
Cecere, Grazia; Rexhäuser, Sascha; Schulte, Patrick

Article  —  Published Version

From less promising to green? Technological opportunities
and their role in (green) ICT innovation

Economics of Innovation and New Technology

Provided in Cooperation with:
ZEW - Leibniz Centre for European Economic Research

Suggested Citation: Cecere, Grazia; Rexhäuser, Sascha; Schulte, Patrick (2019) : From less promising
to green? Technological opportunities and their role in (green) ICT innovation, Economics of
Innovation and New Technology, ISSN 1476-8364, Routledge, London, Vol. 28, Iss. 1, pp. 45-63,
https://doi.org/10.1080/10438599.2018.1423766

This Version is available at:
https://hdl.handle.net/10419/225069

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1080/10438599.2018.1423766%0A
https://hdl.handle.net/10419/225069
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


From less promising to green? Technological opportunities and
their role in (green) ICT innovation
Grazia Cecerea,b, Sascha Rexhäuserb and Patrick Schulteb

aTélécom Ecole de Management, Institut Mines-Télécom, Paris, France; bCentre for European Economic Research
(ZEW), Mannheim, Germany

ABSTRACT
This article aims to shed light on the role of technological opportunities for
green innovation by studying the case of Green ICT innovation. We test
whether firms active in low-opportunity technological areas are less
likely to be innovative and whether they are more likely to change their
direction of technical change. To do so, we construct a firm-level panel
data set for the years 1992–2009 combining patent data from the
European Patent Office with firm-level data from the German Innovation
Panel (Mannheim Innovation Panel). The results are based on dynamic
count data estimation models applying General Methods of Moments
estimators. Our results support our hypotheses: firms active in low-
opportunity technological areas are less innovative but are more likely
to switch from pure ICT innovation to Green ICT innovation.
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1. Introduction

Innovation in environment-friendly, ‘green’, technologies is crucial to ensure sustainable growth.
A large literature studies potential drivers of green innovation (for surveys see e.g. Jaffe, Newell,
and Stavins 2003; Barbieri et al. 2016). However, despite the well known fact that technology push
factors, such as technological opportunities and path dependencies, are important determinants
of innovation behavior in general (Klevorick et al. 1995; Breschi, Malerba, and Orsenigo 2000), the lit-
erature studying environmental innovation has mainly focused on price- and regulation-induced
innovation (see e.g. Jaffe and Palmer 1997; Newell, Jaffe, and Stavins 1999; Popp 2002; Brunnermeier
and Cohen 2003; Johnstone, Hascic, and Popp 2010). Some evidence with respect to the role of path
dependencies for green innovation exists (Acemoglu et al. 2012; Rexhäuser and Löschel 2015; Aghion
et al. 2016), but there is nearly no empirical work which examines the role of technological opportu-
nities for green innovation. We provide such evidence to help closing this gap in the literature.

Technological opportunities, which describe the ease of innovative activities in a technological
domain (Malerba and Orsenigo 1996; Corrocher, Malerba, and Montobbio 2007), have been shown
to affect the efficiency of R&D and thus the rate of innovation (see e.g. Klevorick et al. 1995;
Kumar and Siddharthan 1997). We test this relationship in the context of green innovations. In
addition, we test the hypothesis that firms which are active in low-opportunity technologies are
more likely than firms active in high-opportunity technologies to change their direction of technical
change. We study those two hypotheses in the context of innovation in green and non-green infor-
mation and communication technologies (ICT). ICT are an interesting field of investigation since they
are characterized by rapid, disruptive technical change and short technology life cycles resulting at
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the same time in both many high- and low-opportunity technologies (Corrocher, Malerba, and Mon-
tobbio 2007). Also, ICT are a highly relevant field for studying green innovations, given ICT’s ubiquity
as a general purpose technology (Bresnahan and Trajtenberg 1995), and given that the use of ICT is
shown to be closely related to energy use (see e.g. Schulte, Welsch, and Rexhäuser 2016).

To implement our study empirically, we construct a firm-level panel data set for the years 1992–
2009 which combines information on patents from the European Patent Office (EPO) and data from
the Mannheim Innovation Panel (MIP). The main results are based on dynamic count data estimation
models applying General Method of Moments (GMM) estimators. Controlling for size, age, R&D inten-
sity, the degree of competition and past innovation performance, we find that technological oppor-
tunities indeed play an important role for the rate and direction of technical change. Firms active in
low-opportunity fields are less likely to innovate but are more likely to switch technological fields, i.e.
they switch from pure ICT to green ICT innovation. Our work provides first empirical evidence on the
role of technological opportunities in green innovation and at the same time offers valuable insights
for policy interventions which aim at stimulating green innovation (in the ICT sector). Our results
show that such policy interventions are more effective, i.e. they can be realized at lower costs, in
low opportunity technology areas since firms there anyway have a tendency to change the direction
of technical change and thus just have to be incentivized choosing their new area of research in a
green technology field.

The rest of the paper is organized as follows. Section 2 reviews and summarizes the related litera-
ture. Section 3 describes our data set and presents descriptive evidence. Section 4 introduces the
empirical framework and describes the econometric methods used. Section 5 presents the results,
including various robustness checks. Section 6 concludes.

2. Previous research

A large literature studies potential drivers of environmental innovation (for surveys see e.g. Jaffe,
Newell, and Stavins 2003; Barbieri et al. 2016). Most studies are focused on understanding the role
of prices and regulation for innovation (see e.g. Jaffe and Palmer 1997; Newell, Jaffe, and Stavins
1999; Popp 2002; Brunnermeier and Cohen 2003; Johnstone, Hascic, and Popp 2010). Technology
push factors, such as technological opportunities and path dependencies, despite the well-known
fact that these are important determinants of innovation behavior in general (Klevorick et al. 1995;
Breschi, Malerba, and Orsenigo 2000), are hardly analyzed in the context of environmental inno-
vation. Some evidence exists with respect to the role of path dependencies (Acemoglu et al. 2012;
Rexhäuser and Löschel 2015; Aghion et al. 2016), but there is, to our knowledge, no empirical
work which examines the role of technological opportunities for environmental innovation.

