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Unertainty of the Optimum Inuene Fator Levels inMultiriteria Optimization Using the Conept of DesirabilityHeike Trautmann and Claus WeihsDepartment of Statistis, University of Dortmunde-mail: weber�statistik.uni-dortmund.deMarh 2004Abstrat:The Desirability Index (DI) is a widely used method for multiriteria optimization inindustrial quality ontrol, by whih optimal levels of the proess inuening fators aredetermined in order to ahieve maximum proess quality. In pratie however situationsmay our in whih slight hanges of these fator levels lead to lower prodution osts orto a failitation of the prodution proess and therefore would be preferred. In this paperan innovative approah for measuring the e�et of these hanges on the DI based on itsdistribution is introdued.1 IntrodutionThe approah for multiriteria optimization based on the onept of desirabilities andintrodued by [HAR65℄ has beome an appropriate means in the range of MultiriteriaDeision Making Tehniques (see [HEN92℄ for a review). It onsists of a omplexity redu-tion in industrial quality optimization and furthermore makes use of design of experimentmethods, by whih polynomial models are set up reeting the funtional relationshipsbetween the quality measures and the proess inuening fators. In the �rst step De-sirability Funtions (DFs) transfer the values of the quality measures into desirabilitiesonto a unitless sale in the domain [0; 1℄ regarding the desirability of their feasible rea-lizations. The Desirability Index (DI) then represents a univariate and unitless measurefor the overall proess quality by ombining the individual desirabilities usually using thegeometri mean. The loser its value omes to the maximum value of 1 the more satisfy-ing the proess quality proves. As the DI is not only a funtion of the quality measures



2 HARRINGTON'S DESIRABILITY FUNCTIONS AND THE DESIRABILITY INDEX2but also of the inuene fators | using their funtional relationships with the qualitymeasures resulting from the design of experiment phase | the DI and thus the overallproess quality an be optimized by nonlinear optimization of the levels of the inuenefators, optimizing all often ompeting quality measures simultaneously.Usually the proess then is set up based on the optimal levels of the inuene fators.Regarding the onveniene of the proess ow or the prodution osts however sometimesslight modi�ations of these levels would be preferred in pratie. In this paper an in-novative approah for measuring the e�et of these hanges on the DI in the ourse ofthe proess is introdued, whih makes use of the distribution of the DI ([WEB03℄) andresults in ranges of the inuene fators that ensure that the predition interval of theoptimized DI still overs the values of the DI in the ongoing proess with a prede�nedprobability.Chapter 2 reviews the type of the DF and the DI introdued by [HAR65℄, whereas inChapter 3 an overview of the proposed approah is given. Afterwards the latter is illus-trated in detail by two simulated pratial examples in Chapters 4 and 5. Conlusionsand a short summary are provided in Chapter 6.2 Harrington's Desirability Funtions and the Desirability In-dexHarrington introdued two types of DFs, whih transform the quality measures ontoa unitless sale between 0 and 1. One aimes