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Abstract

By employing a dynamic model with two limit order books, we show that fragmentation
is associated with reduced competition among liquidity suppliers and lower picking-o↵
risk of limit orders. Due to these countervailing channels, the impact of fragmentation
on liquidity and welfare di↵ers with asset volatility: when volatility is high (low),
liquidity and aggregate welfare in a fragmented market are higher (lower) than in a
single market. However, fragmentation always shifts welfare away from agents with
exogenous trading motives and towards intermediaries. We empirically corroborate
our model’s predictions about liquidity. Our model reconciles the mixed results in the
empirical literature.
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1. Introduction

In recent years, equity markets in the United States, the European Union, and elsewhere

have evolved from national/regional stock exchanges being the dominant liquidity pools to a

fragmented environment, where the same stock trades on multiple limit order books. In such

an environment, market outcomes are shaped by trader competition. Specifically, traders

compete with each other by dynamically choosing whether to supply or consume liquidity,

and under what terms, across fragmented markets. These choices are determined by, among

other things, investors’ trading motives, market conditions, adverse selection, and security

characteristics. Over the last 40 years, the literature examining the e↵ects of fragmentation

has provided mixed results. Hence, relevant questions remain unanswered. For example,

how does fragmentation shape agents’ trading behavior? Is fragmentation good or bad for

liquidity? What are the e↵ects of fragmentation on welfare? In this paper, we investigate

these questions while allowing for the possibility that the answers may di↵er depending on

market conditions.

We show that two intertwined channels drive traders’ behavior, producing opposing ef-

fects on liquidity and welfare. First, as time priority applies only within but not across

limit order books, traders can circumvent time priority in one order book by submitting an

identically-priced limit order in the second order book. In a single market setting, traders

can jump ahead of the queue only by improving upon the existing price. This form of queue

jumping leads to increased price competition among liquidity providers in a single market

setting as compared to a multi market setup. We call this channel the competition for liq-

uidity provision channel. Yet, upon a change in the asset’s fundamental value, limit orders

cannot be instantaneously modified and hence can be picked o↵ by incoming traders. As

these traders can potentially choose between multiple stale orders (one on each limit order

book), the execution probability of individual limit orders in fragmented markets is lower

allowing them, in expectation, more time to update their orders. Hence, compared to a

single market setting, a multi-market environment o↵ers more protection against picking-o↵

1



risk. We call this channel the adverse selection channel.

Our model builds on the single market models of Goettler et al. (2005, 2009), which we

extend to a multi-market setting. It is set up as a stochastic trading game in which a single

asset, with a stochastically evolving fundamental value, can be traded in two limit order

books by diverse (in their private values) and competing agents. Moreover, agents face a

cost of delaying their trades, which represents the opportunity cost and the cost of monitoring

the market until an order is executed, and incentivizes traders’ competition. Traders also

have the possibility of reentering the market to revise existing limit orders, though they

cannot do so instantaneously when the fundamental value changes. Hence, our theoretical

setting allows for picking-o↵ risk.

Goettler et al. (2005, 2009) parameterize their models based on Hollifield et al. (2006),

who in turn use order-level data from the early-1990s to compute trader arrival rates, funda-

mental value volatility, and private value distributions. We solve our model numerically by

employing the same parameters used by Goettler et al. (2009) and compare a multi-market

environment to a single market setup under two scenarios involving di↵erent levels of asset

volatility with low (high) values corresponding to a low (high) level of picking-o↵ risk. Fur-

thermore, we also compare our parameters with estimates obtained from order-level data

for stocks traded on the London Stock Exchange in January 2015, and confirm that the

parameters from Goettler et al. (2009) are not too dissimilar from those in modern markets.

Agents endogenously decide whether to provide or consume liquidity on a limit order

book of their choice and in the presence of discrete prices and picking-o↵ risk. Those with

an intrinsic motive to trade balance the delay costs associated with limit orders and the

immediacy costs of market orders. Those without any intrinsic trading motives generate

their gains from liquidity provision or from arbitrage.

We provide evidence consistent with both channels of trader behavior. Consistent with

the competition for liquidity provision channel, we find that agents submit limit orders at

2



the best quotes more frequently in the single market setting. At the same time, consistent

with the adverse selection channel, we also find that picking-o↵ risk is lower in the multi-

market setting. Furthermore, these two e↵ects interact with each other: in the single market

setting, the increased aggressiveness of limit orders resulting from more competition for

liquidity provision increases their exposure to the picking-o↵ risk due to a higher probability

of such orders becoming mispriced upon a change in the fundamental value of the asset.

The equilibrium impact on liquidity depends on which of two channels dominates. The

competition for liquidity provision channel is more important when fundamental value volatil-

ity, or picking-o↵ risk, is low. In this setting, liquidity, as measured by quoted and e↵ective

spreads, is higher in the single market as compared to the multi-market scenario. Conversely,

when fundamental value volatility, or picking-o↵ risk, is high, the adverse selection channel

dominates. In this setting, liquidity is higher in the multi-market scenario as compared to

the single market. The interplay between these two competing channels likely helps explain

the mixed findings in the empirical literature regarding the relationship between liquidity

and fragmentation.

Consistent with the liquidity e↵ects, aggregate welfare is marginally higher in the con-

solidated (fragmented) market as compared to the fragmented (consolidated) market in the

low (high) volatility setting. However, independent of the market conditions, intermedi-

aries always extract higher welfare gains in fragmented markets. Conversely, agents with

intrinsic trading motives are always better o↵ in consolidated markets. The higher revenues

earned by intermediaries in fragmented markets without a commensurate increase in total

welfare strongly suggests that costly investments in intermediation capacities, such as the

high-speed connections to venues and subscriptions to exchanges’ real-time data feeds,1 are

socially wasteful. This raises the question whether restricting fragmentation would lead to

improvements in social welfare.2

1Cespa and Foucault (2013) and Easley et al. (2016) further highlight the adverse e↵ects associated with
exchanges providing di↵erential access to market data feeds.

2For instance, due to national and international mergers between exchanges, individual market operators
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We empirically test the model implications related to the liquidity e↵ects of fragmenta-

tion by using data from the second half of 2012 for German and French large-cap and mid-cap

stocks. We employ panel regressions to determine how quoted and e↵ective spreads depend

on fragmentation – measured across the primary listing venue (Deutsche Börse or Euronext

Paris) and the largest rival exchange, Chi-X – and within-stock variation in volatility. Con-

sistent with our model, we find that, while there is an inverse relation between volatility and

liquidity, an increase in fragmentation is associated with lower (higher) quoted and e↵ective

spreads on high (low) volatility days. As none of the venues implemented any major changes

to their market structure during our sample period, these results lend empirical support to

our model.

Our model allows for a potential explanation of the conflicting empirical results observed

in the literature. For example, studies find that: (i) fragmentation increases liquidity (see,

for example Boehmer and Boehmer, 2003; Chlistalla and Lutat, 2011; Hengelbrock and

Theissen, 2009; Nguyen et al., 2007; He et al., 2015; Fink et al., 2006; Menkveld, 2013); (ii)

fragmentation harms liquidity (see, for example Bessembinder and Kaufman, 1997; Arnold

et al., 1999; Hendershott and Jones, 2005; Bennett and Wei, 2006; Nielsson, 2009); and (iii)

fragmentation has mixed e↵ects on liquidity (see, for example Boneva et al., 2016; Haslag

and Ringgenberg, 2015). In our model, when volatility is high (low), the picking-o↵ risk

(competition for liquidity provision) e↵ect is dominant, and, as a result, fragmentation is

associated with smaller (higher) bid-ask spreads. Consistent with this intuition, O’Hara and

Ye (2011) find that fragmentation is associated with significantly lower e↵ective spreads only

for small-cap stocks in the US.3

Our paper is also related to the theoretical literature on market fragmentation in limit

routinely operate several limit order books. In the United States, the three largest exchange operators –
Intercontinental Exchange, Nasdaq OMX, and Cboe – currently operate a total of eleven lit equity exchanges.
Our results indicate that such within-operator fragmentation in the absence of, or under minimal, venue
competition is harmful.

3Small-cap stocks are associated with higher volatility than large-cap stocks (see, for example, Table 1 in
Brogaard et al., 2014).
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order markets.4 Foucault and Menkveld (2008) model fee-based competition between two

operators and predict that the entry of a second exchange increases consolidated depth and

the increased use of smart order routers increases liquidity in the entrant market. However,

their model does not feature picking-o↵ risk. Baldauf and Mollner (2018) show that, while

exchange competition induces a downward pressure on trading fees, the resulting fragmenta-

tion intensifies adverse-selection. However, their model exogenously determines who provides

and consumes liquidity and does not feature competition for liquidity provision. In other

studies, Parlour and Seppi (2003) examine competition between a specialist market and a

pure limit order book, Pagnotta and Philippon (2018) investigate the joint role of trading

fees and speed of market access across competing venues, and Chao et al. (2018) focus on

the role of tick sizes on the dispersion of fee schedules in fragmented markets.

