-07 2.4 E-187 30 20 0 50 0.628 0.6478 30 3 67 0 1.4 E-16 1.6 E-849 68 7 0 25 7.5 E-30 0Table 1: Expe
ted values E(D) of the DI as well as D(Ŷ1; Ŷ2) for ea
h experiment.FD(D) � 1� � � log(2) + log(� log(D))� ���� � : (13)By means of the knowledge of this distribution the expe
ted value of the DI 
an be op-timized, whi
h 
an be seen as an improved optimization pro
edure for the DI as in the
lassi
 approa
h the DI is 
al
ulated based on the values of Ŷi and therefore the model un-
ertainty is not taken into a

ount (see [STE00℄). Thus for ea
h experiment the expe
tedvalue E(D) of the DI is determined as displayed in Table 1. Additionally in 
omparisonthe values following the 
lassi
 approa
h are displayed so that the di�eren
es be
omeobvious. Note that as a side restri
tion X3 and X4 may not be used simultaneously.These results indi
ate that ex
eeding 30 % the proportion of watermelon-jui
e (X1) leadsto undesirable values of the quality measures. Furthermore experiment 7 is the one withthe maximal value of E(D) followed by experiments 2 and 4, whi
h all make use ofgrapefruit-jui
e (X4). Regarding the fa
tor settings of the experiments 2, 4 and 7 a gridsear
h was 
arried out in order to �nd the optimal fa
tor settings whi
h lead to the optimalexpe
ted value of the DI. As X2 is not in
luded in the models (9) and (11) | it followsfromP4i=1Xi = 100 % | only X1 and X4 are varied on a grid with ranges 10 � X1 � 40and 30 � X4 � 80 and step width 0:1. The optimal fa
tor settings 
ome out asXopt1 = 30; Xopt4 = 50:6 and Xopt2 = 19:4 with E(Dopt) = 0:67 (14)leading to �� = �0:25 and ��2 = 0:105; (15)



