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How do Fuel Taxes Impact New Car Purchases?

An Evaluation using French Consumer-Level Data

Pauline Givord, Céline Grislain-Letrémy, Helene Naegele

Abstract

This study evaluates the impact of fuel taxes on new car purchases, using exhaustive individual-
level data of monthly new car registrations in France. We use information on the car holder
to account for heterogeneous preferences across purchasers, and we identify demand parameters
through the large oil price fluctuations of this period. We find that the short-term sensitivity
of demand with respect to fuel prices is low, particularly for corporate purchases. Using our
estimates to compute elasticities, we assess the impact of a policy equalizing diesel and gasoline
taxes. Such a policy reduces the share of diesel-engines without substantially changing the average
fuel consumption or CO2 intensity of new cars. Alternatively, we find that a (revenue-equivalent)
carbon tax has only small effects on average fuel consumption and CO2 intensity of new cars.

Keywords: fuel prices, automobile demand, carbon dioxide emissions, environmental tax.
C25, D12, H23, L62, Q53.

Highlights

• The car purchase decisions is modeled as a nested logit.

• Corporate purchases react less to fuel price changes than private purchases.

• Two reforms are simulated: an alignment of diesel and gasoline tax, and a carbon tax.

• Both policies have small impact on fuel efficiency and CO2 intensity in the short-run.

• Aligning diesel and gasoline tax shifts consumption away from diesel cars.
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1. Introduction

Road transportation is one of the main contributors to climate change: in France, similarly to

other industrialized countries, cars and trucks account for nearly one third of CO2 emissions and

a larger share of other greenhouse gases. On the one hand, this problem might be alleviated by a

shift to diesel-fueled cars: typically, a diesel car produces less CO2 per km than a similarly-sized

gasoline-fueled car. On the other hand, diesel cars also produce medically hazardous fine particles

(in particular black carbon) and nitrogen oxides (NOx). Thus, policy makers are facing both

a global climate problem as well as a local health issue; shifting toward more diesel cars might

alleviate the global externality, but increases local concerns.

For decades, European policy makers have encouraged small fuel-efficient cars with high fuel

taxes. Further, in many countries, they have opted to support diesel vehicles.1 This preference

for diesel is especially salient in France (Hivert, 2013), where the gap between gasoline and diesel

prices is one of the highest in Europe.2 In Japan and the US, diesel cars make up about 2% of all

vehicles (Cames and Helmers, 2013), while they represent more than 62% in France. Incentives to

reduce CO2 emissions, as the feebate introduced in France in 2007,3 reinforce consumer preferences

for diesel cars. However, as stressed by Mayeres and Proost (2001), for instance, the environmental

benefits of diesel cars might have been overestimated, and new technologies decrease the spread

between the CO2 intensity of diesel and gasoline cars. The production of diesel-models is more

CO2 intensive because they are heavier. Additionally, recurrent episodes of smog have sparked a

renewed debate about the French support for diesel.4

Faced with this conundrum of how to deal with global and local pollution, the French govern-

ment announced in 2015 a progressive reduction of the relative tax advantages for diesel fuel.5 This

1Partly for historical reasons and with the objective to reduce energy dependency, as European countries im-
port virtually all of their petroleum products; see for instance https://www.transportenvironment.org/sites/te/

files/publications/2015_10_Europes_tax_deals_for_diesel_FINAL.pdf. For Miravete et al. (2015), the diesel-
friendly policies in Europe are essentially a non-tariff trade barrier against American manufacturers.

2In 2011, the consumption tax on energy products (French lump-sum tax on fuel consumption) reached e0.61
per liter of gasoline, while it was e0.44 per liter of diesel.

3Feebates, a system combining fees (for more polluting cars) and rebates (for less polluting cars) were imple-
mented in several European countries in the 2010s. This mechanism is expected to shift consumer expenses toward
less polluting goods, and to be self-financed as the fees should compensate the rebates. See D’Haultfœuille et al.
(2014) for an evaluation of the French experience.

4In December 2016, air quality in France was so poor that the government heavily restricted driving and Paris
authorities banned the oldest and most polluting vehicles from the city center, pledging “an end to diesel in Paris”
by 2020.

5The difference was reduced from 14.9 cent in 2015 to 11.7 cent in 2016, and 9.4 cent in 2017. The path
to full equalization, as described in this study, is yet to be defined; see http://www.douane.gouv.fr/articles/

a12285-carburants-gazole-super-e10-taux-de-taxe-par-region Retrieved on 05/09/2017. This reform is in
line with the revision of the European Commission’s Energy Tax Directive proposed in 2011 (but voted down in
2012 by the European Parliament) that would have eliminated the tax advantage to diesel fuel by basing fuel taxes
both on their energy content and on the related carbon dioxide (see Frondel and Vance, 2014).
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tax alignment adds to a previously implemented “carbon tax”, first at a modest e7 per tonne of

CO2 in 2014 progressively raised to e30.5 per tonne of CO2 in 2017. A carbon tax is proportional

to the carbon content of each fuel, aiming at aligning the private cost to the consumer with the

externality cost to society.

These tax reforms are expected to reduce total emissions from road traffic by two main mecha-

nisms. First, the reforms have an impact on the usage of vehicles (intensive margin), as one might

expect that motorists drive fewer miles when fuel prices increase. For example, in a recent study

on German data, Frondel and Vance (2014) observe that the fuel elasticity with respect to distance

driven is around -0.5, with no significant differences between diesel and gasoline fuel. Second, the

reforms affect the type of vehicles in use (extensive margin), as consumers are expected to choose

more fuel-efficient cars when fuel prices are high. As cars are durable goods, such a change in the

composition of new vehicles has long-term effects on emissions. The magnitude of this extensive

effect depends on the way car purchasers take into account the cost of driving. Despite a large

literature on the impact of fuel prices on car choice (Greene, 2010, surveys as much as 28 papers

on how consumers value fuel economy), the question is still controversial. Several studies empha-

size an “energy paradox,” meaning that consumers systematically undervalue future economies of

energy-efficiency (e.g. Allcott and Wozny, 2014); others find no evidence of such consumer myopia

(e.g. Sallee et al., 2016; Busse et al., 2013). Meta-studies (Helfand et al., 2011; Greene, 2010)

find that the empirical evidence about the energy paradox is inconclusive. Most papers focus on

the US market, and there is little evidence about the European market. One notable exception

is Klier and Linn (2013) who evaluate the effect of fuel prices on new vehicle fuel economy in

the eight largest European markets, including France, and observe strong differences between the

European and the US markets. Finally, two additional (indirect) effects can be anticipated: higher

fuel price may reduce car lifetime, by encouraging drivers to scrap old fuel-inefficient vehicles (see

for instance Li et al., 2009; Adda and Cooper, 2000). Moreover, some authors find that consumers

increase their mileage when they buy a more fuel-efficient car (“rebound effect”, e.g. Small and

Van Dender, 2007).

In this study, we estimate how French car purchasers react in the short term to changes in

fuel prices, in order to predict whether fuel taxes change the average vehicle in use. This study

thus concentrates on the car choice (extensive margin) and relies on simplifying assumptions on

all other margins. More specifically, we focus on fuel efficiency and the share of diesel cars, as they

have an impact on climate change and local pollution, respectively.
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We use French passenger vehicle registration data from 2003 to 2007. Our dataset is exhaustive,

so that we observe also purchases from companies, which represent more than one-third of new

car purchases in France over our period and, as far as we know, are rarely analyzed in existing

studies. Our data links detailed technical car characteristics to car holder information. We define

consumer types, depending for instance on location areas, age and activity status for private

consumers, which allow us to account for heterogeneity in preferences across purchasers.

As common in the related literature, we rely on a static discrete choice model, assuming that the

decision to buy a specific car depends on car characteristics, including the cost per kilometer. We

model substitution patterns depending on car market segments and on fuel-type versions using

a nested logit specification. We identify the impact of fuel cost on car choice exploiting cross-

sectional differences in fuel consumption between car models and time variation in fuel prices.6

We deduce the elasticity of automobile demand with respect to an increase in fuel taxes, as well

as the willingness to pay for fuel efficiency.

Our results suggest that the short-term sensitivity of demand with respect to fuel prices is

generally low, but presents significant heterogeneity across consumers. The difference between

private and corporate purchases is particularly salient: firms are less reactive than households

and have a strong preference for diesel. We use our estimates to predict the short-run impact of

two hypothetical policies: the equalization of diesel and gasoline taxes and a carbon tax. Both

policies increase taxes relative to the status quo but are calibrated to be revenue-equivalent to

each other. Assuming that consumers react identically to price changes from fuel tax and from

oil market fluctuations, our results suggest that equalizing diesel and gasoline taxes reduce the

market share of diesel cars (from 69% to 65%) in the short-run without notably changing average

fleet fuel consumption or CO2 intensity. The carbon tax leaves the diesel share almost constant

and has a small impact on the other two outcomes. Overall, our results do not suggest a strong

short-term impact of fuel prices on car choices from the demand side. This does not rule out an

impact in emissions via a reduction in the mileage driven by car holders, nor a long-term change

from the supply side.

The article is organized as follows. Section 2 explains our assumptions on the decision making

process. Section 3 presents the data and descriptive statistics. The model is presented in Section 4.

Section 5 discusses results, and Section 6 concludes.

6During the estimation period the fuel prices varied considerably: prices range between e1.01 per liter and e1.38
per liter of gasoline, and between e0.75 and e1.21 per liter of diesel.
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2. Choice model

2.1. Sequential automobile choice

To model market shares of new vehicles, we rely on a standard discrete choice model with

differentiated products. We assume that the purchaser buys one product maximizing her utility,

which is a linear function of vehicle characteristics and a vehicle-specific unobserved effect, like

e.g. Allcott and Wozny (2014), tracing back to seminal work by McFadden (1978). A product

corresponds to a bundle of characteristics. Following common practice, our definition includes

brand, nameplate (Corolla, Kangoo, etc.), body style (city-car, sedan, etc.), CO2 intensity class,

and fuel-type (diesel or gasoline).7

The individual utility of choosing the product with model j, fuel-type f and segment s, for

purchaser i at month t is written:

uijft = αi + β∗
i Cijft + γ1ipjft + γ2iXjft + ξijft + ǫijft, (1)

where pjft denotes the car price at time t with the model j of fuel-type f , Cijft is consumer i’s

discounted expected operating cost from fuel along the car’s lifetime and Xjft represents other

observable characteristics of the car, for instance the horsepower category and the number of

doors. ξijft measures the unobserved preference for product jf .

We assume that the consumer decision can be modeled as a hierarchical choice (see Figure A.2

in the Appendix for a graphical illustration), choosing first a car segment (i.e. SUV, compact, etc.;

see list in Table 1) or not buying any new vehicle (the outside option), then a model within this

segment, and finally one of the two fuel-type versions of this model. Fuel-type versions differ not

only by the type of engine, but are usually bundled with a set of other attributes (e.g., acceleration

performance, size, luxury features, etc.). Formally, such a decision sequence is modeled using a

nested logit assumption on the error term of the model:

ǫijft = νist + (1− σ2i)(νijt + (1− σ1i)eijft), (2)

where νist is the consumer’s overall preference for segment s, for example status symbol value

of SUVs, and νijt measures the individual preference for unobserved characteristics of model j

7In practice the definition of products should be detailed enough to avoid the aggregation of heterogeneous
products but not too narrow, as we have to exclude all market shares equal to zero. We exclude electric and hybrid
vehicles in the estimations as they constitute a tiny share of the French market over the examined period and have
zero sales in many months.