In contrast to these studies, we focus exclusively on trader competition. Our model

simultaneously features competition for liquidity provision and picking-o↵ risk in fragmented

markets. Consequently, it allows for more flexible agent behavior and better captures the

dynamics of these two channels. Specifically, it allows for endogenous liquidity provision

and consumption in the presence of real world frictions (such as price discreteness) and in

the absence of perfect competition between agents (as in Glosten, 1998). Using a dynamic

equilibrium model for market fragmentation, we show that trader competition and picking

o↵ risk, independently and through interaction with each other, can lead to heterogeneous

e↵ects of fragmentation on investor welfare and market quality.

4Early theories of fragmentation such as Mendelson (1987), Pagano (1989), and Chowdhry and Nanda
(1991), while not explicitly modeling limit order markets, highlight the positive network externalities asso-
ciated with consolidating trading in a single venue. However, such a consolidated market is no longer the
equilibrium outcome in the absence of post-trade transparency (Madhavan, 1995) and in the presence of real
world frictions such as di↵erences in markets’ absorptive capacity and institutional mechanisms (Pagano,
1989), order splitting behavior (Chowdhry and Nanda, 1991), or trader heterogeneity (Harris, 1993).
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2. Multi-Market Model

Our aim is to study the e↵ect of fragmentation on liquidity and welfare in the presence

of competition for liquidity provision and adverse selection (picking-o↵) risk. We set up a

dynamic trading game in which agents make endogenous decisions to maximize their expected

payo↵s, taking into account their private reasons for trading the asset, market conditions,

and the strategies employed by agents expected to arrive in the future.

2.1 Model Setting

We consider an economy in continuous time with a single financial asset that trades on two

limit order books. The fundamental value of the asset, vt, is stochastic, and its innovations

follow a Poisson process with parameter �v. In the case of an innovation, the fundamental

value increases or decreases by one tick, d, with equal probability. There is competition

among agents. The economy is populated by agents who arrive sequentially following a

Poisson process with intensity �a. All agents observe both limit order books (i.e., prices and

depths at each price) and the fundamental value of vt. Agents can submit limit or market

orders to either book. Moreover, agents can reenter the market to modify unexecuted limit

orders. There is adverse selection. In other words, agents cannot instantaneously modify

their unexecuted limit orders after a change in market conditions, but instead reenter the

market following a Poisson process with parameter �r. Thus, agents submitting limit orders

face picking-o↵ risk.

The limit order book at time t and in market m with m 2 {1, 2}, Lm,t, is characterized by

a set of discrete prices denoted by {pi
m
}N
i=�N

, where pi
m
< p

i+1
m

and N is a finite number. Let

d be the distance between any two consecutive prices, which we refer to as the tick size (i.e.,

d = p
i+1
m

� p
i

m
). The tick size is the same in both limit order books. Let li

m,t
be the queue of

unexecuted limit orders in order book m at time t and price p
i

m
. A positive (negative) li

m,t

denotes the number of buy (sell) limit orders, and represents the depth of the book Lm,t at
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price p
i

m
. In the book Lm,t at time t, the best bid price is B(Lm,t) = sup{pi

m
|li
m,t

> 0} and

the best ask price is A(Lm,t) = inf{pi
m
|li
m,t

< 0}. B(Lm,t) = �1 or A(Lm,t) = 1 if the

order book Lm,t is empty at time t on the buy side or on the sell side, respectively. Each

limit order book independently respects price and time priority while executing the limit

orders, i.e., buy (sell) limit orders at higher (lower) prices have priority in the queue and

limit orders submitted earlier at the same price are executed first.

Agents are risk-neutral, but heterogeneous in terms of their intrinsic economic motives

for trading the asset. These motives are reflected in their private values. Each agent has

a private value ↵, which is known to her. ↵ is drawn from the vector  ={↵1, ↵2, ..., ↵g}

based on the cumulative distribution F↵, where g is a finite integer. Private values reflect

the fact that agents want to trade for various reasons unrelated to the fundamental value of

the asset (e.g. hedging needs, tax exposure, and/or wealth shocks). They are idiosyncratic

and constant for each agent. Furthermore, agents face a cost of delaying, which is a cost

of not executing immediately. This delay cost is not the time value of money, but instead,

it represents the opportunity costs and the cost of monitoring the market until an order is

executed. It is denoted by ⇢ 2 [0, 1], is constant across agents and order books, and applies

to agents’ total payo↵.

Agent heterogeneity, delay costs, and the fundamental value of the asset determine agents’

trading behavior. On the one hand, suppose agent x with a positive private value (i.e.,

↵ > 0) arrives at time tx. This agent is likely to be a buyer because she would like to have

the asset to obtain the intrinsic benefit reflected by ↵. In this case, the agent’s expected

payo↵ is (↵ + vt0 � p)e�⇢(t0�tx), where p is the transaction price, t0 is the expected time of

the transaction, and vt0 is the expected fundamental value of the asset at time t0. Moreover,

if ↵ is very high, her delay cost, denoted by (e�⇢(t0�tx) � 1)↵, is correspondingly high, and

she may therefore prefer to buy the asset as soon as possible by using a market order. In

this case, the agent will pay an immediacy cost denoted by (vt0 � p)�⇢(t0�tx). The agent

will accept this immediacy cost because she is mainly generating her profits from the large
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private value, ↵, rather than from the trading process per se. Accordingly, an agent with a

high absolute private value will probably be a liquidity taker.5

On the other hand, suppose an agent y with a private value equal to zero (i.e., ↵ = 0)

arrives at time ty. This agent needs to find a profitable opportunity purely in the trading

process, by obtaining a good price relative to the fundamental value, because she does not

obtain any intrinsic economic benefit from trading. Consequently, she may be patient and

prefer to act as a liquidity provider, in turn receiving the immediacy cost (bid-ask spread)

paid by a liquidity taker. Alternatively, she may trade aggressively against a standing limit

order that is mispriced relative to the fundamental value. Note that agents with ↵ = 0 are

indi↵erent with respect to the side of the market they take because they can maximize their

gains by either selling or buying the asset.

Agents are exposed to the risk of being picked o↵, because limit orders can generate

a negative payo↵ if they are in an unfavorable position relative to the fundamental value.

For example, suppose an agent x with ↵ = 0 first arrives at time t = 0 and submits a

buy limit order to set the best bid price, B, in market m = 1. Suppose further that, at

time t
⇤, the fundamental value of the asset decreases to level vt⇤ , such that vt⇤ < B, and

simultaneously another agent, denoted by y, with private value ↵ = 0, arrives. Since agent

x cannot immediately modify her unexecuted limit order, agent y can submit a market sell

order and pick o↵ agent x’s order, generating an instantaneous profit equal to (B � vt⇤).

Agent x, on the other hand, has a negative realized payo↵ given by (vt⇤ � B)e�⇢t
⇤
.

Each agent takes three main trading decisions upon arrival: (i) to submit an order to

L1,t or L2,t, (ii) to submit a buy or a sell order, and (iii) to choose the limit price, which

implies the decision to submit either a market or a limit order.6 As mentioned above, an

agent can reenter the market and modify her unexecuted limit order. Hence, she has to take

5Analogously, a similar example can be produced in the other direction in the case of an agent with a
negative private value (i.e., ↵ < 0) having a preference to sell.

6A buy (sell) limit order priced at or above (below) the best ask (bid) is equivalent to a market buy (sell)
order.
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the following additional trading decisions after reentering: (i) to keep her unexecuted limit

order unchanged or to cancel it, (ii) in case of a cancellation, to submit a new order to L1,t

or L2,t, (iii) to choose whether the new order will be a buy or a sell order, and (iv) to choose

the price of the new order.

The decision to leave the order unchanged has the advantage of maintaining its time

priority in the respective queue. The disadvantage is the increased exposure to picking-o↵

risk or non-execution risk depending on the direction of the change in the fundamental value.

Once a trader has submitted a limit order, she remains part of the trading game by revising

her order until it is executed; however, the trader exits the market permanently after the

execution of her order.

2.2 Agents’ Dynamic Maximization

There is a set of states s 2 {1, 2, . . . , S} that describes the market conditions in the economy.

These market conditions are observed by each agent before she makes any decision. The state

s that an agent observes is described by the contemporaneous limit order books, L1 and L2,

the agent’s private value ↵, and in case the agent has previously submitted a limit order to

any of the books, the status of that order in L1 or L2, i.e., its original submission price, its

queue priority in the book, and its type (i.e., buy or sell). The fundamental value of the

asset, v, is implicitly one of the variables that describe the state s, since agents interpret

limit order prices relative to the fundamental value. For convenience, we set the arrival time

of an agent to zero in the following discussion.