at maximization of the quality measure(one-sided spei�ation) whereas the other one reets a target value problem (two-sidedspei�ation) (Fig. 1).1. Two-Sided Spei�ation: For a quality measure Yi (i = 1; : : : ; k) the transfor-mation requires two spei�ation limits (LSLi, USLi) symmetrially around thetarget value, whih are assoiated with a desirability of 1=e. Then the DF resultingin desirabilites di is de�ned as:di(Y 0i ) = e�jY 0i jni ; i = 1; : : : ; k; 0 < ni <1 with (1)Y 0i = 2Yi � (USLi + LSLi)USLi � LSLi ; i = 1; : : : ; k: (2)
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Figure 1: Harrington's one- and two-sided DFs with n as in (1). Prede�ned points (Yi; di) for one-sidedDF are marked.The parameter ni is to be hosen so that the resulting kurtosis of the funtion ade-quately meets the expert's preferenes.2. One-Sided Spei�ation: The one-sided DF uses a speial form of the Gompertz-Curve:di(Y 0i ) = e�e�Y 0i ; i = 1; : : : ; k; (3)whereby the kurtosis of the funtion is determined by the solution of a system oftwo linear equations that require two values of Yi and assoiated values of di usingY 0i = �[ln(� ln di)℄ = b0i + b1iYi; i = 1; : : : ; k: (4)The DI ombines the k individual desirabilities into one overall quality value byD := ( kYi=1 di)1=k or as a modi�ation of Harrington's approah (5)D := mini=1;:::;k di ([KIM00℄): (6)A entral element of the approah proposed is the knowledge of the distribution of the DI.In [WEB03℄ the distributions of the above two types of DIs, namely the geometri mean(5) and the minimum of the DFs (6) based on Harrington's one-sided or two-sided DFsare derived. When using the geometri mean an approximative approah arises as mostsuitable for the one-sided ase, whereas for the two-sided ase the distribution of the DI



2 HARRINGTON'S DESIRABILITY FUNCTIONS AND THE DESIRABILITY INDEX4is made available only for two quality measures Yi (i=1,2) and ni = 1 8i.As the proposed proedure is based on the distribution funtion of the DI, as a reviewonly this is presented in the following for di�erent types of DIs.Theorem 1 (DI Geometri Mean) Given k quality measures Yi (i = 1; : : : ; k) withYi � N (�i; �2i ) and DFs di (1) resp. (3), the DI de�ned as D := (Qki=1 di)1=k has thefollowing distribution funtion:FD(D) � 1� � � log(k) + log(� log(D))� ���� � with �� and ��2as de�ned in [SCH82℄resp. [WEB03℄ in the one-sided ase;and in the two-sided ase for k = 2 and ni = 1 (i = 1; 2)FD(D) = Z D0 fD(D)d(D) withfD(D) = p22Dp�( ~�22 + ~�12) ��exp��(�2 log(D)� ~�1 � ~�2)22( ~�22 + ~�12) ��erf  ((�2 log(D)) ~�22 � ~�1 ~�22 + ~�2 ~�12)~�2 ~�1p2p ~�22 + ~�12 !
+exp��(�2 log(D)� ~�1 + ~�2)22( ~�22 + ~�12) � erf  ((�2 log(D)) ~�22 � ~�1 ~�22 � ~�2 ~�12)~�2 ~�1p2p ~�22 + ~�12 !
+exp��(�2 log(D) + ~�1 � ~�2)22( ~�22 + ~�12) � erf  ((�2 log(D)) ~�22 + ~�1 ~�22 + ~�2 ~�12)~�2 ~�1p2p ~�22 + ~�12 !
+exp��(�2 log(D) + ~�1 + ~�2)22( ~�22 + ~�12) � erf  ((�2 log(D)) ~�22 + ~�1 ~�22 � ~�2 ~�12)~�2 ~�1p2p ~�22 + ~�12 !
+exp��(�2 log(D)� ~�1 � ~�2)22( ~�22 + ~�12) � erf  ((�2 log(D)) ~�12 + ~�1 ~�22 � ~�2 ~�12)~�2 ~�1p2p ~�22 + ~�12 !
+exp��(�2 log(D)� ~�1 + ~�2)22( ~�22 + ~�12) � erf  ((�2 log(D)) ~�12 + ~�1 ~�22 + ~�2 ~�12)~�2 ~�1p2p ~�22 + ~�12 !
+exp��(�2 log(D) + ~�1 � ~�2)22( ~�22 + ~�12) � erf  ((�2 log(D)) ~�12 � ~�1 ~�22 � ~�2 ~�12)~�2 ~�1p2p ~�22 + ~�12 !