5



common to both fuel versions, for example design. The remaining error eijft is assumed to be

independent and identically distributed according to an extreme value distribution. There is a

unique distribution for νist and νijt such that ǫijft follows an extreme value distribution (Cardell,

1997); this specification is standard in the literature (see in particular Berry, 1994). The nested

logit specification allows for heterogeneous substitution patterns between products that are more

or less similar; for instance, a sporty BMW Z3 is more substitutable to a BMW Z4 than to a bulky

Renault Kangoo.

The parameters σ1i and σ2i capture the correlation between individual preferences for cars

within a nest, as defined above. As shown by McFadden (1978), the nested logit model is consistent

with random utility maximization for values of σ1i and σ2i between 0 and 1. σ1i = 0 means

that substitution effects are identical across and within models,8 while a high σ1i implies a high

correlation between preferences for both fuel-type versions of the same model. σ2i = 0 implies

that the purchaser is a priori indifferent to substitute between models within and across segments

(see Verboven, 1996, for a more complete discussion of these terms).

A drawback of the nested logit specification is that it relies on a rigid and ad hoc substitution

pattern between products. While the market segments we rely on are widely used in the related

literature, our choice of using an additional level corresponding to the two fuel versions of the same

model is more original and may be questioned. Unfortunately, there is no direct way of testing

these assumptions. Nevertheless, we find that an unconstrained estimation of the model leads to

parameter values that are compatible with the random utility model in McFadden (1978), as σ2i

and σ1i both range between 0 and 1 for all estimations.9

2.2. Vehicle choice and fuel prices

Fuel prices affect the car choice via the consumer’s expectations of the future operating costs

of each vehicle. As a car is a durable good, the decision to buy a given product jf at time t

depends on the consumer’s discounted expected value of the future fuel costs associated with this

vehicle. Formally, the expected discounted operating cost Cijft is composed of several elements

8“Within-model” substitution refers to the substitution between the gasoline-powered and the diesel-powered
versions of the same model.

9Moreover, we estimate two alternative specifications that relax this assumption. In the first alternative, we
drop the last nest level. In the second, we rely on a simple logit model, but allows for model specific effects (as in
Klier and Linn, 2013). Both these alternative specifications leave our main conclusions unchanged (see Section G
in the Appendix).
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(like e.g. Allcott and Wozny, 2014):

Cijft = Et

[

Lmax
∑

a=1

δai mijfaφjfp
f
sνjfa

]

(3)

where δi is the discount factor of consumer i, mijfa is her mileage using the vehicle jf of age a,

φjf is the fuel consumption per km of the vehicle j with fuel type f .10 pfs is the future fuel price

of fuel f at date s = t + a. Finally, νjfa is the probability that the vehicle jf survives to age a

and Lmax is the maximum age of a vehicle.

We assume that the changes in fuel price are independent of the other variables. We also

take the most simple assumption on how purchasers forecast future gasoline prices: according to

Anderson et al. (2013), consumer beliefs regarding future fuel prices are indistinguishable from a no

change forecast or a random walk, such that expected future price is equal to the contemporaneous

price.11 This approach is in line with the literature: the meta-study by Greene (2010) identifies 28

studies on this subject, of which 27 use an assumption equivalent to ours.12 Moreover, we assume

that consumers are equally sensitive to fluctuations in the oil price as they are to changes in fuel

taxes. We discuss this assumption more in detail in the conclusion.

As we focus on car choice and do not know the elasticity of mileage, both to fuel prices and

vehicle efficiency, we take the simple assumption that individual mileage is constant and perfectly

inelastic.13 We then rewrite the equation (1) as:

uijft = αi + βip
km
jft + γ1ipjft + γ2iXjft + ξijft + ǫijft, (4)

where pkmjft corresponds to the expected future operating cost of driving one kilometer with vehicle

j with engine f at date t, and the parameter βi encompasses the model demand parameter β∗
i , as

well as the previously discussed unobserved consumer expectations on discount factor, expected

10Fuel consumption is usually expressed in L/100km, as commonly used in Europe, and is the inverse of fuel
efficiency in miles per gallon (MPG), as typically used in the US. We abstract here from the problem that realized fuel
consumption might not equal the announced fuel consumption, measured under standardized technical conditions,
and that it might evolve over the car’s lifetime.

11Formally,

∀s > t : Et(p
km
jfs) = pkmjft = 1/100× φjf

[

1f=dieselp
D
t + 1f=gasp

G
t

]

,

where pDt and pGt denote the fuel prices including tax for one liter of diesel and gasoline, respectively, φjf the fuel
consumption of new vehicle j with engine f (in L/100 km).

12Alternative approaches in the literature include using moving averages, which are, for example, consistent
with a purchaser belief in mean-reversion of fuel prices. In a model similar to ours, Klier and Linn (2013) use
both contemporaneous fuel prices and moving averages, finding that this assumption has no significant impact on
parameter estimates, but standard errors are larger with moving averages.

13Alternatively, one could take an elasticity estimate from the literature, but estimates differ widely and no
estimates are available for firms.
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mileage, and vehicle lifetime probability.

A frequently discussed issue is how to model the heterogeneity in preferences among consumers,

as not accounting for heterogeneity may result in biased estimates. Pakes et al. (1993) propose

an ingenious way of taking into account such heterogeneity in preferences when only aggregate

data on car sales are available. Such random-coefficient models allow preferences to be shaped

by the aggregate distributions of household demographics. However, this comes at the cost of

high computational complexity, which is shown to lead to numerical instability in some cases:

Knittel and Metaxoglou (2014) find that results often depend on starting values and optimization

algorithms (see also Grigolon and Verboven, 2014). Another strand of the literature relies on

the use of household survey data. Such data contain very detailed information on consumer

characteristics, including those who buy a used and those who do not buy any car (thus opting

for the outside option). For example, Goldberg (1995, 1998) estimates nested logit models of

choice using the US Consumer Expenditure Survey and makes the parameters a linear function

of household characteristics; this approach is similar to ours consisting in estimating parameters

separately for groups determined by the intersection of observed consumer characteristics, albeit

Goldberg’s method is more constrained (and also adapted to the use of survey data with limited

sample size).

3. Data and descriptive evidence

3.1. Characteristics of new vehicles and their purchasers

We use an exhaustive dataset of all new car registrations in France from January 2003 to

November 2007, provided by the Association of French Automobile Manufacturers (CCFA, Comité

des Constructeurs Français d’Automobiles).14 This transaction-level dataset includes all infor-

mation necessary for the registration of a new car, i.e. both technical specifications of the car

(including horsepower, weight, number of doors, etc.) and demographic information on its owner.

The CCFA links these data to list prices of new cars as provided by the car manufacturers.

List prices may differ from the actual unobserved selling prices. This measurement error, as well

as the endogeneity of prices can induce biased estimates – in the following, we use instrumental

variables to deal with this estimation issue.

14Data is also available for 2008. As a feebate scheme was introduced in January 2008, which dramatically
changed the demand for fuel economy, we only use data up to the date of its announcement in November 2007. See
D’Haultfœuille et al. (2014) for an analysis of this policy and a description of this dataset.
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Our main dataset contains over 7 million observed registrations of more than 2,000 different

products,15 as defined by the attributes in Table 1. More descriptive statistics are available in the

Table B.6 in the Appendix.

Figure 1 provides the evolution of aggregate sales. The overall number of new registrations is

strongly seasonal, but is virtually constant over the years. Since 2010, the number of diesel cars

sold has consistently been higher than the number of gasoline cars in France, and this difference

was increasing over the period under study here.
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Figure 1: Monthly new registrations by fuel-type (in thousands, raw and smoothed series,
studied period shaded in blue)
Source: CCFA, authors’ calculations.

We further use monthly fuel prices from the French Ministry of Environment.16 The final

fuel tax rates result from the combination of a fuel-type specific lump-sum tax (Taxe intérieure

de consommation sur les produits énergétiques, named "consumption tax on energy products"

hereafter) and the proportional VAT.17 From January 2003 through November 2007, both gasoline

15Given the outlined structure of the decision process, we exclude models available with only one fuel-type; this
is only the case for exceptional cars, which represent about 7% of total sales. We verify that excluding these models
is not crucial for the results, see Section G in the Appendix.

16We use sales-weighted national average prices available at http://www.developpement-durable.gouv.fr/

Prix-de-vente-moyens-des,10724.html. For diesel prices, we use the price of car diesel oil (“gazole”), while
for gasoline price, we use premium unleaded gasoline (“super sans plomb 95”). All price indications in this study
are deflated by the French National Statistical Institute (INSEE) consumer price index, taking January 2008 as
reference. Local fuel prices are available only since 2007 and cannot be used here. However, the spatial variation
is much lower than the temporal variability: the relative standard deviation is below 2 % for monthly fuel prices
measured at the local (French “département”) level in 2007, while it above 10% for national monthly prices over the
2003 to 2007 period. Pre-tax prices for gasoline and diesel are highly correlated (correlation over 0.95) and their
difference is small (between -3 and 9 cents), so we assume price variations of both depend equally on oil prices.

17The fuel price can be decomposed as:

pft = (1 + tV AT )
[

pet + 1f=diesel(tD) + 1f=gas(tG)
]

, (5)

where pet is the pre-tax fuel price, tD and tG are the consumption lump-sum taxes for one liter of diesel and gasoline,
respectively, and tV AT the VAT rate.
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Table 1: Descriptive statistics: main characteristics of new car registrations 2003-2007

Products Sales-weighted Products Sales-weighted
By type of car-body By class of CO2 (g/km)

City-car 3% 7% ≤100 0% 0%
Compact 14% 34% 101 to 120 4% 18%
Sedan 33% 24% 121 to 140 9% 27%
Minivan 13% 24% 141 to 160 14% 33%
Utilitarian 6% 4% 161 to 200 29% 21%
Sport 20% 3% 201 to 250 26% 6%
All-road/SUV 10% 5% >250 18% 2%

By horsepower By type of fuel
≤60 14% 34% Gasoline 57% 32%
61 to 100 35% 60% Diesel 42% 74%
101 to 140 27% 10%
141 to 180 13% 2%
>180 10% 1%

Number of products and observations 2,148 7,828,903

Source: CCFA, authors’ calculations.

and diesel prices increased by almost 30% and 40%, respectively (see Figure C.4 in the Appendix).

The fuel cost per km for diesel cars is lower than for gasoline cars by about 20%, because of the

lower taxes on diesel and the lower fuel consumption of diesel cars. The changes in aggregate

registrations can be linked to fuel price fluctuations, as higher fuel prices incite purchasers to buy

more fuel-efficient cars. For instance, Busse et al. (2013) observe that higher fuel prices increase

the sales of the most efficient quartiles of car models in the US. We observe a similar pattern in our

data when we aggregate the sales according to their quartile of fuel consumption (see Section C

in the Appendix).

Our dataset also includes individual characteristics of the purchaser. Importantly, we distin-

guish between private buyers and firms. Private purchases represent 62% of the sample, for which

we observe the consumer’s age and activity status (whether she is employed or not); for corporate

purchases, we observe the business sector of the firm. In both cases, we additionally observe the

residence/registration location postal code (the French commune18). We merge this postal code

with supplementary information. First, we use detailed information on tax income available at the

postal code level from official statistics collected by French National Statistical Institute (INSEE).