Let a 2 ⇥(s) be the agent’s potential trading decision, where ⇥(s) is the set of all

possible decisions that an agent can take in state s. Suppose that the optimal decision given

state s is ã 2 ⇥(s). Let ⌘(h|ã, s) be the probability that the optimally submitted order is

executed at time h. Let �(v|h) be the density function of v at time h, which is exogenous

and characterized by the Poisson process of the fundamental value of the asset with rate �v.
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Thus, the expected value of the optimal order submission ã 2 ⇥(s), if the order is executed

prior to the agent’s reentry time hr, is

⇡(hr, ã, s) =

Z
hr

0

Z 1

�1
e
�⇢h ((↵ + vh � p̃)x̃) · �(vh|h) · ⌘(h|ã, s)dvhdh (1)

where p̃ is the submission price and x̃ is the order direction indicator (i.e., x̃ = 1 if the agent

buys and x̃ = �1 if the agent sells) and both are components of the optimal decision ã. The

expression (↵+vh� p̃)x̃ is the instantaneous payo↵, which is discounted back to the trader’s

arrival time at rate ⇢.

Let  (shr |hr, ã, s) be the probability that state shr is observed by the agent at her reentry

time hr, given her decision ã taken in the previous state s. The probability  (·) depends on

the states and potential optimal decisions taken by other agents up to time hr. In addition,

let R (hr) be the cumulative probability distribution of the agent’s reentry time, which

is exogenous and described by the Poisson process �r. Thus, the Bellman equation that

describes the agent’s problem of maximizing her total expected value, V (s), after arriving

in state s, is given by

V (s) = max
ã 2⇥(s)

Z 1

0

"
⇡(hr, ã, s) + e

�⇢hr

Z

shr2S
V (shr) ·  (shr |hr, ã, s)dshr

#
dR(hr) (2)

where S is the set of possible states. The first term is defined in Equation (1), and the

second term describes the subsequent payo↵s in the case of reentries.

2.3 Equilibrium

In equilibrium, each agent behaves optimally by maximizing her expected utility, based on

the observed state that describes the market conditions (as in Equation (2)). Thus, optimal

decisions are state dependent. They are also Markovian, because the state observed by an

agent is a consequence of the previous states and the historical optimal decisions taken in

the trading game. As there is competition between agents, the equilibrium is competitive

(although there is no competition between venues). A competitive equilibrium means that
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competing agents will respond to an agent’s local deviation in a way that leads to a reduction

in the deviating agent’s expected utility. We obtain a stationary and symmetric equilibrium,

as in Doraszelski and Pakes (2007). In such an equilibrium, optimal decisions are time

independent, i.e., they stay the same when an agent faces the same state in the present or

in the future.

The trading game is also Bayesian in the sense that an agent knows her intrinsic private

value to trade, ↵, but does not know the private values of other agents who are part of the

game. Hence, our solution concept is a Markov perfect Bayesian equilibrium (see Maskin and

Tirole, 2001). In the trading game, there is a state transition process in which the probability

of arriving in state shr from state s is given by  (shr |ã, s, hr). Thus, two conditions must

hold in the equilibrium: agents solve equation (2) in each state s, and the equilibrium beliefs

are consistent for each state over time.

As mentioned earlier, the state s is defined by the four-tuple (L1,t, L2,t, ↵, status of

previous limit order), where all variables that describe the state are discrete. Moreover, each

agent’s potential decision a is taken from ⇥(s), which is the set of all possible decisions that

can be taken in state s. This set of possible decisions is discrete and finite, given the features

of the model. Consequently, the state space is countable and the decision space is finite;

thus, the trading game has a Markov perfect equilibrium (see Rieder, 1979).

2.4 Solution Approach

Given the large dimension of the state space, we use the Pakes and McGuire (2001) algorithm

to compute a stationary and symmetric Markov perfect equilibrium. The intuition behind

this algorithm is that the trading game by itself can be used initially, as a tool in which

agents learn how to behave in each state. Thus, we set the initial beliefs about the expected

payo↵s of potential decisions in each state. Agents take the trading decision that provides

the highest expected payo↵ conditional on the state they observe. Subsequently, agents
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dynamically update their beliefs by playing the game and observing the realized payo↵s of

their trading decisions. In this sense, the algorithm is based on agents following a learning-

by-doing mechanism. The Pakes and McGuire (2001) algorithm is able to deal with a large

state space because it reaches the equilibrium only on the recurring states class.

The equilibrium is reached when there is nothing left to learn, i.e., when the beliefs

about the expected payo↵s have converged. We apply the same procedure as was used by

Goettler et al. (2009) to determine whether the equilibrium has been reached. Once we

reach the equilibrium, after making the agents play the game for at least 10 billion trading

events, we fix the agents’ beliefs and simulate a further 20 million events. All theoretical

results presented in Section 3 are computed from the latter. Appendix A describes the

implementation details of the Pakes and McGuire (2001) algorithm.

2.5 Model Parameterization

We use the same parameters as Goettler et al. (2009) who rely on the empirical findings of

Hollifield et al. (2006) to identify parameters that reasonably describe real market features.

We set the intensity of the Poisson process followed by agents’ arrival, �, to one. The

intensity of the Poisson process followed by agents’ reentry, �r, is set to 0.25; the intensity

of the Poisson process followed by the innovations to the fundamental value, �v, is set to

0.125 and 0.625, to simulate scenarios of low and high volatility, respectively. We set the

tick size, d, in both order books to one, and the number of discrete prices available on each

side of both order books to N = 31. The delay cost, ⇢, is set to 0.05. The private value,

↵, is drawn from the discrete vector  ={�8,�4, 0, 4, 8} using the cumulative probability

distribution F↵ = {0.15, 0.35, 0.65, 0.85, 1.0}.

To further alleviate concerns surrounding the suitability of our parameter choices, we

employ the Hollifield et al. (2006) approach to compute the trader arrival rate, fundamental

value volatility, and the distribution of private values using message-level data for the month

12



of January 2015 from the LSE for two FTSE-100 stocks. Appendix B contains the implemen-

tation details of the Hollifield et al. (2006) approach, and the mean estimated parameters

across the 21 days in our sample period. These estimates are not substantively di↵erent from

our model parameter choices.

3. Theoretical Implications

Our aim is to examine the e↵ect of fragmentation on liquidity and welfare, specifically via

the competition for liquidity provision and adverse selection channel. To this end, we gen-

erate simulated data sets for the following two cases. First, we consider an environment

with low volatility, or picking-o↵ risk, by setting �v = 0.125. In this simulated environment

the importance of competition for liquidity provision channel is relatively high. Second, we

consider an environment with high asset volatility by setting �v = 0.625. In this simulated

environment the adverse selection channel is relatively more important than the competition

for liquidity provision channel. For both scenarios, we analyze two market setups: (i) a con-

solidated market with one limit order book and (ii) a fragmented market with two identical

limit order books. We compute mean levels of the variables of interest for each of the four

settings.7

3.1 Trading Behavior

Agents’ order submission strategies determine the liquidity characteristics and the price

discovery process of the asset, and, as a consequence, determine the welfare of di↵erent

agent types and that of the economy as a whole. Hence, we start by investigating the

agents’ trading behavior in consolidated and fragmented markets under the two volatility

scenarios. Throughout this subsection, we report trader statistics for sell orders. The results

for buy orders are analogous and omitted for brevity.

7We do not report standard errors because a large number of trader arrivals ensures that standard errors
are su�ciently low and a di↵erence in means even to the order of 10�2 being statistically significant.
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Insert Table 1 about here

Table 1 presents the results. In Panel A, we present the distribution of executed limit

and market orders by each agent type for low and high levels of volatility. When volatility

is low, agents with private value ↵ = 0 execute 77.1% of their trades using limit orders in

the single market setting, whereas agents with private value |↵| = 8 execute 80.5% of their

trades using market orders. Agents with private value |↵| = 4 use limit and market orders

roughly equally. These frequencies remain largely unchanged when the market is fragmented.

These results are consistent with the idea that agents with private value ↵ = 0 act as market

makers and try to earn the bid-ask spread, whereas those with private reasons to trade tend

to consume liquidity as their cost of waiting is relatively high.

When volatility is high, the behavior changes substantially. Speculators increase their

frequency of market orders due to the increased exposure to picking-o↵ risk, especially in the

single market where they predominantly generate their trading gains by picking-o↵ mispriced

limit orders. Conversely, agents with private value |↵| = 8 increase their frequency of limit

orders, also to a larger extent in the single market than in the fragmented market. This is

because their large private value allows them to bear some picking-o↵ risk, especially when

the costs of taking liquidity are relatively high due to reduced liquidity supply by other

traders. The liquidity supplied by agents with private value |↵| = 8 in turn is profitably

picked o↵ by the speculators. This is consistent with studies examining the behaviour of high-

frequency trading (HFT) firms across stocks with di↵erent volatility. For example, Brogaard

et al. (2014) find that, in the US, the ratio of liquidity consuming and supplying trades of

HFT firms for large-cap (or low volatility) stocks versus small-cap (or high volatility) stocks is

1.0 and 2.3, respectively. The di↵erences in order choice between the low and high volatility

scenarios is less pronounced in the multi-market setting, as it provided higher protection

against picking-o↵ risk, thereby making speculators more willing to submit limit orders as

compared to the single market setting. In conclusion, in a high volatility state, agents submit

less aggressive orders in a consolidated market due to the higher adverse selection risk.
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Panel A also reports the probability of submitting an aggressive limit order for each

setting. This probability is computed as the proportion of sell limit orders that are submitted

at the best ask price. For both volatility scenarios, fragmented markets decrease the level of

traders’ competition. In the low volatility scenario, 35.9% of limit orders are aggressive in

the consolidated market, whereas only 28.5% of limit orders are aggressive in the fragmented

market. The di↵erence persists even in the high volatility scenario, where 24.7% (22.8%) of

limit orders are aggressive in consolidated (fragmented) markets. These findings confirm that

competition for liquidity provision is less intense in fragmented than consolidated markets.