Both empirical and theoretical literature have underlined the importance of technological oppor-
tunities for the development of innovation. Technological opportunities describe the ease of innova-
tive activities in a technological domain (Malerba and Orsenigo 1996; Corrocher, Malerba, and
Montobbio 2007). They are considered to be exogenous to the firm (Kumar and Siddharthan 1997;
Barge-Gil and López 2014) and have been shown to influence the productivity of R&D and thus
are important determinants of firms’ research decisions (Klevorick et al. 1995). High technological
opportunities are associated with a high innovation potential within a technological domain.
Despite these insights there is no evidence on the role of technological opportunities for the devel-
opment of environmental innovations, especially not with respect to green general purpose technol-
ogies (GGPT) such as Green ICT.1

To study the role of technological opportunities for the development of environmental inno-
vations and green ICT, we rely on the framework of technological push factors (Rosenberg 1994).
We derive two research hypotheses. In a first step, in line with the key finding from the general
innovation literature showing the positive relationship between technological opportunities and
innovative success, we aim to replicate this finding in the context of environmental innovations
and ICT. We hypothesize that, if there are limited or no technological opportunities within a
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subdomain of ICT, firms will have low invention output relative to the amount they invest into R&D. In
contrast, in areas where there are more opportunities, firms are expected to produce ceteris paribus
more ICT patents given an investment into R&D. Thus, the first research hypothesis we want to test, is:

Hypothesis I: Higher technological opportunities are associated with more innovative output.

Testing this hypothesis contributes on the one hand to the literature concerned with understand-
ing drivers of environmental innovation and provides insights useful for determining optimal R&D
levels necessary to reach desired levels of green growth. On the other hand, such evidence also con-
tributes to the general innovation literature by providing alternative empirical evidence on the role of
technological opportunities which is based on an empirical context not studied before.

In a second step of our analysis, we study the consequences of technological opportunities for the
direction of technical change, i.e. for the choice of the technological field inventors decide to become
active in. With respect to this relationship, to our knowledge, no studies exist. Some studies analyze
the role of path dependencies for the direction of technical change - their findings suggest that chan-
ging the direction of technical change is costly (Dosi 1982; David 1985). As technological knowledge
is by nature cumulative, as noted by Rosenberg (1994), major innovations constitute new building
blocks which provide a basis for subsequent technologies indicating that path-dependency is an
important driver of both the number of inventions (as well as current R&D expenditures) and the
direction of technical change. Changing the direction of technical change implies costs through
the need to abandon some of the previously acquired knowledge in technology domains which
are left behind. The role of path dependencies has also been shown in the context of environmental
innovations, where some studies, e.g. (Acemoglu et al. 2012; Rexhäuser and Löschel 2015; Aghion
et al. 2016) confirm that both path-dependencies and cumulativeness of knowledge are potential
drivers of the direction of technical change.2 Despite the costs which come with changing the direc-
tion of technical change, we expect firms active in low opportunity areas to be more likely to adjust
the direction of technical change. If the benefits of adjusting research efforts from a low to a high
opportunity technological field (where such benefits should increase in the low-to-high opportunity
differential) exceed the cost of adjustment (from abandoning existing know-how), we would expect
firms and innovators to adjust research efforts, but otherwise would expect them to remain in their
technological domain. In the case of ICT and Green ICT innovation, we hypothesize that firms active in
low opportunity ICT domains are more likely to adjust their research efforts into new technological
areas, such as Green ICT technological domains, which allow those firms reusing some of their exist-
ing knowledge (on ICT) to create innovations in new, less researched technological areas such as
Green ICT. More precisely, we expect firms active in high opportunity ICT domains to have ceteris
paribus more pure ICT patents and less green ICT patents, whereas firms active in low opportunity
ICT domains are expected to have ceteris paribus less patents in pure ICT domains but relatively
more ones in green ICT. Our second research hypothesis is:

Hypothesis II: Low technological opportunities are associated with a higher likelihood of a change in the direction
of technical change.

3. Data, definitions, and descriptive statistics

In this section we describe our data (Section 3.1) and provide descriptive evidence on our research
questions (Section 3.2).

3.1. Data and definitions

To study the effect of technological opportunities on the rate and direction of technological change
we use longitudinal data of German firms linked to patent data from the EPO as well as from the
Worldwide Patent Statistical Database (PATSTAT). Germany is an interesting country to look at as it
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is one of the leading technological countries in the world and in particular heavily active in environ-
mentally-friendly technologies. Our data set merges the MIP, covering firm-level observations from
1992 onwards, with patent data. The former is a representative panel stratified by firm size and
sector affiliation where the target group is firms with at least five employees, however, also
smaller firms are in the data set but the number is considerably small.3 The MIP is based on the Com-
munity Innovation Survey (CIS) for Germany and is, in contrast to most other European countries, con-
ducted annually so that a yearly unbalanced data set of approximately 50,000 companies exists.4 We
match the MIP to patent data from the PATSTAT database by using firm names and locations. Finally,
in a last step, we add industry-level data related to the R&D expenditure data collected by the OECD
ANBERD database as well as ICT capital services information published by the EU KLEMS database.
Based on this information we construct our main variables of interest: measures of innovation and
technological opportunities as well as several control variables.

Estimation sample: For our estimation sample we restrict our sample to firms that have at least one
ICT patent granted by the EPO (since 1978).5 This subset of firms is hereinafter denoted as ICT-active
firms. After the elimination of incomplete records and outlier observations, the final unbalanced
panel dataset consists of 8653 observations for 1837 ICT-active companies. Note that most of the
50,000 firms in the MIP, 87.65%, do not have patents granted by the EPO. Of the remaining
12.35% of firms that show up as patent holders, only approximately 31.86% are holders of patents
in the ICT area. Thus, these 1837 ICT-active firms account for 3.95% of all firms in the MIP but for
31.86% of all patent holders in this representative dataset. On average, firm-level data for these
firms is observed for 4.7 years.