For each private car purchaser, we proxy her income with the median earnings of her age group

in her postal code. Second, we use an INSEE classification of the type of areas (urban, suburban,

rural).19

18The 36,600 French communes are rather small in comparison to the European standard, with a median area is
10.73 square kilometers and a median population of 380 inhabitants.

19As defined in https://www.insee.fr/fr/information/2115011 (in French).
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3.2. Consumer types

In order to account for heterogeneous preferences, we split our sample into consumer types

based on demographic characteristics. In practice, we conduct separate analyses for each of these

consumer types. We first separate private households and firms into different consumer types,

as we believe their preferences are fundamentally different. We further classify consumer types

according to the features that may impact annual mileage. The definition of these types should

be fine enough to guarantee that they correspond to homogeneous preference groups, but should

ensure that we observe sufficient group-level sales for all products. This trade-off results in the

definition of 30 distinct consumer types.

For private consumers, we consider three occupational states (young employed under the age

of 30, employed over 30, and not employed, with the latter including retirees and unemployed).

We sort areas of residence between urban Paris, suburban Paris (larger metropolitan region),20

other urban areas, and suburban/rural zones. Finally, we define two income groups (income proxy

above or below the national median income). As group sizes are smaller in urban Paris, we do not

distinguish along the income dimension for this area.

We relate this typology of purchasers to the available information on mileage. According to

the French National Transport and Travel Survey Survey, we observe large variation in mileage

depending on consumer type (Table 2, private households only).21 Activity status is an important

factor for private owners, as employed consumers have larger mileage across all geographic areas.

As shown in Clerc and Marcus (2009), the elasticity to fuel prices of French private consumers

largely depends on whether the consumer uses her car to go to work, as commuting represents the

majority of kilometers driven in France. Compared to the rest of the country, the average yearly

mileage is consistently smaller in urban Paris with its dense public transportation network.22

The factors influencing fuel-price sensitivity and mileage of firms are a priori not clear, because

firms are not included in typical transportation surveys and this is the first study, to our knowledge,

that explicitly accounts for company car purchases. Additionally, firms do not always pay the

operating cost of the vehicles they purchase. This is obviously the case for the car rental sector.

20In the following, we use the term “Paris” or “urban Paris” for Paris and its close and densely populated sub-
urbs (departments Paris (75), Hauts-de-Seine (92), Seine-Saint-Denis (93), Val-de-Marne (94) and some adjoining
municipalities) while “suburban Paris” describes the rest of the Île-de-France region.

21Information on annual mileage is only available for households and not by age group, computed from INSEE
National Transportation and Travel Survey 2007, conducted at the end of the period studied here.

22See also Baccaini et al. (2007) (in French), who illustrate the variation in average travel times and distances
depending on the type of residence areas. Urban Paris is an outlier as reflected in Figure B.3 in the Appendix, as
this area has an exceptionally low share of people using their car to go to work.
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In other business sectors, company cars sometimes constitute a benefit in kind for employees

("take-home vehicles" that can be used privately). In such a case, fuel expenditures are partly

incurred by the employee and partly by the firm. As far as we know, there are no official statistics

on the mileage of company cars, nor on the share of take-home vehicles. As mileage and preferences

are likely to differ by sector, we distinguish industry/agriculture, car rental, and trade/services.

We further use a similar geographic distinction as for households. Firms belonging to the car rental

sector are mainly located in urban areas. While car rentals constitute a large share of corporate

car purchases (see Table B.7 in the Appendix), the number of observations for these firms is small

in rural and suburban areas.

French taxation on company fleets is even more in favor to diesel cars than for private owners.

The VAT rates applying to diesel bought by firms is only 4%, much below the normal rate of

19.6%. Firms face also an annual tax on their company car fleet related to the horsepower (before

2004) and CO2 class (since 2004),23 which additionally increases the attractiveness of fuel-efficient

cars, which are often diesel-fueled.

4. Empirical approach

4.1. Nested logit estimation on consumer type-level aggregate sales

We assume consumer decision making follows the model of equation (1); aggregating across

consumers and integrating over the error term distribution of equation (2) allows us to recover

the market share of each product jf (model j of fuel-type f) up to an identifying normalization.

In order to take into account the heterogeneous preferences among different types of consumers,

the data is aggregated separately for each consumer type. As usual in the literature, identification

stems from the normalization of the outside good’s value to zero. With this normalization, the

log-ratio of the market shares (at consumer type-level) of a product jf and the outside good is a

linear expression of car characteristics. Consequently, estimating this (standard) equation requires

the outside good’s market share.

Our dataset of newly registered cars does not provide information on potential buyers who

choose the outside option. In the related literature, it is common to calculate the outside good’s

market share as the difference between the entire potential market size and aggregate sales. While

aggregate sales are easily recovered from the data, the true potential market size is usually unknown

23The yearly amount of the tax ranges from e750 for small cars to e4,500 for the biggest ones in 2014.

12



Table 2: Average mileage by purchaser type (private households only), km/year

Not employed Employed
Income Low High Low High
Urban 10,850 10,950 14,950 15,600
Suburban/rural 10,750 14,300 16,250 18,850
Paris urban 9,750 14,050
Paris suburban 11,950 18,350

Source: INSEE National Transport and Travel Survey 2007, authors’ calculations.

and, thus, approximated using most recent estimates of the population size or the number of people

holding a driver’s license (for instance, the seminal paper by McFadden, 1978). This number

probably dramatically overstates the actual market size with durable goods like cars, because in

each given month only a small fraction of consumers considers buying a car. Moreover, when a

large portion of new car registrations are made by firms and not by private owners, the number of

driving license holders is not necessarily relevant. Huang and Rojas (2014) show both theoretically

and practically that coefficients estimated using such an incorrect approximation of market size

may be biased. To avoid this potential bias, we follow a suggestion by Huang and Rojas (2014)

and move the log of the outside good’s quantity to the right-hand side of equation (6) and estimate

it as part of the time-specific constant. Our main estimation equation is then:

ln(qdjft) = αd + βdp
km
jft + γ1dpjft + γ2dXjft + σ1d ln(sdf |j) + σ2d ln(sdj|s) + yd +md + ξdjft, (6)

where qdjft stands for the aggregate number of sales of product jf at time t by consumer type d,

sdf |j =
qdjft

qdjt
is the relative share of purchases of fuel-type f within purchases of model j in each

month t and sdj|s =
qdjt
qdst

is the relative share of model j within the sales of segment s, yd and md

are respectively year and month dummies that indirectly capture the outside option.24, 25 Xjft

corresponds to observable vehicle characteristics other than the purchasing price pjft and the cost

per kilometer pkmjft, measuring the expected fuel cost at time t needed to drive one km with the car

jf . The cost per km pkmjft depends on the car’s fuel consumption φjf in L/100km, its fuel-type f

(diesel or gasoline) and the expectations about fuel prices. Under the assumption that consumers

have random walk expectations on fuel prices, they rely on the observed contemporaneous price.26

24The related literature typically – and equivalently – uses an equation of the log-ratio of market shares sjf =
qjf
M

and s0 = q0
M

, where q0 is the number of consumers choosing the outside good and M is the overall market size. In
the equation 6 the latter is simplified and the former is indirectly estimated by temporal dummies.

25We also test an alternative specification with a full set of temporal dummies that leaves the main results
unchanged, see Section G in the Appendix.

26Given that new cars are rarely sold “off the rack,” it usually takes a few months between purchase and the
actual delivery and registration, which is the point of data collection. Thus, we use a three month lag of fuel prices
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Equation (6) is estimated using the generalized method of moments separately for each con-

sumer type, assuming these types are homogeneous enough to include only buyers with the same

demand parameters. Apart from the main variables of interest, the set of control variables includes

horsepower class, CO2 class,27 number of doors, fuel-type, car body (sedan, sport, compact, etc.),

and brand, as well as year and calendar month dummies for long-term temporal trends and yearly

seasonality in aggregate new car sales.28

4.2. Endogenous variables and instruments

Fuel prices can be considered as exogenous in the French case, as France represents about 2%

of global oil consumption and produces less than 0.1% of the world production.29 French fuel

prices are defined by the international energy market, on which France has only a limited weight

(which may be not the case for the US, cf. Davis and Kilian, 2011).

By contrast, the vehicle purchasing price pjft is an endogenous result of demand and sup-

ply that varies with the unobserved attractiveness ξdjft. Moreover, we only observe list prices,

which are not necessarily the actual transaction prices. As usual in the literature, we use a set

of instruments based on the characteristics of potential substitutes, in order to capture market

concentration and thereby mark-ups. More specifically, in a multi-product Bertrand competition

framework, one can derive a set of instruments based on the sums of each characteristics of other

models produced by the same firm in the same segment and those of competing firms (Berry et al.,

1995, henceforth “BLP”). This measure is computed twice; once over all products within the same

nest and another time over all products in all other nests. Using yearly list prices, we assume that

purchase prices do not to vary with fuel prices. In the short term, this is likely to be true, as list

prices are fixed on a longer horizon than fuel prices; in the medium-run, list prices can obviously

adapt to fuel price variation.

Armstrong (2016) argues that in markets with a large number of heterogeneous goods, BLP

instruments are no longer sufficiently strong. To address this problem, we add cost-shifters, such

as the prices of raw materials, that provide exogenous variations in market prices as they are

related to supply but not to demand. Thus, we use the price indices of iron (contemporaneous

rather the contemporaneous fuel price. Empirically, we see a slightly stronger correlation between sales and lagged
fuel price, but our results are not fundamentally different when compared to using the contemporaneous fuel price.

27Dummies for CO2 classes account for marketing-based preferences for CO2 classes (Koo et al., 2012) beyond
direct valuation of fuel cost savings and corporate car registration taxes.

28We have to exclude observations with zero market shares. We test for robustness by excluding not only months
with market share equal to zero, but all “rare” models with sales of 0-2 units per month. This leaves results
unchanged, see Section G in the Appendix.

29In 2009, see http://www.eia.gov/countries/country-data.cfm. Retrieved on 14/03/2015.
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and lagged value) and indices of export prices of tires as instruments, both multiplied by the car’s

weight. In our data, these cost shifters are strongly correlated with vehicle prices.

The within-segment market share sdj|s is endogenous by definition. As for the price, we use

BLP-style instruments for this variable and further add the number Js of offered goods per seg-

ment s.

Finally, we instrument the within-model market share sdf |j by the difference in characteristics

of gasoline and diesel versions (fuel consumption, proportion of 3- or 5-door versions, weight,

horsepower etc.), capturing the relative attractiveness of each version, as well as the difference in

costs shifters for these two versions.

As pointed out by Bound et al. (1995), using many over-identifying restrictions can lead to

misleading results if the instruments are weak. In case of only one endogenous variable, it is now

common to test the strength of the instruments by using the first-stage F-values, as proposed by

Stock and Yogo (2005). Sanderson and Windmeijer (2016) extend this method to regressions with

multiple endogenous variables: for each endogenous variable, the relevant test statistic is then the

first-stage F-value conditional on the other two endogenous regressors, which can be compared

to the values tabulated by Stock and Yogo (2005). We compute these test statistics for each of

our three endogenous variables and for each consumer type. At a 5% significance level, for most

regressions we reject a bias of the 2SLS regression relative to an OLS of more than 5%; in two

cases (out of eighty) we can only reject biases superior to 20% (cf. Section F in the Appendix).

One case is problematic, as we cannot reject that our instruments are too weak to identify the

within-model parameter σ1d for the purchases by car rental companies in suburban Paris. This

result can be explained by the very small sample size. This type represents less than 0.1% of the

entire sample, and aggregate results are virtually identical when we drop this group.

