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Abstract

In empirical macroeconomics, proxy structural vector autoregressive models (SVARs)
have become a prominent path towards detecting monetary policy (MP) shocks. How-
ever, in practice, the merits of proxy SVARs depend on the relevance and exogeneity
of the instrumental information employed. Our Monte Carlo analysis sheds light on
the performance of proxy SVARs under realistic scenarios of low relative signal strength
attached to MP shocks and alternative assumptions on instrument accuracy. In an em-
pirical application with US data we argue in favor of the specific informational content
of instruments based on the dynamic stochastic general equilibrium model of Smets and
Wouters (2007). A joint assessment of the benchmark proxy SVAR and the outcomes of
a structural covariance change model imply that from 1973 until 1979 monetary policy
contributed on average between 2.2 and 2.4 units of inflation in the GDP deflator. For the
so-called Volcker disinflation starting in 1979Q4, the benchmark structural model shows
that the Fed’s policy measures e�ectively reduced the GDP deflator within three years
(i.e. by -3.06 units until 1982Q3). While the empirical analysis largely conditions on
a small-dimensional trinity SVAR, the benchmark proxy SVAR shocks remain remark-
ably robust within a six-dimensional factor-augmented model comprising rich information
from Michael McCracken’s database (FRED-QD).
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1 Introduction
Various theory- or data-based approaches have been developed to recover the structural form
of vector autoregressive models (VARs, SVARs), which extend beyond the traditional imposi-
tion of short- (Sims 1980) or long-run restrictions (Blanchard and Quah 1989).1 While theory-
based identification through (agnostic) sign restrictions (Faust 1998, Canova and De Nicolo
2002, Uhlig 2005) guarantees economic content of the identified shocks, such approaches
leave no room for the data to object against the structural model, and they risk intermin-
gling model assumptions and conclusions. Unlike theory-based identification, data-based
identification techniques (i.e. identification through heteroskedasticity or independent com-
ponent analysis (ICA); see, e.g. Rigobon 2003, Lanne and Lütkepohl 2008, Lanne et al. 2017,
Gouriéroux et al. 2017) o�er diagnostic tools for testing the otherwise just identifying struc-
tural model specifications. However, data-based identification as such is silent about the
economic interpretation of the resulting structural shocks. Proxy SVARs (Stock and Watson
2012, Mertens and Ravn 2013) develop from an eventual prospect of measuring a shock of
interest directly by means of external information. As long as such instruments are relevant
and valid, proxy SVARs promise to unite the merits of theory- and data-based identification
schemes. On the one hand, the construction of the proxy variable requires economic foun-
dation and theoretical assumptions regarding the orthogonality to other structural shocks.
On the other hand, the relevance of the instrument can be tested and the estimation of the
structural model proceeds under relatively weak assumptions. For instance, regarding mon-
etary policy (MP) analysis, the ‘high-frequency identification’ scheme of Gertler and Karadi
(2015), or narrative evidence as in Romer and Romer (2004) could deliver fruitful external
evidence. It currently seems that proxy SVARs have become the first-choice identification
approach for MP analysis (Christiano et al. 1999, Ramey 2016).2 Unsurprisingly, this has
led to a race for most reliable instruments, whereby today a plethora of potential MP shock
series are available to researchers (Romer and Romer 2004, Gürkaynak et al. 2005, Sims
and Zha 2006, Smets and Wouters 2007, Barakchian and Crowe 2013, Gertler and Karadi
2015, Caldara and Herbst 2019). Against this background, it holds utmost importance for
applied macroeconomists to have a sound understanding of both the relative performance
of specific instruments as well as the merits and perils of proxy SVARs within a space of
alternative or complementary theory- and data-based identification schemes. Following such

1For a comprehensive and up-to-date collection of identification strategies in SVARs, the reader may consult
Kilian and Lütkepohl (2017).

2The appeal of instrument-based identification methods for MP analysis might derive from the coincidence
of two aspects. First, there is ample availability of candidates for shock series, based on the very nature of MP
conduct, i.e. narrative evidence obtained from Federal Open Market Committee (FOMC) meetings (Romer and
Romer 2004), and high-frequency series based on surprise movements surrounding FOMC meetings in federal
funds futures (Gürkaynak et al. 2005, Gertler and Karadi 2015). Second, one might perceive a particularly
pronounced shortcoming of both theory- and data-based identification schemes, which often yield results that
are at odds with basic consensual transmission characteristics (Uhlig 2005, Carlstrom et al. 2009), such as the
occurrence of ‘price’ or ‘output puzzles’ (see Rusnak et al. (2013) for meta evidence on price puzzles).
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a research agenda, Mumtaz et al. (2018) provide a role study for the identification of credit
supply shocks that combines Monte Carlo evidence from several dynamic stochastic general
equilibrium (DSGE) models and delivers an empirical application to US data. In particular,
the authors find that impulse responses obtained from proxy SVARs best match those from
underlying DSGE models, while identification based on heteroskedasticity performs satisfac-
torily under su�ciently strong variance shifts.

The purposes of this study are threefold. Providing a natural complement to Mumtaz et al.
(2018), our first aim is to analyse the relative performance of proxy SVARs in MP analysis
in two important directions that are frequently encountered in practice but only marginally
addressed or neglected in Mumtaz et al. (2018). On the one hand, we provide a perspective on
proxy SVAR identification performance within an extended variety of identification schemes
(sign restrictions, identification through heteroskedasticity or ICA). As such, we intend to
address the relative performance of proxy SVARs under specifications of data generation that
(i) are in line with a stylized three-variable (output, inflation, interest rates) DSGE model
for monetary analysis (Carlstrom et al. 2009, Castelnuovo 2012) and (ii) feature empirical
properties that have attracted the interest of several studies (e.g. breaks in shock volatili-
ties (Sims and Zha 2006, Lanne and Lütkepohl 2008), weak contributions of MP shocks to
overall variance (Paustian 2007, Wolf 2020), non-Gaussian shocks (Gouriéroux et al. 2017)).3

On the other hand, we acknowledge that the core condition of instrument exogeneity rarely
holds in practice in a strict sense.4 Accordingly, we investigate possible consequences (i.e.
misidentifications or puzzles) under realistic scenarios of weak instrumentation or distinct
levels of endogenous shock contamination. As a second purpose - and similar to Miranda-
Agrippino and Rey (2018) (for high-frequency modeling) or Stock and Watson (2012) - this
study aims to conduct a comparative analysis of instrumental information that has been
suggested for MP analysis. In this regard - and extending beyond the reference studies - we
evaluate a variety of available and relevant MP instruments in two directions. On the one
hand, this comparison covers several model characteristics as, e.g. economic labels of iden-
tified shocks, correlations among proxy-identified MP shocks and non-MP shocks retrieved
from theory- or data-based identification, tests on exogeneity à la Podstawski et al. (2018)
or correlations among identified MP shocks. On the other hand, we evaluate the extent to
which alternative MP shocks are in line with prominent narratives put forth by Antolín-Díaz
and Rubio-Ramírez (2018). In this context, we also distinguish the scope of the empirical
SVARs to soundly characterize the structural contributions of MP to the Great Inflation of
the 1970s and the process of disinflation initiated after the appointment of Paul Volcker as

3We are aware of a hand full of related Monte Carlo investigations of identification schemes, albeit (almost)
all of which lack coverage of proxy SVARs, namely e.g. Castelnuovo (2012), Carriero et al. (2015), Herwartz
and Plödt (2016), Lütkepohl and Schlaak (2018), Podstawski et al. (2018) and Herwartz et al. (2019). See
Section 3 for more details.

4For instance, Stock and Watson (2012) show that none of their eighteen instruments considered accords
with the exogeneity assumption. In Mumtaz et al. (2018), one out of two relevant external credit shock series
is subject to contamination with other (non-credit) shocks.
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the new Chairman of the Fed in August 1979. A third purpose of this study emanates from
the observation that direct measures of shocks of interest often lack strict exogeneity. While
unobserved adjustments among variables of interest, omitted variables or instrumental infor-
mation are a pertinent threat for exogeneity irrespective of time resolution, the detection and
procurement of instrument contamination holds particular concern if empirical models build
upon low-frequency information (e.g. quarterly data). On the one hand several directions of
MP analysis are limited to low-frequency models (MP and credit, MP and inequality). On
the other hand, low-frequency data might be subject to latent patterns of temporal aggrega-
tion. Against this background - and similar to Bridge Proxy SVARs (Gazzani and Vicondoa
2019) - the third purpose of this study is to combine insights from proxy SVARs and other
identification schemes. In this regard, our analysis aims to provide both a diagnostic step
towards unraveling endogenous contaminations of MP instruments and an improvement of
relevant MP instruments in terms of ‘model-implied’ exogeneity.

Our Monte Carlo exercises show that data-driven identification techniques promise a most
satisfying performance overall. Proxy SVARs are capable of detecting the true impulse re-
sponses with satisfactory accuracy under reasonable signal-to-noise ratios. Moreover, we
show that the related results of Paustian (2007) and Wolf (2020) carry over to the case of
proxy SVARs conditioning on endogenous instruments, i.e. identifying shocks with relatively
low signal strength su�ers strongly from contaminated external information, and could - for
instance - result in diagnosing marked price puzzles in MP analysis. As it turns out, both
aspects (endogenous instrument contamination and low signal strength) are pertinent for
the identification of MP surprises in the US. Revisiting the informational content of sev-
eral instruments that have been put forth for the analysis of the Fed’s MP, we obtain a
set of three instruments that hold su�cient relevance to identify quarterly MP shocks. The
discussion of instrument exogeneity extends beyond formal testing, and benefits from comple-
menting proxy SVARs with data-based identification and narrative evidence. Conditional on
a trivariate macro-model of output (gap), inflation and the one-year government bond rate,
the innovations to the estimated MP reaction function in the medium-scale DSGE model of
Smets and Wouters (2007) are (i) most suitable for the extraction of MP shocks by means of
proxy SVARs, and (ii) closely related to MP shocks that are derived in a data-based manner
from the supposition of a (co)variance decline that coincides with the Great Moderation. Al-
ternative low-frequency instrumental series (i.e. the Romer and Romer (2004) narrative MP
shock series (RR), and the best-fitting SVAR shock from Sims and Zha (2006) (SZ)) give rise
to sizable price puzzles and fail to explain the important disinflation period starting in late
1979. From an explicit test, we find no evidence that calls into question the fundamentalness
of identified shocks. Moreover, the benchmark proxy MP shocks remain remarkably robust
in information-rich models, i.e. in VARs augmented with (up to three) factors summarizing
more than 200 time series variables drawn from the database of Michael McCracken (FRED-
QD). A joint assessment of the benchmark proxy SVAR and the outcomes of a structural
covariance change model imply that MP was a persistent source of high inflation in the 1970s.
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Specifically, monetary policy contributed on average between 2.2 and 2.4 units of inflation
in the GDP deflator from 1973 to 1979. For the Volcker disinflation starting in 1979Q4, the
benchmark structural model shows that the Fed’s policy measures e�ectively reduced the
GDP deflator within three years (i.e. by -3.06 units until 1982Q3). More prevalent infla-
tionary pressures originated on the supply (marginal deflator increase of +3.56 units) rather
than the demand side (+1.18).

Section 2 provides a brief outline of the SVAR model and the proxy SVARs as an attempt
to solve the identification issue. Section 3 comprises an in-depth Monte Carlo investigation,
while Section 4 discusses the identification of MP shocks and provides a critical assessment
of the informational content of established instrumental variables. Section 5 complements
the structural analysis with narrative analysis largely focusing on the Volcker disinflation,
before Section 6 concludes. The appendices attached to this work collect (i) further details
on theory- and data-based identification schemes (Appendix A), (ii) a sketch of the log-
linearization of the trinity DSGE model that we use for data generation in Monte Carlo
experiments (Appendix B), (iii) simulation results beyond those discussed in the main text
(Appendix C), (iv) detailed information about external MP shock series that we collected
for empirical analysis (Appendix D), and (v) a discussion of informational frictions that are
specific to MP analysis (or forward guidance) and might give rise to instrument contamination
(Appendix E).

2 VAR model and proxy SVARs
This section sketches the identification problem in SVARs, and subsequently outlines proxy
SVAR identification.

2.1 Identification problem
Let yt be a K ◊ 1 vector of observable variables. The VAR model of order p has the reduced
and structural form, respectively:

yt = ‹t + A1yt≠1 + . . . + Apyt≠p + ut (1)

= ‹t + A1yt≠1 + . . . + Apyt≠p + BÁt, t = 1, . . . , T, (2)

where Aj , j = 1, 2, . . . , p are K ◊ K coe�cient matrices, and ‹t is a K ◊ 1 vector of non-
stochastic terms (intercept and deterministic trends). The residual vector ut in the reduced-
form (1) is free from serial correlation with a zero mean and positive definite (non-diagonal)
covariance matrix �u. The structural shocks Át in equation (2) have a diagonal covariance
matrix �Á, and without loss of generality, the structural shocks are often normalized to have
unit variance, such that ut ≥ (0, �u) and Át ≥ (0, IK). For simplicity, we assume that the
process is causal and det A(z) = det

1
IK ≠

qp
j=1 Ajz

j
2

”= 0 for |z| Æ 1. This ensures that
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the process has a Wold moving average (MA) representation, i.e.

yt = µ +
Œÿ

i=0
�iut≠i

= µ +
Œÿ

i=0
�iBÁt≠i = µ +

Œÿ

i=0
�iÁt≠i, (3)

where µ = A(1)≠1
‹, �0 = IK and �i =

qi
j=1 Aj�i≠j with Aj = 0 for j > p. The MA repre-

sentation in (3) holds particular importance for structural impulse response functions (IRFs)
and forecast error variance decompositions. While reduced-form parameters (Aj , j = 1, . . . , p,
and thus �i, i = 0, 1, . . .) and the covariance matrix of residuals (�u) can be estimated con-
sistently, the structural parameters collected in the non-singular matrix B are not identified
without further theoretical or statistical assumptions. Consequently, the structural MA coef-
ficients cannot be recovered, since they require knowledge of B, i.e. �i = �iB. One possible
solution is to restrict matrix B as the lower-triangular Choleski factor imposing a recursive
causal structure among the model variables. This approach has a tradition in the identifica-
tion of MP shocks, where the policy indicator is ordered at or near the bottom of the system
(Bernanke and Blinder 1992). However, it has been criticized that the Choleski scheme is
inconsistent with a large class of DSGE models, which typically feature contemporaneous
responses of macroeconomic variables to the policy shock (Smets and Wouters 2007, Castel-
nuovo 2012).

Apart from imposing zero restrictions, it has been argued that theoretical patterns of ef-
fect directions or statistical properties of the data (non-Gaussianity and heteroskedasticity)
provide fruitful identifying information (see Appendix A for brief summaries of theory- and
data-based identification schemes). In the following, we briefly outline the proxy SVARs
identification (Stock and Watson 2012, Mertens and Ravn 2013) which relies on external
information rather than the imposition of restrictions on the structural relationships among
the variables included in the VAR.

2.2 Identification by external instruments
As an alternative to exclusion restrictions - which have an interpretation of ‘internal’ instru-
mentation (Stock and Watson 2012) - one can consider a measure of a structural shock of
interest based on information from outside the VAR, and treat this measure as an external
instrument for identification (for a recent review, see Stock and Watson 2018). While the
use of external instruments has a fruitful history in microeconometric research, its adapta-
tion to SVAR identification has been put forth more recently by Stock and Watson (2012)
and Mertens and Ravn (2013).5 Proxy SVARs could be considered to reconcile the merits

5In principle, it seems tempting to augment the VAR model by including such an instrument as an endoge-
nous variable. Subsequently, identification can be achieved by imposing a recursive scheme with corresponding
variable ordering (e.g. Kilian 2009, Auerbach and Gorodnichenko 2012). For simulation-based evidence point-
ing to a performance lead of proxy SVARs over augmented (S)VARs, the reader may consult Mumtaz et al.
(2018).
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of theory- and data-based identification techniques. While the choice of specific external
information is typically guided by theoretical considerations or institutional knowledge, iden-
tification is based on empirical correlations and some of the underlying assumptions can be
tested, similar to over-identifying assumptions within statistical identification schemes.