Measuring innovation: Patent data is a good and frequently used indicator to measure (environ-
mental) technological inventions (Oltra, Kemp, and de Vries 2010), which allow us to investigate inno-
vation at the technology area level and especially to analyze the rate and direction of technical
change over time.6 The classification of patents by technological domains is done usingInternational
Patenting Classification (IPC) codes. The identification of ICT technologies follows the OECD list of IPC
codes in the ICT field (OECD 2016). In a similar way, environmentally-friendly technologies, which in
this study are referred to as ‘green technologies’, are also measured using the patents’ IPC codes. We
define a green technology as any technology with a direct or indirect beneficial effect on the environ-
ment, such as energy- and resource-saving inventions or technologies that reduce waste, replace
hazardous materials in products and so on. Similar to for example Albino et al. (2014), we use IPC
codes to identify green technologies which are listed in the WIPO Green Inventory defined by the
World Intellectual Property Organization (WIPO). We define an invention (patent) as a green ICT
one if the respective patent has at least one IPC code in the ICT area and at least one IPC code in
the area of green technologies.7 Figure 1 illustrates this definition.

Measuring technological opportunities: To measure the strength of technological opportunities, we
follow the longstanding empirical literature which aims to measure them. Although the importance
of this concept is uncontroversial, there is a lack of a clear and precise understanding of how to
measure technological opportunities empirically. Several proxies have been proposed and applied.
For an overview over the literature and the empirical measures used to study technological oppor-
tunities, see Cohen (2010). Starting with Scherer (1965), who shows that innovation activities differ
across sectors and who relates this finding to differences in technological opportunities, mainly
two types of empirical measures have been applied to measure technological opportunities:
survey-based measures and measures based on patents. Levin, Cohen, and Mowery (1985), Zahra
(1996) and Crépon, Duguet, and Mairesse (1998) make use of survey data to identify technological
opportunities. They measure variables thought to represent an industry’s technological opportu-
nities, such as the contribution of basic and applied sciences, suppliers, users, governments etc. to
the industry’s technological knowledge. Some of such measures, as Cohen (2010) summarizes, per-
formed well in explaining industry’s innovation activity. However, this approach requires specific
survey questions and could be prone to response- and survey-bias as well as to measurement
error. Alternatively, other studies such as Scherer (1967) or Jaffe (1986) apply cluster methods on
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data capturing realized innovations to define high- and low-opportunity areas. For example, Scherer
(1967) argues that technological opportunities are sector-specific and thus distinguished low- and
high-technological opportunity sectors. Jaffe (1986) uses data on the distribution of patents across
patent classes to assign firms to technological opportunity classes, i.e. to classify firms into high-
and low-opportunity technological domains; see also Jaffe (1989). A similar approach was pursued
by Corrocher, Malerba, and Montobbio (2007), who measure technological opportunities in the ICT
sector using the growth rate of innovative activities observed through patent data. Another
example is Geroski (1990) who used industry-specific innovation counts in previous periods as a
measure of technological opportunities.

To keep our analysis in line with the literature applying innovation-based measures of technologi-
cal measures and to keep it as traceable as possible, we abstain from performing a cluster analysis as a
means of identifying high- and low-opportunity fields but instead derive an alternative proxy of tech-
nological opportunities which is more transparent. Following Breschi, Malerba, and Orsenigo (2000)
and Corrocher, Malerba, and Montobbio (2007), a technology can be considered a high-opportunity
technology as long as there are positive growth rates of the number of inventions in this technologi-
cal field. We consider technological fields as high-opportunity fields as long as the maximum annual
number of patents in this class has not been reached and consider it a low-opportunity field after-
wards. To account for changes in world-wide patenting trends, which vary a lot as illustrated by
Figure 2, we weight the number of patents in a technology group by the total number of patents
in the given year.8

Technically, we conduct our analysis at the technology group level (such as H04L 1) where 288
classes exist and base our opportunity measure on patents from all countries filed at the EPO.9

Thus, a technology class is considered a high-opportunity one as long as the share of patents
from this class in total patents in all IPC classes has not reached its maximum. Formally, the high/
low-opportunity status (hc,t) of a technology class c in year t is defined as:

hc,t = (high = 1) ∀ t ≤ t(maxt(sc,t))
(low = 0) otherwise

{
(1)

where sc,t denotes the share of patents filed at the EPO in year t in the technological class c. The fol-
lowing graphs provide some examples of such classes and illustrate our definition of high- and low-
opportunity periods. In Figures 3 and 4, low-opportunity periods are marked by the gray shaded area.

Figure 1. Definition of green ICT inventions.
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To measure technological opportunities at the firm-level we match the group-level indicators with
our firm-level data. We compute the share of IPC classes of all patents of firm i in year t in technologi-
cally high-opportunity areas (oppi,t) as:

oppi,t = (
∑
c

hc,t · IPCi,c,t/
∑
c

IPCi,c,t) · 100. (2)

Finally, as our main measure of firms’ technological opportunities, based on this share, we construct a
dummy which is equal to one if a firm has a positive share (oppi,t) of high-opportunity IPC classes and

Figure 2. World patents (by technology).

Figure 3. IPC class G02B6: light guides; structural details of arrangements comprising light guides, etc.
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which is zero if it has none of such patents. This dummy is our main measure for technological oppor-
tunities which we use in the empirical analysis. However, in a set of robustness checks, as an alterna-
tive, we use the share itself as our measure of technological opportunities.

3.2. Descriptive statistics

This section offers descriptive statistics on core firm-level indicators and patents held by firms as well
as a sectoral breakdown. Table 1 below reports summary statistics for the 8653 observations of our
estimation sample.

The average firm in this dataset has around 2847 employees which is surprisingly large compared
to the average German firm, which has on average around 12 employees (Eurostat 2015). This is
because, on the one hand, the sampling procedure does not automatically target small start-up com-
panies as target firms have at least five employees. On the other hand, restricting the sample to firms
that have at least one patent filters out small and innovative firms that have no patent so far as the
patenting procedure usually takes some time and is expensive. In addition, it filters out firms without

Figure 4. IPC class G11B5: recording by magnetization or demagnetization of a record carrier; reproducing by magnetic means;
record carriers, etc.