In Panel B, we report the level of picking-o↵ risk for each of the two market settings

and volatility scenarios for all agent types. Picking-o↵ risk is measured as the proportion of

sell limit orders executed below the fundamental value. In our model, high (low) volatility

corresponds to a higher (lower) frequency of fundamental price jumps which, in turn, trans-

lates to higher (lower) picking-o↵ risk. Consider a limit sell order submitted by agent one

at price p. A second agent entering the market after the first agent could place a limit sell

order at the same price p in the second order book. If, subsequently, the fundamental value

of the asset moves against these two unexecuted limit orders, an incoming trader can choose

to pick o↵ the second limit order, giving the first limit order trader additional time to react

and modify her order. As such, the picking-o↵ risk of the first agent is reduced as there is a

higher probability that she will be able to reenter the market before her order is picked o↵.

Consistent with this intuition, we find that the aggregate level of picking-o↵ risk under the

low volatility setting is 21.8% in a single market and 20.8% in a fragmented market, whereas

it increases to 59.3% in a single market and 42.3% in a fragmented market under the high

volatility setting. The picking-o↵ risk is lower in fragmented market for each agent type.

For example, when asset volatility is low, agents with ↵ = 0 and |↵| = 8 have a picking-o↵

risk of 4.1% (3.0%) and 73.9% (72.1%), respectively, in consolidated (fragmented) markets.

The corresponding numbers in the high asset volatility setting are 13.8% (10.9%) and 85.4%

(75.7%), respectively. This shows that fragmented markets provide more protection against
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picking-o↵ risk under both volatility settings.

Panels A and B of Table 1 also highlight the relative importance of the competition

for liquidity provision and picking-o↵ risk channel under di↵erent volatility scenarios. The

di↵erence in the probability of submitting aggressive limit orders between the single and multi

market setting is less pronounced (7.4% versus 1.9%), and the di↵erence in aggregate picking-

o↵ risk is more pronounced (1.0% versus 17%) when the fundamental volatility is high.

These di↵erences suggest that the competition for liquidity provision dominates the picking-

o↵ risk channel when asset volatility is low, whereas the e↵ects associated with picking-o↵

risk channel dominate the e↵ects associated with competition for liquidity provision channel

when asset volatility is high.

Finally, in Panel C, we report the time to execution of limit orders in aggregate and for

each agent type. We define time to execution as the di↵erence between the time an order

executes and the market entry time of the agent. The time to execution of agents with

private value ↵ = 0 decreases from 14.9 units in a consolidated market to 11.5 units in a

fragmented market when volatility is low because the need to reprice existing limit orders is

reduced when queues are shorter and trader competition is lower. The di↵erence is even more

significant in a high-volatility scenario, where it decreases from 23.8 units in a consolidated

market to 12.1 units in a fragmented market. For agents with private value ↵ 6= 0, there is

little di↵erence in the time to execution between the consolidated and fragmented market

settings under both volatility scenarios. Specifically, for the agents with |↵| = 4, time to

execution in consolidated (fragmented) markets is 3.5 (3.7) units in the low volatility setting

and 2.9 (3.7) units in the high volatility setting. For the agents with |↵| = 8, time to

execution in consolidated (fragmented) markets is 2.1 (1.9) units in the low volatility setting

and 1.2 (1.7) units in the high volatility setting.

When we compare the two volatility scenarios, the time to execution for agents with

↵ = 0 (↵ 6= 0) is lower in the low (high) volatility setting. This relates directly to the results

in Panel A discussed above. In the high volatility scenario, intermediaries drastically reduce
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the frequency with which they provide liquidity. When they do submit limit orders, they

quote very wide prices leading to an increase in the time to execution. The opposite holds

for agents with ↵ 6= 0. They provide liquidity in the high volatility setting at attractive

prices leading to a lower time to execution.

3.2 Impact on Quoted and E↵ective Spreads

We compute time-weighted quoted bid-ask spreads based on local and inside quotes, where

the former comprise the bid and ask prices in one of the two markets, whereas the latter

comprise the highest bid and the lowest ask across the two limit order books. The two

versions are obviously identical in a single-market setting. Di↵erences in quoted spreads

do not necessarily translate into commensurate di↵erences in transaction costs for traders

submitting market orders. Thus, we next compare the mean e↵ective spread in the single

and fragmented markets, which captures the actual transaction costs incurred by traders

submitting market orders. We calculate the e↵ective spread as follows:

e↵ective spread = 2xt(pt �mt)/mt, (3)

where xt is +1 for a buyer-initiated order and �1 for a seller-initiated order, pt is the

transaction price, and mt is the mid-quote immediately before the transaction. Table 2

reports the results.

Insert Table 2 about here

As expected, there is a direct relationship between asset volatility and bid-ask spreads

(as in Stoll, 2000). Quoted bid-ask spreads are higher by approximately a factor of three

(two) in a consolidated (fragmented) market in the high-volatility setting. This relationship

also holds for e↵ective spreads, though the di↵erences between consolidated and fragmented

markets are smaller in magnitude.
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We also observe that, in the low volatility setting, local and inside quoted bid-ask spreads

are higher in fragmented markets by 1.06 and 0.36 ticks, respectively. However, when asset

volatility is high, local and inside quoted bid-ask spreads are lower by 0.2 and 1.47 ticks,

respectively, in fragmented markets. The same relationship also holds for e↵ective spreads.

In fragmented markets combined with low (high) picking-o↵ risk, the local and inside e↵ective

spreads are 1.89 ticks and 1.57 ticks (3.53 ticks and 2.89 ticks), respectively, whereas the

corresponding numbers in consolidated markets are lower (higher) at 1.34 ticks (3.58 ticks).

In our model, fragmentation reduces price competition because agents can gain priority

by jumping the queue (with probability 1/2, as liquidity takers are indi↵erent between taking

liquidity on either of the two order books) and entering orders in the second order book,

thereby inducing an increase in the bid-ask spread. At the same time, fragmentation reduces

the picking-o↵ risk, since the probability that an order will be picked o↵ is lower in the

presence of a second limit order book, resulting in a lower bid-ask spread. As described in

subsection 3.1, the level of asset volatility directly influences the relative importance of the

competition for liquidity provision and the adverse selection channels. The former is more

important when asset volatility is low, whereas the latter is more important when asset

volatility is high. As a result, higher (lower) asset volatility is associated with lower (higher)

bid-ask spreads in fragmented markets. In this sense, our model can potentially explain the

mixed findings in the empirical literature regarding the relationship between liquidity and

fragmentation. For example, O’Hara and Ye (2011) find that fragmentation is associated

with lower e↵ective spreads for small-cap (or high-volatility) stocks in the US. In Section 4,

we further test this model implication by examining the relationship between fragmentation

and liquidity for di↵erent levels of volatility for European stocks.

3.3 Welfare Analysis

We next analyze the economic benefits per agent and for the whole market by examining

the e↵ect of fragmentation on welfare in the high- and low-volatility scenarios. Welfare is
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measured as the average realized payo↵ per agent. In addition, we decompose the realized

payo↵s into gains and losses associated with agents’ private values and the trading process.

Suppose that an agent with a private value ↵ enters the market at time t. She submits

an order (a limit order or a market order) to any of the books at price p̃, with order direction

x̃ (to buy or to sell). Suppose further that the agent does not modify the order and that it

is finally executed at time t
0 when the fundamental value is v

t
0 . The agent’s realized payo↵

is then given by

⇧ = e
�⇢

⇣
t
0�t

⌘

(↵ + v
t
0 � p̃) x̃. (4)

We can decompose the agents’ payo↵s and rewrite Equation (4) as

⇧ = gains from private value+ waiting cost +money transfer, where

gains from private value =↵x̃

waiting cost =(e�⇢(t0�t) � 1)↵x̃

money transfer =e
�⇢(t0�t)(vt0 � p̃)x̃

(5)

The first term in (5), gains from private value, represents the gains obtained directly from

the intrinsic reasons for trading the asset, ↵x̃. The second term in Equation (5), waiting

cost, reflects the cost associated with delaying the realization of the gains from private value.