Stock and Watson (2012) have pioneered proxy SVARs to investigate macroeconomic dy-
namics. Specifically, they use eighteen instruments to identify six structural shocks within
a factor-augmented VAR framework (oil, MP, productivity, uncertainty, liquidity and finan-
cial risk, and fiscal policy) that have received considerable attention in the discussion of the
Great Recession and the subsequent recovery. Mertens and Ravn (2013) utilize narratively-
identified exogenous shocks to average tax rates as instruments, and analyze the dynamic
e�ects of structural tax shocks on the US economy. Employing a mortgage rate-based in-
strument, Mian et al. (2017) investigate the distinct role of household credit supply shocks
on output growth compared with corporate credit supply shocks. Nonetheless, MP analy-
sis remains the main field of application of proxy SVARs. Gertler and Karadi (2015) have
constructed several instruments for MP shocks by means of high-frequency surprises in fed-
eral funds futures around FOMC announcements to unravel the role of a credit channel for
the transmission of MP shocks (including forward guidance). Miranda-Agrippino and Ricco
(2017) have further advanced the high-frequency identification approach by accounting for
anticipatory e�ects that are present e.g. in the Gertler and Karadi (2015) instruments.

For a formal exposition of proxy SVAR identification, let zt denote an external instrument
for a structural shock of interest Ákt, k œ {1, . . . , K}. In analogy to the common assumptions
in the instrumental variable estimation literature, the instrument must satisfy the following
conditions:

(i) zt is relevant for the underlying structural shock Ákt

E(Áktzt) = „ ”= 0, (4)

(ii) zt is exogenous from other structural shocks in the system

E(Áltzt) = 0, ’ l œ {1, . . . , K} \ {k}. (5)

From both conditions in (4) and (5) it follows that up to scale „, the population covariance
between the instrument and VAR residuals obtains the k≠th column of B, denoted by Bk,
i.e.

E(utzt) = BkE(Áktzt) = „Bk. (6)

Let � denote the 1 ◊ K coe�cient vector from the regression of zt on the residual vector ut.
From (4), (5) and (6), along with the unit-variance normalization of the structural shocks,
the predictor for zt conditional on ut gives the shock Ákt up to scale „:

E(zt|ut) = �ut = E(ztu
Õ
t)�≠1

u ut = „BÕ
k

#
BBÕ$≠1

ut = „e
Õ
kÁt = „Ákt, (7)
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where ek is the k≠th column of IK . Combining (7) and (4), the squared covariance between
zt and Ákt can be recovered as

�E(utzt) = „

Ë
B≠1Bk

ÈÕ
B≠1Bk„ = „

2
. (8)

Dividing (6) by the square root of (8) produces a unique (up to sign) solution for parameter
vector Bk. Lunsford (2015) discusses the estimation of moments in (6) and (8) and the
asymptotic properties of these estimators.

Observing the potential prevalence of weak instrumentation, Lunsford (2015) analyses the
asymptotic bias caused by weakly relevant proxies, and suggests a test of the null hypothesis
of zero coe�cients � in the regression of instruments on VAR residuals (see (8)).6 Regarding
inference about structural IRFs, Mertens and Ravn (2013) and Gertler and Karadi (2015) use
a recursive wild bootstrap, where the residuals and instruments are resampled by means of the
‘Rademacher’ distribution. However, Jentsch and Lunsford (2019) show that (Rademacher)
wild bootstrap schemes are generally inconsistent for inference on the structural impulse
responses. As a consistent alternative, they propose a modified moving block bootstrap
(MBB) procedure that is capable of replicating the joint fourth-order moments of the VAR
residuals and the instruments.

3 Monte Carlo study
The simulation experiments documented in this section shed light on the performance of
proxy SVARs in comparison with alternative identification schemes. In the following, we
first encounter some related Monte Carlo investigations of theory- or data-based identifica-
tion approaches. Subsequently, we describe our simulation design, i.e. the data-generating
process (DGP), stochastic characteristics of the structural shocks and the criteria to assess
the identification outcomes. We are also explicit about the implementation of theory- and
data-based identification techniques. For further details on these identification methods, we
refer the reader to Appendix B. Subsequent to the discussion of simulation results, finally,
we provide a stylized theoretical note on a pitfall of proxy SVAR identification that evolves if
(i) an instrument under scrutiny lacks strict exogeneity, and (ii) the shock of interest su�ers
from relatively weak signal strength.

3.1 Monte Carlo-based evidence on identification schemes
Several related Monte Carlo investigations have analyzed the performance characteristics
of recent theory- and data-based identification techniques, and they provide guidance for
the matching of empirical VARs and suitable identification schemes. Based on a stylized
three-equation DSGE model, Castelnuovo (2012) investigates the performance of imposing
agnostic sign restrictions (Uhlig 2005), finding ambiguous e�ects of a monetary tightening on
output with data simulated from structural models that are at odds with monetary neutrality.

6Montiel Olea et al. (2018) discuss weak instrument robust inference for proxy SVARs. See also Cesa-
Bianchi et al. (2015) for a multiple instrument approach to alleviate weak instrumentation issues.
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Herwartz and Plödt (2016) find that the exploitation of volatility breaks promises a lead over
identification by means of sign restrictions. Based on bivariate DGPs, Lütkepohl and Schlaak
(2018) exam alternative time-varying (co)variance change (henceforth denoted CV) models
and discuss model selection in this context. The large-scale simulation study of Herwartz
et al. (2019) provides evidence in favor of identification by means of ICA. Specifically, as
suggested in Matteson and Tsay (2017), the minimization of the distance covariance statistic
proves to obtain robustly useful identification outcomes under various DGPs. Simulation-
based evidence on the relative performance of proxy SVARs is scant. Podstawski et al.
(2018) show that - in a mean squared error sense - proxy SVARs could lead to serious
distortions of structural impulse response estimates if one does not properly take account of
heteroskedasticity.

Tools of data-based identification and proxy SVARs are typically conditional on underlying
assumptions and hence prone to statistical nuisance under model misspecification and even-
tual finite sample biases. Therefore, a thorough understanding of the robustness of structural
analysis under realistic properties of real-life data is in the core interest of empirical analysts.
Providing particular motivation to the Monte Carlo study at hand, the subsequent simulation
experiments highlight the scope of alternative identification schemes in ascertaining (unique)
MP shocks and their impact e�ects under practically realistic notions of (i) misspecification
of the empirical model regarding core identifying assumptions, (ii) low signal-to-noise ratios
or invalid instrumental information, and (iii) low relative signal strength of a specific shock
of interest.

3.2 Data-generating processes
Time series data are drawn from a variety of statistical models. Henceforth, we provide in
turn (i) a causal VAR representation of a trinity DSGE model, (ii) alternative covariance
regimes for sampling the structural shocks, (iii) and alternative distributions of the scale-free
components of the structural shocks.

3.2.1 Log-linearized DSGE model in VAR form

We employ a stylized 3-equation DSGE model comprising output gap (xt), inflation (fit)
and the nominal interest rate (rt). The so-called trinity model has been widely used for
understanding the role of MP for the evolution of other major economic aggregates (Carlstrom
et al. 2009, Castelnuovo 2012, Herwartz and Plödt 2016). After log-linearization the structural
model reads in VAR form as

yt = A1yt≠1 + A2yt≠2 + BÁt, t = 1, 2, . . . , T, (9)

where yt = (xt, fit, rt)Õ. As implied by typical calibration assumptions, the B-matrix is:7

B =

S

WWU

2.32 ≠0.48 ≠0.41
0.72 2.32 ≠0.22
0.98 1.57 0.76

T

XXV . (10)

7For further details on the calibration of the underlying DSGE model, see Appendix B.
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Given that the first shock (Á1) has on impact a positive e�ect on all three variables, it can be
interpreted as a demand shock. The second shock (Á2) raises the price level and the interest
rate but invokes a negative response of output, and hence it can be labeled as a supply shock.
The third shock (Á3) reflects a contractionary MP action, which raises the interest rate, fights
inflation and dampens economic activities.

3.2.2 Covariance regimes

The structural shocks in (9) are written as:

Át = �tÎt, Îkt
iid≥ Â

(•)
, k œ {1, . . . , K}, (11)

where Â
(•) is a (centered and standardized) parametric distribution such that E(Ît) = 0 and

E(ÎtÎ
Õ
t) = IK . Moreover, �t = diag(⁄1t, ⁄2t, . . . , ⁄Kt) is a K-dimensional time-dependent

diagonal matrix formalizing distinct variance scenarios. We consider two variance breaks
occurring at time points TB1 = 1

3T and TB2 = 2
3T . By construction, Át has the covariance

structure E(ÁtÁ
Õ
t) = diag(⁄2

1t, ⁄
2
2t, . . . , ⁄

2
Kt), where

�t =

Y
____]

____[

�(1) = IK for t = 1, . . . , TB1 ≠ 1

�(2) = diag(1.2, 1.1, 1) for t = TB1 , . . . , TB2 ≠ 1

�(3) = diag(3.6, 1.1, 0.5) for t = TB2 , . . . , T.

(12)

Hence, the shocks are normalized to have unit variance in the pre-break period. The second
volatility break is much stronger than the first one in terms of both magnitude and direction.
With this covariance design, we try to mimic a scenario where the data exhibit two breaks
while the econometrician applies identification based only on a single break-point occurring at
TB2 , since she might find stronger statistical evidence of structural change conditional on this
time instance.8 It is worth noting that the MP shock - in particular after the second break-
point - contributes least to the variation of the system. This is consistent with empirical
evidence about the role of monetary interventions in the post-Word War II US economy
(Faust 1998, Uhlig 2005, Smets and Wouters 2007). Hence, the particular covariance design
may help to evaluate the performance of alternative identification schemes in a scenario where
the signal strengths from the underlying shocks considerably di�er.

3.2.3 Distributional frameworks

Innovations in SVAR models may well deviate either symmetrically or asymmetrically from
Gaussianity. In order to analyze the sensitivity of the identification performance with respect
to distributional characteristics of the data, the shocks Îkt in (11) are independently and
identically drawn from the following distributions:

8For example, Lanne and Lütkepohl (2008) analyze monthly US data for the 1965M1-1996M12 period. They
examine two break-points that have been considered in the literature: 1979M10 and 1984M2 (Bernanke and
Mihov 1998, Christiano et al. 1999, Perez-Quiros and McConnell 2000, Bacchiocchi and Fanelli 2015). Based
on LR tests they find much stronger significance for the second volatility break-point 1984M2 in comparison
with 1979M10.
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(i) Â
(G) ≥ N(0, 1),

(ii) Â
(Chi) ≥

1
‰

2
(v) ≠ v

2
1Ô
2v

,

(iii) Â
(t) ≥ t(v)

Ô
v≠2Ô

v
.

With this distribution design, we imitate non-Gaussianity of the data in terms of second-
(shift in covariances), third- (skewness) and fourth-order moments (leptokurtosis). Overall,
five scenarios are considered and summarized in Table 1, where LI is taken as the baseline
scenario. We set v = 5, or alternatively v = 10, to distinguish between stronger or weaker
deviations from multivariate Gaussianity (LII).

LI L(a)
II L(b)

II L(a)
III L(b)

III

‹ - 10 5 5 5
Î1t Â

(G)
Â

(t)
Â

(t)
Â

(t)
Â

(G)

Î2t Â
(G)

Â
(t)

Â
(t)

Â
(t)

Â
(t)

Î3t Â
(G)

Â
(t)

Â
(t)

Â
(Chi)

Â
(Chi)

Table 1: Overview of distributional settings for the simulations.

Similar to Herwartz (2018), we also simulate systems, in which structural innovations are
drawn from heterogeneous families of distributions (LIII) to investigate possible consequences
of the presence of skewed (L(a)

III) or Gaussian (L(b)
III) components in the mixture.

3.3 Instrumental variables
Proxy SVAR identification relies on external instruments. For a sound understanding of proxy
SVARs, it is worth noting that its performance could face similar risks as the gathering of
external information in GMM estimation. Taking into account uncertainty about instrument
selection, it is interesting to evaluate the performance of proxy SVARs for the case that
the instrumental relevance is weak or the exogeneity condition (5) is violated. Therefore,
our Monte Carlo analysis covers scenarios where instrumental information is (i) relevant
and exogenous, (ii) weak or (iii) correlated with other structural shocks (i.e. endogenous).
Conditional on the samples of the structural shocks outlined in (11), we simulate three distinct
instruments for each shock accordingly:

(i) z
(1)
kt = Ákt + ›kt, (13)

(ii) z
(2)
kt = ÁktÔ

T
+ ›kt, (14)

(iii) z
(3)
kt = “kÁkt +

ÿ

l ”=k

”lÁlt + ›kt, ”l < “k ’l, k œ {1, . . . , K}. (15)

Given that external instruments z
(m)
kt , m = 1, 2, 3, are considered as proxies for the shock Ákt,

it is reasonable to assume some degree of noise. This is captured by a Gaussian white noise
measurement error ›kt with zero mean and variance Var[›kt] = Var[Ákt] = ⁄

2
kt. Accordingly,

the respective signal-to-noise ratio is time-invariant. While the scenario in (13) formalizes
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the ideal case of proxy SVAR analysis, such a situation might hold limited representation in
empirical macroeconomics. On the one hand weak instruments are frequently encountered
in practice. For instance, of the five instruments considered in Mumtaz et al. (2018), only
two prove to be strong proxies. Our simulations cover scenarios of weak instrumentation (14)
with a local-to-zero assumption (Lunsford 2015). Specifically, the covariance between the
instrument and its underlying structural shock vanishes with the sample size, i.e.

E(utz
(2)
kt ) = BkE(Áktz

(2)
kt ) = 1Ô

T
Bk. (16)

If the instruments for distinct shocks are valid, proxy SVARs should provide uncorrelated
shocks. However, in practice, shocks identified by instruments from specific categories are
often contemporaneously correlated with each other, at least to some degree. For instance,
Stock and Watson (2012) find that the MP shocks identified by various instruments strongly
correlate with fiscal policy shocks or oil shocks. We generate instruments that contempora-
neously correlate with multiple shocks in the system (15). Nevertheless, one may expect that
the analyst is able to construct an instrument such that its signals for other shocks do not
exceed the signal for the main shock of interest. With these considerations we formalize a
scenario of instrument contamination as

z
(3)
1t = 0.40Á1t + 0.30Á2t + 0.30Á3t + ›1t,

z
(3)
2t = 0.25Á1t + 0.50Á2t + 0.25Á3t + ›2t,

z
(3)
3t = 0.20Á1t + 0.20Á2t + 0.60Á3t + ›3t.

(17)

3.4 Further comments on the simulation design
Overall, we perform S = 1000 replications of each Monte Carlo experiment. Three alternative
sample sizes, T = 120, 240 and T = 480 shall represent macroeconomic data measured at
the quarterly or monthly frequency, respectively. The length of simulated time series is set
to T + 1000 and the first 1000 realizations of each generation are discarded to immunize
simulation outcomes against initial values.

Throughout, we assume that conditional on the sample information, the analyst is able to
specify the correct VAR order and consistently estimate the reduced-form model. Conditional
on the outcome of a given identification scheme (indicated by ‘•’ ) the analyst determines the
impact multipliers and the implied IRFs (up to horizon h) which we denote henceforth as ‚B•

and ‚�•
i , i = 0, 1, . . . , h, respectively.