Table 1. Summary statistics.

Variables Mean Std. Dev. Min. Max.

Number of green ICT patents 0.09 1.14 0.00 48.00
Number of ICT patents 1.01 10.60 0.00 781.00
ln(R& D-intensityt ) (R& D/no. of employ.) 5.81 7.22 0.00 23.96
Dummy for missing R& D information 0.53 0.50 0.00 1.00
Number of employeesa 2847.96 18410.36 1.00 >200,000
Share high opportunity IPC cl.s in t−1 9.51 28.35 0.00 100.00
Dummy for no ICT patents in t−1 0.88 0.33 0.00 1.00
Herfindahl index 1023.27 1061.57 56.57 10,000
ln R& D expenditures in NACE 2-dig. sect. 20.99 1.85 0.00 23.45
Firm agea (median: 26 years) 38.23 44.91 0.50 >300
Dummy for location in East Germany 0.18 0.38 0.00 1.00
aFor reasons of confidentiality, maximum values are not reported.
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ICT patents which are also on average rather small. Taking also into account that the average firm in
the dataset is relatively old (38.23 years), this implies that the results of this study do not necessarily
hold for the average population of firms but rather for established innovative firms. One reason why
the average firm in our dataset is relatively old compared to what we would expect an ICT firm to be
becomes clearer when looking at Table 2. A non-trivial share of all the ICT patents does not come
from the core ICT sector such as computers and electric equipment. Instead, the automobile
sector and the machinery as well as the equipment sector highly contribute to the total number
of ICT patents.

Another interesting finding from Table 1 is that 53% of the firms do not report R&D expenditures,
meaning that they do not formally do R&D. However, only recently Rammer, Czarnitzki, and Spielk-
amp (2009) show that firms that do not do formal R&D might be nevertheless innovative. This finding
also corresponds to Acs and Audretsch (1990), who argue that smaller firms are on average more
innovative but the likelihood that a firm is engaged actively in formal R&D processes and has R&D
labs increases significantly with firm size.

4. Empirical model and estimation strategy

Scholars interested in explaining the number of inventions generated by firms typically rely on the
concept of the knowledge production function (Griliches 1979; Pakes and Griliches 1980, 1984;
Jaffe 1986). It assumes that the existing stock of knowledge of firms is the main production factor
of new knowledge, which is often measured by patents granted.10 Following this approach, in our
empirical model the dependent variable is the firm i’s number of (pure) ICT or green ICT patents
in year t, respectively (hereinafter pi,t).

11 In line with the knowledge production function approach,
we assume that knowledge creation is explained by a vector of variables xi,t which includes the
knowledge stock ki,t . pi,t given xi,t is assumed to be Poisson distributed, so that the mean parameter
of the resulting density in log-linear form is given by m = e(x

′
i,tb), where b is a vector of coefficients to

be estimated. Allowing for a firm-specific constant ci , which accounts for differences in the propensity
to patent, leads to the following Poisson regression model:12

pi,t = mi,tvi + 1i,t, (3)

where mi,t = e(x
′
i,tb), vi = e(ci ), and 1i,t is a random disturbance term. The most important component

in xi,t is the existing stock of knowledge (ki,t ), which depends on past and current levels of R&D inputs
(ri,t). As pi,t−1 is produced by the input ki,t−1 and the same ‘production technology’ as pi,t , several
authors (such as Blundell, Griffith, and Van Reenen 1995) propose to replace ki,t by the lagged depen-
dent variable pi,t−1 which can be considered a noisy measure of lagged inputs.13

Including the lagged dependent variable into xi,t , however, comes with several econometric pro-
blems where the most obvious one is a violation of the assumption of strict exogeneity.14 Several

Table 2. Share of ICT patents by sectors (10 most important ones).

Type of ICT

Sector Nace 2/ISIS 4 All ICT Green ICT

Manuf. of computers and optical prod. 26 32.21% (171) 40.71% (32)
Telecommunications 61 9.14% (8) 6.11% (3)
Manuf. of machinery and equip. n.e.c. 28 5.77% (123) 2.55% (12)
Manuf. of motor vehicles, trailers 29 5.31% (21) 7.00% (7)
Printing and recorded media 18 5.16% (3) 1.15% (3)
Manuf. of pharmaceutical productsy 21 4.49% (16) 0.76% (2)
Installation and repair of machinery 33 4.49% (11) 1.27% (5)
Manuf. of electrical equipment 27 4.48% (61) 6.23% (14)
Wholesale trade 46 4.24% (32) 2.42% (2)
Scientific research and development 72 4.05% (75) 5.34% (22)

Notes: Number of patent holders by sector in parentheses.
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solutions to this problem have been proposed, such as the use of quasi-first-differenced GMM esti-
mation techniques (see Chamberlain 1992; Wooldridge 1997). However, Blundell, Griffith, and Wind-
meijer (2002) argue that including the lagged dependent variable in the exponential term in equation
(3) can result in computational difficulties due to explosive series. They therefore suggest to exclude it
from mi,t = e(x

′
i,tb) and to include it in a linear form. The resulting linear feedback regression model

reads as:

pi,t = lpi,t−1 + e(a+x′i,tb+f ln �pi ) + 1i,t, (4)

where α is a constant and the vector xi,t includes, amongst other controls, the R&D input ri,t and the
spillover pool