5. Empirical results

5.1. Main parameter estimates

Generally speaking, the estimates are in line with theoretical expectations.30 We find substan-

tial heterogeneity across consumer types in the magnitude of coefficient βd corresponding to the

fuel cost per km (Table E.9 in the Appendix). For instance, we observe that the estimated coeffi-

cients are lower for not employed private consumers compared to employed consumers. Working

30The estimated parameters are not directly economically interpretable. This is why we refer the interested
reader to our detailed result tables in Section E of the Appendix
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people have to drive more and are thus expected to be the more responsive to fuel price changes.

In urban Paris, more public transport alternatives are available and for all types of consumers the

estimates are small or non significant.

The estimated coefficients for firms are lower than for private consumers. In some cases es-

timates obtained for firms are not significant, which may be due to small sample sizes for these

types.31 For the rental sector in urban Paris, we obtain a positive coefficient, implying negative

preferences for fuel economy. This counterintuitive results may be explained by the fact that the

fuel for rental cars is typically paid by the hirers and – given the mostly urban location – individual

distances tend to be small. This coefficient may then reflect preferences for other attributes of

vehicles (for instance, luxury features) that are linked with fuel efficiency (see e.g. Helfand et al.,

2011, for a discussion of the choice of vehicles as a positional good).

The estimates for substitution between gasoline and diesel versions of the same model σ1d, as

well for as substitution within segment σ2d lie within the unit interval (without being technically

constrained to this range), which is a crucial condition to allow a random utility interpretation

(McFadden, 1978). Within-segment correlation σ2d is relatively low, on average 0.2, implying a

significant but weak correlation within segments (Table E.11 in the Appendix). Within-model

correlation σ1d is small in magnitude for corporate purchasers, while for private consumers σ1d is

around 0.5, implying a high correlation between the two fuel-type versions of the same model (see

Table E.10 in the Appendix). This pattern is consistent with our expectations: purchasers have a

preference for a particular model and substitute easily between gas and diesel versions when fuel

prices change, rather than switching to a different model. This intensity of substitution between

the gasoline and diesel versions of the same model appears to be higher in urban areas (including

urban and suburban Paris) than in rural areas. Indeed, while diesel cars yield savings in running

costs for long journeys, this advantage is not clear-cut for city driving.

5.2. Elasticities of aggregate fleet characteristics and willingness to pay

The magnitude of the estimated parameters is not directly informative, but they allow us

to recover more meaningful economic parameters, such as the elasticities of the aggregate fleet

characteristics with respect to fuel prices and the willingness to pay for fuel efficiency.

We provide the elasticities of the share of diesel cars, of average fleet fuel consumption (in

L/100km) and of average CO2 intensity, as these are the outcomes of interest for a policy maker

31In suburban Paris, corporate sales represent less than 0.5% of the sample, see Table B.7 in the Appendix.
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in this context. While the first variable is crucial for local pollution, the others are more linked to

global warming issues.32

As diesel engines are on average more efficient, an increase in fuel prices (from oil market

fluctuations) raises the share of diesel cars among new purchases πD (see elasticity ηD in Table 3).33

Consequently, both the average fleet fuel consumption and the average CO2 intensity decrease (see

ηφ and ηCO2
in Table 3).

Additionally, we use the estimates on consumer preferences to calculate the consumer’s will-

ingness to pay for fuel efficiency in e per e/km, as it simply corresponds to the ratio between the

coefficient of the price per kilometer βd and the coefficient of the purchasing price γd.34 A back-

of-the-envelope calculation allows us to provide information on the consumer’s trade-off between

purchasing price and the expected discounted operating cost over the car’s lifetime. In order to

approximate the operating cost, we use yearly average mileage from the household Transporta-

tion Survey conditional on residence area and occupational status (see Table 2). We assume a

discount rate of 11%, a fixed car lifetime of 15 years, and constant annual mileage. Under these

assumptions, private consumers seem to dramatically undervalue fuel economy (see Table 4): they

are only willing to pay between 1.4 and 9.6 cents in order to reduce the net present value of their

operating costs by 1e.

These results can be compared to previous estimates obtained in the literature. Greene (2010)

provides a detailed review of the existing literature and derives willingness to pay from the empir-

ical evidence provided by more than 25 studies. In comparison, our estimates of the willingness to

pay for fuel efficiency are relatively low, without being extreme. For instance, the results of Berry

et al. (1995) suggest a smaller willingness to pay (less than 1%), similar to Feng et al. (2005).

Many other studies observe higher willingness to pay. However, almost all the papers reviewed

by Greene (2010) focus on the U.S. market. As far as we know, the evidence on the French mar-

ket comparable to our results is scarce. As reviewed for instance in Helfand et al. (2011), the

undervaluation of future fuel economy may be explained, for instance, by bounded rationality or

difficulty in calculating expected fuel savings.

32See Section D in the Appendix for details on the computation of these elasticities. For the sake of illustration,
we compute different elasticities ηjf for some of the most popular cars in our data (see Table E.13 in the Appendix).
An increase in fuel prices (both gasoline and diesel) reduces demand for all cars (ηjf < 0), but the magnitude varies.
For instance, the elasticity of the demand for the Peugeot 307 gasoline model with respect to fuel price is -0.17,
while it is -0.34 for the Citroen C3 gasoline model.

33πD is the market share of diesel cars among purchased cars whereas the market shares sj , ss etc. are defined
on the whole market, including the outside good.

34The price coefficient γd is multiplied by 10,000 as the vehicle price is expressed for 10,000 e (for readability).
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Table 3: Elasticities with respect to fuel prices: diesel share, average fleet fuel consumption
(L/km) and CO2 intensity (g/km)

Diesel share Fuel cons. CO2

ηD ηφ ηCO2

Households 0.026
(0.003)

∗∗∗

−0.013
(0.001)

∗∗∗

−0.015
(0.001)

∗∗∗

Firms 0.017
(0.003)

∗∗∗

−0.004
(0.001)

∗∗∗

−0.006
(0.001)

∗∗∗

Total 0.029
(0.003)

∗∗∗

−0.010
(0.001)

∗∗∗

−0.012
(0.001)

∗∗∗

Source: CCFA, authors calculations. Estimates rely on the parameters of
Equation (6) estimated by GMM separately for each type of consumers.
Standard errors are estimated by bootstrap (500 replications).

Using aggregate data on the largest European car markets, Klier and Linn (2011) estimate

that a 1$ increase in fuel prices per gallon increases the average miles-per-gallon (MPG) efficiency

in France by 0.21, implying an average fuel consumption elasticity ηφ of -0.017.35 This value is

similar to our estimate and much lower than the value they find for the US: there, 1$ decreases

the average MPG by 1.03, implying an average fuel consumption elasticity of -0.042. Our estimate

is smaller than the estimates of Clerides and Zachariadis (2008), who find a short-term elasticity

of average fleet fuel consumption to fuel prices equal to -0.08 for the EU, using aggregate data.

5.3. Tax alignment

We moreover predict the impact of a tax change, assuming consumers react identically to fuel

price changes from market fluctuations and from tax reforms. The first policy studied in this

paper aligns diesel and gasoline taxes. Leaving gasoline taxes unchanged, this policy raises diesel

taxes by almost one-third, from 43 cent/liter to 60 cent/liter. Furthermore, this policy abandons

the VAT advantage for corporate diesel cars, raising it to the standard rate of 19.6%.

As expected, the induced variation of the diesel share is negative and strong: since taxes

only increase for diesel, the reform incites many purchasers to substitute with gasoline-fueled

cars. We find that such a policy reduces the aggregate share of diesel cars in overall sales by

∆tCO2 ηD = 5.9%, that is from 69% to 65% (Table 5). This decrease in diesel sales comes mostly

from households which substitute more easily away from diesel engines, rather than from firms

(7.4% and 3.6% reduction, respectively).

This result can be compared to Klier and Linn (2013), who also evaluate a hypothetical policy

of equalizing diesel and gasoline prices. At the European level, their estimates suggest that the

35Li et al. (2009) also obtain a short-term elasticity to fuel prices of similar magnitude. Brons et al. (2008) analyze
more in detail the aggregate elasticity of fuel demand, resulting of the elasticities of mileage, fuel consumption and
car ownership; their meta-study also finds this elasticity to be empirically small.
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Table 4: Willingness to pay for fuel economy in % of net present value of this fuel economy
(back-of-the-envelope calculations)

Not employed Young employed (<30) Employed (>30)
Income Low High Low High Low High
Urban 1.94% 1.61% 5.68% 3.48% 5.18% 9.59%
Suburban/rural 1.48% 1.49% 2.15% 3.93% 1.90% 6.45%
Paris urban 3.46% 2.39% 4.21%
Paris suburban 1.40% 2.19% 5.04%

Source: CCFA, authors calculations. Estimates rely on the parameters of Equation (6) estimated by GMM separately
for each type of consumers. The discounted expected number of kilometers over the car’s lifetime are computed using
type-specific annual mileage, a discount rate of 11% and an expected lifetime of 15 years. Willingness to pay (in e per

e/km) is calculated by dividing βd by γd ∗ 10
−6; willingness to pay is then converted to willingness to pay in % of net

present value by multiplying with discounted expected mileage.

impact of such a policy on the market share of diesel cars is negligible (less than 1%). Two elements

explain this difference. First, our analysis is focused on France, where the gap between gasoline

and diesel taxes is the highest of all countries they consider: the hypothetical policy change is

strong, which is not the case for other countries.36 Second, as they emphasize, Klier and Linn

(2011) cannot distinguish between company cars and privately owned cars in their data. According

to our estimates, firms are less sensitive to fuel prices (Table 3).

According to our estimations, the resulting substitution between gasoline and diesel cars has

only a marginal impact on fuel consumption of the new vehicle fleet and CO2 intensity. This is

consistent with the fact that gasoline cars consume more liters of fuel per km but produce less

CO2 per liter of fuel.37 The alignment policy increases fuel consumption (Table 5) and reduces the

average CO2 intensity of newly purchased cars. Both effects are statistically significant, but small:

in spite of the large jump in diesel tax, average fleet fuel consumption increases only by 0.44%

and average CO2 intensity decreases by 0.12%. In absolute terms, fuel consumption increases by

26 mL/100km from the average of 6L/km and CO2 intensity is reduced by 180mg/km from the

average of 152g/km.

5.4. Carbon tax

We also predict the impact of a carbon tax, proportional to the carbon emissions of each fuel-

type. For the sake of comparability, the amounts are calibrated such that the government revenue

is equal to the previous tax alignment policy, yielding a price of e51 per tonne of CO2 (thus more

36Estimates detailed by countries are available in a previous working paper (Klier and Linn, 2011). They find
that the diesel market share in France decreases by 1.4 percentage points. This reduction is higher than the effect
in most other countries they examine.

37One liter of gasoline is transformed to 2.33 kg of CO2, while one liter of diesel is transformed to 2.63 kg of
CO2; see, for example, Demirel (2012). The mass of CO2 per liter of fuel that weighs less than a kg might seem
surprising; it is a result of the association of carbon elements from the fuel and ambient oxygen.
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Table 5: Percentage impact of a carbon tax and a tax alignment on diesel share, average
fleet fuel consumption (L/km) and CO2 intensity (g/km)

Tax alignment Carbon tax
Diesel
share

Fuel
cons.

CO2 Diesel
share

Fuel
cons.