For the application of sign restrictions, Table 2 summarizes the agnostic sign pattern imposed
on the instantaneous responses of the system variables.9 Henceforth, the structural covariance

9We refrain from restricting the output reaction to monetary surprises and let the data decide on this issue.
While Christiano et al. (1999), Uhlig (2005), Smets and Wouters (2007) and Ahmadi and Uhlig (2015) provide
evidence of a rather modest (or even neutral) e�ect of MP on output, Romer and Romer (2004) and Gertler
and Karadi (2015) show that a contractionary MP is quite e�ective in muting economic activities (see Ramey
(2016) for a comprehensive discussion).
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Shock
Variable Á1 æ Á2 æ Á3 æ
x + – ?
fi + + –
r + + +

Table 2: Imposed sign restrictions. Structural shocks Ák refer to a demand shock (k = 1), a
supply shock (k = 2) and an MP shock(k = 3).

decomposition matrix and IRFs identified by means of sign restrictions are denoted as ‚BSR

and ‚�SR
i , respectively. Identification by means of volatility shifts requires knowledge of the

time point TB at which the shift occurs. In empirical practice, this can be either known
to the econometrician or she could resort to historical information about relevant events
that have led to a permanent institutional or behavioral change (Bacchiocchi and Fanelli
2015). Alternatively, she could apply suitable consistent tests for this purpose. As previously
mentioned, given the covariance design in (12), the econometrician is expected to apply
identification based on the second break-point TB2 . Accordingly, break-point ‘estimates’ are
drawn as in Herwartz and Plödt (2016)

T
ú
B =

32
3 + 2

3
fÔ
T

4
T, f ≥ N(0, 1), (18)

such that the estimated break-point converges to the true one, i.e. T
ú
B

pæ TB2 = 2
3T . Struc-

tural covariance decomposition matrices and IRFs gathered by changes in volatility are de-
noted as ‚BCV and ‚�CV

i , respectively. For outcomes from the extraction of independent
components, we use • = dCov and • = CvM if criterion minimization refers to the dis-
tance covariance and the Cramér-von-Mises distance, respectively (to obtain ‚Bdcov

, ‚BCvM
,

‚�dCov
i and �CvM

i ). Similarly, ‚BIV , ‚BIV ≠W , ‚BIV ≠E and ‚�IV
i , ‚�IV ≠W

i , ‚�IV ≠E
i are used to

indicate identified proxy SVARs that rely on the instruments (13), (14) and (15), respectively.

3.5 Performance evaluation
One particular purpose of performing SVAR analysis is to trace the dynamic responses of
macroeconomic variables to the structural shocks of interest. Therefore, our main evaluation
criterion measures whether alternative identification schemes can (approximately) recover
the true underlying structural IRFs in (3). However, assessing their performance simply
based on the (squared) distances between the resulting dynamic IRFs and the true ones
might be subject to criticism, since the performance of alternative identification schemes
might depend on the model calibration as implied by the DGP. Herwartz and Plödt (2016)
construct ‘areas of acceptance’ (AoA) around the IRFs implied by the chosen calibration and
evaluate various approaches based on the (scale-free) frequencies of identified IRFs located
in these AoA. First, following Canova and Paustian (2011), we specify for each DSGE model
parameter an interval that is chosen to be su�ciently large, to contain theoretically reasonable
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values, and su�ciently tight to obtain unique sign patterns at least for the impact multiplier
matrix.10 Second, we randomly draw a set of parameter values from uniform distributions
on the parameter intervals, and compute IRFs arising from such calibrations up to horizon
h = 15. We define point-wise 5% and 95% quantiles from these IRFs based on 10000 draws.
Subsequently, we check in each experiment whether the impulse response point estimates
gathered by alternative identification approaches are located within these AoA, and we finally
report the respective acceptance frequencies.11
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Figure 1: Areas of acceptance. The solid line represents the true IRFs conditional on the
chosen parameterization (10). The shaded area represents 5% and 95% quantiles of IRFs re-
sulting from 10000 draws of DSGE parameters from uniform distributions with corresponding
intervals summarized in Table A1. Variables included in the system are output gap x, infla-
tion fi and the nominal interest rate r. Structural shocks are demand shock Á1, supply shock
Á2 and MP shock Á3.

Given the parameterization in (10), the true impulse responses and the AoA are shown in
Figure 1. Note that all structural shocks are normalized to have a positive unit impact e�ect
along the diagonal. Hence, the acceptance frequencies of the respective IRF estimates are
equal to 1 by construction for all identification schemes.12

10Herwartz and Plödt (2016) show that the 5% and 95% quantiles of posterior densities from a typical
Bayesian estimation of the DSGE model do not produce a clear-cut sign pattern for the B matrix and hence
are not suitable for AoA construction. Parameter intervals used in this study are reported in Appendix B.

11Since the column orderings of ‚B•, • œ {CV, dCov, CvM} are not unique, we select from six alternative
column permutations the one that yields the largest overall frequency estimate.

12This is achieved by dividing each column in matrices ‚B• by the respective main diagonal element of this
column. The normalization of the impact multiplier is applied only for the construction of the AoA and the
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We consider two further loss functions with a specific focus on the purposes of MP analysis.
In this respect, it is first documented how often the identification scheme employed obtains
a shock that triggers the e�ects of an MP shock uniquely (henceforth denoted UMPS). Ac-
cordingly, the loss function is defined as:

g
• = 1

S

Sÿ

s=1

1
UMPS(s)

2
, (19)

where
1
UMPS(s)

2
= 1 if in experiment s there exits only one k such that b̂

(s)
2,k b̂

(s)
3,k < 0. Since

sign restrictions achieve a full score by construction, we do not report g
SR.

Second, conditional on an UMPS, we consider a relative root mean squared error (RMSE) of
e�ect estimates defined as:

RMSE
•
k = 1

Sg•

Sÿ

s=1

ı̂ııÙ

Q

a b̂
(s)
k,3 ≠ b

(s)
k,3

b
(s)
k,3

R

b
2 1

UMPS(s)
2
, k = 1, 2, 3, (20)

where Sg
• =

qS
s=1

1
UMPS(s)

2
is the number of simulation experiments obtaining a UMPS.

We additionally report the average relative RMSE of the estimated impacts for each identi-
fication scheme RMSE• = 1

K

qK
k=1 RMSE

•
k .

3.6 Monte Carlo results
This section presents the simulation results. We place a particular focus on identifying
structural shocks with relatively low signal strength, in our case the MP shock. With such
a focus on partial identification, our simulation study is in a similar vein to the study by
Mumtaz et al. (2018) on detecting credit shocks. However, unlike this benchmark study,
the present Monte Carlo analysis places more weight on the realistic situation that empirical
data are at odds with stylized modeling assumptions and hence the performance of alternative
identification schemes is subject to nuisance (parameters).

We begin by assessing the performance of SVARs based on simulated time series with length
T = 240 under the baseline distributional scenario LI (Gaussian heteroskedastic shocks)
and display the acceptance frequencies of estimated IRFs in Figure 2. Simulation results
for a variety distributional scenarios and alternative sample sizes are subsequently discussed.
Figure 3 displays the frequencies of detecting a UMPS and the average relative RMSEs of
impact estimates, which are documented in further detail in Tables A4 and A5, respectively.13

3.6.1 Theory- and data-based identification of baseline DGPs

The performance of identification by agnostic sign restrictions considerably varies across the
dynamic relationships. Responses of model variables (except for inflation fi) to the identified

calculation of their coverage frequencies, but not for other evaluation criteria like g• in (19) or RMSE•
k in

(20).
13Some detailed simulation results are documented in Appendix C as follows: Tables A2 and A3 show the

average acceptance frequencies of responses to each structural innovations from a short- (i = 0, . . . , 4) and
long-run (i = 5, . . . , 15) perspective, respectively.
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demand shock can be relatively well captured by this approach. However, dynamic e�ects
of the MP shock are only poorly detected. The identified short-run dynamics triggered by
MP shocks are located within the AoA in less than 20% of all replications. More specifi-
cally - and in line with Castelnuovo (2012) - about 80% of admissible models imply that a
contractionary MP shock boosts output, which does not comply with the DGP employed.
Apart from a lack of directional or sign accuracy, the quantification of MP e�ects is seriously
questioned by the sizable relative RMSEs of the associated structural parameters in the es-
timated decomposition matrices. We consider this deficiency of agnostic sign restrictions as
a result of the relatively low signal strength of the structural shock of interest (see also the
respective discussion in Section 3.7).
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Figure 2: Distribution scenario LI . Results are based on S = 1000 Monte Carlo experiments
with a sample size T = 240. The identification approaches employed are: CV : Identification
by heteroskedasticity; CvM : Identification by minimizing Cramér-von-Mises distance; dCov:
Identification by minimizing distance covariance; SR: Identification by sign restrictions; IV ,
IV -W and IV -E : Proxy SVAR based on instruments (13), (14) and (15), respectively.

By contrast, dynamic IRFs gathered by statistical identification techniques are considerably
more common within the defined AoA. For example, in almost two-thirds of all replications,
the statistically-identified short-run responses of output gap to the MP shock (except for
identification by minimizing the CvM distance) are located within the defined acceptance
range. Confirming the Monte Carlo outcomes of Herwartz and Plödt (2016), identification
based on (co)variance shifts outperforms all other competitors in detecting the true impulse
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response coe�cients with average acceptance frequencies of 75.3% and 59.2% for periods i =
0, . . . , 4 and i = 5, . . . , 15, respectively. Turning to ICA-based identification, the minimization
of the distance covariance performs close to the exploitation of (co)variance shifts. Among
the alternative independence measures, we find that minimization of the distance covariance
is preferable to minimization of the CvM distance, as it allows for a more frequent labeling
of UMPS and produces more accurate estimates for the respective e�ects.

3.6.2 Proxy SVARs and baseline DGPs

If the econometrician manages to construct external measures capturing the dynamics of the
underlying shocks with reasonable signal-to-noise ratios, using these instruments for identi-
fication would produce structural decompositions and IRFs that are quite close to the true
ones. Given that the instruments defined in (13) are valid (exogenous) and strong (with
average F -statistics of 77.1), identification by means of proxy SVARs succeeds in detecting
a UMPS with the largest frequency (76.1%), and it provides the most accurate assessment
of the instantaneous reactions to the UMPS. However, this methodology may severely su�er
from the weakness of instruments (14). On average, the identified short-run IRFs ‚�IV ≠W

are outside the acceptance areas in more than 60% of the experiments. In only 18.4% of all
replications, ‚BIV ≠W provides a UMPS with an average relative RMSE of about 2.25, which
is the largest aside from RMSE

SR. Finally, if instruments are contaminated in such a way
that they simultaneously correlate with multiple shocks in the model, the performance of
proxy SVARs strongly depends on the relative signal of the underlying structural shock. If
the contribution of the shock to the system variation is relatively small (e.g. here the con-
tribution of the MP shock), it is almost impossible for these instruments to pin down the
respective structural parameters. As a particular result, ‚BIV ≠E fails to deliver a UMPS in
all Monte Carlo experiments (see also the theoretical discussion below in Section 3.7).

3.6.3 Alternative distributional scenarios and sample sizes

For a given sample size of T = 240 and under alternative distributional scenarios, we do not
observe systematic improvements or deteriorations in identification performance for proxy
SVARs in terms of qualitative (sign) or quantitative accuracy (see Tables A2, A3 and A5 from
top to bottom panels). This also holds true for identification by means of sign restrictions and
(co)variance shifts. By contrast, the displays in Figure 3 (from left to right) underline that
skewed and leptokurtic shocks seem to enhance the informational content of independence
diagnostics (see also Herwartz et al. 2019). Regarding alternative sample sizes, simulation
results show that the performance of both data-driven approaches and proxy SVARs based
on valid instruments remarkably improve with increasing sample information (see Figure 3).
Moreover, estimation biases of using weak or endogenous instruments fully manifest in large
samples. In particular, endogenous proxies fail to detect shocks featuring opposite impact
e�ects on interest rates and inflation in all experiments, regardless of the sample size and
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Figure 3: Frequency of detecting an UMPS and average relative RMSEs of impact estimates
(see also the definitions in (19) and (20)).

shock distribution (see Table A4).14

3.7 Role of the relative signal strength of the shocks
From the Monte Carlo results discussed in the previous section, we note that agnostic sign
restrictions and proxy SVARs based on endogenous instruments are particularly sensitive to
the relative signal strength of the underlying shock.15 Paustian (2007) analyzes this issue
for sign restrictions à la Uhlig (2005) and finds that the standard deviation of the MP shock
needs to be extremely large for this identification scheme to deliver a clear-cut sign pattern
regarding the unrestricted output response.

Along similar lines as in Paustian (2007), we illustrate this problem by means of a simple
generic example. Consider a two-dimensional VAR, where the linear mapping between the
residuals and the underlying structural shocks is

S

Uu1t

u2t

T

V =

S

WU

b11 b12+ ≠
b21 b22≠ +

T

XV

S

UÁ1t

Á2t

T

V . (21)

Unlike the outline in Section 2, we allow structural shocks to have distinct variances E(ÁtÁ
Õ
t) =

�Á = diag(‡2
1, ‡

2
2), such that ‡ © ‡

2
2/‡

2
1 is the variance of the second shock relative to that of

the first one. Turning to identification, the agnostic sign restrictions on the covariance factor
14In analogy to Figure 2, graphical displays of detailed simulation outcomes for all distributional scenarios

and alternative sample sizes are available from the authors upon request.
15This can be easily seen by comparing the accuracy of the resulting responses to the demand shock with

those to the MP shock (see Table A2).
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B involve the sign pattern

S

WU

m11 m12
+ ?

m21 m22≠ +

T

XV . Aside from the imposed sign restrictions, all accepted

candidates for matrix B - say M - must fulfill the moment condition MM
Õ = �u = B�ÁBÕ,

i.e. S

Um
2
11 + m

2
12 m11m21 + m12m22

ú m
2
21 + m

2
22

T

V =

S

U‡
2
1b

2
11 + ‡

2
2b

2
12 ‡

2
1b11b21 + ‡

2
2b12b22

ú ‡
2
1b

2
21 + ‡

2
2b

2
22

T

V (22)

After some algebra, it is easy to see that m12 = ‡2
1b11b21+‡2

2b12b22
m22

≠ m11m21
m22

, where ≠m11m21
m22

is restricted to be positive. In order to obtain the correct sign, negativeness of the first
term ‡2

1b11b21+‡2
2b12b22

m22
requires that the relative volatility ‡ exceeds the critical value ≠ b11b21

b12b22

(Paustian 2007).

Proxy SVAR analysis faces a similar issue once the exogeneity condition in (5) is violated.
Assume that an instrument z2t for the second structural shock is available for identification
of B2, which takes the form z2t = “1Á1t +“2Á2t, “1, “2 ”= 0. Since “1 ”= 0, z2t is correlated with
both shocks in the system. Let � collect the population covariances between the instrument

and the shocks, i.e. E(Átz2t) =

S

U“1‡
2
1

“2‡
2
2

T

V © �. Intuitively, the population covariance between

the instrument and the reduced-form residuals is no longer pointing in the direction of B2,
but now to a linear combination of both columns of B, i.e.

E(utz2t) = “1‡
2
1B1 + “2‡

2
2B2 = B�. (23)

Instead of the squared covariance between the instrument and the shock of interest as shown
in (8), this cross-moment now gives the variance of the instrument:

�E(utz2t) = �ÕBÕ #
BBÕ$≠1 B� = �Õ� = “

2
1‡

4
1 + “

2
2‡

4
2. (24)

While one obtains B�
Ë
�Õ�

È≠ 1
2 = Bk for valid instruments, in a more general case (“1 ”= 0)

it holds that B�
Ë
�Õ�

È≠ 1
2 = B— =

qK
k=1 Bk—k, where — is a K ◊ 1 vector. The identification

result can be interpreted as a weighted sum of columns in B with weight parameters collected
by —. In our bivariate case:
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Despite the violation of the exogeneity condition, it can be easily shown that if ‡ is su�ciently
large, identification based on this instrument can still pin down the structural parameters of
interest. By contrast, if the relative signal strength of the shock of interest shrinks to zero,
the weight attached to the corresponding column of the B matrix - in this case - —2 will
vanish. Consequently, the structural model cannot be recovered. These theoretical insights
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are also interesting in the light of recent advances by Wolf (2020) who rationalized the role
of relative shock volatility from a Bayesian perspective for set-identified systems. However,
suggesting proxy SVARs as a viable alternative to avoid misidentification of MP shocks in
such a context, Wolf (2020) assumes exogeneity. Accordingly, our results highlight that issues
of relatively low signal strength might remain unresolved in realistic scenarios where proxy
SVARs condition on contaminated instrumental information.

4 Structural models of US monetary policy
In this section, we consider the small-scale macroeconomic model of Section 3 as a convenient
framework to identify MP shocks and address whether MP interventions have been e�ective
in dampening inflation or a�ecting real economic activity in the US. Prior to a comparative
assessment of the relative merits of theory- and data-based identification on the one hand
and proxy SVARs on the other, we carefully discuss the suitability of the low-dimensional
empirical model for identifying fundamental shocks. Extending beyond unconditional features
of the structural model (impact estimates, IRFs, diagnostic tests), Section 5 provides an
assessment of the structural profiles identified to capture important narratives on MP in the
US, especially the structural contributions to the Great Inflation in the 1970s, as well as the
Volcker disinflation in the early-1980s.