∑n
j=i r j,t which are not controlled for by the lagged dependent variable. Moreover,

most importantly, xi,t includes the variable of interest, ad,t , which measures technological opportu-
nities. Blundell, Griffith, and Van Reenen (1995) and Blundell, Griffith, and Windmeijer (2002) further-
more suggest including the pre-sample mean of the dependent variable, ln �pi , to deal with both the
presence of firm-specific effects and with the violation of the strict exogeneity assumption. The pre-
sample mean is the mean of the dependent variable before the sample period and shall catch up any
firm-specific differences in the propensity to patent. As a side-effect, it also eliminates the potential
source of endogeneity bias arising from the inclusion of the lagged dependent variable and the pre-
determined regressor. This is because the pre-sample means are dated earlier than the other regres-
sors and control for any systematic firm-specific differences in the success of the invention process. If
the pre-sample means can rule out systematic differences in invention success, what remains in the
error term is pure random success and failure in invention activities. Thus, if this assumption holds,
the error term is uncorrelated with potentially pre-determined regressors (Blundell, Griffith, and
Windmeijer 2002). Blundell, Griffith, and Windmeijer (2002) propose to estimate model (4) by
method of moment (GMM) estimation techniques where the resulting sample moment conditions
read as:

∑N
i=1

∑T
t=2

zit( pi,t − lpi,t−1 − e(a+x′ i,tb+f ln pi )) = 0, (5)

where zi,t = (1, pi,t−1, xi,t, �pi) denotes the vector of instruments.15 The exogeneity of zi,t , i.e. ortho-
gonality of zi,t and 1i,t , will be tested by using a Sargan test. Next to this econometric specification
we provide additional results based on Pooled OLS, LPM and a Fixed-Effects panel specification.

Control variables: To implement our specification empirically, next to our two main variables of
interest (those for innovation and for technological opportunities), we construct several additional
control variables. In line with our model, we control for the current year’s contribution to the knowl-
edge stock by including firms’ total R&D expenditures scaled by the number of total employees (to
avoid multi-collinearity with firm size). This R&D intensity variable enters the model in the same year
as patent output is observed. We consider R&D intensity as a control for differences in relative R&D
spending across firms and time, rather than as a variable of primary interest.16

Another factor we control for is the contribution of other firms to a common spillover pool. This
contribution is accounted for by NACE2 2-digit sector-level R&D data provided by the OECD Structural
Analysis Database for very broadly defined sectors. Subtracting firm i’s own R&D spending from the
sector-level R&D allows excluding internal R&D that is still controlled for and allows the external R&D
information to vary also in the cross-sectional dimension. The resulting purely external R&D expen-
ditures are multiplied by the share of the sectors’ ICT patents in all patents to have a measure for
the sectors’ R&D expenditures directly related to ICT.17 The effect of external knowledge from pre-
vious years on current inventions is assumed to be captured by a lagged dependent variable.

The pre-sample means, as outlined in the empirical model, are constructed as the means of the
respective dependent variable (either ICT or green ICT patents) over a period of five years before
the firm appears for the first time in our database.18
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Next to variables directly related to our model, we also control for additional innovation drivers.
Market structure is an important determinant of innovation and innovation opportunities. We
include a self-constructed measure of the Herfindahl Index as an additional control variable.19 This
measure is not based on the firms in the panel dataset used for the empirical analysis but is based
on the underlying sampling database which consists of around 130,000 firms. This sampling base
is representative and stratified by sector and size and allows us to construct unbiased measures of
market concentration based on these firms sales numbers. The final Herfindahl-Index numbers are
constructed as the sum of the squared market shares of the firms in their own NACE Rev. 2.0 four-
digit sector.20

A control variable for firm size is included, too. It is measured as the full-time equivalent number of
employees.21 In addition to size, also firm age may be an important predictor of innovative outputs.22

We add a linear and a quadratic age term to control for any non-linear relationship between firm age
and innovative output. A final control variable addresses the fact that firms located in the eastern part
of Germany received high amounts of subsidies to foster their economic development. Given that
and a different economic history in this area, we include a dummy variable that is set to one if a
firm is located in the Eastern part of Germany and zero otherwise.

5. Results

The results we obtain from applying the outlined empirical framework are discussed in the following.

5.1. Main results

In this section we report our baseline results where we study the role of technological opportunities
in Green ICT innovation by using our baseline proxy for technological opportunities. The subsequent
section then provides robustness checks where we apply alternative econometric methods and
alternative measures of technological opportunities.

In Table 3 we show the results we obtain by applying the outlined GMM estimator. All three spe-
cifications have the number of patents in period t as the dependent variable. In specification (1) it is
the number of all ICT patents, in specification (2) it is the number of Green ICT patents and in speci-
fication (3) it is the number of pure ICT patents, i.e. the number of non-green ICT patents. The variable
of interest, our measure of technological opportunities, is the dummy equal to one if the firm has at
least one patent with a high-opportunity ICT IPC class in t−1. In specification (1), we find a positive
and significant effect of technological opportunities. This result, in combination with our findings
from the robustness checks section, supports hypothesis I, stating that firms active in high-opportu-
nity areas in period t−1 are more efficient in terms of innovation and thus are more likely to innovate
in period t. Quantitatively, ceteris paribus, we expect firms which are active in high-opportunity tech-
nology areas to have 0.68 patents more in the year after.

Specification (2) and (3) are concerned with hypothesis II which deals with the direction of tech-
nical change and which states that firms being active in high-opportunity ICT technologies are less
likely to switch to Green ICT technologies but are more likely to go on innovating in pure ICT tech-
nologies. Indeed, our results support this idea: in specification (2) we find an insignificant negative
effect of technological opportunities, whereas in specification (3) we find a positive significant
one. This indicates that past innovation in high-opportunity ICT IPC classes increases the likelihood
of subsequent innovation in pure ICT technologies relative to subsequent innovation in Green ICT
technologies. Firms without past innovation in areas of high technological opportunities have a
lower likelihood to stay in pure ICT innovation relative to Green ICT innovation, i.e. they are more
likely to switch technological areas. Thus, the results are in line with hypothesis II and can be con-
sidered first evidence that technological opportunities affect the direction of technical change, i.e.
high-opportunity firms stay in their technological domain, whereas low-opportunity firms switch
technological domains.
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To a large extent, the remaining variables show signs one would expect or coefficients which are
insignificant. Larger firms are more likely to have new innovations. This effect is larger for pure ICT
patents than for Green ICT patents. The R&D-intensity has a positive but insignificant effect. The Her-
findahl-Index shows a positive and significant coefficient, indicating that firms are the more innova-
tive, the lower the degree of competition, a finding which is not against previous results (see e.g.
Aghion et al. 2005). Finally, firm age shows for Green ICT innovation an inverted u-shaped relation-
ship. Very young and very old firms are less likely to innovate compared to middle-aged firms. For
non-green ICT innovations both the age and the age-squared variable are insignificant.