CO2

∆tDηD ∆tDηφ ∆tDηCO2
∆tCO2 ηD ∆tCO2 ηφ ∆tCO2 ηCO2

Households −7.43
(0.36)

∗∗∗

0.50
(0.03)

∗∗∗

−0.13
(0.01)

∗∗∗

0.15
(0.07)

∗∗

−0.43
(0.02)

∗∗∗

−0.43
(0.02)

∗∗∗

Firms −3.55
(0.46)

∗∗∗

0.28
(0.09)

∗∗∗

−0.11
(0.06)

∗

0.65
(0.12)

∗∗∗

−0.21
(0.03)

∗∗∗

−0.15
(0.03)

∗∗∗

Total −5.94
(0.32)

∗∗∗

0.44
(0.04)

∗∗∗

−0.12
(0.02)

∗∗∗

0.59
(0.07)

∗∗∗

−0.37
(0.02)

∗∗∗

−0.33
(0.02)

∗∗∗

Source: CCFA, authors calculations. Estimates rely on the parameters of Equation (6) estimated by
GMM separately for each type of consumers. Instrumental variables for prices are the price indices of iron
(contemporaneous and lagged value) and indices of export prices of tires, interacted with the car model’s
weight. Standard errors are estimated by bootstrap (500 replications).

ambitious that the current level of the carbon tax in France, which is e30.5/tCO2 in 2017). This

results in an increase of 11.9 cent/liter of gasoline and 13.4 cent/liter of diesel, representing around

9% of the average end-user price.38

The impact ∆tCO2 ηD of this carbon tax policy on the share of diesel engines sold is positive,

but small: it increases the diesel share by 0.6% (Table 5). The carbon tax reduces average fleet

fuel consumption, as well as average CO2 intensity (Table 5). The impacts are significant but

small. The fuel consumption decreases by 0.37%, which is only around 22 mL/100km from the

average of 6L/km; CO2 emission intensity shifts by 0.33% which is down 500mg/km from the

average of 152g/km.

6. Discussion and concluding remarks

All in all, according to our estimates, the willingness to pay of French consumers for fuel

efficiency is low: less than 10 cents to save 1e of discounted expected operating cost. However,

these conclusions rely on several assumptions, that we will discuss here in more detail.

First, the demand model does not take into account long-run shifts on the supply side. While

one can be confident that the monthly fuel price variation used for identification in this article does

not impact the characteristics of available cars instantaneously, the producers probably react in the

long run: if fuel efficiency becomes more valuable, the producers might, in the medium-run, adjust

their list prices and, in the long-run, adjust the products developed and offered. For Klier and Linn

(2013), this means that these short-run results underestimate the true impact on fuel efficiency

and emissions, which would be enhanced by the producers’ reactions. Verboven (2002) argues on

38This scenario maintains the VAT rebate for diesel cars of corporate consumers.
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the opposite that the producers’ price reaction counteracts the consumers’ reaction to changes in

fuel taxes. In practice, one could argue, like Goldberg (1998), that a short-term consumer reaction

as small as suggested by our estimates has probably little impact on the producers.

Another limitation to the extension of our results is that our effects are identified on fuel price

variation. One may question whether consumers indeed react identically to fuel price changes

from oil market fluctuations and to tax reforms. If consumers place more weight on certain

(rather than uncertain) price changes for behavioral reasons like salience, or have a reversal to

the mean expectation that is impacted more strongly by taxes than by oil price fluctuations, our

methodology underestimates the impact of fuel tax reform. Similarly, if consumers are loss averse

(in the sense of prospect theory, see Greene, 2011), reducing uncertainty increases the incentives

to invest in fuel efficiency, so that our methodology again underestimates the effect of the reforms.

However, if consumers are risk averse, fuel efficiency is more valuable the more prices are volatile

(reducing final volatility of operating costs and thus serving as an insurance); in that case, our

methodology overestimates the impact. Our methodology cannot account for behavioral effects,

such as asymmetric responses for price increases and decreases (discussed in Greene, 2010).

Finally, we rely on strong simplifying assumptions about usage: mileage, as well as car lifetime,

may also be expected to change with fuel prices. Ultimately, the aim of environmental policy

is not to increase fuel efficiency, but rather to decrease total emissions, which result from the

interaction of fuel consumption rates and mileage. Previous research suggests that the rebound

effect might counter-balance the positive impact on fuel consumption (e.g. Austin and Dinan,

2005; Frondel et al., 2012), meaning that the (already small) estimated effects become even less

economically and environmentally significant. Nevertheless, the change in the composition of the

vehicle fleet impacts fuel efficiency in the long run as cars usually circulate for about 15 years. To

our knowledge, there is no study that includes mileage elasticity to fuel prices and to fuel efficiency,

as well as potentially elastic lifetime, so these computations usually remain back-of-the-envelope

sketches (e.g. Grigolon et al., 2014; Allcott and Wozny, 2014; Busse et al., 2013).39

In spite of these limitations, this study has original features that deserve to be emphasized. The

transaction-level registration dataset allows to account for purchaser heterogeneity in a simple but

innovative way. Indeed, consumer types react differently to fuel tax changes. A large part of the

aggregate market reaction comes from households, and in particular from urban and non-working

39These papers account for mileage at a detailed car- or consumer-level but assume zero elasticity; they can thus
not account for the “rebound effect” (Small and Van Dender, 2007).
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consumers. To our knowledge, the important distinction between household and firm purchases is

not accounted for in earlier related literature, even though firm purchases constitute about a third

of the market in our sample. Corporate purchases are particularly important for the diesel share,

as firms buy mostly diesel-powered cars and we show that they are less likely to substitute away

from them in the short term. As far as we know, this is the first study documenting this difference

on the car market and we lack previous evidence to compare these results. Further research is

needed to clarify whether this is due to differences in mileage or whether there are behavioral and

organizational factors at play.
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Appendices

A. Nested decision-making structure

purchaseri

no purchase segment1

model 11

gasoline diesel

model1j

gasoline diesel

segments

models1

gasoline diesel

modelsJs

gasoline diesel

Figure A.2: Nested decision-making structure of the car purchaser
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B. Descriptive statistics

Table B.6: Descriptive statistics of car characteristics

Percentiles
Coefficient

Mean of
variation

(%)

25% Median 75%

Gasoline (N= 2,376,527)
Car price (e) 16,606 69.4 11,738 13,975 18,800
Cost of driving 100 km (e) 8.4 22.7 7.3 8.1 9.1
Horsepower (kW) 70 48.8 54 60 80
Fuel consumption (L/100km) 6.8 21.7 6.0 6.5 7.4
CO2 intensity (g/km) 159.3 21.7 139.0 152.0 172.0

Diesel (N= 5,452,376)
Car price (e) 22,968 41.0 16,783 21,875 26,236
Cost of driving 100 km (e) 5.7 27.1 4.8 5.4 6.3
Horsepower (kW) 78 34.6 63 78 88
Fuel consumption (L/100km) 5.6 24.5 4.7 5.4 6.0
CO2 intensity (g/km) 147.0 24.5 124.0 141.0 157.0

Note: The coefficient of variation, or unitized risk, is the ratio of the standard error to the mean.

Source: CCFA, authors’ calculations.
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Share of population going to work by car

below 55%
55-70%
70-80%
over 85%

Share of diesel purchases

below 65%
65-70
70-75%
75-80%
over 80%

Figure B.3: Overview of spatial variation in share of diesel cars and mileage
Source: CCFA (left graphic) and INSEE National Transport and Travel Survey 2007 (right

graphic), authors’ calculations.

Table B.7: Distribution of consumer types in our data (%)

Private consumers

Not employed Young employed (<30) Employed (≥30)
Income Low High Low High Low High Total

Urban 150,214 82,692 389,903 192,957 679,981 646,949 2,142,696
5.0% 2.5% 8.7% 8.3% 1.7% 1.5% 27.6%

Suburban/rural 136,187 116,348 246,876 331,066 450,728 564,686 1,845,891
1.7% 1.5% 3.2% 4.2% 5.8% 7.2% 23.6%

Paris urban 40,298 186,758 486,700 713,756
0.5% 2.4% 6.2% 9.1%

Paris suburban 11,069 45,160 81,893 138,122
0.1% 0.6% 1.0% 1.8%

Total 536,808 1,392,720 2,910,937 4,840,465
11.3% 27.3% 23.5% 62.1%

Firm purchases

Industry & Car rental Trade &
agriculture services Total

Urban 307,871 1,261,364 374,754 1,567,383
3.9% 16.1% 4.8% 24.8%

Suburban/rural 113,947 66,416 137,182 383,855
1.5% 0.8% 1.8% 4.1%

Paris urban 203,606 313,880 172,532 565,762
2.6% 4.0% 2.2% 8.8%

Paris suburban 7,674 4,083 25,129 47,902
0.1% 0.1% 0.3% 0.5%

Total 633,098 1,645,743 709,597 2,564,902
8.1% 21.0% 9.1% 38.2%

Source: CCFA, authors’ calculations.
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C. Fuel price variation and aggregate estimates

Figure C.4: Monthly consumer fuel prices (incl. taxes) and cost per km (resulting from fuel
prices (e) and fuel consumption (L/km) of new car purchases)
Source: French Ministry of Ecology and CCFA, authors’ calculations.

Following Busse et al. (2013), we provide a preliminary test of the impact of fuel price fluctua-

tions on the structure of new car market. For this, we compute the quartiles of fuel consumption

on products not weighted by sales and then compute sales by quartile.

We then estimate whether there is a correlation between these aggregate quartile sales and fuel

prices. In practice, we estimate the following equation:

logQkt = γ0+γ1(p
f
t ×ConsumptionQuartilek)+γ2ConsumptionQuartilek+τt+µt+ ǫkt (C.1)

where Qkt is then the national quantity sold within a ConsumptionQuartile k in month t,

ConsumptionQuartilek are dummies corresponding to the four quartiles and pft is the fuel

price at time t (lagged by three months). We include fixed effects for the quartiles

ConsumptionQuartilesk, for year τt and for month-of-year µt.

The results in Table C.8 show that even in this reduced-form regression with only 232 obser-

vations, we identify a differentiated significant impact of fuel prices on car purchases: when fuel

prices increase, the sales of models with high fuel consumption (least efficient) decreases while

those of more efficient models increases.

4



Table C.8: Fuel price coefficients γ1 in the aggregate quantity regression

Fuel economy Coefficient Mean market
share

Percent
change in

market share
Consumption quartile 1 (most efficient) 0.85

(0.21)
45.79% 133.96%

Consumption quartile 2 0.06
(0.21)

30.49% 6.18%

Consumption quartile 3 −0.50
(0.21)

17.34% -39.35%

Consumption quartile 4 (least efficient) −0.62
(0.21)

6.38% -46.21%

N 232

Source: CCFA, authors’ calculations. Least squares regression following equation (C.1), including an intercept, time
dummies and dummies for ConsumptionQuartilekt (not listed).
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D. Details on the computation of the elasticities

The demand elasticity ηsjf for a given product with respect to oil price pet exclusive of tax at a

given point in time can be computed using parameters corresponding to the demand model. The

difference to the usually computed price elasticity stems from the fact that fuel prices affect all

products, proportionally to their fuel consumption: both the nominator and the denominator of

the market shares are impacted. In order to find this elasticity, let us differentiate the standard

equation of market share log(sdjf/sd0) for the model j in segment s and of fuel-type f , using the

definition of the cost per kilometer of equation (11). The fuel prices, including tax, for one liter

of fuel is given by equation (5), where pet is the pre-tax fuel price, tD is the lump-sum taxes for

diesel, tG lump-sum taxes for gasoline fuel, and tV AT the VAT rate. For the sake of readability,

we omit the index for consumer types and do not state the obvious aggregation over these types

for all equations in this section.