4.1 Reduced-form model and fundamentalness
The trivariate baseline system comprises the percentage log deviation of real GDP with re-
spect to the estimate of potential output by the Congressional Budget O�ce (xt), annualized
quarter-on-quarter growth rates of the GDP deflator (fit) and the one-year government bond
rate (GBR1t) as a policy indicator.16 Quarterly time series data cover the period from 1965Q1
until 2008Q3. The VAR model includes an intercept term and lags up to order p = 4, which
is chosen based on the AIC and the Lagrange multiplier (LM) test for no remaining serial
correlation. Throughout, we subject the same reduced-form (model) residuals to structural
analysis, i.e. we refrain from re-estimating the VAR conditional on sample periods for which
specific instrumental information is available.

As placed on the structural model in (2), the assumption of causality is essential for iden-
tification of the SVAR model, and it ensures that the process has a Wold moving average
representation. Put di�erently, in its VAR form the structural model is only properly iden-
tified if reduced-form disturbances ut can be traced back to the current and historic shocks
Át≠j , j Ø 0.17 While the stylized trinity model provides a convenient framework for Monte

16Considering that the Fed has been increasingly relying on communication strategies to manage expecta-
tions about the future path of interest rates (Ramey 2016), the one-year government bond rate promises a more
comprehensive measure for intentions of the monetary authority, since it includes information about surprises
in the forward guidance (Gertler and Karadi 2015). One-year government bond rates have been downloaded
from Thomson Reuters Datastream (code: USTRCN1.), while series for the output gap and inflation have been
obtained from Herwartz and Plödt (2016).

17The case of non-causality - i.e. the dependence of yt on future shocks Át+j , j > 0 - holds particular
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Carlo analysis, it could be prone to risks of variable omission and non-invertibility in em-
pirical practice. Hence, it is unclear whether such a model is suitable for identifying strictly
fundamental shock, and in particular fundamental MP shocks. However, we believe that
adverse e�ects of omitted information are likely of minor concern for the detection of MP
shocks, since their opposite impact on prices and interest rates remains unique in many
higher-dimensional systems. For instance, Plagborg-Møller and Wolf (2019) show by means
of simulated data from the medium-scale (i.e. seven shock) DSGE model of Smets and
Wouters (2007) that the MP shock is near-invertible within a trivariate model. Regarding
prediction, Herbst and Schorfheide (2012) underpin that the performance of a larger-scale
model in the vein of Smets and Wouters (2007) is not necessarily superior to that of a re-
lated small-scale model. In this work, we address the issue of fundamentalness from two
complementary angles. First, we explicitly document results from testing the reduced-form
model for fundamentalness. Hamidi Sahneh (2016) has recently proposed an approach to test
whether reduced-form residuals ut accord with a multivariate martingale di�erence scheme
that implies the fundamentalness of structural shocks. We perform the test based on a gen-
eralized spectral density and do not obtain evidence against the martingale di�erence null
hypothesis. Specifically, the estimated test statistic implies a p-value of 0.90.18 Second, we
augment the small-dimensional (S)VAR by means of (up to three) factors that we extract
from data collected by Michael McCracken (FRED-QD), and inquire whether core structural
outcomes from the small-scale model remain robust within the information-rich environment.
Instead of providing proxy SVAR outcomes from FAVARs in full detail, we report results from
information-rich models below to complement the empirical evidence characterizing our main
results for identified benchmark MP (proxy) shocks.19

4.2 Theory- and data-based identification
We impose the same (agnostic) sign pattern on the impact multipliers as documented in
Table 2 for theory-based identification. The leftmost column of Figure 4 shows structural
responses to a contractionary MP shock. Throughout, we normalize the size of the MP
shock such that it raises GBR1 on impact by 25 bps. The results look quite similar to
those in Uhlig (2005), although a smaller model is employed here, and we place restrictions

interest, if agents receive information or form expectations about future innovations (for non-causal models,
see Lanne and Saikkonen (2013)).

18The test outcomes are robust to kernel choice (Parzen, Daniell, Quadratic spectral). We thank Mehdi
Hamidi Sahneh for providing us with easy-to-use MATLAB codes.

19Specifically, we select from FRED-QD 220 series that are available for the time period covered by our
baseline VAR. For a detailed description of the series and transformation codes to obtain stationarity, the
reader may visit the website of the Federal Reserve Bank of St. Louis (https://research.stlouisfed.org/

econ/mccracken/fred-databases) and consult McCracken and Ng (2020). First, we extract r common factors
(denoted ÂFt) from these variables by means of principal component estimation, where 1 Æ r Æ 3. Subsequently,
we use linear projections to extract from ÂFt the part that is orthogonal to the variables yt in our system and
denote these factors Ft. Finally, we recover the structural form of VARs for (yÕ

t, F Õ
t )Õ by means of alternative

identification schemes (for a lead study in the field of FAVARs see Bernanke et al. (2005)). Detailed results
from structural FAVARs are available from the authors upon request.
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only on the impact e�ects. About 71% (¥2/3 in Uhlig 2005) of all admitted models obtain
positive instantaneous responses of the output gap to an unexpected monetary tightening.
The reaction of output is ambiguous for all horizons. Based on this finding, Uhlig (2005)
resumes that monetary neutrality is not inconsistent with the data. While such a conclusion
casts doubts on conventional views of MP transmission, the uncertain response of output
might be due to the lack of identification power of this particular approach induced by the
fact that the MP shock has a relatively small signal strength. Similar to the results in Uhlig
(2005), the identified MP shock only accounts for a small fraction of the forecast error variance
for the output gap.20

break-point Test statistic 95% critical value p-value
1979Q3 ⁄BP = 580.80 628.60 0.49

⁄SS = 115.60 128.20 0.25
1984Q1 ⁄BP = 586.86 562.99 0.00

⁄SS = 89.41 86.04 0.00

Table 3: Break-point (⁄BP ) and sample-split (⁄SS) tests for structural change (see Chapter 3
of Lütkepohl and Krätzig 2004). Both critical values and p-values are based on 2000 bootstrap
replications.

Observing some consensus concerning regime switches of MP in the US (Christiano et al.
1999, Bernanke and Mihov 1998, Sims and Zha 2006), it is worth exploiting CV for identi-
fication purposes. Reflecting the beginning and accomplishment of the Volcker disinflation
(see also the narrative analysis in Section 5), two dates have been considered as potential
(co)variance break-points, namely 1979Q3 and 1984Q1. While Bacchiocchi and Fanelli (2015)
and Herwartz and Plödt (2016) perform their analysis based on 1979Q3, Perez-Quiros and
McConnell (2000) and Lanne and Lütkepohl (2008) focus on 1984Q1.

The null hypothesis of covariance stability in 1979Q3 cannot be rejected at common signifi-
cance levels, while the evidence of a structural break in 1984Q1 is very strong (see Table 3).21

Conditional on T
ú
B = 1984Q1, the estimated decomposition matrices are (with standard errors

in parentheses):

‚BCV =

S

WWWWWU

0.734
(0.166)

≠0.227
(0.520)

≠0.556
(0.178)

0.051
(0.824)

1.359
(0.151)

≠0.515
(0.372)

0.689
(0.217)

0.328
(0.489)

0.531
(0.180)

T

XXXXXV
and ‚� =

S

WWWWWU

0.296
(0.065)

0 0

0 0.233
(0.051)

0

0 0 0.115
(0.025)

T

XXXXXV
. (26)

20Aside from the first quarter following the shock, the identified MP shock contributes less than 10% of the
forecast error variance of the output gap.

21 Regarding regime switches in US MP, several analysts do not find su�cient evidence against the stability
of the reduced-form system (Bernanke and Mihov 1998, Sims and Zha 2006). It is therefore reasonable to
assume that regime change is specific to the variance of the structural shocks.
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The sign pattern of ‚BCV matches the typical instantaneous e�ects of demand, supply and
MP shocks (see Table 2). Accordingly, we label the third shock as the MP shock. The test
results documented in Table 4 highlight the (partial) identifiability of the MP shock, and
indicate that the period starting with 1984Q1 features a lower variation of all shocks and
especially the MP shock. Notably, this result corresponds to stylized findings for the period
of the Great Moderation.

H0 Test statistic p-value
Ï1 = Ï2 0.58 0.45
Ï1 = Ï3 6.74 0.01
Ï2 = Ï3 4.27 0.04

Table 4: Pairwise Wald tests for equality of diagonal elements in ‚�.

Heteroskedasticity-based IRFs are shown in the middle column of Figure 4. A contractionary
MP shock is followed by an immediate reduction of the output gap by more than 25 bps.
The output reaction remains negative for ten quarters (significant up to 2 years) and be-
comes insignificantly positive thereafter. Inflation responds negatively for all horizons, with
significant e�ects emerging after a propagation period of approximately two quarters.

Based on ICA, the uniqueness of a structural model requires that at most one shock in the
system is Gaussian (Comon 1994). For a respective diagnostic analysis, we apply fourth-order
blind identification, as suggested by Nordhausen et al. (2017a). Indicating strong deviations
from Gaussianity, the null hypothesis stating that the last (first) K ≠ k0 (k0) shocks are
Gaussian (non-Gaussian), can be rejected for both k0 = 2 and k0 = 1 with 1% significance.22

For ICA modeling, we employ the distance covariance, which showed a superior identification
performance in the simulation study of Section 3. The estimated structural impact multiplier
(with bootstrap standard errors in parentheses) aligns with the stylized sign pattern of Table 2
and reads as

‚BdCov =

S

WWWWWU

0.355
(0.244)

≠0.249
(0.231)

≠0.565
(0.157)

0.157
(0.232)

1.036
(0.147)

≠0.312
(0.365)

0.682
(0.089)

0.098
(0.148)

0.154
(0.265)

T

XXXXXV
.

Hence, the third shock allows for labeling as an MP shock. As displayed in the right-most
column of Figure 4, an unexpected monetary tightening leads to a strongly negative response
of the output gap up to nearly -130 bps after two quarters. The output reduction remains
significant for two years following the MP shock. The profile of the inflation response is
qualitatively similar to that obtained by means of CV, although it is larger in magnitude.

22Specifically, we employ the function FOBIboot from the R package ICtest (Nordhausen et al. 2017b) with
2000 bootstrap replications. We also apply univariate Jarque-Bera (JB) tests to each VAR residual series and
obtain equivalent test decisions.

23



εmp→GBR1

εmp→ π

εmp→ x

0 5 10 15

−0.25

0.00

0.25

−0.6

−0.4

−0.2

0.0

0.00

0.25

εmp→GBR1

εmp→ π

εmp→ x

0 5 10 15

−0.4

−0.2

0.0

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

−0.2

0.0

0.2

εmp→GBR1

εmp→ π

εmp→ x

0 5 10 15

−1.5

−1.0

−0.5

0.0

0.5

−0.5

0.0

−1.0

−0.5

0.0

0.5

Figure 4: Responses to an MP shock up to quarter h = 15. From left to right: First
column: Identification by agnostic sign restrictions. Median (solid) and MT (dashed) IRFs
with 16% and 84% quantiles from 1000 accepted structural models. Second (Third) column:
Identification by changes in volatility (minimizing the distance covariance). IRFs with 16%
and 84% quantiles from wild bootstrap with 2000 replicates. Variables included in the system
are output gap x, inflation fi and one-year government bond rate GBR1. The size of MP
shock is normalized to impact on the one-year rate by 25 bps.

4.3 Proxy SVARs
We consider a wide range of potential external shock series that have been constructed under
distinct frameworks (narrative identification, high-frequency identification, SVARs and DSGE
models), and have already attracted a lively discussion in the literature (e.g. Stock and Watson
2012, Ramey 2016, Miranda-Agrippino and Ricco 2017). In order to qualify for structural
analysis, instruments must be (i) reasonably relevant for the estimated reduced-form system,
and (ii) free of endogenous contamination. We first test for relevance of instruments and
then overview the identified shocks in terms of their impulse responses. With these insights,
we are in a position to subsequently address exogeneity issues from complementary angles,
i.e. (i) insights from the related literature, (ii) correlations between MP shocks obtained by
means of proxy SVARs and CV, and (iii) LR tests developed by Podstawski et al. (2018).

4.3.1 Instrument relevance

Table A6 in the Appendix D documents in detail the instruments considered and inferen-
tial outcomes of testing the null hypothesis of weak instrumentation (Lunsford 2015). Only
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Instrument SW RR SZ RRú SZú

xt ≠0.166
(0.105)

0.096
(0.126)

0.081
(0.088)

≠0.375
(0.171)

≠0.383
(0.125)

fit ≠0.299
(0.135)

0.245
(0.106)

0.139
(0.102)

≠0.347
(0.144)

≠0.355
(0.142)

GBR1t 0.525
(0.128)

0.683
(0.112)

0.702
(0.103)

0.358
(0.293)

0.366
(0.253)

F -statistic 19.81 32.435 39.336 10.929 16.579

Table 5: Contemporaneous responses to an MP shock identified by means of external instru-
ments (with MBB standard errors in parentheses) and tests for weak instrumentation. The
critical values at which one can reject the null hypothesis with threshold signal-to-noise ratios
corresponding to a 5% asymptotic bias at 5% (10%) significance level are 13.28 (11.20) for
K = 3 (Lunsford 2015).

three proxies proved to be strong instruments with at least 5% significance, namely (i) inno-
vations to the estimated MP reaction function in the medium-scale DSGE model of Smets
and Wouters (2007) (henceforth denoted as SW with availability 1959Q1-2004Q4); (ii) in-
tended Federal Funds Rate (FFR) changes during FOMC meetings, which are adjusted to
be exogenous from the current rate and to the Fed’s Greenbook forecasts as constructed by
Romer and Romer (2004) (RR, 1969Q2-2007Q4); and (iii) MP shocks from the best-fitting
SVAR model in Sims and Zha (2006) (SZ, 1960Q2-2003Q1). By contrast - and consistent
with the results of Miranda-Agrippino and Rey (2018) - instrumental information based on
high-frequency data su�ers from a lack of relevance, which might be due to limited sample
sizes or issues of time aggregation.23 We therefore focus on the instruments SW, RR and SZ
in the following.24

4.3.2 Impulse responses

Having reduced the set of informative instruments to three alternatives, we present the es-
timated structural parameters associated with the respective MP shocks in columns 1 to 3
of Table 5, while impulse responses are depicted in columns 1 to 3 of Figure 5. Depending
on the instrument employed, the dynamic IRFs considerably di�er. Proxy shocks from SW
are unique in providing e�ect directions that are in line with the theoretical sign pattern of
an MP shock. The response of inflation to a contractionary MP shock remains significantly
below zero for almost all horizons. The instruments RR and SZ appear to share a similar
informational content, and they are associated with a marked and persistent price puzzle, i.e.

23Notably, high-frequency shock series are only available since 1988, the year when federal funds futures
contracts were introduced by the Chicago Board of Trade. Hence, they do not cover the regime switch detected
above at TB = 1984Q1.

24Standard Ljung–Box tests indicate that - unlike SW - the instruments RR and SZ are subject to serial
correlation with common significance (see also Miranda-Agrippino and Ricco 2017). Accordingly, we adjust
both series by regressing them on their lagged realizations (lag 1 for RR and lag 2 for SZ) and take the
residuals for subsequent analysis. The empirical results for unadjusted instruments are qualitatively identical
and quantitatively very similar to those documented in this work.
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Figure 5: Responses to an MP shock up to quarter h = 15. The shaded area represents 16%
and 84% quantiles from MBB with 2000 replicates. Proxy SVARs are based on instruments,
from left to right: First column: SW (1959Q1 - 2004Q4); Second column: RR (1969Q2 -
2007Q4); Third column: SZ (1960Q2 - 2003Q1); Fourth column: SW in a data-rich environ-
ment (VAR augmented with r = 3 latent factors, the results based on r = 1, 2 factors are
almost equivalent). The residual-based MBB is performed based on a block length of 15 for
sample sizes varying from 149 (SZ) to 156 (SW) (for details see Jentsch and Lunsford 2019).
Variables included are output gap x, inflation fi and one-year government bond rate GBR1.

a co-movement of interest rates and inflation lasting up to 2.5 years after impact.