4 EXAMPLE I: FRUIT JUICE MIXTURE 10whereby the following domain restri
tions of the in
uen
e fa
tors had to be met:30% � X1 � 100%; (16)X3 = 0% _X4 = 0%; (17)0% � X2 � 20%, X1 +X3 resp. X4 � 80%; (18)X1 +X2 � 75%, 25% � X3 resp. X4 and (19)0:1 �X1 � X2: (20)Following the pro
edure des
ribed in Chapter 3 the distribution fun
tion of the DI isdetermined based on (13) and the optimal fa
tor settings (14). The 95 % predi
tion-interval for the true DI in the optimum 
omes out as[Q0:025; Q0:975℄ = [0:66; 0:89℄ with Q� := � %-quantile of FD(D): (21)Whereas the resulting interval re
e
ts the un
ertainty of Dopt, in pra
ti
e an analysis ofthe e�e
ts of varying the optimal fa
tor levels 
an also be of interest, whi
h somehowre
e
ts the un
ertainty of the levels regarding Dopt. For example in a produ
tion pro
essa slight 
hange of one in
uen
e fa
tor may lead to lower produ
tion 
osts or may just bemore 
onvenient in the pro
ess 
ow.As a �rst example only the e�e
t of shifts ofX1 is fo
ussed assuming that the proportion ofX4 is not a�e
ted. Of 
ourse this also leads to a modi�
ation of X2 but X2 is not in
ludedin the models (9) and (11). For all possible shifts of X1 in the interval [�30; 70℄ and stepwidth 0:01, ignoring the restri
tion P4i=1Xi = 100% at the moment, the distributionfun
tion of the DI is 
al
ulated and the probability that the interval (21) still 
overs thevalues of the DI is determined asPint := P (Dshift 2 [Q0:025; Q0:975℄ jYi � N (�i+
i; �2i )) = FDshift(Q0:975)�FDshift(Q0:025);(22)where Dshift is the DI when shifted values of X1 are used, i.e Yi � N (�i + 
i; �2i ).Fig. 3 illustrates the shape of this probability in the range X1 is shifted. Additionallylines are in
luded whi
h re
e
t the restri
tions listed in (16)-(20). The gray-shaded regionmirrors the domain in whi
h all these restri
tions are met. Thus the part of the displayed
urve falling inside this region indi
ates the range in whi
h X1 
an be varied so thatall restri
tions are met and the desired minimal probability Pmin is ex
eeded, whi
h was
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Figure 3: Probability that [Q0:025; Q0:975℄ 
overs the values of the DI when X1 is shifted
hosen as Pmin = 0:8.In 
ase shifts of both in
uen
e fa
torsX1 andX4 are of interest the pro
edure is 
arried outanalogously. For all 
ombinations of shifts in the ranges [�30; 70℄ (X1) and [�50:6; 49:4℄(X4) with step width 0:2, again ignoring the restri
tionP4i=1Xi = 100% at the moment,the probabilities as in (22) are 
omputed. Fig. 4 visualizes Pint plotted against the shiftsof X1 and X4, where in this stage only the restri
tion P4i=1Xi = 100 % is 
onsidered.Furthermore in Fig. 4 the same surfa
e when the 
ondition Pint � Pmin = 0:8 is satis�edis shown below.For the purpose of in
luding all restri
tions (16)-(20) and in order to get a better overviewregarding the range of possible shifts of the in
uen
e fa
tors X1 and X4, in Fig. 5 X1 andX4 are plotted against ea
h other where the lines reveal the restri
tions mentioned. As inthe example above the gray-shaded region re
e
ts the region in whi
h all restri
tions aremet. The bla
k area inside again re
e
ts the range of possible shifts of the in
uen
e fa
torsX1 and X4 with regard to meeting all restri
tions and ex
eeding the desired minimalprobability Pmin = 0:8. Thus due to the fa
tor restri
tions only a quite small part of thetheoreti
ally possible range is allowed for shifting.
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Figure 4: Probability that [Q0:025; Q0:975℄ 
overs the values of the DI when X1 and X4 are shifted;below: Same Surfa
e with P (Q0:025 � Dshift � Q0:975) � Pmin = 0:8.
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Figure 5: Ranges of X1 and X4 so that [Q0:025; Q0:975℄ 
overs the value of the DI with a probability ofat least 80 %.5 Example II: Tire Tread CompoundIn the following we revert to the example used by [DER80℄, whi
h is modi�ed in terms ofdi�erently spe
i�ed DFs. An optimal 
ompound of a tire tread, 
onsisting of "Hydratedsili
a" (X1), "Silane 
oupling agent" (X2) and "Sulfur" (X3) has to be found, where itsquality is measured by the variables "PICO Abrasion Index" (Y1), "200%-Modulus" (Y2),"Elongation at Break" (Y3) and "Hardness" (Y4). The assumed related one-sided DFs asin (3), whi
h express the desirability of di�erent values of Y1-Y4, are displayed in Fig. 6.In this 
ase another kind of DI is used, namely D := mini=1;:::;4 di. That implies a"maximin-approa
h", i.e. the minimum desirability is to be maximized over time. Theoptimization of the DI follows the same pro
edure as outlined in Chapter 4 using themodelŝY1 = 139:1 + 16:5X1 + 17:9X2 + 10:9X3 � 4X21 � 3:5X22 � 1:6X23 + 5:1X1X2+7:1X1X3 + 7:9X2X3 with sd1 = 5:6; (23)Ŷ2 = 1261:1 + 268:2X1 + 246:5X2 + 139:5X3 � 83:6X21 � 124:8X22 + 199:2X23+69:4X1X2 + 94:1X1X3 + 104:4X2X3 with sd2 = 328:7; (24)Ŷ3 = 400:4� 99:7X1 � 31:4X2 � 73:9X3 + 7:9X21 + 17:3X22 + 0:4X23 + 8:8X1X2+6:3X1X3 + 1:3X2X3 with sd3 = 20:6 and (25)
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Figure 6: Desirability Fun
tions of PICO Abrasion Index(Y1), 200%-Modulus (Y2), Elongation at Break(Y3) and Hardness (Y4)Ŷ4 = 68:9� 1:4X1 + 4:3X2 + 1:6X3 + 1:6X21 + 0:1X22 � 0:3X23 � 1:6X1X2+0:1X1X3 � 0:3X2X3 with sd4 = 1:27: (26)Again the mentioned innovated approa
h of optimizing the expe
tation of the DI instead ofD̂ := mini=1;:::;4 di(Ŷi) is applied, where from [WEB03℄
E(D) = Z 10 � 1log(D) 4Xi=1 0B� 1~�i�� log(� log(D))� ~�i~�i � 4Yj=1j 6=i �� log(� log(D))� ~�j~�j �1CA d (D)(27)with ~�i = �(b0i + b1i � �i); ~�2i = (b1i)2 � �2i and (28)�(x) resp. �(x) : Density resp. Distribution fun
tion of N (0; 1):A grid sear
h on 
oded in
uen
e fa
tors was 
arried out, where we assumed possible