∂ssjf
ssjf

−
∂s0
s0

= β∂pet (1 + tV AT )φsjf + σ1(
∂ssjf
ssjf

−
∂sj
sj

) + σ2(
∂sj
sj

−
∂ss
ss

) (D.1)

or slightly rearranged:

∂ssjf −
∂s0
s0

ssjf = β∂pet (1 + tV AT )φsjfssjf + σ1(∂ssjf − ssjf
∂sj
sj

) + σ2ssjf (
∂sj
sj

−
∂ss
ss

) (D.2)

We then aggregate this last equation over both fuel-type versions of the same model, to obtain

the change in the market share of one model j in one segment s:

∂sj −
∂s0
s0

sj =
∑

f∈j

(∂ssjf −
∂s0
s0

ssjf )

= β∂pet (1 + tV AT )
∑

f∈j

φsjfssjf

︸ ︷︷ ︸
φ̄jsj

+ σ1(
∑

f∈j

∂sfjs

︸ ︷︷ ︸
∂sj

−
∂sj
sj

∑

f∈j

ssjf

︸ ︷︷ ︸
∂sj

)

+ σ2(
∂sj
sj

−
∂ss
ss

)
∑

f∈j

ssjf

︸ ︷︷ ︸
sj

We define φ̄j as the sales-weighted average fuel consumption of both fuel-type versions of the
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same model j. Thus, we obtain that

(1− σ2)
∂sj
sj

= β∂pet (1 + tV AT )φ̄j − σ2
∂ss
ss

+
∂s0
s0

(D.3)

Aggregating further, we recover the relative variation in the market share of segment s (∂ss
ss

)

or of the outside good (∂s0
s0

) by summing on respectively all cars in the same segment and all new

cars. For segment s, we obtain that:

∂ss
ss

= β∂pet (1 + tV AT )φ̄s +
∂s0
s0

while for the overall number of sold cars we get:

∂s0
s0

= −β∂pet (1 + tV AT )φ̄(1− s0)

Combining these expressions in equation (D.1) we finally compute the elasticity ηsjf as:

ηsjf =
∂ssjf/ssjf
∂pet/p

e
t

,

=β(1 + tV AT )pet
(
ρ1φsjf + (ρ2 − ρ1)φ̄j − (ρ2 − 1)φ̄s

)
− β(1 + tV AT )pet φ̄(1− s0),

≈β(1 + tV AT )pet
(
ρ1(φsjf − φ̄j) + ρ2(φ̄j − φ̄s) + φ̄s

)
. (D.4)

where ρi = 1
1−σi

∈ [1,+∞]. The demand elasticity depends on the parameter β measuring

sensitivity to fuel prices, the VAT rate tV AT ,40 as well as on the contemporaneous price of fuel

and the car’s fuel consumption φsjf relative to the average fuel economy of its substitutes (within

the same model φ̄j , within its segment φ̄s, and among all sales φ̄). The share of the outside good

s0 is close to 1, as a monthly frequency is high compared to vehicle lifetime: most people do not

buy a car in any given month and monthly sales are small compared to the market size. Thus,

the second term involving φ̄(1− s0) is negligible.

The easier purchasers substitute between fuel-type versions of the same model, resp. between

models within a segment, the higher is σ1, resp. σ2, and, thus, the higher is ρ1, resp. ρ2. Intuitively

speaking, a higher correlation of preference for similar products (same nests) leads to a relatively

40This is specific to the French form of petrol tax: as the fuel-type specific taxes are of a lump-sum form, they
do not play a role here. The tV AT is the same for both fuel-types.
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higher weight put onto the comparison with these similar products.

Obviously, diesel taxes affect cars differently depending on their fuel-type. Using the main

model defined in Equation (6), the elasticity ηtDsjf of demand for a given car sjf with respect to an

increase in diesel tax (holding gasoline tax constant) is omputed as:

ηtDsjf =
∂ssjf/ssjf
∂tD/tD

,

=β(1 + tV AT )tD
(
ρ1(1f=dieselφsjf + (ρ2 − ρ1)π

D
j φ̄j − (ρ2 − 1)πD

s φ̄s

)

− β(1 + tV AT )tDφ̄DπD(1− s0),

≈β(1 + tV AT )tD
(
ρ1(1f=dieselφsjf − πD

j φ̄j) + ρ2(π
D
j φ̄j − πD

s φ̄s) + πD
s φ̄s

)
. (D.5)

where the indicator 1f=diesel takes the value 1 if the vehicle sjf is running on a diesel engine, πD
sj

is the share of diesel in sales of model j, πD
s is the share of diesel in sales of segment s, and πD is

the overall market share of new diesel cars (among purchases). φ̄D is the mean fuel consumption

of new diesel cars (sales-weighted average). Again, (1− s0) is close to zero and this elasticity can

be closely approximated by the first part of the equation.

Intuitively, an increase in the diesel tax rate has a direct negative impact for all diesel cars.

However, this effect may be reduced if its substitutes are also impacted by this increase. The effect

for gasoline cars of a diesel tax is expected to be positive.

On a more aggregate level, we examine the impact of an increase in fuel prices on the com-

position of the automobile fleet, with a particular focus on the number of diesel cars purchased.

For this, we evaluate the elasticity of the share of diesel cars among new purchases πD. Assuming

again that an international oil price shift equally affects both gasoline and diesel pre-tax prices,

such a price shift changes the share of diesel cars by ηD. In the simple logit demand, this change

can be computed as:

ηD =
∂πD/πD

∂pet/p
e
t

,

=

∑
s,j,f 1f=dieselssjfηsjf∑

s,j,f 1f=dieselssjf
−

∂(1− s0)

∂pet

pet
1− s0

,

= β(1 + tV AT )pe

(
ρ1(φ̄

D
−

˜̄φj) + ρ2(
˜̄φj −

˜̄φs) +
˜̄φs − φ̄

)
,

=
β(1 + tV AT )pe
πD(1− s0)

∑

s,j

sj


ρ1 π

D
j (φD

j − φ̄j)︸ ︷︷ ︸
S1

+ρ2 (π
D
j − πD

s )φ̄j︸ ︷︷ ︸
S2

+(πD
s − πD)φ̄s︸ ︷︷ ︸

S3


 , (D.6)
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which involves weighted averages of fuel consumption, where the weights are given by the share

of diesel sales.41 ˜̄φj =
∑

s,j

πD
j sj

πD(1−s0)
φ̄j is the average fuel consumption weighted by the share of

diesel per model, whereas ˜̄φs =
∑

s

πD
s ss

πD(1−s0)
φ̄s is the average weighted by the diesel share per

segment. φD
j is the fuel consumption of the diesel version of model j. πD

j , resp. πD
s , is the share

of diesel among purchases of model j, resp. of segment s.

The interpretation of this equation is not straightforward. In the simplest logit case (σ1 =

σ2 = 0), ηD = β(1 + tV AT )pe(φ̄
D
− φ̄). Naturally, ηD depends on the average fuel consumption

of diesel cars relative to the overall average fuel consumption. φ̄D
− φ̄ is always negative because

diesel cars are more fuel-efficient. β is negative as well, meaning that ηD is positive: if fuel prices

increase, purchasers substitute to more fuel-efficient diesel cars and their share among purchases

increases.

In a nested setup, the effect is less straightforward, but we still expect a positive sign. Indeed,

the first term S1 in Equation (D.6) involves the difference between diesel fuel consumption and

average fuel consumption; again, this change is expected to be negative as diesel engines tend to

be more fuel-efficient. However, we do not have such an unambiguous relation for the two other

terms S2 and S3.
42 Both ρ1 and ρ2 are positive and larger than one. In practice ρ2 is smaller than

ρ1, such that ηD is most strongly impacted by the first element of the parenthesis, which is likely

to be positive.

Similarly, the elasticity of the share of diesel cars πD to a change in fuel taxes (holding gasoline

taxes constant) ηtDD is:

ηtDD =
∂πD/πD

∂tD/tD
,

= β(1 + tV AT )pe

(
ρ1(φ̄

D
− π̃D

j φ̄j) + ρ2(π̃D
j φ̄j − π̃D

s φ̄s) + π̃D
s φ̄s − φ̄

)
. (D.7)

(D.8)

This elasticity ηtDD depends only on the fuel consumption of diesel cars and on the share of

diesel cars among total purchases: the lower their fuel consumption, the smaller the impact of a

41For any variable A, we denote Ã =
∑

s,j,f

ssjf

πD(1−s0)
Asjf1f=diesel this variable A weighted by the share of the

diesel version amongst all diesel cars (for example, φ̃sjf corresponds to the average fuel consumption of diesel cars

φ̄D)
42For example, the last term does not have a well defined sign. In the case of only two segments in proportion s1

and (1− s1), this term is proportional to s1(1− s1)(πD
s1

− πD
s2
)(φ̄s1 − φ̄s2 ). One cannot exclude that this term is

positive, for example if cars have a much higher fuel consumption on average in the segment with the higher share
of diesel cars.
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diesel tax increase.

Finally, we compute the elasticity ηφ (respectively ηCO2
) of the average fuel consumption

(respectively of average CO2 intensity) of new cars with respect to fuel prices pet and to fuel taxes.

ηφ =
∂φ̄/φ̄

∂pet/p
e
t

,

= β(1 + tV AT )
pe

(1− s0)φ̄

∑

j,s,f

(
φsjfssjf

(
ρ1(φsjf − φ̄j) + ρ2(φ̄j − φ̄s) + φ̄s − φ̄

))
(D.9)

For example, in the simple logit demand model, ηφ simplifies to:

ηφ = β(1 + tV AT )pet (
φ2 − φ

2

φ̄
), (D.10)

where φ2 is the mean of squared fuel consumption of new vehicles. Thus, the impact of an oil

price shock on average fuel consumption depends on the ratio of the variance and the mean of

fuel consumption. Both the variance and the mean of φ are always positive, resulting in ηφ always

being negative in the simple logit case: when fuel prices increase, we expect to find that average

fuel consumption is reduced. In the more realistic nested logit demand model, the conclusion is

less straightforward. Again, we have some intuition for the first term of Equation (D.9), which is

of first order in the sum: it can be simplified and rewritten as βρ1
∑

s,j π
D
j (1− πD

j )sj(φ
D
j − φG

j )
2

and is thus expected to be negative.