In order to understand the detected price puzzles for MP shocks conditioning on RR and SZ,
it is instructive to recall the discussion in Section 3.7. Under instrument contamination, the
proxy estimate of ‚B3 is best understood as a weighted linear combination of all columns in
the true matrix B. From (25), one can see that the bias (i.e. the false weighting) depends
on (i) the signal from the instrument for the wrong shock relative to that for the shock
of interest, and (ii) the relative signal strength of the shock of interest. Since data-based
estimates obtained from the supposition of covariance change (see the result in (26)) imply
that an aggregate supply shock leads to a stronger reaction of prices in comparison with
an aggregate demand shock, one might expect that on average the contamination with the
supply shock invokes a stronger upward bias for the price reaction than the contamination
with the demand shock. Regarding the first origin of bias (i), our discussion of instrument
exogeneity below (see also Table 6) suggests that the misidentification could indeed be the
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result of the contemporaneous mixing of instruments with the supply shock. Unlike SW, both
the instruments RR and SZ strongly correlate with the aggregate supply shock identified
through covariance change. The resulting bias is aggravated by the fact that MP shocks
contribute least to the system variation (ii).

The IRFs displayed in the right-most column of Figure 5 are obtained from proxy SW shocks
conditioning on an information-rich framework (FAVAR, r = 3). As a strong underpinning of
their fundamentalness, it is striking to see that SW proxy MP shocks govern almost identical
impact and dynamic responses irrespective of using the small-scale (Figure 5, column 1) or
the factor-augmented model (column 4). Owing to their theory-conforming response profiles,
we henceforth consider the MP shocks derived from SW (proxy SVARs) and CV (data-
based) as benchmark MP shocks (see column 2 of Figure 4 and column 1 of Figure 5). In
the subsequent discussions of exogeneity, we shed some light on potential reasons for the
pronounced di�erences among proxy MP shocks conditioning on SW on the one hand and
RR or SZ on the other.

4.3.3 Instrument exogeneity

In order to establish exogeneity of instrumental information, two general concerns two general
concerns warrant particular in the context of MP shock identification. First, asymmetries
among the monetary authority and economic agents can lead to a mixing of genuine (ex-
ogenous) MP shocks with (endogenous) reactions of the monetary authority to information
revealed about future (and possibly current) fundamentals (along with further references, see
Noh 2018, Miranda-Agrippino and Ricco 2017, Miranda-Agrippino 2016). As a result, MP
instruments frequently violate both the lag and the contemporaneous exogeneity condition
(see Appendix E for a more detailed discussion of this issue). While lag endogeneity might
be as serious a problem as contemporaneous endogeneity, our prime focus is on the latter
for two reasons: first, as a result of temporal aggregation, contemporaneous e�ects appear
more relevant for quarterly (i.e. low-frequency) empirical modeling; and second, the high-
frequency instruments considered lack relevance.25 Based on the findings in JarociÒski and
Karadi (2020), one could argue that under pronounced endogeneity proxy-identified SVARs
would show ‘upward’ biases of the responses of inflation and output to contractionary MP
shocks. Hence, observing instead a pronounced decline in inflation and output provides an
informal indication against a sizable contamination with central bank information shocks.
Unlike SW, proxy MP shocks conditioning on RR and SZ su�er from a marked price puzzle
and hence might be subject to endogenous contamination (see columns 2 and 3 of Figure 5).
Moreover, the latent MP shocks typically provide only limited contributions to observable
system variances, which complicates the recovery of structural relations by means of instru-

25Misidentification due to lag endogeneity can be alleviated by enhancing the info set of the VAR, while
this is not applicable for coping with contemporaneous endogeneity (see also the respective discussion in
Appendix E). In this regard, it is worth highlighting that the benchmark MP shocks retrieved from SW are
remarkably robust after factor augmentation of the VAR model.
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mental identification if the exogeneity condition (5) does not strictly hold. Hence, evaluating
whether contemporaneous endogeneity is present appears especially important for MP anal-
ysis. In the following, we discuss further potential origins or indications of contemporaneous
contamination of proxy-identified MP shocks.

Insights from the literature The set of shocks identified through instrumental information
in Stock and Watson (2012) suggests that the considered shock series of SW, RR and SZ are
indeed subject to contemporaneous contamination with non-MP shocks. Most prominently,
RR- and SZ-based MP shocks exhibit sizable correlations with fiscal policy and oil shocks,
whereas SW-based MP shocks only correlate sizeably with liquidity shocks. While the shock
series obtained from SZ and SW have not been discussed extensively in the context of proxy
SVAR identification, the RR narrative shock series has been shown to be autocorrelated and
predictable by common macro/finance variables (Miranda-Agrippino and Ricco 2017). Hence,
issues related to information shock contamination likely apply to this specific series, although
it passes the exogeneity tests in Podstawski et al. (2018) with monthly time resolution.
Turning to findings regarding the correlation among MP proxy shocks, Stock and Watson
(2012) document that the SW proxy shock shows only a meaningful correlation with the GSS
high-frequency based shock, which we excluded in our analysis due to a lack of relevance (see
Appendix D). The other two proxy shocks SZ and RR are strongly related with each other
(with linear correlation of 0.93, Stock and Watson 2012). Assuming exogeneity, this indicates
that they (consistently) identify the same shock. Unfortunately, given that they show similar
mixing characteristics regarding non-MP shocks, it seems more plausible that their close
(linear) relation is due to some common contamination with other non-MP disturbances.

Instrument(•) SW RR SZ SW RR SZ
fl̂

Á̂CV
d ,Á̂

(•)
mp

0.341 0.705 0.689 0.353 0.707 0.698

fl̂
Á̂CV

s ,Á̂
(•)
mp

0.018 0.424 0.345 0.002 0.438 0.324

R
2 0.116 0.663 0.579 0.125 0.668 0.575

F -statistic 10.117 149.544 100.890 9.486 133.519 90.038
±2/

Ô
T ±0.160 ±0.161 ±0.164 ±0.172

Table 6: Contemporaneous correlation between MP shocks identified by proxy SVARs and
non-MP shocks identified by means of CV. The results in the left- (right-)hand side panel
are based on all available observations (synchronized samples of size T = 135). The last row
documents rule-of-thumb critical values for non-zero correlations with 5% significance. R

2

and F -statistics obtained from regressing the proxy-identified MP shocks on the CV-based
non-MP shocks.

Correlation patterns of identified shocks It is tempting to further examine the endogene-
ity issue by exploiting the information inherent in structural shocks identified in a data-based
manner. Summarizing the shocks identified in Stock and Watson (2012) as supply- (e.g. oil
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shocks) and demand-type shocks (e.g. liquidity and fiscal shocks) to accommodate for our
smaller system, we report correlations between the proxy-identified MP shocks and demand
and supply shocks from the covariance change model in Table 6.26 One might expect a-priori
that an MP shock - whose characteristics regarding the responses of output and prices ren-
ders it a representative of the class of demand shocks - bears a stronger risk of mixing with
other demand shocks than with supply shocks. Hence, when assessing the contemporaneous
mixing with other shocks, seeing correlations with supply shocks might be a more meaningful
indicator of potential endogeneity than correlations with demand shocks. As it turns out,
the MP shocks identified via RR and SZ exhibit sizable correlations with both the demand
and supply shock identified through (co)variance breaks, whereas the SW-based shock is only
(and least strongly) correlated with the CV demand shock.

LR test for exogeneity Podstawski et al. (2018) suggest translating the exogeneity con-
dition into testable over-identifying restrictions within the framework of a pre-specified het-
eroskedastic SVAR model. Conditional on the (co)variance break model, the respective test
outcomes are displayed in Table 7. It appears that all three instruments considered are fairly
exogenous. The strongest evidence (i.e. largest p-values) of exogeneity is obtained for SW.
However, in light of the documented strong correlations among CV-based non-MP shocks
and MP shocks from proxy SVARs, one could raise the concern that the exogeneity test is
subject to low power.27

Instrument SW RR SZ
LR statistic 0.356 1.032 1.057
p-value 0.837 0.597 0.589

Table 7: LR tests for exogeneity of the instruments. Identification is conditional on the CV
supposed at T

ú
B = 1984Q1. See Podstawski et al. (2018) for more details.

4.4 Alternative MP shocks
The upper panel of Figure 6 provides time series illustrations of the identified MP shocks.
Irrespective of the identification approach adopted, the implied shocks show less variation
starting in 1984, which provides further justification to exploit this particular statistical
property for purposes of identification. Directly contrasting SW proxy shocks obtained from
the trinity VAR and the FAVAR (r = 3, see the lower panel of Figure 6) reveals that infor-
mation enrichment leaves the proxy shocks almost unchanged. Hence, the benchmark MP
shocks are unlikely to su�er from a lack of fundamentalness.

In order to further unravel similarities and di�erences among MP shocks obtained from
26While it is still debated whether (global) oil shocks behave as domestic supply or demand shocks (Baumeis-

ter and Kilian 2016), the proxy oil shocks studied in Stock and Watson (2012) feature impulse response patterns
that comply with a supply shock characterization.

27Monte Carlo exercises in Podstawski et al. (2018) show that for sample sizes of T ¥ 150 (as in the present
examples), the correct detection of endogeneity might su�er from power weakness.
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Figure 6: Identified MP shocks. Upper panel: All shocks except proxy shocks from FAVAR;
Lower panel: proxy shocks conditioning on SW from VAR and FAVAR (r = 3). Dashed
horizontal lines indicate locations of ±1. All shock series are standardized to have unit
standard deviation.

theory- and data-based identification and proxy SVARs, Table 8 documents respective corre-
lation statistics. Imposing opposite impact responses of interest rates and inflation by means
of sign restrictions obtains structural shocks featuring surprisingly weak correlations with all
remaining MP shock candidates (the five documented correlations are between 0.2 and 0.69).
Raising some criticism about the imposition of (agnostic) sign restrictions, both benchmark
MP shocks (CV and SW) exhibit incomplete correlations with sign-restricted shocks, i.e. 0.48
(data-based identification, CV) and 0.69 (proxy SVARs, SW). Moreover, the set-identified
MP shocks exhibit a strong positive (moderate negative) correlation with the CV demand
(supply) shocks (not documented in Table 8).28 Interestingly, this correlation pattern fits
perfectly to the results in Wolf (2020), highlighting the case of ‘masked’ contractionary MP
shocks that can be traced back to a weighted linear combination of demand, supply and MP
shocks.

While the proxy shocks identified via SZ and RR are closely related with each other (cor-
relation of 0.99), both fail to fully reflect the information inherent in the benchmark MP
shocks (correlations with SW are 0.85 for SZ and 0.78 for RR). Proxy MP shocks retrieved
from FAVAR models are very closely correlated with their counterparts obtained from the
trivariate SVAR. Augmenting the baseline model with three factors (FAVAR, r = 3), the
correlations between proxy MP shocks from VAR and FAVAR models are 0.898 (SW), 0.918
(RR) and 0.934 (SZ). For the case of our preferred instrumental variable SW, similar cor-

28The correlation coe�cients for the median target SR MP shock are: Cor(Á̂SR
mp, Á̂CV

d ) = 0.694,
Cor(Á̂SR

mp, Á̂CV
s ) = ≠0.557, (2/

Ô
T = 0.153, R2 = 0.797, F = 331.4).
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relations are obtained when the model augmentation comprises one (r = 1, correlation of
MP shocks is 0.909) and two factors (r = 2, 0.931). Within the three-dimensional and the
information-rich model, proxy shocks conditioning on RR and SZ exhibit an almost com-
plete correlation of about 0.99, such that the contamination of both shocks is unlikely due
to informational issues. Similarly, correlation results from the large dimensional dynamic
factor model of Stock and Watson (2012) indicate that both shocks are subject to common
sources of contamination. Specifically, proxy MP shocks conditioning on RR and SZ exhibit
a correlation of 0.93 in Stock and Watson (2012).29

While an unconditional diagnostic assessment of alternative MP shocks provides guidance
e.g. in terms of statistical model selection, they hold limited value to assess the informa-
tional content of the structural findings for the understanding of concrete historic episodes.
In the next section, we highlight the informational value of alternative MP shocks (i) to ap-
proximate important narratives about MP measures taken in the US, and we shed light on
(ii) the monetary policy in the 1970s, and (iii) the macroeconomic forces behind the Volcker
disinflation in the early-1980s.

SR CV dCov SW SZ RR RRú SZú

SR 1.000
CV 0.483 1.000
dCov 0.201 0.934 1.000
SW 0.687 0.946 0.769 1.000
SZ 0.623 0.677 0.396 0.853 1.000
RR 0.532 0.603 0.326 0.784 0.991 1.000
SZú 0.447 0.999 0.937 0.942 0.656 0.578 1.000
RRú 0.496 0.999 0.946 0.934 0.659 0.587 0.998 1.000

Table 8: Correlations among identified MP shocks. Shock series identified by means of sign
restrictions (SR) are calculated based on median target estimates.

5 Narrative evidence and monetary policy in the 1970s and
early-1980s

With diagnostic and descriptive results for a variety of MP shocks at hand, this section
provides insights into the scope of the respective SVARs to align with decisions of the Fed
featuring a (wide) consensus on their intended macroeconomic e�ects. More specifically, we (i)
characterize the monetary policy in the 1970s as a source of the high and persistent inflation,
(ii) assess the scope of MP shocks identified in explaining the Volcker disinflation in terms
of their marginal contribution to realized reductions of the GDP deflator, (iii) characterize
the aggregate demand and supply side of the US economy during the early-1980s and take

29Moreover, undocumented results show that the instruments RR and SZ give rise to marked price puzzles
irrespective of the (FA)VAR dimension. Respective IRFs are available from the authors upon request.
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full advantage of combining proxy SVAR results with outcomes from identification through
covariance change, and (iV) use the complementary approach to provide purged variants of
the contaminated MP instruments (RR and SZ) featuring ‘model-implied’ exogeneity.

5.1 Evaluating the shock series against consensual shocks
Although identification through (agnostic) sign restrictions ensures economically meaningful
structural features, the set of admitted model structures is often large and might call for a
sharpening of model-implied dynamic structures (e.g. IRFs). In this context, Antolín-Díaz
and Rubio-Ramírez (2018) have suggested casting implied shocks into the context of consen-
sual narrative information that economists can agree upon. For the purposes of this study,
it is worth highlighting that Antolín-Díaz and Rubio-Ramírez (2018) qualify the monetary
contraction of October 1979 as ‘the clearest and most uncontroversial example of an MP
shock’ in the US. Interestingly, using the SW instrument for proxy SVAR analysis obtains
the strongest contractionary signal in 1979Q4 among all identification schemes. Regarding
a more comprehensive encountering of four contractionary (April 1974, October 1979, De-
cember 1988 and February 1994) and four expansionary monetary signals (December 1990,
October 1998, April 2001, and November 2002) in Antolín-Díaz and Rubio-Ramírez (2018),
the quarterly shocks displayed in Table 9 show that strongest signals are obtained in three
out of eight events when using the benchmark proxy SVAR. In terms of directional accuracy,
MP shocks conditioning on the instruments RR and SZ are unique in matching the narra-
tive information for all eight events encountered. However, given the evidence of marked
price puzzles ‘identified’ by means of these instruments (see columns 2 and 3 of Figure 5),
it is important to recall that these shocks actually a�ect prices in the wrong direction, i.e.
contractionary (expansionary) shocks initiate a price increase (reduction) on impact.