+exp��(�2 log(D) + ~�1 + ~�2)22( ~�22 + ~�12) � erf  ((�2 log(D)) ~�12 � ~�1 ~�22 + ~�2 ~�12)~�2 ~�1p2p ~�22 + ~�12 !!and



3 OVERVIEW: STEPWISE APPROACH 5~�i = 2USLi � LSLi � �i � USLi + LSLiUSLi � LSLi and ~�2i = ( 2USLi � LSLi )2 � �2i ;erf(x) = 2 � �(p2x)� 1 (Gaussian Error Funtion);�(x) := Distribution funtion of N (0; 1):When using the minimum of the DFs (6) as a DI the distribution funtion of the DI omesout as follows:Theorem 2 (DI Minimum DFs) Given k quality measures Yi (i = 1; : : : ; k) withYi � N (�i; �2i ) and DFs di (1) resp. (3), the DI D de�ned as D := mini=1;:::;k di has thefollowing distribution funtion:FD(D) = 1� kYi=1 � �(log(� log(D))� ~�i)~�i � (One-sided DFs) with~�i = �(b0i + b1i � �i) and ~�2i = (b1i)2 � �2i ;FD(D) = 1� kYi=1 ��1 + � �((� log(D))1=ni � ~�i)~�i �+ � �((� log(D))1=ni + ~�i)~�i ��(Two-sided DFs ) with ~�i and ~�2i as de�ned in Theorem 1.In the ourse of time some alternative DFs were introdued (e.g. [DER80℄, [CAS96℄,[NOB00℄), the most important one in form of more exible DFs that allow nonsymmetrispei�ations around the target value ([DER80℄). The proedure presented in the follow-ing hapter in priniple an be applied to all kind of DFs and DIs if the distribution ofthe DI is known or has been approximated aurately enough. We fous on Harrington'sDFs as so far only for these an analytial representation for the distribution of the DIexists.3 Overview: Stepwise ApproahAs a starting point a proess is assumed, whih was optimized regarding k quality mea-sures Y1; : : : ; Yk using a DI D and Harrington's DFs (1) resp. (3). Optimal LevelsXopt1 ; :::; Xoptn of the proess inuening fators X1; :::; Xn are therefore assumed to begiven, whih have been determined via design of experiment methods and nonlinear op-timization tehniques. Usually the optimization problem is stated asminX1;:::;Xn2F �D̂(X1; : : : ; Xn) = �D(d1(E(Y1)); : : : ; dn(E(Yn))); (7)



3 OVERVIEW: STEPWISE APPROACH 6with F speifying the domain of X1; : : : ; Xn and Yi = f(X1; : : : ; Xn; "i) ("i � N (0; �2i ))determined by polynomial models resulting from design of experiment methods. By takingthe expetation E(Yi) and thus ignoring the variane of the error term biased and non-optimal optimization results may our ([STE00℄). Therefore a more appropriate approahis the optimization problemminX1;:::;Xn2F �E(D(X1; : : : ; Xn)) = �E(D(d1(Y1); : : : ; dn(Yn))); (8)whih an be handled knowing the distribution of the Desirability Index and simul-taneously taking into aount the model unertainty of the design of experiment phase.This optimization approah is therefore used in the examples of the following hapters. Adetailed overview of the advantages and drawbaks of the usual optimization proeduresapplied is given in [STE00℄.Using the levels Xopt1 ; :::; Xoptn the expetation of D as well as the respetive preditioninterval an be alulated based on its distribution in order to measure the unertaintyof the optimization result. In order to determine how slight hanges of the inuenefators Xopti (i 2 1; : : : ; n) a�et the probability that the predition interval overs therealizations of the DI, the following proedure was developed, whih is illustrated viaexemplary pratial ases in the next hapters. Note that a simulation-based proedure isused due to the very ompliated distribution funtions of the DI. An analytial approahtherefore seems to be impossible.1. At �rst determine the distribution funtion FD(D) of the DI D (see Theorem 1 resp.2) for Yi � N (�i; �2i ) (i = 1; :::; k) resulting from model building in the design ofexperiment phase, where polynomial models are alulated in order to reet therelationship between the proess inuening fators and the quality measures usinglinear regression tehniques (see [WEI95℄ or [WEI99℄ for a review).2. Compute [Q0:025; Q0:975℄ as a predition interval for D, whih overs the true value ofthe DI in the optimum with a probability of 95 %, where Q� is the �-%-quantile ofFD(D). By means of this the unertainty of the optimization of the DI is expressed.3. Selet the kind of inuene fators whih are intended to be varied in prede�nedintervals [Xmini ; Xmaxi ℄ in order to determine the e�et on the DI and speify thestep width within the intervals. Usually only seletive inuene fators are hosen,for whih slight modi�ations would be more onvenient in the proess ow.