5.2. Robustness checks

To test the robustness of our results we apply alternative econometric methods as well as alternative
measures of technological opportunities and of the direction of technical change. In Table A1 we
provide results based on a simple and transparent Pooled OLS estimator. It yields similar results as
our baseline specification: we find positive significant effects for technological opportunities in the
specification with all patents and in the one with only pure ICT patents. For Green ICT innovations
we again find a negative, insignificant effect. In addition, in this table we provide a specification
where the dependent variable is the difference between the number of pure ICT patents and the
number of green ICT patents (pure minus green ICT patents). In this latter specification the
dummy for high opportunity patents is positive and significant which illustrates the effect of techno-
logical opportunities on the direction of technical change in an alternative way. Firms having patents

Table 3. Technological opportunities (weighted) and innovation.

All ICT Green ICT Pure ICT
Dependent variable: number of patentst 1 2 3

Linear Feedback Part
Number of patents in t−1 0.661∗∗∗ 0.531∗∗∗ 0.681∗∗∗

(0.117) (0.120) (0.112)
Log-Link Part
Constant −4.798∗∗ −6.832∗∗ −5.636∗∗

(1.941) (2.925) (2.437)
ln(R& D-intensity in t) (R& D/employ.) 0.011 0.021 0.014

(0.024) (0.044) (0.029)
Dummy for missing R& D information in t 0.263 0.216 0.323

(0.314) (0.749) (0.373)
ln(firm size in t) (no. of employees) 0.398∗∗∗ 0.304∗∗∗ 0.422∗∗∗

(0.094) (0.082) (0.108)
Dummy for weigh. high-opp. ICT IPC t−1 0.684∗ −0.203 1.071∗

(0.377) (0.343) (0.650)
Dummy for no patents in t−1 −0.427 −2.056∗∗∗ 0.059

(0.682) (0.321) (1.072)
ln(Herfindahl t−1) 0.185∗∗ 0.382∗ 0.166∗

(0.088) (0.199) (0.095)
ln(external R& D, NACE 2-dig. sector) 0.042 −0.037 0.056

(0.067) (0.114) (0.073)
ln(firm age in t) -0.151 0.698∗ −0.203

(0.157) (0.405) (0.161)
ln(firm age in t)2 0.025 −0.153∗∗ 0.040

(0.030) (0.062) (0.031)
Dummy for location in East Germany in t -0.079 −0.523 0.004

(0.278) (0.846) (0.301)
ln(pre-sample mean) (of the dependent var.) 0.613∗∗∗ 1.491∗∗∗ 0.603∗∗∗

(0.091) (0.308) (0.100)
Observations 8653 8653 8653
Hansen J-test statistic 0.975 2.855 0.771
Hansen J-test [p-value] [0.614] [0.240] [0.680]

Notes: †The model includes 5 insignificant three-year period dummies and 13 sector dummies. ‡The quantity index of ICT capital
services (EU KLEMS) by sectors serve as additional instruments. Robust standard errors in parentheses. ∗p < 0.10, ∗∗p < 0.05,
∗∗∗p < 0.01.
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in high technological opportunity ICT areas proceed innovating in pure ICT research areas whereas
those which do not have such patents change their direction of innovation and innovate relatively
more often in Green ICT areas.

Table A2 applies a Fixed-Effects panel estimator, which allows controlling directly for firm-specific
unobserved heterogeneity.23 With it, we again find similar results as before. We find a positive albeit
insignificant effect of technological opportunities on all patents and still find a positive significant
effect on pure ICT patents. The specification with Green ICT patents again shows a negative but insig-
nificant effect. Specification 4, which studies the difference between pure and green ICT patents,
again shows a positive significant effect. Taken together, these results also support the idea that tech-
nological opportunities affect the direction of technical change.

Table A3 provides evidence based on another empirical specification, namely a linear probability
model (LPM). The dependent variable in specifications 1–3 is a dummy equal to one if firm i has in
year t at least one patent, green ICT or pure ICT patent. In specification 4 the dependent variable
is a dummy equal to one if the firm has more pure ICT patents than green ICT patents. A LPM
model can be advantageous in a setting such as ours since it is less sensitive to observations with
extremely high or extremely low values of the dependent variable, a typical feature of patent data.
Since the distribution of patents among firms is extremely skewed, which is one reason for the
choice of the poisson model, it is reassuring that our LPM results support our baseline findings. In
all four specifications we find a positive significant effect of technological opportunities. Thus, our
findings again support hypothesis I stating that high technological opportunities come with a
higher subsequent innovation likelihood. In a similar way specifications 2, 3 and 4 support the
second hypothesis. Although specification 2 shows a positive significant effect, the effect is
around 60% smaller than the one in specification 3, again supporting the idea that high opportunities
come with a higher subsequent likelihood to stay in the technological field the firm has been active
before. Column 4 corroborates this latter finding directly by showing again the positive relationship
between high opportunity claims and a relatively high subsequent innovation activity in pure ICT.

Finally, Table A4 contains another set of results based on our baseline econometric approach
where we however use an alternative measure of technological opportunities. Instead of a dummy
which is equal to one if a firm has any high opportunity claims, in these specifications we use the
share of high opportunity claims as a measure of firms’ activity in high opportunity technology
fields. These results show again a positive significant effect for all patents, but show no significant
effect for the subgroups of green and pure ICT patents. However, these weak results could be due
to the fact that the share measure is quite noisy since we here do not directly control for the total
number of claims.