MP shocks
Contractionary Expansionary

Freq.
1974Q2 1979Q4 1988Q4 1994Q1 1990Q4 1998Q4 2001Q2 2002Q4

SR -1.415 1.612 1.719 0.385 -0.151 0.006 -0.339 -0.895 6
CV -0.103 1.547 0.448 0.393 0.854 -0.859 -0.457 0.387 5
dCov -0.065 1.704 0.164 0.464 1.579 -1.291 -0.602 0.893 5
SW -0.224 2.521 1.042 0.612 0.801 -1.079 -0.653 0.193 5
RR 0.784 2.336 0.806 0.502 -0.142 -0.816 -0.446 -0.006 8
SZ 0.490 2.366 0.934 0.521 -0.018 -0.807 -0.478 -0.051 8
RRú -0.099 2.260 0.597 0.576 1.306 -1.301 -0.675 0.629 5
SZú -0.237 2.210 0.674 0.565 1.258 -1.223 -0.660 0.540 5

Table 9: Comparing MP shocks identified with eight events discussed in the literature
(Antolín-Díaz and Rubio-Ramírez 2018). Bold: the largest quantification for each event
with correct sign. Since underlying events are provided with monthly resolution (contrac-
tionary: 1974M4, 1979M10, 1988M12, 1994M2; expansionary: 1990M12, 1998M10, 2001M4,
2002M11), the documented quarterly shocks are subject to temporal aggregation.
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5.2 1970s inflation
We start by investigating the scope of MP shocks in explaining the observed high and per-
sistent inflation in the 1970s. Following Barsky and Kilian (2001), MP was characterized by
changes of motives and commitment of the federal government, which can be traced back to
the Great Depression and the belief that a tight MP was responsible for the high unemploy-
ment during that episode. In response to the government’s pursuit of full employment (e.g.
among others, the Employment Act of 1946), the Fed started to gradually loosen its commit-
ment to price stability and attempted to stimulate employment by exploiting the trade-o�
between unemployment and inflation, as expressed by the Phillips curve. With the collapse
of Bretton Woods, MP lost its anchor (Kilian 2010). Barsky and Kilian (2001) document
unusually large monetary expansions for many OECD countries during the 1970s. Without
traditional constraints, MP was conducted more experimentally, while the public was only
slowly beginning to understand the changes in MP, i.e. hesistantly adjusted (long-term) in-
flation expectations, which translated to sluggishness in inflation. Barsky and Kilian (2001)
show that if inflation is inherently sluggish, an unexpected expansionary policy will tempo-
rally stimulate output. Inflation initially increases slowly but continues to rise after output
has reached its maximum. Consequently, a stagflation occurs.

SW SZ RR

SR dCov CV

1973 1975 1977 1979 1981 1983 1973 1975 1977 1979 1981 1983 1973 1975 1977 1979 1981 1983

0

2
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Figure 7: Cumulative e�ects of MP shock on the inflation in the GDP deflator over time
(selected period). For a textbook definition of historical decompositions, we refer the reader
to Chapter 4.3 of Kilian and Lütkepohl (2017). The annualized average change of the deflator
amounts to 7.46 during this period. Shaded areas represent episodes of economic recession as
defined by the National Bureau of Economic Research (NBER). Dashed lines indicate results
based on ‘purged’ instruments.

In 1973, the Fed attempted to bring inflation under control by tightening its policy. However,
at end of the year, when facing an energy shortage and dramatically increased costs for

33



industrial raw materials such as crude oil, the central bank had to ease its policy to mitigate
the negative e�ects of the recession prior to the full containment of inflation.30 In April
1974, shortly after the OPEC embargo was lifted, the Fed aggressively raised the FFR to
11% and held it between 10% and 13% throughout the recession. Meanwhile, inflation had
reached 12% according to our measure. Figure 7 displays the contribution of MP shocks
identified to the evolution of the GDP deflator during the selected period from the early-
1970s until the 1980s. As the MP exhibited a go-and-stop pattern, the Fed found it di�cult
to credibly lower inflation expectations, and persistently high inflation expectations raised
the costs of potential disinflation. Structural models recovered by SR, dCov, CV and SW
indicate that the MP did not e�ectively bring down the sustainably high inflation in the
1970s and early-1980s. In fact, MP shocks identified by these approaches were persistent
sources of inflation during that time, until the anchor was eventually reestablished in 1982
as a result of Volcker’s policy. Specifically, the benchmark models (i.e. covariance change
model and proxy SVAR conditioning on SW) imply that during the episode from 1973 to
1979 the inflationary pressure from MP was on average between 2.2 to 2.4 units. By contrast,
structural results obtained by both the SZ and RR instruments imply that MP played a minor
role in the Great Inflation. Interestingly, MP shocks identified by these instruments became
slowly inflationary after Paul Volcker took o�ce and announced the fight against inflation in
late 1979. We address this issue in the next subsection.

5.3 Volcker disinflation
Volcker disinflation was initiated by the MP shock issued late in 1979. When Paul Volcker
became Chairman of the Fed in August 1979, inflation had reached two-digit levels. In
October 1979, after an unscheduled FOMC meeting, Volcker announced his intention to bring
inflation quickly under control and focus on non-borrowed reserve targeting (for a discussion
of implicit policy instrument regimes of the Fed, see e.g., Thornton 2006). Characterizing this
exceptional period of US MP history, the FFR approached ¥20% in June 1981, which sent
the economy into a recession in 1981Q3. The Fed did not ease the tight money supply, despite
enormous political pressures. Arguably as a result of Volcker’s credible contractionary MP,
inflation rates as analyzed in this study plummeted from 8.22% in 1979Q4 to 5.88% (4.25%)

30 The oil price increased by a factor of four in January 1974, after Arab OPEC countries installed an
embargo on the US and started a series of production cuts in October 1973. Providing a di�erent perspective,
Baumeister and Kilian (2016) interpret the decline in Arab oil production and hence the oil price spike as
endogenous responses to global macroeconomic conditions - among others - to the accelerated (consumption
or flow) demand for oil reflecting a worldwide economic expansion since early 1972. According to these
authors, the demand channel of oil price shocks also played an essential role for the next oil crisis in 1979,
which was traditionally considered as being caused by distortions of oil production in Iran following the Iranian
Revolution. Baumeister and Kilian (2016) and Kilian and Murphy (2014) argue that the revolution has caused
an upward shift in the (speculative) inventory demand reflecting that the agents had anticipated future oil
shortages, rather than a shock to the (flow) supply of oil, since Barsky and Kilian (2001) find little evidence
of an overall decrease of OPEC oil output. Against this perspective, Baumeister and Hamilton (2019) find
that speculation and inventory demand shocks have played a much lesser role in the oil price fluctuations.
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in 1982Q3 (1983Q3). Hence, it seems natural to address the fight against inflation to a
large extent to (contractionary) MP measures. The bars with solid lines in Figure 8 indicate
the cumulated inflation responses to model-implied MP shocks issued during both reference
periods.31

1979Q4 − 1982Q3 1979Q4 − 1983Q3

SR dCov CV SW SZ RR SR dCov CV SW SZ RR
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Figure 8: Constribution of MP shocks issued during the disinflation periods to (dis)inflation
(see footnote 31). Conditional on our data, inflation decreases during the 1979Q4-1982Q3
period (1979Q4-1983Q3) by 2.34 % (3.97 %). Dashed lines indicate results based on ‘purged’
instruments (i.e. the residuals obtained after regressing original instruments on aggregate
demand and supply shocks as identified by means of the covariance change model). The area
with low transparency indicates the disinflationary e�ect attributed to the particular shock
occurring in 1979Q4.

As it emerges for both reference periods, joint with median target shocks identified by means
of sign restrictions and results from ICA identification, the benchmark shocks retrieved from
CV or proxy SVARs conditional on SW imply the largest contributions to the inflation decline.
For instance, proxy shocks conditioning on SW triggered an inflation decline of -3.06 units
of the GDP deflator during 1979Q4 and 1982Q3. It is interesting to note that the aggregate
e�ect realized within the reference period can be attributed to a large extent (i.e. to about
60%) to the shock issued in 1979Q4. Putting the marginal e�ect on (aggregated) deflator
change of -3.06 into perspective, it is worth commenting on e�ects of MP shocks during
other periods of equivalent length. Specifically for the twelve quarters from 1976Q4 until
1979Q3 (1982Q4 until 1985Q3), corresponding e�ects amount to deflator changes of +2.72

31Let Á̂3,t = Á̂mp,t denote identified MP shocks within a time period of interest, T1 Æ t Æ T2, and ◊̂k3,i the
estimated structural responses showing up in model variable k at horizon i. Then, the cumulated e�ects of
these shocks on the k≠th variable are given by

�k(T1, T2) =
T2ÿ

t=T1

A
Á̂3,t

T2≠tÿ

i=0

◊̂k3,i

B
. (27)

Outcomes �2(T1, T2) for all identification schemes are displayed in Figure 8. Owing to the definition of y2t

as quarter-on-quarter deflator changes, �2(T1, T2) is formally an integrated contribution to the change of the
deflator within the reference period. Economically, we refer to this quantity as a ‘contribution to (dis)inflation’ .
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(+1.72) units. Hence, interpreting the period of disinflation as having laid the ground for the
Great Moderation, our results point to the e�ectiveness of the new MP strategy and thereby
support the so-called ‘good policy’ hypothesis (along with further references, see Giannone
et al. 2008). While these reference statistics underpin the marked policy change initialized
by the switch to monetary tightening in 1979Q4, it holds further interest to explore which
non-MP e�ects might have shaped inflation during the period of disinflation policies. In this
regard, we obtain from the CV model a prime role of supply-sided e�ects. While the CV
model obtains a similar contribution of MP shocks to disinflation (see Figure 8), cumulative
inflationary e�ects associated with identified demand and supply shocks amount to deflator
units of 1.18 and 3.56 (1.21 and 3.99) for the period 1979Q4 until 1982Q3 (1979Q4 until
1983Q3), respectively. Hence, in managing the disinflation, the Fed had to keep more of
an eye on supply-sided factors rather than e�ects originating on the demand side of the
economy.32

Unlike the benchmark models, proxy SVARs conditioning on instruments RR or SZ deliver
structural shocks and biased IRFs that jointly imply expansionary total impacts on inflation
for both reference periods. Conditional on these instruments, proxy shocks induced an in-
crease of the GDP deflator by 1.37 (SZ) and 2.44 units (RR) during the period from 1979Q4
until 1982Q3. Intuitively, this failure to accord with the narrative of regime change in the
Fed’s monetary strategy mirrors the marked price puzzles obtained from conditioning on
these instruments (see columns 2 and 3 of Figure 5).

5.4 Disentangling proxy MP and non-MP shocks
The complex overall economic situation in the US in the early-1980s places identifying genuine
monetary measures by means of proxy SVARs at particular risks of instrument contamina-
tion. After conditioning on proxies RR and SZ, the historical decomposition based on the
identified structural models fails to explain the inflationary MP in the 1970s or provide a
sound directional e�ect of disinflationary MP under the Volcker regime. Moreover, the es-
timated MP shocks lack a theory-conform economic label. Unlike the structural IRFs from
conditioning on SW, their counterparts based on RR and SZ are likely biased (e.g. giving rise
to a price puzzle). Nevertheless, it is interesting to uncover the extent to which demand and
supply shocks contribute to the proxy MP shocks conditioning on RR and SZ. In the following
we address this issue from two perspectives. On the one hand, we employ the SW-identified
MP shocks and the respective structural MA representation to decompose the detected con-
tribution to disinflation regarding the endogenous components of proxy MP shocks obtained
from conditioning on SZ or RR. On the other hand, we use the aggregate demand and supply
shocks identified through covariance change for adjusting the instruments RR and SZ.

32Regarding the e�ects on output, MP shocks were the main force that pushed the US economy into recession
in the early-1980s. Tracing the cummulated e�ects of MP shocks on the output gap (�1(T1, T2)) within the
period 1979Q4 until 1982Q3 amounted to -13.02 and -19.75 according to the benchmark proxy SVAR and
the covariance change (CV) model, respectively. By contrast, the e�ects of supply shocks were only -7.85,
according to the covariance change model.
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Instrument contamination and non-MP shocks In order to decompose the contribution
of SW-based MP shocks, we make use of hierarchical least squares projections of the following
type:

Á̂
SW
mp,t = âÁ̂

•
mp,t + ’̂

•
t (28)

Á̂
•
mp,t = b̂Á̂

CV
d,t + ĉÁ̂

CV
s,t + ›̂

•
t , • œ {RR, SZ}. (29)

From these regressions, we obtain specifically (with standard errors in parentheses):

Á̂
SW
mp,t = 0.779

(0.053)
Á̂

RR
mp,t + ’̂

RR
t and Á̂

RR
mp,t = 0.918

(0.067)
Á̂

CV
d,t + 0.578

(0.071)
›

CV
s,t + ›̂

RR
t ,

Á̂
SW
mp,t = 0.876

(0.046)
Á̂

SZ
mp,t + ’̂

SZ
t and Á̂

SZ
mp,t = 0.883

(0.073)
Á̂

CV
d,t + 0.404

(0.077)
Á̂

CV
s,t + ›̂

SZ
t .

The regression hierarchy in (28) and (29) allows for a decomposition of the contribution of
SW proxy shocks (see footnote 31) to overall disinflation in a reference period ([T1, T2]) into
the four components encountered in Table 10. For instance, the residual estimates from (29)
quantify the component of the contaminated MP shocks (conditioning on RR and SZ) that
show a positive correlation with benchmark MP shocks and cannot be traced back to corre-
lation with aggregate supply or demand shocks. Unsurprisingly, for both instruments these
components contribute sizeably (i.e. more than one-third) to overall disinflation achieved by
the benchmark MP measures. However, the components of the contaminated shocks that
correlate with non-MP shocks also contribute markedly to explained disinflation. In this
regard, it is interesting to note that the aggregate demand shocks issued during the periods
under scrutiny account for a much larger contribution to disinflation (i.e. at least by a factor
of 1.5) in comparison with aggregate supply shocks. Seeing that the coe�cient estimates b̂

and ĉ in (29) are throughout positive, MP shocks obtained from conditioning on RR or SZ
might be - to some extent - interpreted as masked demand or supply shocks. For the practical
MP conduct, the hierarchical regressions o�er an important insight into the (dis)functioning
of contaminated proxy shocks. While it is intuitive to expect that under instrument (or
shock) contamination the actual disinflation can hardly be traced back to clear-cut monetary
surprises, the decompositions in Table 10 highlight the two components C2 and C3 (and their
relative importance) for which it is not possible to distinguish whether their disinflationary
contribution originates in MP measures or non-MP shocks.

Purging instruments Since the covariance change model and the proxy SVAR condition-
ing on SW obtain closely-related MP shocks, it is promising to employ the information on
exogenous demand and supply shocks from the former model (ÁCV

d,t , Á
CV
s,t ) to improve the RR

and SZ instruments as cleaned measures of the MP shocks (see also the Bridge Proxy SVAR
model of Gazzani and Vicondoa (2019) for an attempt to complement proxy SVARs with
data-based, i.e. ICA, identification). In order to achieve ‘model-implied exogeneity’ , we
project the instrument series RR and SZ on the non-MP shocks detected through covariance
change and consider the respective residuals as new instruments to which we refer as RRú
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1979Q4 - 1982Q3 1979Q4 - 1983Q3

Component Definition RR SZ RR SZ
C1

qT2
t=T1

1
’̂t

qT2≠t
i=0 ◊̂

SW
23,i

2
-0.259 -0.047 -0.725 -0.341

C2 âb̂
qT2

t=T1

1
Á̂

CV
d,t

qT2≠t
i=0 ◊̂

SW
23,i

2
-0.972 -1.051 -1.422 -1.537

C3 âĉ
qT2

t=T1

1
Á̂

CV
s,t

qT2≠t
i=0 ◊̂

SW
23,i

2
-0.647 -0.508 -0.907 -0.713

C4 â
qT2

t=T1

1
›̂t

qT2≠t
i=0 ◊̂

SW
23,i

2
-1.186 -1.458 -2.020 -2.483

q
-3.064 -3.064 -5.074 -5.074

Table 10: Component specific contributions of SW-identified MP shocks to the disinflation
during the reference periods. Components are obtained from hierarchical regressions in (28)
and (29). See also the bars in Figure 8 for the total e�ects (

q
) and their definition in

footnote 31. MA coe�cients ◊
SW
23,i are taken from the proxy SVAR conditioning on SW.