3 OVERVIEW: STEPWISE APPROACH 74. Determine the distribution funtion FDshift(Dshift) for eah ombination of shiftedinuene fators (i.e. Yi � N (�i + i; �2i )), where Dshift is the DI when shiftedinuene fators are used, i aused by shifts in Xi.5. Compute the probability that D is yet overed by the original predition intervalPint := P (Dshift 2 [Q0:025; Q0:975℄ jYi � N (�i + i; �2i ) 8 i)= FDshift(Q0:975)� FDshift(Q0:025):For visualizing the resulting probability surfae generate a plot (inuene fatorsvs. Pint) if up to two inuene fators have been seleted in Step 3. Otherwise theshift of the remaining fators has to be set to a onstant value and usually severaldi�erent plots have to be prepared.6. Speify lower limit Pmin as the least aeptable value of Pint and generate a plot asabove with the restrition Pint > Pmin and a table with all ombinations of shifts ofthe inuene fators whih lead to a value of Pint in this region.7. Create a plot that visualizes the fator region(s) whih result in an aeptable pro-bability that D will be overed by the initially omputed interval [Q0:025; Q0:975℄ as inStep 1. Therefore the inuene fator regions whih ful�ll the ondition Pint > Pminare plotted against eah other.



4 EXAMPLE I: FRUIT JUICE MIXTURE 8
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Figure 2: Desirability Funtions of avor (Y1) and prie (Y2)4 Example I: Fruit Juie MixtureA fruit juie mixture onsisting of watermelon (X1)-, pineapple (X2)-, orange (X3)- andgrapefruit-juie (X4) has to be optimized regarding the quality measures avor (Y1), mea-sured on a sale from 0 to 10, and prie (Y2), measured in Euros (see [WEI99℄, p. 177).For both quality measures Harrington's one-sided desirability funtions di (i=1,2) as in(3) are utilized in order to reet the expert's preferenes. As displayed in Fig. 2 maxi-mization of avor while simultaneously minimizing the prie is desired.For optimization purposes of the DI D := (Q2i=1 di)1=2 design of experiment methodswere used to determine polynomial models reeting the relationship between the propor-tions of the inuene fators X1; : : : ; X4 and the quality measures on the side-onditionP4i=1Xi = 100 (%):Ŷ1 = 4:713� 0:0927 �X1 + 0:0590 �X3 + 0:0933 �X4 (9)with standard deviation sd1 = 0:288; (10)Ŷ2 = 3:797� 0:0333 �X1 + 0:0212 �X3 + 0:0585 �X4 with sd2 = 0:239: (11)Thus assuming validity of these models, Yi � N (�i; �2i ) with �i = Ŷi and �i = sdi asspei�ed in (9) and (11), therefore the approximative distribution of the resulting DI anbe derived as follows using the results of [WEB03℄:fD(D) � � 1p2� � �� � log(D) �D � exp �� 12��2 (log(�2 � log(D))� ��)2� (12)with �� and ��2 as de�ned in [WEB03℄ resp. [SCH82℄ and



4 EXAMPLE I: FRUIT JUICE MIXTURE 9No. X1 X2 X3 X4 E(D) D(Ŷ1; Ŷ2)1 35 10 55 0 3.7 E-17 2.8 E-912 30 3 0 67 0.244 0.2263 68 7 25 0 2.5 E-82 04 30 3 0 67 0.244 0.2265 30 20 50 0 1.1 E-07 9.3 E-196 55 20 0 25 1.4 E-07 2.4 E-187 30 20 0 50 0.628 0.6478 30 3 67 0 1.4 E-16 1.6 E-849 68 7 0 25 7.5 E-30 0Table 1: Expeted values E(D) of the DI as well as D(Ŷ1; Ŷ2) for eah experiment.FD(D) � 1� � � log(2) + log(� log(D))� ���� � : (13)By means of the knowledge of this distribution the expeted value of the DI an be op-timized, whih an be seen as an improved optimization proedure for the DI as in thelassi approah the DI is alulated based on the values of Ŷi and therefore the model un-ertainty is not taken into aount (see [STE00℄). Thus for eah experiment the expetedvalue E(D) of the DI is determined as displayed in Table 1. Additionally in omparisonthe values following the lassi approah are displayed so that the di�erenes beomeobvious. Note that as a side restrition X3 and X4 may not be used simultaneously.These results indiate that exeeding 30 % the proportion of watermelon-juie (X1) leadsto undesirable values of the quality measures. Furthermore experiment 7 is the one withthe maximal value of E(D) followed by experiments 2 and 4, whih all make use ofgrapefruit-juie (X4). Regarding the fator settings of the experiments 2, 4 and 7 a gridsearh was arried out in order to �nd the optimal fator settings whih lead to the optimalexpeted value of the DI. As X2 is not inluded in the models (9) and (11) | it followsfromP4i=1Xi = 100 % | only X1 and X4 are varied on a grid with ranges 10 � X1 � 40and 30 � X4 � 80 and step width 0:1. The optimal fator settings ome out asXopt1 = 30; Xopt4 = 50:6 and Xopt2 = 19:4 with E(Dopt) = 0:67 (14)leading to �� = �0:25 and ��2 = 0:105; (15)



4 EXAMPLE I: FRUIT JUICE MIXTURE 10whereby the following domain restritions of the inuene fators had to be met:30% � X1 � 100%; (16)X3 = 0% _X4 = 0%; (17)0% � X2 � 20%, X1 +X3 resp. X4 � 80%; (18)X1 +X2 � 75%, 25% � X3 resp. X4 and (19)0:1 �X1 � X2: (20)Following the proedure desribed in Chapter 3 the distribution funtion of the DI isdetermined based on (13) and the optimal fator settings (14). The 95 % predition-interval for the true DI in the optimum omes out as[Q0:025; Q0:975℄ = [0:66; 0:89℄ with Q� := � %-quantile of FD(D): (21)Whereas the resulting interval reets the unertainty of Dopt, in pratie an analysis ofthe e�ets of varying the optimal fator levels an also be of interest, whih somehowreets the unertainty of the levels regarding Dopt. For example in a prodution proessa slight hange of one inuene fator may lead to lower prodution osts or may just bemore onvenient in the proess ow.As a �rst example only the e�et of shifts ofX1 is foussed assuming that the proportion ofX4 is not a�eted. Of ourse this also leads to a modi�ation of X2 but X2 is not inludedin the models (9) and (11). For all possible shifts of X1 in the interval [�30; 70℄ and stepwidth 0:01, ignoring the restrition P4i=1Xi = 100% at the moment, the distributionfuntion of the DI is alulated and the probability that the interval (21) still overs thevalues of the DI is determined asPint := P (Dshift 2 [Q0:025; Q0:975℄ jYi � N (�i+i; �2i )) = FDshift(Q0:975)�FDshift(Q0:025);(22)where Dshift is the DI when shifted values of X1 are used, i.e Yi � N (�i + i; �2i ).Fig. 3 illustrates the shape of this probability in the range X1 is shifted. Additionallylines are inluded whih reet the restritions listed in (16)-(20). The gray-shaded regionmirrors the domain in whih all these restritions are met. Thus the part of the displayedurve falling inside this region indiates the range in whih X1 an be varied so thatall restritions are met and the desired minimal probability Pmin is exeeded, whih was