The elasticity of average fuel consumption ηtDφ (respectively ηtDCO2
) to a change in diesel tax

(holding gasoline tax constant) can be written in case of a simple logit demand model:

ηtDφ =
∂φ̄/φ̄

∂tD/tD
,

= βtD(1 + tV AT )
βπD

φ̄︸ ︷︷ ︸
<0


φ2

D − φ
2

D︸ ︷︷ ︸
>0

+(1− πD)φ̄D (φ̄D − φ̄G)︸ ︷︷ ︸
<0


 . (D.11)

This elasticity depends on the fuel consumption of diesel cars and on their relative share among

purchases compared with the average fuel consumption. The sign is not clear-cut. An increase

in the diesel tax reduces the share of diesel cars, which are more fuel-efficient. The higher the

gap between the average fuel consumption of gasoline and diesel cars, the higher the increase

in the average fuel consumption of new cars. This effect is partially offset by the dispersion in

fuel consumption of diesel cars, as we expect that an increase in diesel prices has more impact
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on less fuel-efficient cars. Overall, we expect that a rise in diesel tax increases the average fuel

consumption of new cars if diesel cars are more fuel-efficient than gasoline cars and the diesel share

is not too high.
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E. Detailed estimation results (main specification)

Table E.9: Estimates for the coefficient on cost per km βd

Private consumers
Not employed Young professional Employed (>30)

Income Low High Low High Low High
Urban −0.11

(0.02)

∗∗∗
−0.08
(0.02)

∗∗∗
−0.15
(0.02)

∗∗∗
−0.13
(0.02)

∗∗∗
−0.13
(0.02)

∗∗∗
−0.14
(0.01)

∗∗∗

Suburban/rural −0.08
(0.02)

∗∗∗
−0.11
(0.02)

∗∗∗
−0.10
(0.02)

∗∗∗
−0.15
(0.02)

∗∗∗
−0.10
(0.02)

∗∗∗
−0.15
(0.01)

∗∗∗

Paris urban −0.10
(0.02)

∗∗∗
−0.09
(0.02)

∗∗∗
−0.10
(0.01)

∗∗∗

Paris suburban −0.03
(0.02)

−0.08
(0.02)

∗∗∗
−0.10
(0.01)

∗∗∗

Firm purchases
Agriculture & Car Trade &

Sector industry rental services
Urban −0.09

(0.02)

∗∗∗
−0.16
(0.03)

∗∗∗
−0.10
(0.01)

∗∗∗

Suburban/rural −0.01
(0.01)

−0.03
(0.04)

−0.06
(0.01)

∗∗∗

Paris urban −0.07
(0.02)

∗∗∗ 0.08
(0.02)

∗∗∗
−0.01
(0.01)

Paris suburban −0.01
(0.02)

0.01
(−)

−0.04
(0.02)

Source: CCFA, authors’ calculations. Equation (6) is estimated by GMM separately for each type of con-
sumers. Other controlling variables include horsepower, brand fixed effects, segment fixed effects, class of
CO2, month-year effects, and price. Instrumental variables for prices are the price index of iron (contem-
poraneous and lagged value, interacted with the car’s weight), index of export prices of tires (interacted
with the car’s weight), BLP-style instruments and differences of characteristics between gasoline and diesel
versions. The estimation of car rental purchases in suburban Paris does not converge for all bootstrap draws,
which could be due to the very small sample size for this group (see Table B.7).
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Table E.10: Estimates for coefficient σ1d (substitutability within model, between engine
types)

Private consumers
Not employed Young professional Employed (>30)

Income Low High Low High Low High
Urban 0.41

(0.04)

∗∗∗ 0.48
(0.04)

∗∗∗ 0.51
(0.03)

∗∗∗ 0.51
(0.03)

∗∗∗ 0.55
(0.02)

∗∗∗ 0.59
(0.02)

∗∗∗

Suburban/rural 0.45
(0.04)

∗∗∗ 0.41
(0.03)

∗∗∗ 0.38
(0.03)

∗∗∗ 0.41
(0.03)

∗∗∗ 0.55
(0.02)

∗∗∗ 0.52
(0.02)

∗∗∗

Paris urban 0.30
(0.04)

∗∗∗ 0.62
(0.03)

∗∗∗ 0.62
(0.02)

∗∗∗

Paris suburban 0.10
(0.06)

0.34
(0.04)

∗∗∗ 0.57
(0.03)

∗∗∗

Firm purchases
Agriculture & Car Trade &

Sector industry rental services
Urban 0.33

(0.03)

∗∗∗ 0.18
(0.04)

∗∗∗ 0.23
(0.03)

∗∗∗

Suburban/rural 0.29
(0.03)

∗∗∗ 0.26
(0.08)

∗∗∗ 0.24
(0.03)

∗∗∗

Paris urban 0.17
(0.04)

∗∗∗
−0.16
(0.04)

∗∗∗ 0.18
(0.03)

∗∗∗

Paris suburban 0.77
(0.05)

∗∗∗ 0.42
(−)

0.60
(0.05)

∗∗∗

Source: CCFA, authors’ calculations. Equation (6) is estimated by GMM separately for each type of con-
sumers. Other controlling variables include horsepower, brand fixed effects, segment fixed effects, class of
CO2, month-year effects, and price. Instrumental variables for prices are the price index of iron (contem-
poraneous and lagged value, interacted with the car’s weight), index of export prices of tires (interacted
with the car’s weight), BLP-style instruments and differences of characteristics between gasoline and diesel
versions. The estimation of car rental purchases in suburban Paris does not converge for all bootstrap draws,
which could be due to the very small sample size for this group (see Table B.7).

Table E.11: Estimates for coefficient σ2d (substitutability within segment, between models)

Private consumers
Not employed Young professional Employed (>30)

Income Low High Low High Low High
Urban 0.11

(0.02)

∗∗∗ 0.13
(0.02)

∗∗∗ 0.22
(0.02)

∗∗∗ 0.19
(0.02)

∗∗∗ 0.32
(0.01)

∗∗∗ 0.39
(0.01)

∗∗∗

Suburban/rural 0.14
(0.02)

∗∗∗ 0.16
(0.02)

∗∗∗ 0.23
(0.01)

∗∗∗ 0.21
(0.01)

∗∗∗ 0.28
(0.02)

∗∗∗ 0.34
(0.01)

∗∗∗

Paris urban 0.17
(0.02)

∗∗∗ 0.26
(0.02)

∗∗∗ 0.37
(0.02)

∗∗∗

Paris suburban 0.21
(0.02)

∗∗∗ 0.20
(0.02)

∗∗∗ 0.30
(0.02)

∗∗∗

Firm purchases
Agriculture & Car Trade &

Sector industry rental services
Urban 0.07

(0.02)

∗∗∗ 0.08
(0.03)

∗∗∗ 0.16
(0.02)

∗∗∗

Suburban/rural 0.08
(0.02)

∗∗∗ 0.16
(0.03)

∗∗∗ 0.01
(0.02)

Paris urban 0.12
(0.03)

∗∗∗ 0.10
(0.02)

∗∗∗ 0.24
(0.02)

∗∗∗

Paris suburban 0.28
(0.03)

∗∗∗ 0.22
(−)

0.32
(0.03)

∗∗∗

Source: CCFA, authors’ calculations. Equation (6) is estimated by GMM separately for each type of con-
sumers. Other controlling variables include horsepower, brand fixed effects, segment fixed effects, class of
CO2, month-year effects, and price. Instrumental variables for prices are the price index of iron (contem-
poraneous and lagged value, interacted with the car’s weight), index of export prices of tires (interacted
with the car’s weight), BLP-style instruments and differences of characteristics between gasoline and diesel
versions. The estimation of car rental purchases in suburban Paris does not converge for all bootstrap draws,
which could be due to the very small sample size for this group (see Table B.7).
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Table E.12: Estimates for coefficient γ1d of the purchasing price

Private consumers
Not employed Young professional Employed (>30)

Income Low High Low High Low High
Urban −0.63

(0.05)

∗∗∗
−0.57
(0.05)

∗∗∗
−0.30
(0.04)

∗∗∗
−0.31
(0.04)

∗∗∗
−0.21
(0.03)

∗∗∗
−0.12
(0.03)

∗∗∗

Suburban/rural −0.65
(0.05)

∗∗∗
−0.66
(0.05)

∗∗∗
−0.42
(0.04)

∗∗∗
−0.30
(0.04)

∗∗∗
−0.36
(0.03)

∗∗∗
−0.15
(0.03)

∗∗∗

Paris urban −0.36
(0.05)

∗∗∗
−0.32
(0.04)

∗∗∗
−0.21
(0.03)

∗∗∗

Paris suburban −0.20
(0.05)

∗∗∗
−0.25
(0.04)

∗∗∗
−0.14
(0.03)

∗∗∗

Firm purchases
Agriculture & Car Trade &

Sector industry rental services
Urban −0.01

(0.03)
0.14
(0.05)

∗∗∗
−0.00
(0.03)

Suburban/rural −0.22
(0.03)

∗∗∗
−0.29
(0.08)

∗∗∗
−0.10
(0.03)

∗∗∗

Paris urban −0.01
(0.03)

−0.03
(0.04)

−0.09
(0.03)

∗∗∗

Paris suburban −0.14
(0.03)

∗∗∗
−0.28
(−)

−0.27
(0.05)

∗∗∗

Source: CCFA, authors’ calculations. Equation (6) is estimated by GMM separately for each type of con-
sumers. Other controlling variables include horsepower, brand fixed effects, segment fixed effects, class of
CO2, month-year effects, and price. Instrumental variables for prices are the price index of iron (contem-
poraneous and lagged value, interacted with the car’s weight), index of export prices of tires (interacted
with the car’s weight), BLP-style instruments and differences of characteristics between gasoline and diesel
versions. The purchasing price is divided by 10,000 for readability of the coefficients. The estimation of car
rental purchases in suburban Paris does not converge for all bootstrap draws, which could be due to the
very small sample size for this group (see Table B.7).

Table E.13: Demand elasticity for selected models with respect to fuel prices

model (segment) fuel CO2 fuel ηjf ∆
tDηjf ∆

tCO2 ηjf

(g/km) cons.

(L/km)

(%) (%)

Audi A6 (sedan) gasoline 236.9 10.2 −0.22
(0.03)

∗∗∗
1.17
(0.22)

∗∗∗
−6.73
(0.89)

∗∗∗

Audi A6 (sedan) diesel 200.1 7.6 −0.29
(0.02)

∗∗∗
−18.20
(1.55)

∗∗∗
−9.39
(0.60)

∗∗∗

Citroen C3 gasoline 147.8 6.4 −0.34
(0.02)

∗∗∗
2.46
(0.23)

∗∗∗
−10.62
(0.51)

∗∗∗

Citroen C3 diesel 112.8 4.3 −0.19
(0.01)

∗∗∗
−13.48
(0.69)

∗∗∗
−6.55
(0.32)

∗∗∗

Peugeot 307 (sport) gasoline 192.7 8.3 −0.17
(0.01)

∗∗∗
1.57
(0.08)

∗∗∗
−4.29
(0.21)

∗∗∗

Peugeot 307 (sport) diesel 159.0 6.0 −0.32
(0.01)

∗∗∗
−18.62
(0.87)

∗∗∗
−9.41
(0.43)

∗∗∗

Renault Twingo (compact) gasoline 137.0 5.9 −0.32
(0.01)

∗∗∗
0.86
(0.03)

∗∗∗
−9.78
(0.44)

∗∗∗

Renault Twingo (compact) diesel 113.0 4.3 −0.25
(0.01)

∗∗∗
−15.62
(0.93)

∗∗∗
−7.30
(0.37)

∗∗∗

Source: CCFA, authors’ calculations. Equation (6) is estimated by GMM separately for each type of consumers.
Standard errors are estimated by bootstrap (500 replications).
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F. Testing for weak instruments

Table F.14: Conditional F-values of the weak instrument test – instruments for the price

Private consumers

Not employed Young employed (<30) Employed (>30)
Income Low High Low High Low High

Urban 35.1*** 31.9*** 51.8*** 51.7*** 47.8*** 49.0***
Suburban/rural 31.7*** 37.6*** 64.8*** 70.9*** 51.3*** 51.5***
Paris urban 20.4*** 42.2*** 44.2***
Paris suburban 16.3** 36.6*** 39.4***

Firm purchases

Industry & Car Trade &
Agriculture rental services

Urban 42.2*** 11.5** 39.7***
Suburban/rural 45.9*** 34.9*** 37.2***
Paris urban 52.4*** 36.3*** 34.6***
Paris suburban 14.2** 14.1** 15.4**

Note: Stars denote conditional F-values beyond the critical value (at 5% significance level) for different
levels of maximal bias of the IV estimator relative to OLS; *** stands for a maximal bias of 5%, ** for 10%,
* for 20%.