Agents submitting limit orders do not trade immediately after arriving, but have to wait

until the orders are executed. This is costly, due to the delay cost ⇢. The third term in

Equation (5), money transfer, reflects the di↵erence between the fundamental value vt0 and

the transaction price p̃, discounted back to the arrival time of the agent, which represents

the welfare gain (or loss) associated with the trading process. In general, money transfer

is related to the immediacy cost incurred when an agent wants to realize her private value

immediately. For example, an agent who submits a market order realizes her intrinsic private

value without a delay, but she may have to pay a price for demanding immediacy, which
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would be reflected in a negative value of money transfer. Alternatively, an agent submitting

a limit order earns the half bid-ask spread but may generate negative money transfer gains

if her order is picked o↵.

Insert Table 3 about here

Table 3 presents the results. When volatility is high, aggregate welfare is higher in

a fragmented market (3.662 ticks vs. 3.652 ticks), while when volatility is low, aggregate

welfare is lower in a fragmented market (3.740 ticks vs. 3.745 ticks). This result complements

our previous finding; when the adverse selection e↵ect dominates the competition for liquidity

provision e↵ect, fragmented markets are beneficial in terms of liquidity and, consequently,

aggregate welfare is higher. Conversely, when the competition for liquidity provision e↵ect

is more relevant, liquidity is reduced in a fragmented market and aggregate welfare is also

lower.

In addition, we find that the welfare shifts among the three categories of agents are sub-

stantial. Agents with no intrinsic motives for trading (i.e., ↵ = 0) generate larger payo↵s in

fragmented markets in the low volatility setting (0.54 ticks vs. 0.63 ticks when volatility is

low). Their payo↵s are even larger in fragmented markets combined with the high-volatility

setting (0.61 ticks vs. 0.82 ticks). The di↵erence between the single and fragmented markets

arises for three reasons. First, there is less limit order price competition in a fragmented

market because time priority does not apply across order books; second, the risk of being

picked o↵ is reduced in a fragmented market; third, intermediaries’ expected time to exe-

cution in a fragmented market is lower than in a consolidated market, which reduces the

delay-cost component of their welfare.

Fragmentation has detrimental e↵ects in terms of expected payo↵s for agents with |↵| = 4

and |↵| = 8, for both levels of picking-o↵ risk. In terms of the absolute waiting cost, they do

not exhibit any significant di↵erence between the single and fragmented settings. However,

the negative welfare e↵ects are generated due to higher money transfer losses. The underlying
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reasons for these money transfer losses depend on the composition of limit versus market

orders used by these agents in the two volatility scenarios. In the low volatility setting, the

higher fraction of market orders used by agents with |↵| = 8 combined with lower price

competition leads to higher immediacy costs in fragmented markets. The same mechanism

also works in the high volatility setting for |↵| = 8 traders but the higher bid-ask spreads

due to higher picking-o↵ risk lead to substantially higher money transfer losses. In the single

market setting combined with high asset volatility, these same agents predominantly use limit

orders and earn the bid-ask spread, but are adversely selected by |↵| = 0 traders leading to

money transfer losses. Nevertheless, they are still better o↵ compared to the multi-market

setting with high asset volatility.8

In conclusion, fragmentation induces a shift in trading gains away from agents with

intrinsic motives to trade and towards intermediaries without a commensurate increase in

total welfare. This indicates that costly investments in intermediation capacities such as

colocation charges, subscriptions to data feeds, and investments in high-speed networks are

socially wasteful. These investments are outside the scope of our model but in reality are

endogenously determined by investors. In a computationally simpler alternative, we double

the population of agents with ↵ = 0 in a multi-market setting combined with low asset

volatility to mimic the increased participation by intermediaries resulting from their high

profitability in fragmented markets. These results further confirm that intermediaries’ entry

reduces welfare of agents with private reasons to trade. The trading gains of intermediaries

as a group are higher, even though individually they extract lower welfare.9,10

8Note that, in Table 3, the total money transfers do not add up to zero, as the expected payo↵ in a single
transaction of the limit order and corresponding market order is discounted back to di↵erent times. This
is due to the asynchronous arrivals of the agents who submit these two orders. However, the instantaneous
money transfer before it is discounted back, is equal to zero.

9The welfare decomposition results under this parameterization are reported in Appendix Table A2.
10In Appendix B, consistent with this alternative parameter choice, the population of agents with ↵ = 0

is higher for the two FTSE-100 stocks trading on the LSE.

21



4. Empirical Application

In this section, we empirically analyze the main implications relating the impact of fragmen-

tation on liquidity generated by our model. The goal is to demonstrate equilibrium outcomes

rather than causally identifying e↵ects of any exogenous variation of one of the variables.

Our data comprise the constituents of the French and German large and mid-cap indices

(CAC40, Next20, DAX, MDAX). After removing the smallest MDAX stocks to get a sample

that is balanced across the two countries and eliminating stocks with incomplete data, we

obtain a sample of 111 stocks. We employ high-frequency data from EUROFIDAI BEDOFIH

for Euronext Paris, Deutsche Börse, and Chi-X. Euronext Paris and Deutsche Börse are the

main listing exchanges for French and German firms, respectively. Chi-X established itself

as the largest competitor to the incumbent exchanges subsequent to the implementation

of the Markets in Financial Instruments Directive (MiFID) in 2007 which eliminated all

rules prohibiting trading outside the national markets in the European Union.11 Our data

contains all lit order messages, allowing us to also accurately sign and match trades to the

prevailing aggregate order book.12 Furthermore, compared to some other commonly used

high-frequency databases, our data have the advantage of containing accurate exchange time-

stamps, which is important when consolidating limit order books to obtain the best prices

across multiple venues. We use data from the continuous trading session from 9:00 to 17:30

CET for each day. In other words, our data begins immediately after the opening auction

clears, ends immediately before the closing auction starts, and also excludes the period of the

mid-day call auction that takes place for German stocks. Our sample period comprises the

second half of 2012. To the best of our knowledge, none of the three exchanges implemented

any changes to their market structures during this period.13 Hence, our analysis can be

11Chi-X is operated by Cboe today.
12We do not use data from other smaller lit trading venues or o↵-exchange trading, for which equally

precise data is unavailable. However, the trading activity contained in our data comprise the large majority
of lit trading for the stocks contained in our sample.

13In October 2012, a commercial microwave link between Frankfurt and London became operational.
Our results remain unchanged after controlling for this. Sagade et al. (2019) analyse the market quality
implications of this event.
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interpreted as what happens when exchange competition remains unchanged.

4.1 Empirical Approach

Our theoretical findings indicate that fragmentation has beneficial e↵ects on the quoted

and e↵ective bid-ask spread when volatility is high, whereas the e↵ect is the opposite when

volatility is low. Therefore, we empirically examine the impact of fragmentation on these

two spreads measures while conditioning on di↵erent levels of asset volatility.

To this end, we compute the quoted bid-ask spread for each stock i on day t (Quotedi,t) as

the time-weighted di↵erence between the best ask and bid prices divided by their midpoint,

and express it in basis points. We compute this measure both for the consolidated order

book, i.e., using the best prices across both LOBs, and locally, i.e., considering only the

best bid and ask prices on one order book. We also compute e↵ective spreads (E↵ectivei,t)

as two times the di↵erence between the trade price and the prevailing midpoint time the

trade indicator variable and aggregate the observations by value-weighting across all trades

executed during the day t, also expressed in basis points. E↵ective spreads are also computed

both with respect to the inside midpoint and the local midpoint.

To measure the level of fragmentation (Fragmentationi,t), we follow previous literature

(e.g., Degryse et al., 2015; Haslag and Ringgenberg, 2016) and first compute the Herfindahl-

Hirschman Index of traded volumes for every stock i and day t (HHIi,t) across the two

exchanges. As HHI measures the concentration of trading, we define Fragmentationi,t as one

minus HHIi,t. Specifically, we compute the measure as follows:

Fragmenation
i,t

= 1�
X

k

s
2
i,k,t

, (6)

where s
2
i,k,t

is the share of the total trades of stock i in venue k at time t.

We also estimate volatility as the standard deviation of one-second mid-quote returns,

denoted by �i,t, for each stock i and day t. To eliminate the e↵ects of any other stock
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characteristics, we consider the variation of volatility over time within each stock rather than

across stocks. We do so by creating five dummy variables that indicate the five volatility

quintiles of a stock on each day:

Volatility j-th quintile x i, t =

8
><

>:

1 if �i,t is between the 20 x (j-1)% and 20 x j% percentiles

0 otherwise.
(7)

Finally, we include the natural logarithm of the stock’s trading euro volume across the

two exchanges (Volumei,t), as an additional explanatory variable, which proxies for variations

in the arrival rate of traders.14

We estimate panel regressions where we regress the liquidity measures LIQ, the quoted

bid-ask spread and the e↵ective spread, on the level of fragmentation, volatility quintile

dummies, the interaction between fragmentation and the volatility dummies, and the trading

volume, as follows:

LIQ
i,t

= ↵ + � Fragmentation
i,t
+

j=5X

j=1,j 6=3

�j Volatility j-th quintile
i,t

+
j=5X

j=1,j 6=3

�jFragmentation
i,t
⇥ Volatility j-th quintile

i,t

+ ⌫i

⇥
+ ⌘t

⇤
+ "i,t+1 (8)

where ⌫i and ⌘t denote the stock and day fixed e↵ects, respectively. To avoid multicollinearity,

we exclude the dummy variable for the middle quintile. All estimations include stock-fixed

e↵ects to control for unobserved heterogeneity across stocks whereas we estimate models

both with and without time-fixed e↵ects, the latter because time-fixed e↵ects remove much

of the variation in volatility. We cluster standard errors by both stock and day.