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Figure 3: Probability that [Q0:025; Q0:975℄ overs the values of the DI when X1 is shiftedhosen as Pmin = 0:8.In ase shifts of both inuene fatorsX1 andX4 are of interest the proedure is arried outanalogously. For all ombinations of shifts in the ranges [�30; 70℄ (X1) and [�50:6; 49:4℄(X4) with step width 0:2, again ignoring the restritionP4i=1Xi = 100% at the moment,the probabilities as in (22) are omputed. Fig. 4 visualizes Pint plotted against the shiftsof X1 and X4, where in this stage only the restrition P4i=1Xi = 100 % is onsidered.Furthermore in Fig. 4 the same surfae when the ondition Pint � Pmin = 0:8 is satis�edis shown below.For the purpose of inluding all restritions (16)-(20) and in order to get a better overviewregarding the range of possible shifts of the inuene fators X1 and X4, in Fig. 5 X1 andX4 are plotted against eah other where the lines reveal the restritions mentioned. As inthe example above the gray-shaded region reets the region in whih all restritions aremet. The blak area inside again reets the range of possible shifts of the inuene fatorsX1 and X4 with regard to meeting all restritions and exeeding the desired minimalprobability Pmin = 0:8. Thus due to the fator restritions only a quite small part of thetheoretially possible range is allowed for shifting.
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Figure 4: Probability that [Q0:025; Q0:975℄ overs the values of the DI when X1 and X4 are shifted;below: Same Surfae with P (Q0:025 � Dshift � Q0:975) � Pmin = 0:8.
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Figure 5: Ranges of X1 and X4 so that [Q0:025; Q0:975℄ overs the value of the DI with a probability ofat least 80 %.5 Example II: Tire Tread CompoundIn the following we revert to the example used by [DER80℄, whih is modi�ed in terms ofdi�erently spei�ed DFs. An optimal ompound of a tire tread, onsisting of "Hydratedsilia" (X1), "Silane oupling agent" (X2) and "Sulfur" (X3) has to be found, where itsquality is measured by the variables "PICO Abrasion Index" (Y1), "200%-Modulus" (Y2),"Elongation at Break" (Y3) and "Hardness" (Y4). The assumed related one-sided DFs asin (3), whih express the desirability of di�erent values of Y1-Y4, are displayed in Fig. 6.In this ase another kind of DI is used, namely D := mini=1;:::;4 di. That implies a"maximin-approah", i.e. the minimum desirability is to be maximized over time. Theoptimization of the DI follows the same proedure as outlined in Chapter 4 using themodelŝY1 = 139:1 + 16:5X1 + 17:9X2 + 10:9X3 � 4X21 � 3:5X22 � 1:6X23 + 5:1X1X2+7:1X1X3 + 7:9X2X3 with sd1 = 5:6; (23)Ŷ2 = 1261:1 + 268:2X1 + 246:5X2 + 139:5X3 � 83:6X21 � 124:8X22 + 199:2X23+69:4X1X2 + 94:1X1X3 + 104:4X2X3 with sd2 = 328:7; (24)Ŷ3 = 400:4� 99:7X1 � 31:4X2 � 73:9X3 + 7:9X21 + 17:3X22 + 0:4X23 + 8:8X1X2+6:3X1X3 + 1:3X2X3 with sd3 = 20:6 and (25)
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Figure 6: Desirability Funtions of PICO Abrasion Index(Y1), 200%-Modulus (Y2), Elongation at Break(Y3) and Hardness (Y4)Ŷ4 = 68:9� 1:4X1 + 4:3X2 + 1:6X3 + 1:6X21 + 0:1X22 � 0:3X23 � 1:6X1X2+0:1X1X3 � 0:3X2X3 with sd4 = 1:27: (26)Again the mentioned innovated approah of optimizing the expetation of the DI instead ofD̂ := mini=1;:::;4 di(Ŷi) is applied, where from [WEB03℄
E(D) = Z 10 � 1log(D) 4Xi=1 0B� 1~�i�� log(� log(D))� ~�i~�i � 4Yj=1j 6=i �� log(� log(D))� ~�j~�j �1CA d (D)(27)with ~�i = �(b0i + b1i � �i); ~�2i = (b1i)2 � �2i and (28)�(x) resp. �(x) : Density resp. Distribution funtion of N (0; 1):A grid searh on oded inuene fators was arried out, where we assumed possible