6 SUMMARY AND CONCLUSION 15ranges �2 � Xi � 2 (i = 1; : : : ; 3) resulting in the optimal in
uen
e fa
tor levelsXopt1 = 0:7; Xopt2 = 1:3 and Xopt3 = 1:3 with E(Dopt) = 0:577: (29)Taking into a

ount the un
ertainty of the optimization resulting from the model errorsin (23)-(26) and starting with the pro
edure des
ribed in Chapter 3, the 95%-predi
tioninterval for Dopt is 
al
ulated based onFD(D) = 1� 4Yi=1 � �(log(� log(D))� ~�i)~�i � with ~�i and ~�2i as in (28) (30)(Theorem 2) and 
omes out as[Q0:025; Q0:975℄ = [0:43; 0:70℄ with Q� := �%� quantile of FD(D): (31)The in
uen
e fa
tors X1 and X3 were sele
ted for shifting in their full domain of�2 � Xi � 2 (i = 1; 3) in order to measure the e�e
t onto Dopt. Analogously to theexample in Chapter 4 hereby the un
ertainty of the optimal fa
tor levels regarding Doptis determined using equation (22). In Fig. 7 the shifted values of X1 and X3 are plottedagainst the probability Pint that the predi
tion interval as in (31) still 
overs the realiza-tions of the DI. Assuming that at least a probability of 80% has to be a
hieved the lowergraphi
 of Fig. 7 shows the range of Pint that meets this 
ondition.In order to fa
ilitate the analysis of this range, in Fig. 8 the respe
tive values of X1 andX3 are plotted against ea
h other. In this 
ase no additional restri
tions regarding thein
uen
e fa
tors have to be taken into a

ount. It be
omes obvious that a quite wides
ope of possible shifts of X1 and X3 exists.6 Summary and Con
lusionConsidering the examples in Chapters 4 and 5 it 
an be seen that the method des
ribedprovides an appropriate means for analyzing and visualizing the regions of possible shiftsof in
uen
e fa
tors whi
h lead to an a

eptable probability that the DI will be 
overedby the predi
tion interval 
onstru
ted using the optimal fa
tor settings. As an innovativeapproa
h the distribution of the DI is taken into a

ount. But it is also obvious that thisanalysis be
omes more and more 
ompli
ated the more in
uen
e fa
tors are allowed forshifting as
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Figure 7: Probability that [Q0:025; Q0:975℄ 
overs the values of the DI when X1 and X3 areshifted;below: Same Surfa
e with P (Q0:025 � Dshift � Q0:975) � Pmin = 0:8.
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Figure 8: Ranges of X1 and X3 so that [Q0:025; Q0:975℄ 
overs the values of the DI with a probability ofat least 80 %.� graphi
al illustration is diÆ
ult for more than two fa
tors. From three dimensionson plots as in Fig. 4 
an only be generated by �xing the remaining fa
tors to a
onstant value. Therefore in this 
ase tables should be provided additionally.� the resulting region does not need to be 
ohesive as 
an be seen in Chapter 4 and� the number of possible 
ombinations of shifted in
uen
e fa
tors whi
h lead to a DIwithin the desired predi
tion interval heavily in
reases.Therefore and be
ause of very 
omplex density and distribution fun
tions of the DI ageneral analyti
al approa
h will be highly 
ompli
ated if not impossible so that the pro-posed pro
edure will provide appropriate assistan
e in pra
ti
e.In 
ase the distribution of other types of is known, the pro
edure 
an be applied analo-gously without any modi�
ation.A
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