We estimate all models both for local liquidity measures on the primary listing exchange

(Euronext Paris or Deutsche Börse), which is empirically the larger of the two exchanges

under consideration for each stock, and for inside liquidity measures, i.e., considering the

14The exclusion of trading volume from the regressions does not qualitatively a↵ect the results.
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highest bid and lowest ask prices across the primary listing exchange and Chi-X.

4.2 Empirical Results

Table 4 shows the results for the panel regression introduced in (8) for the local liquidity

measures. We examine how fragmentation a↵ects the quoted bid-ask spread and the e↵ective

spread for di↵erent levels of volatility.

Insert Table 4 about here

Our empirical results reveal that, unconditionally, fragmentation does not significantly

a↵ect either the bid-ask spread or the e↵ective spread. We find that volatility increases

quoted and e↵ective spreads, consistent with the theoretical prediction that the increased

exposure to adverse selection in high-volatility states leads to wider spreads. In particular,

quoted bid-ask spreads monotonically increase with the volatility quintiles and the di↵erence

between the coe�cients for the most and least volatile quintiles suggests that bid-ask spreads

are higher by, dependent on the regression specification, between 3.5 and 4 basis points for

a stock on its most volatile quintile of trading days compared to its least volatile quintile of

trading days. The e↵ects for e↵ective bid-ask spreads are similar, with di↵erences between

the most and least volatile trading days of between 4.2 and 4.5 basis points. These e↵ects

are economically large compared to average quoted bid-ask spreads of 7.3 basis points and

average e↵ective bid-ask spreads of 6.2 basis points in our sample (untabulated).

Most importantly, we find that fragmentation has a varying impact on the spread, de-

pending on the level of asset volatility. Specifically, the coe�cient of the interaction term

between fragmentation and the volatility dummies is positive (negative) for low (high) levels

of volatility. The tests for equality of the coe�cients for the first and fifth quintiles, shown at

the bottom of the table, show that the di↵erences are statistically significant. Note that the

results do not suggest that more fragmented stocks become more liquid as volatility rises,

25



as the variation in fragmentation is not that large, but instead they show that fragmented

markets compare more favorably to consolidated markets when volatility is high compared

to when it is low.

Insert Table 5 about here

Table 5 reports the analogous results for the inside liquidity measures. Fragmentation

here is unconditionally associated with smaller quoted and e↵ective spreads. The fact that

this result di↵ers from our model predictions is not surprising: it can be explained by the

fact that our empirical data features competing trading venues, whereas the venues in the

model are identical. The theoretical prediction also di↵ers, not surprisingly, from papers

studying the causal e↵ect of fragmentation resulting from exchange competition (O’Hara

and Ye (2011) and Haslag and Ringgenberg (2016)). It has been argued in the literature

that fragmentation can be positive for liquidity since it increases competition in exchanges,

which reduces trading costs (Rust and Hall (2003)). In our theoretical model, we keep

exchange competition constant, and focus on two other e↵ects that influence the e↵ect of

fragmentation.15 The results for the e↵ect of volatility on inside liquidity are similar to those

observed for local liquidity. Quoted (E↵ective) spreads are between 2.7 (3.4) basis points

and 3.2 (3.7) basis points larger when stocks are most versus least volatile, which is large

compared to average inside quoted (e↵ective) spreads of 6.4 (3.7) basis points in our sample.

The results for the interaction e↵ect between volatility and fragmentation are also similar

to those for local liquidity measures. In each model, higher fragmentation is associated

with lower spreads on volatile days compared to low-volatility days, and the di↵erence is

statistically significant.

These findings provide empirical support for our main theoretical implications concerning

15An earlier version of this paper considered an empirical analysis of Euronext merging order books for
stocks that had listings on more than one of the Euronext constituent exchanges. That event did not feature
a change in competition between exchanges and the results were consistent with the idea that fragmentation
harms liquidity. We have removed that application from this paper for reasons of its small sample size and
thus limited statistical power.

26



the impact of fragmentation on liquidity. The e↵ect of fragmentation is heterogeneous and

greatly depends on the level of picking-o↵ risk resulting from the volatility of the stock’s

value. High picking-o↵ risk can exceed the e↵ect of price competition, and agents respond by

submitting less aggressive orders. As fragmented markets provide greater protection against

adverse selection, agents are able to submit more aggressive orders in a fragmented market

than in a single market, leading to a reduction in the bid-ask spread. On the other hand, if

we only consider the e↵ect of traders’ competition, fragmentation will lead to an increase in

the bid-ask spread since more fragmented markets lead to reduced price competition. Hence,

when the level of picking-o↵ risk is low, the competition for liquidity provision e↵ect becomes

stronger, leading to an increase in the bid-ask spread in fragmented markets.

5. Conclusion

We model a fragmented market for an asset that trades in two limit order books populated by

heterogeneous agents who endogenously choose to supply or consume liquidity, and compare

the results with a single-market setting. Two channels – competition for liquidity provision

and adverse selection – drive the results. As time priority is not enforced across markets,

fragmentation leads to reduced price competition between intermediaries. At the same time,

fragmentation provides better protection from adverse selection risk for limit orders, as

incoming arbitrageurs can choose to trade against mispriced orders in either of the two order

books.

The former e↵ect dominates when asset volatility is low, whereas the latter e↵ect domi-

nates when asset volatility is high. Hence, market fragmentation can be beneficial or harmful

for market liquidity depending on the level of asset volatility. These heterogeneous liquidity

e↵ects associated with market fragmentation also a↵ect total welfare in our model: a con-

solidated (fragmented) market is associated with higher total welfare when asset volatility is

low (high). However, in both volatility settings, the distribution of welfare across the hetero-

geneous agent types di↵ers markedly across consolidated and fragmented markets. Agents
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with intrinsic trading motives extract lower payo↵s in fragmented markets whereas agents

acting as intermediaries are better o↵ in fragmented markets.

Our central theoretical prediction concerning the relationship between market fragmen-

tation and liquidity can potentially reconcile the di↵erences in the empirical literature. We

also provide empirical support for this prediction by investigating the relationship between

liquidity and fragmentation for French and German stocks in the second half of 2012.

Overall our results suggest that the positive e↵ects of consolidating order flow in a single

(or fewer) location(s) still exist even in modern electronic limit order markets where the

activities of high-frequency traders serve to integrate fragmented order books. The adverse

e↵ects of fragmentation are borne by investors who trade for intrinsic trading motives. Our

results also have important policy implications. Regulators may be able to improve the

welfare of investors who trade for intrinsic motives by: (i) preventing individual market

operators from keeping an artificially high(er) level of order flow fragmentation in the absence

of commensurate benefits; and (ii) limiting excessive investment in intermediation capacities

necessary to link multiple order books which come at a cost to end investors.
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A. Pakes and McGuire Algorithm

In this appendix we describe the implementation details associated with the Pakes and

McGuire (2001) algorithm and some additional steps taken to reduce the state-space of

our model. In order to reduce the dimensionality of the state space, we center each limit

order book at the contemporaneous fundamental value of the asset, i.e., by setting p
0
m
= vt.

Suppose, at time t = 0, the fundamental value is v0, but after a period ⌧ the fundamental

value has experienced some innovations and is now v⌧ , with v⌧�v0 = qd, where q is a positive

or negative integer. In this case, we shift both books by q ticks to center them at the new

level of the fundamental value v⌧ . Thus, we move the queues of existing limit orders in both

books to take the relative di↵erence with respect to the new fundamental value into account.

This implies that the prices of all orders are always relative to the current fundamental value

of the asset and agents always make decisions in terms of prices relative to the fundamental

value.