6 SUMMARY AND CONCLUSION 15ranges �2 � Xi � 2 (i = 1; : : : ; 3) resulting in the optimal inuene fator levelsXopt1 = 0:7; Xopt2 = 1:3 and Xopt3 = 1:3 with E(Dopt) = 0:577: (29)Taking into aount the unertainty of the optimization resulting from the model errorsin (23)-(26) and starting with the proedure desribed in Chapter 3, the 95%-preditioninterval for Dopt is alulated based onFD(D) = 1� 4Yi=1 � �(log(� log(D))� ~�i)~�i � with ~�i and ~�2i as in (28) (30)(Theorem 2) and omes out as[Q0:025; Q0:975℄ = [0:43; 0:70℄ with Q� := �%� quantile of FD(D): (31)The inuene fators X1 and X3 were seleted for shifting in their full domain of�2 � Xi � 2 (i = 1; 3) in order to measure the e�et onto Dopt. Analogously to theexample in Chapter 4 hereby the unertainty of the optimal fator levels regarding Doptis determined using equation (22). In Fig. 7 the shifted values of X1 and X3 are plottedagainst the probability Pint that the predition interval as in (31) still overs the realiza-tions of the DI. Assuming that at least a probability of 80% has to be ahieved the lowergraphi of Fig. 7 shows the range of Pint that meets this ondition.In order to failitate the analysis of this range, in Fig. 8 the respetive values of X1 andX3 are plotted against eah other. In this ase no additional restritions regarding theinuene fators have to be taken into aount. It beomes obvious that a quite widesope of possible shifts of X1 and X3 exists.6 Summary and ConlusionConsidering the examples in Chapters 4 and 5 it an be seen that the method desribedprovides an appropriate means for analyzing and visualizing the regions of possible shiftsof inuene fators whih lead to an aeptable probability that the DI will be overedby the predition interval onstruted using the optimal fator settings. As an innovativeapproah the distribution of the DI is taken into aount. But it is also obvious that thisanalysis beomes more and more ompliated the more inuene fators are allowed forshifting as
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Figure 7: Probability that [Q0:025; Q0:975℄ overs the values of the DI when X1 and X3 areshifted;below: Same Surfae with P (Q0:025 � Dshift � Q0:975) � Pmin = 0:8.
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Figure 8: Ranges of X1 and X3 so that [Q0:025; Q0:975℄ overs the values of the DI with a probability ofat least 80 %.� graphial illustration is diÆult for more than two fators. From three dimensionson plots as in Fig. 4 an only be generated by �xing the remaining fators to aonstant value. Therefore in this ase tables should be provided additionally.� the resulting region does not need to be ohesive as an be seen in Chapter 4 and� the number of possible ombinations of shifted inuene fators whih lead to a DIwithin the desired predition interval heavily inreases.Therefore and beause of very omplex density and distribution funtions of the DI ageneral analytial approah will be highly ompliated if not impossible so that the pro-posed proedure will provide appropriate assistane in pratie.In ase the distribution of other types of is known, the proedure an be applied analo-gously without any modi�ation.AknowledgementsThe work presented has been supported by the Graduate Shool of Prodution Enginee-ring and Logistis at the University of Dortmund and the Collaborative Researh Center"Redution of Complexity in Multivariate Data Strutures" (SFB 475) of the GermanResearh Foundation (DFG).
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