.

and SZú. Respective regression results are displayed in Table 11. As detailed in the notes
of the table, both purged instruments remain relevant. As it emerges, RRú and SZú seem to
closely approach the benchmark instruments SW. Specifically, the implied proxy MP shocks
exhibit a strong correlation in excess of 0.93 (without purging the respective correlations are
at most 0.85, see Table 8). Historical decompositions based on models identified by these
new shock measures accord with typical notions that inflationary pressures in the 1970s were
primarily caused by MP conduct (see Figure 7). From the right-most bars in both panels
of Figure 8, we also observe that proxy MP shocks obtained from the adjusted instruments
imply theory-conform contributions to the Volcker disinflation that are similar in size to those
retrieved from the benchmark instrument SW.

RR SZ

Estimate Std. Error p-value Estimate Std. Error p-value
Á̂

CV
d 0.335 0.054 0.000 1.442 0.226 0.000

Á̂
CV
s 0.201 0.055 0.000 0.717 0.237 0.003

Table 11: Orthogonalizing instruments RR and SZ with respect to benchmark demand and
supply shocks (from CV). F -statistics for tests of weak instrumentation are 10.93 and 16.58
for RRú and SZú, respectively. The critical value at which one can reject the null hypothesis
with threshold signal-to-noise ratios that correspond to a 10 % asymptotic bias with 5%
(10%) significance is 7.38 (8.53) for K = 3 (Lunsford 2015).

.

6 Conclusion
Being among the most prominent fields in macroeconometric analysis, the identification of
US MP shocks has taken full account of rich methodological advances in the identification
of structural VAR models (SVARs). In this study, we follow similar lines as Mumtaz et al.
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(2018) in their analysis of credit supply shocks. Specifically, we combine insights from al-
ternative identification schemes applied to log-linearized DSGE models on the one hand, as
well as empirical systems of US data covering the period 1965Q1 until 2008Q3 on the other.
The identification schemes considered comprise identification by means of (agnostic) sign re-
strictions, identification through heteroskedasticity or ICA and proxy SVARs. The simulated
processes are characterized by reduced-form (co)variance patterns that align with stylized
facts invoked by both the Great Moderation and recent findings that the detection of US
MP shocks generally su�ers from low relative signal strength (Paustian 2007, Wolf 2020).
Extending beyond the analysis in Mumtaz et al. (2018), we report on potential pitfalls of
proxy SVARs that might occur when using weak or contaminated instruments. Our Monte
Carlo results highlight that the case of contaminated instrumentation bears risks of biased
identification outcomes. Denoting prime relevance of these insights for the empirical analysis
of MP in the US, proxy SVARs could fail to detect unique MP shocks in realistic scenarios
of instrument endogeneity coupled with relatively low signal strength.

Our empirical analysis of quarterly US data largely conditions on a stylized trinity VAR
comprising the output gap, inflation and the one-year government bond rate. In order to ad-
dress a potential lack of fundamentalness, we underpin the small-scale empirical models with
results from an information-rich factor-augmented model that processes information drawn
from Michael McCracken’s database (FRED-QD). Along similar lines as in Mumtaz et al.
(2018), we evaluate a rich set of structural models (agnostic sign restrictions, data-based
SVARs, proxy SVARs). For the construction of instrumental information, we find that many
promising instrument candidates building on futures-based high-frequency information drop
out as they provide only weak external information (Miranda-Agrippino and Rey 2018). Un-
like their high-frequency counterparts, established low-frequency instruments are strong (i.e.
relevant) but subject to endogenous contamination. All structural results point to a marked
downward shift of the volatility of structural shocks starting in 1984. Hence, the explicit con-
sideration of covariance shifts is natural for implementing SVAR identification in a data-based
manner. The corresponding MP shocks show almost perfect correlations with proxy SVAR
results based on instrumental information that has been retrieved from the medium-scale
DSGE model of Smets and Wouters (2007). MP shocks extracted from this instrument fully
accord with a sound economic labeling. Moreover, they are almost orthogonal to aggregate
demand and supply shocks identified by means of covariance shifts, and thereby promise the
best potential to cope with the relatively low signal strength of MP shocks. Overall, these
considerations a�rm related results in Stock and Watson (2012) and lend credibility to the
SW instrument. Further underpinning their benchmark property in a context of narrative
analysis, proxy shocks conditioning on SW quantify e�ectively inflationary MP in the 1970s,
and contractionary policy signals issued during reference periods of the Volcker disinflation
in the early-1980s (Barsky and Kilian 2001, Antolín-Díaz and Rubio-Ramírez 2018, Bernanke
and Mihov 1998). For alternative low-frequency instruments (i.e. the popular Romer and
Romer (2004) narrative MP shock series (RR), and the best-fitting SVAR shock from Sims
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and Zha (2006) (SZ)), our analysis indicates marked price puzzles and in particular a failure to
explain both the Great Inflation and the Volcker disinflation. While this note of caution seems
important for policy analysis conditioning e.g. on the RR narratives (Miranda-Agrippino and
Rey 2018, Coibion et al. 2017), the identification through CV pursued in this work provides
(i) valuable guidance for tracing the endogenous contamination of RR (and SZ), and (ii)
a constructive way towards an e�cient purging of these instruments (see also Gazzani and
Vicondoa (2019) for the Bridge Proxy SVAR model, which also combines data-based identifi-
cation and proxy SVARs). Both merits are likely to further materialize, in particular in those
fields of MP analysis that are limited to low-frequency empirical analysis for reasons of data
availability (e.g., MP and credit, or MP and inequality). Moreover, after establishing ‘model-
implied’ exogeneity, the purged variants of RR and SZ (as well as benchmark instruments)
allow a direct measurement of MP shocks in higher-dimensional systems or empirical models
where core preconditions for data-based identification (covariance change, non-Gaussianity)
do not apply.
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A Theory- and data-based identification
A.1 Identfication by means of sign restrictions
Sign restrictions ground in economic theory and are often considered to be relatively weak
(and more consensual) in comparison with exclusion restrictions. Following Faust (1998),
Canova and De Nicolo (2002), the approach has been widely applied for studying e�ectiveness
of MP using e.g. the fact that an unanticipated monetary tightening triggers a simultaneous
increase in interest rates and a decrease in inflation according to stylized New Keynesian
DSGE models. At the implementation side, the imposition of sign restrictions proceeds by
sampling from a structured space of reduced-form covariance decompositions:

�u = CQQ
ÕCÕ = BB, (30)

where C is a benchmark decomposition matrix (e.g. a Cholesky factor), and Q can be any
normalized rotation matrix satisfying QQ

Õ = IK . For random sampling of rotation matrices
Q we employ a set of the orthonormal Givens rotation matrices matrices. For instance, in
the trivariate case, one has:

Q(Ë) =

S

WWU

1 0 0
0 cos(Ë1) ≠ sin(Ë1)
0 sin(Ë1) cos(Ë1)

T

XXV

S

WWU

cos(Ë2) 0 ≠ sin(Ë2)
0 1 0

sin(Ë2) 0 cos(Ë2)

T

XXV

S

WWU

cos(Ë3) ≠ sin(Ë3) 0
sin(Ë3) cos(Ë3) 0

0 0 1

T

XXV , (31)

where Ëj , j = 1, . . . , K(K ≠1)/2 are drawn from a uniform distribution on the interval [0, fi].
Each random draw of rotation angles produces a candidate B(Ë) = CQ(Ë) for the matrix
B. Conditional on candidate B(Ë), orthogonalized IRFs �i(Ë) = �iB(Ë), i = 0, . . . , h, are
calculated. If the signs of the resulting responses comply with the imposed restrictions, B(Ë)
is accepted; otherwise, it will be discarded. This procedure is repeated a su�cient number
of times, until a pre-specified number of successful draws (in this study, 1000) is obtained.
Note that the result from this identification approach is a set (e.g. 1000) of models, rather
than a unique structural model. In order to summarize core implications of these models, we
use the median of the impulse responses as the ‘point estimator’ , which is by far the most
popular choice in the literature, and we additionally report 16% and 84% quantiles from the
empirical distribution of the accepted IRFs.

Sign restrictions are typically derived from theoretical models such as DSGE models (Fry
and Pagan 2007, Canova and Paustian 2011). However, if the main idea of performing VAR
analysis is to let the data speak about the dynamic relationships among the variables, insights
from the imposition sign restrictions might be limited since the outcomes are - to some extent
- predetermined by those a-priori restrictions. For instance, one cannot observe a ‘price
puzzle’ if the data are not allowed to do so. Such considerations give rise to identification
techniques that exploit certain statistical properties of the data and do not fully rely on
economic assumptions. We briefly discuss two di�erent data-driven identification procedures
in the following subsections.
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A.2 Identification by heteroskedasticity
It has been shown that changes of volatility in the data provide additional information that
can be used for solving the identification problem. Rigobon (2003) and Lanne and Lütkepohl
(2008) consider exogenous jumps in the unconditional variance of the shocks at discrete points
in time. Assume that there is one permanent volatility break at time point TB, i.e.

E(utu
Õ
t) =

Y
_]

_[

�1 for t = 1, . . . , TB ≠ 1

�2 for t = TB, . . . , T

(32)

Since both covariance matrices are positive definite and �1 ”= �2, there exist simultaneous
factorizations �1 = WW

Õ
, �2 = W�W

Õ
, where W is a K ◊ K non-singular matrix and � ”=

IK is a diagonal matrix with positive diagonal elements Ïk > 0, k = 1, . . . , K. In particular,
one could view the decomposition factor W as a solution for B (Lanne and Lütkepohl 2008) i.e.
W = B. This provides a unique matrix B up to sign and column permutations, such that the
underlying structural shocks Át = W

≠1
ut have covariances: E(ÁtÁ

Õ
t) = IK for t = 1, . . . , TB ≠1

and E(ÁtÁ
Õ
t) = � for t = TB, . . . , T .

This choice of decomposition relies on the assumption that the structural parameters in ma-
trix B remain constant across volatility regimes, which seems reasonable in certain scenarios
(Christiano et al. 1999).33 Another crucial point ensuring a unique identification is that there
must exist at least one regime in which the volatility shift (relative to pre-shift period) in the
k≠th variable di�ers from that in the l≠th variable, i.e. Ïk ”= Ïl for any l, k œ {1, . . . , K}
(Lanne et al. 2010). For estimation purposes, we employ the algorithm provided by R package
svars (Lange et al. 2020).

A.3 Identification by non-Gaussianity
Apart from changes in the second-order moment, it has been shown that if the data are
not Gaussian - which is not uncommon in empirical analysis (Lanne and Saikkonen 2013,
Lanne and Lütkepohl 2010) - this distributional feature can be used for identification. An
important result of Comon (1994) states that the linear relation between reduced-form VAR
residuals and the structural shocks is unique if at most one of the latter exhibits a Gaussian
distribution. Given the uniqueness of the structural model established by assuming indepen-
dent shocks, various approaches have been developed in the literature for SVAR identification
through ICA. Owing to its flexibility and superior identification precision in a heteroskedas-
tic environment shown by Herwartz et al. (2019), in this study we adopt the non-parametric
approach that does not depend on any pre-specified likelihood function. For this purpose,
we consider a space of decompositions of �u based on the same Givens rotation matrix Q(Ë)
analogous to that used for sign restrictions defined in (31), and search on the interval [0, fi]
for the set of rotation angels Ë̂ that minimizes the dependence of the orthogonalized shocks

33Bacchiocchi and Fanelli (2015) suggest a heterogeneous SVAR model that is capable of capturing the
changes in the structural parameters.
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{Át(Ë̂) = Q(Ë̂)≠1
C

≠1
ut}T

t=1. This dependence is measured by either the so-called distance
covariance UT (Ë) or the Cramér-von-Mises distance CT (Ë) in this study, i.e.34

Ë̂
dCov = arg min

Ë
UT (Ë) or Ë̂

CvM = arg min
Ë

CT (Ë).

Conditional on the estimated optimal set of rotation angels Ë̂
•, the estimator for matrix B

is given by ‚B• = B(Ë̂•), • œ {dCov, CvM}. In this study, independence-based identification
using distance covariance relies on function steadyICA from the R package steadyICA (Risk
et al. 2015). For independence diagnostics based on CvM distance, a two-stage optimization
algorithm implemented in R package svars (Lange et al. 2020) is employed.

B DSGE models
In the Monte Carlo simulation, we employ a stylized three-equation dynamic DSGE model
that has been widely used as a baseline framework for MP analysis (Carlstrom et al. 2009,
Castelnuovo 2012, Herwartz and Plödt 2016). A small-scale model would typically allow
us to have a better control of the mapping between structural innovations and observables.
Moreover, it is reasonable to assume statistical independence of the structural shocks and
hence the feasibility of identification through non-Gaussianity in a small-scale system, whereas
this would be more di�cult to justify for larger system, which might involve more related
economic processes (Herwartz 2018). For a detailed description of the model, we refer to
Herwartz and Plödt (2016). The log-linearized version of the model reads as:

xt = “Etxt+1 + (1 ≠ “)xt≠1 ≠ ”x(rt ≠ Etfit+1) + Êx,t (33)

fit = (1 + –—)≠1
—Etfit+1 + (1 + –—)≠1

–fit≠1 + Ÿxt + Êfi,t (34)

rt = ·rrt≠1 + (1 ≠ ·r)(·fifit + ·xxt) + Êr,t (35)

Ê•,t = fl•Ê•,t≠1 + Á•,t, • œ {x, fi, r}, t = 1, . . . , T, (36)

where xt, fit and rt denote the output gap, inflation and nominal interest rate, respectively.
Equation (33) is the IS curve in which “ stands for the weight allocated to a forward-looking
component and ”x governs the impact of the ex-ante real interest rate. Equation (34) is a
New Keynesian Phillips curve with indexation to past inflation –, discount factor — and slope
parameter Ÿ. The policy parameters in the Taylor rule (35) are denoted by ·r, ·fi and ·x.
All structural innovations in (36) are assumed to follow mutually-independent autoregressive
processes of order one with coe�cient flx, flfi and flr for demand shock, supply shock and MP
shock, respectively. In line with Herwartz and Plödt (2016), the DSGE model is calibrated
in the common setting. The parameter values together with intervals for purpose of AoA-
construction are summarized in Table A1.

As shown by Carlstrom et al. (2009), under the condition of equilibrium determinacy (·fi > 1),
34For exact definitions of UT and CT , we refer to Appendix A in Herwartz et al. (2019).
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Parameter Calibration Interval Parameter Calibration Interval
— 0.99 0.99 – 0.5 [0.4, 0.6]
Ÿ 0.05 [0.03, 0.07] “ 0.5 [0.4, 0.6]
”x 0.1 [0.05, 0.15] ·x 0.5 [0.3, 0.7]
·fi 1.8 [1.6, 2.0] ·r 0.6 [0.4, 0.8]
flx 0.5 [0.4, 0.6] flfi 0.5 [0.4, 0.6]
flr 0.5 [0.4, 0.6]

Table A1: Calibration of DGP parameters and intervals for AoA.

the model can be expressed as:
S

WWU

xt

fit

rt

T

XXV = �

S

WWU

xt≠1

fit≠1

rt≠1

T

XXV + B

S

WWU

Êx,t

Êfi,t

Êr,t

T

XXV (37)

Denoting yt = (xt, fit, rt)Õ and Êt = (Êx,t, Êfi,t, Êr,t)Õ we obtain

yt = �yt≠1 + BÊt,

which implies the explicit parameterization

� =

S

WWU

0.74 ≠0.09 ≠0.16
0.13 0.44 ≠0.06
0.24 0.30 0.53

T

XXV and B =

S

WWU

2.32 ≠0.48 ≠0.41
0.72 2.32 ≠0.22
0.98 1.57 0.76

T

XXV

under the parameter choices encountered in Table A1.

As shown in Ravenna (2007) and Carlstrom et al. (2009), the system has a VAR(2) repre-
sentation:

yt = A1yt≠1 + A2yt≠2 + BÁt, (38)

where the autoregressive coe�cient matrices are A1 = � + BFB≠1 and A2 = ≠BFB≠1�.