A.1 The updating process to reach the equilibrium

For any state s of the economy, there is a set of possible actions, ⇥(s), that a trader can

take. Suppose that a given trader arrives for the first time or re-enters the market at time

t and observes the state s. In our model setup, the trader has beliefs about the expected

payo↵ of each possible action that could be taken given the observed state s. Suppose that

Ut(ã|s) is the expected payo↵ at time t that is associated with the action ã 2 ⇥(s). Suppose

that the trader decides at time t to take the optimal action ã
⇤ that provides the maximum

expected payo↵ out of all possible actions. As a first case, suppose that the optimal action

ã
⇤ is not a market order (e.g. a limit order, or a cancellation and resubmission). Later on, at

time tr the same trader re-enters the market, but the market conditions have changed. The

trader observes a new state str in which she follows the optimal strategy ã
⇤⇤ that also gives

a maximum payo↵ given the new market conditions. Consequently, the original decision
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ã
⇤ induces a realized continuation of optimal actions and expected payo↵s; and thus the

updating process of beliefs can be written as:

Utr(ã
⇤|s) = nã⇤,s

nã⇤,s + 1
Ut(ã

⇤|s) + 1

nã⇤,s + 1
e
�⇢(tr�t)(Utr ã

⇤⇤|str),

where nã⇤,s is a counter that increases by one when the action ã
⇤ is taken in the state s.16

Alternatively, as a second case, suppose that the optimal decision ã
⇤ is a market order

(i.e. there is no future time tr as in the previous case). Then, the updating process of the

expected payo↵ of the optimal action ã
⇤ in this scenario can be expressed as:

Utr(ã
⇤|s) = nã⇤,s

nã⇤,s + 1
Ut(ã

⇤|s) + 1

nã⇤,s + 1
(↵ + vt � p̃)x̃.

Here p̃ is the submission price, ↵ is the private value of the trader, vt is the fundamental

value of the asset, and x̃ is equal to one (minus one) when the trader submits a buy (sell)

order.

As a third case, suppose that the optimal decision ã
⇤ is a limit order; however, later

on at time tr this limit order is executed because another trader submits a market order.

The updating process for the first trader with the optimal action ã
⇤ can be reflected in the

following equation:

Utr(ã
⇤|s) = nã⇤,s

nã⇤,s + 1
Ut(ã

⇤|s) + 1

nã⇤,s + 1
e
�⇢(tr�t)(↵ + vtr � p̃)x̃,

where ↵ is the private value for the first trader. Similarly, for the second trader who submits

the market order that executes the limit order of the first trader, the updating process can

be expressed as:

16The value of nã⇤,s a↵ects how quickly we reach the model equilibrium (a large value in nã⇤,s is associated
with a slow convergence). Therefore, we reset nã⇤,s intermittently to improve the convergence speed.
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Utr(ã
0|str) =

nã0,str

nã0,str + 1
Ut(ã

0|str) +
1

nã0,str + 1
(↵0 + vtr � p̃)x̃,

where ↵0 and ã
0 are the private value and the optimal decision of the second trader, respec-

tively. In this case, ã0 is a market order which is chosen at time tr by the second trader when

the state str is found. In this last case, it is important to observe that any market order

implies the execution of a previously submitted limit order. Thus, in the presence of market

orders the updating process in beliefs always involves two traders: the trader who submits

the market order, and the trader who submitted the limit order which is executed by the

market order.17

A.2 Convergence Criteria

We check for convergence after running the trading game for at least 10 billion trading events.

Subsequently, we check the evolution of agents’ beliefs after every 500 million simulations

for convergence. Let’s assume that the first group of 500 million simulations after we start

checking for convergence finishes at time t1 and the second group of 500 million simulations

finishes at time t2. Let Ut1(ã|s) and Ut2(ã|s) be the expected payo↵s that are associated with

the action ã when the state s is present at times t1 and t2, respectively. In addition, suppose

that kt1,t1
ã,s

is the number of times that the action ã was taken between t1 and t2 when traders

face s. We evaluate the change in the expected value of the expression |Ut2(ã|s)� Ut1(ã|s)|

for all pairs (ã, s) weighted by k
t1,t1
ã,s

after every 500 million simulations. Once this weighted

absolute di↵erence is smaller than 0.01 (which suggests that the model has converged), we

17The initial beliefs about the expected payo↵s U0(ã|s) of the possible actions ã 2 ⇥(s) that a trader can
take given that she faces state s are set as follows. Suppose one of the possible actions for a trader with
private value ↵ in the state s is to submit a limit sell order at price p when the fundamental value is v. We
set the initial expected payo↵ of this action as p � v � ↵ discounted by ⇢ until the expected time that a
new fast trader arrives at the market. This value is only a first approximation since we assume that v is
constant, which is not true in the model, and there is a chance that the next trader may submit another
limit order instead of a market order that executes the limit order of the previous trader. In the case of a
market sell order the expected payo↵ is simply p� v � ↵ without any discount. Similar values are obtained
for buy orders.
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apply two further convergence criteria in line with Pakes and McGuire (2001) and Goettler

et al. (2009).

After reaching a small weighted absolute di↵erence in the change in the expected values

as described in the previous paragraph, we fix the agents’ beliefs concerning the expected

payo↵s, U⇤(·), and simulate the trading game for another 500 million events. Then, we

calculate the realized payo↵s of all order submissions after they have been executed. Let us

denote these realized payo↵s as J̃(·). J̃(·) is a direct measure of realized benefits to trade.

First, we require that the correlation between beliefs U
⇤(·) and realized outcomes J̃(·) is

higher than 0.99. Second, we require that the mean absolute error in beliefs, i.e. the di↵erence

between U
⇤(·) and J̃(·) weighted by the number of times that a specific action is selected in

a given state within the last 500 million simulated events, is less than 0.01 (i.e. in a similar

way to the previous paragraph when we evaluated the change in the expected value between

Ut2(ã|s) and Ut1(ã|s) weighted by k
t1,t1
ã,s

). If any convergence criterion is not reached, we

continue simulating the trading game and updating the beliefs until all convergence criteria

are satisfied.

B. Parameter Benchmarking

In order to ascertain the suitability of our model parameters choices, we employ the Hollifield

et al. (2006) approach for empirically estimating trader arrival rate, asset volatility, and

private value distributions in limit order markets for two FTSE-100 stocks listed on the

London Stock Exchange (LSE): Vodafone (VOD) and Hargreaves Lansdown (HRGV). The

two stocks belong to the largest and smallest market value quartile of the FTSE-100 index,

respectively. We use message-level data from LSE’s rebuild order book service for the month

of January 2015. The data contains a record of the submission, cancellation, and execution

of each visible order submitted to the LSE. Each message is time-stamped to the millisecond.
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Hollifield et al. (2006) model traders’ order submission decisions in limit order markets as

a function of their private valuations, expected execution probabilities and picking-o↵ risk,

and market conditions. They employ a two-step process to compute the model parameters.

In the first step, they estimate the execution probabilities and picking-o↵ risk of di↵erent

orders as a function of variables capturing the state of the limit order book, past order

submission activity, order characteristics, and market conditions. In the second step, they

use the execution probabilities and picking-o↵ risk to estimate the trader arrival rates, private

value distributions, and execution costs using maximum likelihood estimation.

Hollifield et al. (2006) estimate the gains from trade using this approach using data

from the Vancouver Stock Exchange – primarily a venture capital exchange – for the period

between May 1990 and November 1993. Due to di↵erences in the specific markets, data, and

time periods analyzed, we deviate from their approach in the following ways:

1. We identify all unexecuted immediate-or-cancel and fill-or-kill limit orders as those

that have the same order submission and order cancellation timestamp and exclude

them from our analysis.

2. We exclude multi-day orders from our analysis.

3. For computational reasons, we estimate the parameters independently for each day of

our sample. Consequently, we exclude the exogenous variables used by Hollifield et al.

(2006) as these are only updated on a daily basis.

4. While estimating the conditional distributions of time to execution and time to can-

cellation, we treat all limit orders that survive longer than two hours as censored

observations. The corresponding number in Hollifield et al. (2006) is two days.

5. Similarly, we compute the probability of execution within two hours instead of two

days for each limit order type.

6. We set execution costs to zero.
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7. We exclude all opening, closing, intraday, and volatility auctions from our analysis and

focus only on the continuous trading session.

Besides these deviations, we exactly follow the Hollifield et al. (2006) two-step estimation

approach. We do not compute individual and market-wide trading gains, as our focus is in

identifying the optimized model parameters. Specifically, we compute the trader arrival rate

�, fundamental volatility �v, and private value distribution F↵.

We start by calibrating the speed of time clock update. In our model, this value is

linked with the trader arrival rate for the asset. The fundamental value volatility and

traders’ reentry rate are further determined relative to this trader arrival rate. Goettler

et al. (2009), based on data from Hollifield et al. (2006), use a time clock update frequency

of approximately one minute and link this rate to the daily number of trades. We rely on the

same intuition, but instead use the daily number of trades to compute the new trader arrival

rate in seconds. In our model – similar to Goettler et al. (2005, 2009) – all traders remains

part of the trading game until their orders are executed. Hence the number of trades acts as

a proxy for the number of new trader arrivals. We compute the average time clock speed,

ClockSpeedt on day t as:

ClockSpeedt =
8.5⇥ 3600

2⇥No. Of Tradest
(9)

where the numerator corresponds to the number of seconds in a trading day. We multiply

the number of trades in the denominator by 2 as each trade involves an aggressive order

trading against a passive order sitting in the limit order book.