Table F.15: Conditional F-values of the weak instrument test – instruments for the market

share of the model within its segment sdj|s

Private consumers

Not employed Young employed (<30) Employed (>30)
Income Low High Low High Low High

Urban 68.1*** 71.3*** 61.4*** 62.4*** 60.7*** 53.6***
Suburban/rural 71.5*** 73.3*** 71.1*** 64.0*** 58.9*** 55.7***
Paris urban 53.4*** 58.3*** 49.3***
Paris suburban 36.5*** 53.5*** 54.8***

Firm purchases

Industry & Car Trade &
Agriculture rental services

Urban 45.9*** 34.9*** 37.2***
Suburban/rural 42.2*** 11.5** 39.7***
Paris urban 52.4*** 36.3*** 34.6***
Paris suburban 14.2** 14.1** 15.4**

Note: Stars denote conditional F-values beyond the critical value (at 5% significance level) for different
levels of maximal bias of the IV estimator relative to OLS; *** stands for a maximal bias of 5%, ** for 10%,
* for 20%.

15



Table F.16: Conditional F-values of the weak instrument test – instruments for the market

share of a fuel-type within its model nest sdf |j

Private consumers

Not employed Young employed (<30) Employed (>30)
Income Low High Low High Low High

Urban 26.5*** 22.6*** 32.6*** 32.3*** 41.9*** 44.7***
Suburban/rural 23.6*** 27.9*** 31.7*** 38.1*** 43.7*** 44.3***
Paris urban 15.0** 27.3*** 31.7***
Paris suburban 16.7** 22.2*** 26.5***

Firm purchases

Industry & Car Trade &
Agriculture rental services

Urban 24.2*** 21.6*** 25.8***
Suburban/rural 32.4*** 6.3* 28.6***
Paris urban 15.2** 21.0*** 20.8***
Paris suburban 11.7** 2.9 10.4*

Note: Stars denote conditional F-values beyond the critical value (at 5% significance level) for different
levels of maximal bias of the IV estimator relative to OLS; *** stands for a maximal bias of 5%, ** for 10%,
* for 20%.
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G. Robustness checks: elasticities and policy impacts

We estimate several alternative specifications not just to check that our results are not driven

by specification choices, but also to emphasize the impact of the individual hypothesis underlying

the main specification. Detailed estimates are available upon requests. This Appendix provides

aggregate elasticities (Table G.17) and the predicted impact of our two policy scenarios (tax

alignment and carbon tax, Table G.18). The first alternative specification includes “degenerate”

nests, i.e. all models including those that are available only with either gasoline or diesel motor.

The second alternative specification uses a more commonly used model accounting only for two

levels: purchasers choose a segment and then a product within that segment. The third alternative

specification estimates a simple logit (no nests), adding model fixed effects. The fourth alternative

specification corresponds to the main specification with additionally the full set of time dummies

(interactions of month and year dummies). The fifth alternative specification excludes models with

strictly less than three unit sales over a month. Finally, the last specification estimates the model

jointly for all consumer types, which means we do not account for consumer heterogeneity. On

the whole, the estimated impact of our policy scenarios remains at a similar order of magnitude

across specifications.
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Table G.17: Robustness checks: elasticities with respect to fuel prices of diesel share, average
fleet fuel consumption (L/km) and CO2 intensity (g/km)

Diesel share Fuel cons. CO2

ηD ηφ ηCO2

Main specification + degenerate nests (gas/diesel-only models)
Households 0.044

(0.003)

∗∗∗
−0.015
(0.001)

∗∗∗
−0.018
(0.001)

∗∗∗

Firms 0.017
(0.003)

∗∗∗
−0.004
(0.001)

∗∗∗
−0.006
(0.001)

∗∗∗

Total 0.045
(0.002)

∗∗∗
−0.011
(0.001)

∗∗∗
−0.015
(0.001)

∗∗∗

Alternative specification – only one nesting level (segment>model)
Households 0.042

(0.003)

∗∗∗
−0.014
(0.001)

∗∗∗
−0.017
(0.001)

∗∗∗

Firms 0.015
(0.004)

∗∗∗
−0.004
(0.001)

∗∗∗
−0.006
(0.001)

∗∗∗

Total 0.044
(0.003)

∗∗∗
−0.010
(0.001)

∗∗∗
−0.014
(0.001)

∗∗∗

No nest structure + model fixed effects
Households 0.046

(0.002)

∗∗∗
−0.019
(0.001)

∗∗∗
−0.016
(0.001)

∗∗∗

Firms 0.008
(0.002)

∗∗∗
−0.005
(0.001)

∗∗∗
−0.004
(0.000)

∗∗∗

Total 0.034
(0.001)

∗∗∗
−0.015
(0.001)

∗∗∗
−0.012
(0.001)

∗∗∗

Main specification + full set of time dummies
Households 0.046

(0.002)

∗∗∗
−0.019
(0.001)

∗∗∗
−0.016
(0.001)

∗∗∗

Firms 0.008
(0.002)

∗∗∗
−0.005
(0.001)

∗∗∗
−0.004
(0.000)

∗∗∗

Total 0.033
(0.001)

∗∗∗
−0.014
(0.001)

∗∗∗
−0.011
(0.001)

∗∗∗

Main specification – excluding rare models
Households 0.022

(0.003)

∗∗∗
−0.014
(0.001)

∗∗∗
−0.012
(0.001)

∗∗∗

Firms 0.020
(0.004)

∗∗∗
−0.009
(0.001)

∗∗∗
−0.008
(0.001)

∗∗∗

Total 0.023
(0.002)

∗∗∗
−0.012
(0.001)

∗∗∗
−0.010
(0.001)

∗∗∗

Main specification – without purchaser heterogeneity
Total 0.039

(0.004)

∗∗∗
−0.028
(0.003)

∗∗∗
−0.025
(0.002)

∗∗∗

Source: CCFA, authors calculations. Estimates rely on the parameters of Equation (6) estimated
by GMM separately for each type of consumers. Standard errors are estimated by bootstrap (500
replications).
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Table G.18: Robustness checks: percentage impact of carbon tax and tax alignment on diesel
share, average fleet fuel consumption (L/km) and CO2 intensity (g/km)

Tax alignment Carbon tax
Diesel
share

Fuel cons. CO2 Diesel
share

Fuel cons. CO2

∆tDηD ∆tDηφ ∆tDηCO2
∆tCO2 ηD ∆tCO2 ηφ ∆tCO2 ηCO2

Main specification + degenerate nests (gas/diesel-only models)
Households −9.37

(0.35)

∗∗∗
0.80
(0.03)

∗∗∗
0.02
(0.01)

∗∗∗
0.55
(0.08)

∗∗∗
−0.50
(0.02)

∗∗∗
−0.47
(0.02)

∗∗∗

Firms −3.85
(0.41)

∗∗∗
0.24
(0.08)

∗∗∗
−0.19
(0.05)

∗∗∗
0.70
(0.11)

∗∗∗
−0.23
(0.02)

∗∗∗
−0.17
(0.03)

∗∗∗

Total −7.15
(0.32)

∗∗∗
0.62
(0.04)

∗∗∗
−0.06
(0.02)

∗∗∗
0.99
(0.06)

∗∗∗
−0.44
(0.02)

∗∗∗
−0.36
(0.02)

∗∗∗

Alternative specification – only one nesting level (segment>model)
Households −9.17

(0.38)

∗∗∗
0.79
(0.03)

∗∗∗
0.02
(0.01)

∗∗∗
0.49
(0.08)

∗∗∗
−0.48
(0.03)

∗∗∗
−0.45
(0.02)

∗∗∗

Firms −3.51
(0.54)

∗∗∗
0.22
(0.09)

∗∗
−0.17
(0.06)

∗∗∗
0.59
(0.14)

∗∗∗
−0.22
(0.03)

∗∗∗
−0.16
(0.03)

∗∗∗

Total −6.84
(0.40)

∗∗∗
0.59
(0.05)

∗∗∗
−0.05
(0.02)

∗∗
0.97
(0.08)

∗∗∗
−0.42
(0.02)

∗∗∗
−0.35
(0.02)

∗∗∗

No nest structure + model fixed effects
Households −7.11

(0.42)

∗∗∗
0.51
(0.03)

∗∗∗
−0.09
(0.04)

∗∗
0.76
(0.05)

∗∗∗
−0.54
(0.04)

∗∗∗
−0.49
(0.04)

∗∗∗

Firms −2.24
(0.49)

∗∗∗
0.14
(0.08)

∗
−0.11
(0.04)

∗∗∗
0.20
(0.06)

∗∗∗
−0.18
(0.02)

∗∗∗
−0.16
(0.02)

∗∗∗

Total −5.13
(0.36)

∗∗∗
0.38
(0.04)

∗∗∗
−0.10
(0.03)

∗∗∗
0.63
(0.04)

∗∗∗
−0.42
(0.03)

∗∗∗
−0.37
(0.03)

∗∗∗

Main specification + full set of time dummies
Households −7.11

(0.43)

∗∗∗
0.51
(0.04)

∗∗∗
−0.09
(0.05)

∗∗
0.76
(0.05)

∗∗∗
−0.54
(0.04)

∗∗∗
−0.49
(0.04)

∗∗∗

Firms −2.04
(0.43)

∗∗∗
0.13
(0.07)

∗
−0.10
(0.03)

∗∗∗
0.20
(0.06)

∗∗∗
−0.17
(0.02)

∗∗∗
−0.15
(0.02)

∗∗∗

Total −4.89
(0.34)

∗∗∗
0.37
(0.04)

∗∗∗
−0.10
(0.03)

∗∗∗
0.62
(0.04)

∗∗∗
−0.41
(0.03)

∗∗∗
−0.36
(0.03)

∗∗∗

Main specification – excluding rare models
Households −6.59

(0.37)

∗∗∗
0.41
(0.03)

∗∗∗
−0.15
(0.01)

∗∗∗
0.10
(0.08)

−0.40
(0.03)

∗∗∗
−0.40
(0.02)

∗∗∗

Firms −5.06
(0.62)

∗∗∗
0.44
(0.10)

∗∗∗
−0.12
(0.07)

∗
0.46
(0.11)

∗∗∗
−0.30
(0.05)

∗∗∗
−0.26
(0.05)

∗∗∗

Total −6.37
(0.45)

∗∗∗
0.47
(0.05)

∗∗∗
−0.13
(0.03)

∗∗∗
0.25
(0.07)

∗∗∗
−0.36
(0.02)

∗∗∗
−0.35
(0.02)

∗∗∗

Main specification – without purchaser heterogeneity
Total −7.45

(0.77)

∗∗∗
0.45
(0.07)

∗∗∗
−0.26
(0.02)

∗∗∗
0.26
(0.05)

∗∗∗
−0.61
(0.06)

∗∗∗
−0.60
(0.05)

∗∗∗

Source: CCFA, authors calculations. Estimates rely on the parameters of Equation (6) estimated by GMM sepa-
rately for each type of consumers. Instrumental variables for prices are the price indices of iron (contemporaneous
and lagged value) and indices of export prices of tires, interacted with the car model’s weight. Standard errors
are estimated by bootstrap (500 replications).
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