6. Conclusion

Technological opportunities are a central element in the innovation process. The present article aims
to fill a gap in the literature on green innovation by assessing the role of technological opportunities
for the development of green ICT innovation. Green ICT are important since they are a key enabler of
economic growth and can enhance the environmental performance of other sectors which has
important consequences for climate policy.

We study the role of technological opportunities for green innovation by testing two research
questions: (1) whether technological opportunities affect the efficiency of research, i.e. the rate of
innovation, and (2) whether firms which are relatively active in low-opportunity technologies are
more likely to switch from non-green to green technological areas than firms relatively active in
high-opportunity areas. We study those research questions for the case of Green ICT. To implement
our study empirically, we construct a firm-level panel data set for the years 1992–2009 which com-
bines information on patents from the EPO and data from the Mannheim Innovation Panel. The
results are based on dynamic count data estimation models applying GMM estimators as well as
several robustness checks. We find that, controlling for path dependency, size, age, R&D intensity,
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the degree of competition and further relevant factors, technological opportunities indeed play an
important role for the rate and direction of technical change. Firms active in low opportunity
fields are less likely to innovate but are relatively more likely to change their direction of technical
change by becoming Green ICT inventors.

Our work provides first empirical evidence on the role of technological opportunities in green
innovation and at the same time offers valuable insights for policy interventions which aim at stimu-
lating green innovation (in the ICT sector). Our results show that such policy interventions are more
effective, i.e. can be realized at lower costs, in low opportunity areas, since firms there have a ten-
dency to change the direction of technical change. However, our work is descriptive in scope and
can only be seen as first, but important evidence regarding this topic. Our article has important impli-
cations for environmental policy as it suggests that policy interventions are needed to reach certain
levels of green growth in particular when technological opportunities are low. Future research should
aim at corroborating our findings, especially those with respect to the role of technologies for the
direction of technical change.

Notes

1. Green general purpose technologies are environmentally-friendly technologies that can affect a wide array of
economic processes within an economy. They play an important role for economic growth (Cecere et al.
2014). Drivers of their development have been studied, for example by Ardito, Petruzzelli, and Albino (2016)
who find that the search breadth across knowledge domains is related to an invention’s technological generality.
Green ICT represent an interesting example of GGPT (Pearson and Foxon 2012). Two strands of literature analyze
Green ICT. On the one hand, several studies try to quantify ex-post the effect of the increasing use of ICT in pro-
duction and consumption processes on environmental quantities such as energy use (Collard, Fève, and Portier
2005; Bernstein and Madlener 2010; Schulte, Welsch, and Rexhäuser 2016). This literature shows varying evidence
regarding the direction of the effect but is united by the assessment that ICT is closely related to energy use devel-
opments. A second strand, smaller but more closely related to our work, focuses on potential drivers of green
innovation in ICT. Faucheux and Nicolaï (2011) provide a first overview over the area of Green ICT (innovation)
but do not conduct an analysis of potential innovation drivers. Using patent data, Cecere et al. (2014) show
that innovative activity in green ICT is associated with high levels of technological pervasiveness.

2. See e.g. Aghion et al. (2016) who study how previous innovation influences future innovative activities in the
automotive industry. Their results show that the process of technological development is path dependent,
thus firms that have inventions in dirty technologies will find it more profitable to continue innovating in dirty
technologies instead of switching to clean technologies.

3. Note that this property of the data likely comes at the expense of losing some very young and innovative start-up
companies in the IT sector. In other words, the results of this study refer to rather established firms.

4. The yearly response rate to the German CIS survey is approximately 25%, which is relatively high when taking into
account that participating in the survey is – in contrast to some other European countries – not mandatory. The
underlying sampling base of firms used for these surveys consists of 130,000 firms and is drawn from the official
Creditreform database that covers almost all of the 3.6 million German firms.

5. The logic behind this restriction of the sample is obvious. Using all firms instead of the firms that have at least one
patent in the ICT technological domain would dramatically increase the sample size, however, these firms would
always show up as having no patents. In terms of a regression analysis this means that for these firms, the depen-
dent variable is always zero in each year of the panel. Thus, these observations would not help identifying the
effects of interest and would only increase the sample size and thus the degrees of freedom with the obvious
consequence of increasing the level of significance. For this reason, the sample is restricted to firms that have
at least one ICT patent granted by the EPO – no matter in which year.

6. Of course, as is well known, patent data are not without drawbacks. For example, not all inventions are applied for
patent protection or get it granted and the importance of patent protection varies significantly across different
sectors (Mansfield 1986; Levin et al. 1987). Another disadvantage of using patent data is that patent protection is
perceived a more useful way to protect intellectual property for product innovations rather than for process tech-
nology (Levin et al. 1987). Moreover, the process of applying for patent protection and receiving a grant usually
takes some time. In the area of information technologies where there are short technology and product life cycles,
other possibilities to protect inventions may therefore be used too, such as secrecy and leading time, see Fried-
man, Landes, and Posner (1991) for an extensive discussion on that issue.

7. Alternatively, one could identify ICT inventions not by making use of IPC classes but by focusing on the ICT sector
affiliation of patent holders that hold green technologies (based on the WIPO IPC codes). The advantage of such a
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less strict definition would be that one can focus on firms in the ICT sector no matter whether they have ICT
patents or not. As not all inventions receive patent protection – especially software inventions – this definition
allows considering all green inventions from the ICT sector as green ICT inventions. Conversely, a more strict defi-
nition would be to restrict the ICT inventions as defined before on IPC codes for both ICT and green technologies
to the ICT sector. This, however, comes at the expense of excluding green ICT technologies from other sectors
such as the automotive sector.

8. An increasing number of world-wide patents can signal economic growth, higher spendings for R&D, and so on.
In other words, it is important to look at the number of ICT patents in a certain technological area relative to the
development of the number of patents in all other areas.

9. According to the OECD definition of ICT IPC codes, more than 10,000 different technology classes exist at the full
detail (subgroup) level (e.g. H04L 1/02), such that only very few patents per class and year exist, resulting in highly
volatile time series, which makes a classification based on it not very informative.