The intensity of the Poisson process governing the change in fundamental value �v cor-

responds to the number of time units, after which the fundamental value v changes by one

tick. This translates to return volatility on day t denoted by:

V olatilityt =

r
8.5⇥ 3600

ClockSpeedt ⇥ k
⇥Rel. T ick Sizet (10)
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where k denotes the frequency with which the fundamental value changes. k = 8 (k = 1.6)

in the low (high) volatility setting i.e., the fundamental value changes after every eight (four)

trader arrivals. We compare this with the standard deviation of realized one-minute returns

on day t.

In our model, the distribution of private values F↵ is discrete. However, Hollifield et al.

(2006) parameterize the agents’ private values as a mixture of two normal distributions with

standard deviation denoted by �1 and �2, and their corresponding weights denoted by ⇢ and

(1� ⇢), respectively. Specifically, the private value distribution F↵ is parameterized as:

F↵ = ⇢

✓
↵

yt�1

◆
+ (1� ⇢)

✓
↵

yt�2

◆
(11)

where yt is the common value of the stock on day t proxied by the opening price. We assign

the probability mass for all private values in the interval [�1,�6], [�6,�2], [�2, 2], [2, 6],

and [6,1], respectively to the five discrete values of ↵ 2 {�8,�4, 0, 4, 8} in our model.

Insert Table A1 about here

Table A1 contains the parameter values. Consistent with VOD and HRGV belonging

to largest and smallest market value quartile of the FTSE-100 index, the former has a

lower time between trader arrivals and lower volatility as compared to the latter. For VOD

(HRGV), the average time between new trader arrivals �t is 1.3 (7.7) seconds. Based on these

estimates, we obtain average low (high) intraday volatility estimates of 1.2% (2.7%) for VOD

and 1.4% (3.2%) for HRGV.18 These estimates are comparable to realized intraday volatility

of 1.4% for VOD and 1.8% for HRGV and suggest that our arrival rate and fundamental

value volatility scale reasonably well under the assumption of a unit of time in our model

being equivalent to few seconds in calendar time. This is consistent with an increase in

trading speed due to widespread electronification, investments in technology by exchanges

18These estimates are based on the actual value of one tick, which is approximately 2bps for VOD and
6bps for HRGV.
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and market participants, and use of algorithmic trading in global equity markets. Finally,

the fraction of traders with absolute private value |↵| = 8, |↵| = 4, and |↵| = 0 is respectively

equal to 24%, 42%, and 34% for VOD, and 14%, 38%, and 48% for HRGV. On the one hand,

in our parameter set, traders with |↵| = 8 (|↵| = 0) have a higher (lower) weight as compared

to the corresponding fractions for VOD and HRGV. On the other hand, our chosen value for

traders with |↵| = 4 is close the corresponding values for VOD and HRGV. In conclusion,

our chosen parameters seem largely comparable to modern electronic equity exchanges such

as the LSE.
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Table 4. Panel Regressions of Local Liquidity on Fragmentation and Volatility
This table presents the results of panel regressions of relative quoted and e↵ected local spreads
on the listing exchange for the sample of French and German stocks. Fragmentation is 1 minus
the Herfindahl-Hirschman Index of trading volumes on the listing exchange and Chi-X. V olatility
quintiles are computed within stock. V olume(log) is the natural logarithm of the euro trading
volume. All regressions include stock-fixed e↵ects and the first four models also include day-fixed
e↵ects. We double cluster standard errors by stock and day. *, **, *** denote significance at 10%,
5%, and 1%, respectively.

(1) (2) (3) (4)
Quoted E↵ective Quoted E↵ective

Fragmentation 1.310 0.067 1.722 0.489
(0.74) (0.05) (1.05) (0.36)

Volatility 1st quintile -1.854*** -1.632*** -1.516*** -1.658***
(-3.12) (-2.79) (-2.69) (-3.01)

Volatility 2nd quintile -0.759*** -0.133 -0.666** -0.142
(-2.99) (-0.43) (-2.52) (-0.45)

Volatility 4th quintile 0.644 1.252** 0.627 1.183**
(0.99) (2.28) (1.05) (2.40)

Volatility 5th quintile 2.124** 2.870*** 1.967** 2.577***
(2.47) (3.59) (2.33) (3.44)

Volatility 1st quintile x Fragmentation 2.207 2.327* 2.423* 2.757**
(1.62) (1.75) (1.84) (2.20)

Volatility 2nd quintile x Fragmentation 0.928* -0.284 1.048* -0.153
(1.69) (-0.41) (1.80) (-0.22)

Volatility 4th quintile x Fragmentation -0.925 -2.635** -1.108 -2.565**
(-0.64) (-2.11) (-0.84) (-2.32)

Volatility 5th quintile x Fragmentation -3.259* -5.511*** -3.701* -5.211***
(-1.68) (-2.96) (-1.96) (-3.05)

Volume (log) -1.306*** -0.321** -1.453*** -0.219
(-7.77) (-2.10) (-8.15) (-1.16)

Constant 29.105*** 11.645*** 31.441*** 9.737***
(10.80) (4.36) (11.09) (2.88)

Vola 5 x Frag – Vola 1 x Frag -5.466 -7.838 -6.124 -7.968
p-value 0.016 <0.001 0.009 <0.001

Stock FE Yes Yes Yes Yes
Day FE No No Yes Yes
Observations 14097 14097 14097 14097
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Table 5. Panel Regressions of Inside Liquidity on Fragmentation and Volatility
This table presents the results of panel regressions of relative quoted and e↵ected inside spreads for
the sample of French and German stocks. Fragmentation is 1 minus the Herfindahl-Hirschman
Index of trading volumes on the listing exchange and Chi-X. V olatility quintiles are computed
within stock. V olume(log) is the natural logarithm of the euro trading volume. All regressions
include stock-fixed e↵ects and the first four models also include day-fixed e↵ects. We double cluster
standard errors by stock and day. *, **, *** denote significance at 10%, 5%, and 1%, respectively.

(1) (2) (3) (4)
Quoted E↵ective Quoted E↵ective

Fragmentation -2.505** -4.860*** -1.983** -4.363***
(-2.39) (-4.64) (-2.13) (-4.20)

Volatility 1st quintile -1.816*** -2.089*** -1.560*** -2.095***
(-3.57) (-3.51) (-3.14) (-3.57)

Volatility 2nd quintile -0.994** -1.472*** -0.918** -1.475***
(-2.59) (-2.78) (-2.45) (-2.65)

Volatility 4th quintile 0.125 -0.114 0.145 -0.149
(0.70) (-0.41) (0.84) (-0.48)

Volatility 5th quintile 1.408*** 1.598*** 1.207** 1.342**
(3.05) (3.02) (2.56) (2.54)

Volatility 1st quintile x Fragmentation 2.502** 3.715*** 2.755** 4.021***
(2.20) (2.73) (2.42) (3.02)

Volatility 2nd quintile x Fragmentation 1.657* 2.966** 1.769** 3.068**
(1.87) (2.43) (2.02) (2.40)

Volatility 4th quintile x Fragmentation 0.163 0.508 -0.057 0.514
(0.35) (0.72) (-0.13) (0.67)

Volatility 5th quintile x Fragmentation -1.894* -2.831** -2.080* -2.551**
(-1.80) (-2.24) (-1.96) (-2.04)

Volume (log) -1.132*** -0.310** -1.254*** -0.231
(-7.69) (-2.34) (-8.32) (-1.39)

Constant 26.765*** 12.600*** 28.616*** 11.051***
(10.64) (5.21) (11.26) (3.71)

Vola 5 x Frag – Vola 1 x Frag -4.396 -6.546 -4.836 -6.571
p-value 0.022 0.001 0.010 0.001

Stock FE Yes Yes Yes Yes
Day FE No No Yes Yes
Observations 14097 14097 14097 14097
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Table A1. Calibrated Model Parameters
This table presents the model parameters calibrated using message-level data for two FTSE-100
stocks from the London Stock Exchange. We report mean values of all parameters for the 21 trading
days of January-2015. Trades Count is the number of transactions during the daily continuous
trading session. ClockSpeedt is the number of seconds between two trader arrivals. Relative Tick
Size is the ratio of one tick (in GBp) and the daily opening price. Low (High) volatility �L

t (�H
t ) is

the average daily volatility assuming a change in the fundamental value, on average, after every 8
(1.6) trader arrivals. Empirical volatility is the daily volatility computed based on 1-minute returns.
F|↵|=8, F|↵|=4, F↵=0 is the fraction of traders with |↵| = 8, |↵| = 4, ↵ = 0, respectively. We report
the mean values for all parameters across the 21 trading days in January 2015.

VOD HRGV

Trade Count 12,156 2,149
ClockSpeedt in seconds 1.3 7.7
Relative Tick Size 2bps 6bps
Low Volatility (V olatility

L

t
) 1.2% 1.4%

High Volatility (V olatility
H

t
) 2.7% 3.2%

Empirical Volatility 1.4% 1.8%
F|↵|=8 24% 14%
F|↵|=4 42% 38%
F↵=0 34% 48%
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