50



C Detailed simulation results

T 120 240 480

Avg. Á1 æ Á2 æ Á3 æ Avg. Á1 æ Á2 æ Á3 æ Avg. Á1 æ Á2 æ Á3 æ

LI

IV .639 .930 .618 .370 .734 .979 .735 .488 .821 .996 .847 .619
IV-W .376 .656 .292 .181 .387 .682 .299 .180 .394 .717 .291 .173
IV-E .376 .804 .240 .083 .391 .894 .207 .072 .399 .942 .185 .068
SR .456 .806 .371 .189 .469 .861 .369 .176 .462 .888 .331 .168
CV .649 .923 .605 .419 .753 .975 .747 .536 .843 .996 .858 .674
dCov .632 .915 .581 .399 .720 .970 .697 .495 .805 .995 .811 .609
CvM .545 .866 .470 .298 .625 .947 .576 .352 .705 .991 .686 .438

L(a)
II

IV .638 .930 .608 .376 .735 .982 .731 .493 .822 .999 .851 .616
IV-W .373 .652 .276 .191 .391 .692 .292 .189 .392 .722 .291 .163
IV-E .380 .809 .246 .084 .393 .891 .215 .073 .400 .947 .186 .068
SR .454 .812 .368 .183 .467 .856 .366 .178 .469 .894 .344 .169
CV .644 .918 .600 .415 .749 .978 .745 .524 .847 .998 .872 .670
dCov .634 .908 .589 .405 .731 .974 .704 .515 .823 .997 .838 .634
CvM .536 .853 .466 .289 .633 .950 .584 .366 .705 .986 .691 .438

L(b)
II

IV .634 .928 .614 .359 .730 .985 .739 .467 .820 .997 .854 .608
IV-W .372 .662 .274 .180 .382 .686 .283 .178 .396 .711 .292 .185
IV-E .372 .791 .241 .084 .390 .892 .207 .071 .397 .938 .186 .068
SR .451 .798 .370 .183 .468 .863 .368 .173 .471 .891 .351 .172
CV .646 .918 .594 .426 .750 .981 .738 .531 .834 .997 .856 .649
dCov .646 .918 .610 .410 .753 .982 .744 .533 .841 .997 .868 .657
CvM .552 .858 .493 .304 .645 .949 .605 .382 .730 .989 .716 .487

L(a)
III

IV .637 .929 .602 .379 .734 .983 .738 .482 .823 .998 .855 .617
IV-W .369 .639 .285 .183 .389 .701 .291 .175 .397 .704 .304 .183
IV-E .377 .800 .247 .085 .390 .886 .212 .073 .398 .940 .185 .068
SR .450 .799 .367 .184 .467 .858 .361 .182 .464 .888 .338 .167
CV .644 .916 .588 .429 .741 .979 .729 .515 .842 .997 .861 .669
dCov .653 .919 .603 .438 .754 .979 .743 .539 .845 .996 .867 .672
CvM .554 .860 .494 .309 .672 .948 .636 .433 .762 .985 .762 .538

L(b)
III

IV .633 .932 .594 .372 .738 .978 .735 .500 .829 .997 .860 .629
IV-W .382 .675 .287 .183 .385 .688 .288 .181 .394 .694 .300 .186
IV-E .379 .807 .243 .087 .391 .888 .212 .072 .398 .941 .185 .068
SR .448 .803 .358 .183 .464 .855 .359 .178 .465 .886 .338 .172
CV .646 .925 .585 .428 .749 .977 .728 .541 .845 .996 .870 .668
dCov .631 .914 .578 .400 .736 .973 .715 .521 .836 .995 .847 .667
CvM .522 .830 .445 .292 .616 .922 .549 .376 .712 .970 .689 .477

Table A2: Average acceptance frequencies of for i = 0, . . . , 4.
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T 120 240 480

Avg. Á1 æ Á2 æ Á3 æ Avg. Á1 æ Á2 æ Á3 æ Avg. Á1 æ Á2 æ Á3 æ

LI

IV .448 .552 .456 .334 .574 .654 .593 .476 .699 .753 .721 .624
IV-W .362 .494 .309 .284 .441 .578 .382 .362 .518 .673 .455 .425
IV-E .400 .487 .337 .375 .495 .596 .437 .452 .569 .688 .517 .501
SR .349 .491 .336 .221 .418 .587 .419 .248 .481 .674 .498 .272
CV .466 .556 .460 .382 .592 .658 .603 .516 .712 .753 .734 .650
dCov .468 .557 .455 .390 .599 .657 .604 .535 .714 .755 .727 .659
CvM .471 .572 .439 .400 .604 .670 .609 .532 .715 .755 .735 .656

L(a)
II

IV .446 .548 .451 .337 .570 .650 .580 .479 .716 .766 .743 .640
IV-W .357 .486 .292 .294 .436 .574 .371 .363 .522 .684 .458 .424
IV-E .406 .488 .346 .384 .494 .587 .438 .457 .576 .699 .534 .495
SR .350 .494 .339 .215 .416 .574 .420 .254 .488 .687 .516 .261
CV .471 .552 .465 .396 .585 .651 .592 .512 .728 .766 .752 .666
dCov .467 .554 .455 .390 .589 .654 .591 .523 .731 .766 .752 .675
CvM .473 .575 .443 .401 .599 .671 .595 .530 .718 .764 .731 .659

L(b)
II

IV .452 .552 .463 .342 .565 .654 .584 .458 .708 .770 .732 .623
IV-W .362 .496 .291 .299 .438 .578 .375 .360 .524 .684 .464 .423
IV-E .409 .494 .349 .385 .487 .591 .433 .438 .574 .699 .524 .500
SR .355 .496 .351 .218 .412 .582 .415 .240 .494 .685 .519 .277
CV .474 .554 .466 .403 .588 .654 .597 .514 .720 .769 .739 .653
dCov .474 .556 .476 .392 .589 .654 .595 .520 .719 .769 .741 .648
CvM .472 .571 .444 .400 .602 .660 .609 .535 .721 .767 .738 .659

L(a)
III

IV .445 .539 .460 .335 .580 .661 .596 .482 .704 .763 .719 .630
IV-W .349 .471 .297 .280 .443 .587 .381 .360 .528 .677 .466 .440
IV-E .401 .481 .344 .379 .499 .598 .440 .459 .579 .694 .528 .514
SR .342 .478 .340 .209 .421 .589 .422 .253 .489 .675 .513 .281
CV .470 .543 .473 .393 .598 .663 .605 .526 .716 .763 .734 .652
dCov .467 .545 .470 .384 .598 .663 .606 .524 .718 .764 .727 .663
CvM .469 .564 .451 .392 .596 .661 .595 .533 .714 .765 .718 .659

L(b)
III

IV .434 .538 .437 .327 .585 .664 .595 .496 .712 .764 .735 .635
IV-W .348 .470 .293 .281 .436 .582 .372 .354 .525 .679 .457 .437
IV-E .396 .478 .336 .375 .498 .603 .437 .455 .576 .700 .524 .504
SR .342 .485 .335 .206 .425 .596 .427 .253 .496 .687 .531 .271
CV .461 .540 .452 .389 .601 .667 .603 .532 .723 .764 .746 .658
dCov .459 .546 .450 .381 .594 .666 .595 .523 .722 .765 .736 .665
CvM .463 .576 .427 .386 .566 .651 .560 .487 .715 .774 .723 .649

Table A3: Average acceptance frequencies of for i = 5, . . . , 15.
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T 120 240 480

Avg. æ x æ fi æ r Avg. æ x æ fi æ r Avg. æ x æ fi æ r

LI

IV 0.726 0.890 0.930 0.358 0.518 0.639 0.660 0.255 0.400 0.461 0.540 0.200
IV-W 2.192 4.559 1.516 0.501 2.254 4.538 1.744 0.480 2.245 4.625 1.640 0.470
SR 2.460 6.011 1.066 0.303 2.483 6.058 1.103 0.289 2.487 6.058 1.121 0.284
CV 0.786 0.737 1.310 0.311 0.543 0.457 0.955 0.217 0.394 0.319 0.706 0.158
dCov 0.730 0.825 1.027 0.338 0.590 0.530 0.944 0.298 0.507 0.373 0.886 0.261
CvM 1.519 2.406 1.538 0.614 1.152 1.331 1.527 0.598 1.021 0.978 1.482 0.602

L(a)
II

IV 0.690 0.929 0.813 0.329 0.519 0.640 0.664 0.253 0.397 0.476 0.516 0.198
IV-W 2.123 4.507 1.399 0.465 2.127 4.508 1.443 0.430 2.281 4.745 1.602 0.496
SR 2.450 5.980 1.067 0.304 2.489 6.077 1.099 0.292 2.497 6.088 1.120 0.285
CV 0.788 0.762 1.293 0.309 0.553 0.467 0.966 0.227 0.387 0.322 0.681 0.158
dCov 0.675 0.751 0.961 0.314 0.552 0.479 0.890 0.287 0.439 0.346 0.734 0.236
CvM 1.448 2.224 1.520 0.599 1.159 1.326 1.529 0.621 1.021 0.930 1.509 0.625

L(b)
II

IV 0.715 0.933 0.858 0.355 0.549 0.658 0.709 0.278 0.395 0.449 0.529 0.207
IV-W 2.146 4.496 1.461 0.480 2.102 4.326 1.520 0.459 2.202 4.603 1.549 0.454
SR 2.446 5.987 1.043 0.308 2.462 6.000 1.091 0.294 2.482 6.038 1.118 0.288
CV 0.784 0.747 1.285 0.321 0.565 0.477 0.982 0.236 0.420 0.350 0.734 0.177
dCov 0.623 0.657 0.894 0.319 0.505 0.453 0.793 0.270 0.364 0.324 0.563 0.205
CvM 1.287 1.795 1.465 0.601 1.013 1.052 1.411 0.576 0.933 0.871 1.372 0.555

L(a)
III

IV 0.723 0.948 0.872 0.349 0.541 0.667 0.693 0.264 0.394 0.467 0.512 0.204
IV-W 2.249 4.691 1.573 0.483 2.271 4.597 1.707 0.508 2.047 4.133 1.562 0.445
SR 2.467 6.039 1.058 0.305 2.476 6.036 1.099 0.292 2.493 6.070 1.124 0.284
CV 0.790 0.728 1.319 0.323 0.580 0.503 1.002 0.234 0.404 0.313 0.734 0.165
dCov 0.632 0.686 0.897 0.312 0.445 0.454 0.649 0.232 0.336 0.308 0.517 0.185
CvM 1.158 1.548 1.351 0.574 0.934 1.063 1.224 0.514 0.824 0.808 1.179 0.484

L(b)
III

IV 0.720 0.952 0.867 0.343 0.533 0.654 0.678 0.266 0.404 0.482 0.530 0.198
IV-W 2.106 4.335 1.518 0.463 2.159 4.506 1.509 0.462 2.097 4.346 1.498 0.447
SR 2.442 5.961 1.064 0.301 2.480 6.051 1.100 0.289 2.490 6.063 1.123 0.283
CV 0.744 0.742 1.198 0.294 0.582 0.485 1.025 0.235 0.400 0.337 0.704 0.159
dCov 0.654 0.778 0.888 0.298 0.500 0.521 0.722 0.256 0.349 0.349 0.508 0.190
CvM 1.306 1.999 1.355 0.565 1.033 1.284 1.276 0.539 0.844 0.895 1.150 0.486

Table A5: Relative root mean squared error of estimated e�ects of UMPS. As documented
in Table A4, proxy SVARs that condition on invalid instrument fail throughout to obtain a
UMPS. Therefore, performance statistics for IV-E are not provided.
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D Instruments for the US monetary policy shock

Table A6: Summary of employed external MP shock series.

Shock series Type Sample period F -statistics
RR narrative 1969M1–2007M12 32.435
RR 83 narrative 1983M1-2007M12 7.489
FF1 high frequency 1988M1–2012M12 5.266
FF4 high frequency 1988M1–2012M12 5.039
FF1 gb high frequency 1988M1–2012M12 0.443
FF4 gb high frequency 1988M1–2012M12 0.650
MA high frequency 1990M2–2009M12 2.536
GSS high frequency 1990Q1–2004Q4 1.592
SZ SVAR 1960M2–2003M3 39.336
SW DSGE 1959Q1–2004Q4 19.810

Notes: RR denotes the narrative shock series of Romer and Romer (2004), constructed as the
residuals from a regression of the federal funds target rate on Greenbook forecasts for FOMC
meeting dates, which has been estimated over an extended sample until 2007M12 by Ramey
(2016) (quarterly sums, demeaned). RR 83 is the re-estimated original RR series starting
in 1983M1 using long-horizon Greenbook forecasts (quarterly sums, demeaned). FF1 (FF4)
denotes the movements in the current federal funds futures rate (three month ahead futures
rate) within a 30 minute window surrounding FOMC announcements from Gertler and Karadi
(2015) but have been converted to a monthly basis by Ramey (2016) (quarterly average). FF1
gb and FF4 gb follow the same methodology but have been orthogonalized to the Romer
Greenbook variables (Ramey 2016) (quarterly average). MA stands for the monetary surprise
series that has been purged of anticipatory e�ects from monetary surprises, i.e. the reaction of
agents to information revealed by the central bank’s monetary decision (Miranda-Agrippino
2016) (quarterly average). GSS is the estimated factor that measures the unexpected changes
in the current target for FFR in Gürkaynak et al. (2005). SZ is the Sims and Zha (2006) MP
shock from a SVAR specification allowing for regime-dependent volatility (quarterly average).
SW is the MP shock resulting from the Smets and Wouters (2007) DSGE model. All series
except for the GSS, SW, SZ and MA have been obtained from Valerie Ramey’s webpage
(https://econweb.ucsd.edu/~vramey/research.html#data), while GSS, SW and SZ are
available at Mark Watson’s webpage (http://www.princeton.edu/~mwatson/publi.html,
downloaded at 9/3/20 for this study). The MA monetary surprise is available on Miranda-
Agrippino’s webpage (http://silviamirandaagrippino.com/research/). The shock series
are adjusted to be free of serial correlation. For critical values for F -statistics see Table 5
and Lunsford (2015).
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E Monetary policy, information e�ects and endogeneity
Constructing a direct measure of MP shocks requires disentangling exogenous fluctuations
from endogenous (i.e. systematic) responses of policy indicators. In practice, this could be
complicated by the signaling channel (or forward guidance) adopted by monetary authorities,
or through informational asymmetries between the monetary authority and economic agents.
The implications for MP identification in an imperfect information context have recently at-
tracted attention in theoretical and empirical studies (with further references, see Noh 2018,
Miranda-Agrippino and Ricco 2017, Miranda-Agrippino 2016). This literature builds upon
the intuition that if a central bank has superior information about the future (and possibly
the current) state of the economy compared with the private sector (more generally, if their
forecasts di�er), policy measures comprise monetary surprises and information about funda-
mentals, and agents will adjust their expectations according to both components. Hence, if
an instrument under scrutiny does not account for such an ‘informational asymmetry’ , esti-
mated causal relations are at risk of being biased, for two distinct reasons: on the one hand,
di�erences in forecasts lead to predictability of instruments conditional on past structural
shocks or equivalently lagged endogenous variables (i.e. the so-called lead/lag exogeneity as-
sumption in Stock and Watson 2018); and on the other hand, if nowcasts di�er, informational
frictions result in contemporaneous contamination of instruments with non-MP shocks.35

Regarding the violation of the lag exogeneity, this is equivalent to saying that the VAR is
(partially) non-invertible and can potentially be cured by including enough information, such
that the reduced-form residuals span the space of the structural shocks. From arguments in
Noh (2018) one can conclude that non-invertibility is implied if instrumental information is
Granger causal for the variables in the VAR. Conducting respective tests for our small-scale
VAR and its factor-augmented counterparts obtains the results documented in Table 7. As
it turns out, SW is the only instrument that does not Granger cause the VAR variables and
the extracted common factors. By contrast, macroeconomic variables can be predicted by
instruments RR and SZ, thus further calling into question the structural model conditioning
on these instruments.

SW RR SZ
r F p-val. F p-val. F p-val.
0 1.685 0.066 1.494 0.122 2.400 0.005
1 1.280 0.203 1.496 0.095 2.081 0.008
2 1.082 0.363 1.507 0.071 2.058 0.004
3 1.104 0.332 1.714 0.018 1.671 0.023

Table 7: Test for Granger (non-)causality in (FA)VARs with r factors. H0 : z
GC9 (y, F ).

Instruments are adjusted to be serially uncorrelated. The lag order in all (FA)VARs is four.

35Arguably, models of forward guidance or signaling also result in a violation of the lag exogeneity.
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