10. Pakes and Griliches (1980) find that there is a strong correlation between the input factor R&D and patents. In
other words, patents serve as a good output indicator for inventions. What makes it especially appealing for
the purpose of this study is that it allows associating inventive output with several technological fields.
However, the use of patents to protect intellectual property various largely between sectors (Mansfield 1986;
Levin et al. 1987). In addition, it varies also across types of innovations: patent protection is identified to play a
more important role for the protection of product innovations than of process innovations (Levin et al. 1987).
Note further that not all inventions can be registered for patent protection, as e.g. software in case of the EPO.
See also Griliches (1990) for a more detailed discussion on the use of patents as an indicator for inventions.

11. This is a strictly non-negative integer variable with a considerable number of the firm-year observations being
zero.

12. See Cameron and Trivedi (2013) for a general introduction into count data models.
13. In our case, this procedure is advantageous as there is a lot of missing information in firms’ R&D data for obser-

vations dated earlier than t which would lead to a smaller sample and potential sample selection issues if a dis-
tributed lag model would be applied. Using a lagged dependent variable helps overcome this problem as
typically it is assumed that ki,t can be replaced by pi,t−1, ri,t , and ui,t

∑n
j=i r j,t , where ui,t = u(ki,t−1) is a

measure or absorptive capacities. The absorptive capacity in t, ui,t , itself is often assumed to be a function of
firm i’s knowledge stock and highly correlates with pi,t−1 such that pi,t−1 can be regarded as to catch up this
effect. What then would remain is

∑n
j=i r j,t (all other firms’ contribution in t to the spillover pool) that is time-

variant but does hardly vary between firms.
14. This problem in dynamic panel data models is due to the fact that pi,t−1 is likely to be correlated with 1i,t , because-

1i,t is likely to be serially correlated with 1i,t−1. In other words, pi,t−1 is a predetermined regressor which makes the
standard Poisson model likely to be inconsistent.

15. Note that zi,t does not include an instrument (excluded in the main equation) for pi,t−1 as endogeneity is assumed
to be ruled out in the presence of pre-sample means. This assumption is rather strong as systematic firm-specific
differences in invention activities and success are assumed to be time-invariant.

16. Note that the causality can also run in the opposite direction so that successful innovation can give rise to more
R&D as this ‘productive’ factor should be used more intensively (Arora, Ceccagnoli, and Cohen 2008; Czarnitzki,
Kraft, and Thorwarth 2009).

17. Note that the sectors are defined very broadly to allow for ‘inter-sectoral’ spillovers across similar sectors. We
abstain from estimating spillovers from close competitors, i.e. firms in the same technological area defined by
proximity of patents as for instance done by Jaffe (1989). This is because we have a representative sample of
rather small firms having only few patents and because the spillover effects are assumed to be accounted for
by including the lagged number of patents.

18. As the first year in the database is 1992 and as patent data is available from 1978 onwards, this is no problem.
Note that the firm panel is highly unbalanced which means that the pre-sample period necessarily varies
across firms.

19. Official data for market concentration exists and is provided by the German Monopoly Commission. However, the
most recent data is provided only for the NACE Rev. 2.0 industry classification. In contrast, for earlier years a differ-
ent sector classification is used and for even earlier years in the 1990s a completely different classification is the
base for the concentration measures. It was not possible to create a concordance between the different sector
classification schemes at a sufficient level of sectoral desegregation which would allow deriving reliable measures
of market concentration.

20. For the market share, we assume that total sales of all firms in a four-digit level sector are a good proxy for the
total sales in this sector and that there are no systematic differences with respect to the true sales numbers across
sectors.

21. It enters the regression model in natural logarithms and is included in the non-linear (log-link) part of the
regression equation.

22. Note that there is a long history of scientific economic work on this issue, which is not the core subject of this
study. We therefore refer to the excellent survey by Cohen (2010).
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23. In this specification we neglect the lagged dependent variable since it is well known that a Fixed-Effects estimator
applied to a dynamic model is biased with a high likelihood.
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Appendix: Tables

Table A1. Technological opportunities (weighted) and innovation (pooled OLS).

Dependent variable: number of patentst All ICT Green ICT Pure ICT P/G ICT
1 2 3 4

Linear Feedback Part
Number of patents in t−1 0.821∗∗∗ 0.699∗∗∗ 0.813∗∗∗ 0.784∗∗∗

(0.061) (0.101) (0.071) (0.073)
Log-Link Part
Constant −0.648 −0.036 −0.663 −0.725

(0.513) (0.150) (0.474) (0.495)
ln(R& D-intensity in t) (R& D/employ.) 0.010 −0.001 0.011 0.012

(0.009) (0.002) (0.008) (0.009)
Dummy for missing R& D information in t 0.103 −0.006 0.117 0.135∗

(0.075) (0.021) (0.073) (0.075)
ln(firm size in t) (no. of employees) 0.116∗∗∗ 0.020∗∗ 0.107∗∗∗ 0.104∗∗∗

(0.034) (0.009) (0.032) (0.031)
Dummy for weigh. high-opp. ICT IPC t−1 0.632∗ −0.059 0.787∗∗ 1.059∗∗∗

(0.366) (0.105) (0.352) (0.359)
Dummy for no patents in t−1 0.227 −0.117∗∗ 0.294 0.330∗

(0.217) (0.046) (0.208) (0.190)
ln(Herfindahl t−1) 0.050∗ 0.008 0.048∗ 0.049∗

(0.029) (0.006) (0.028) (0.028)
ln(external R& D, NACE 2-dig. sector) −0.009 −0.001 −0.008 −0.005

(0.021) (0.008) (0.019) (0.020)
ln(firm age in t) 0.043 0.008 0.037 0.030

(0.064) (0.013) (0.061) (0.062)
ln(firm age in t)2 −0.009 −0.003 −0.008 −0.007

(0.014) (0.003) (0.014) (0.014)
Dummy for location in East Germany in t 0.032 0.004 0.030 0.035

(0.057) (0.016) (0.053) (0.055)
Observations 5597 5597 5597 5597

Notes: †The model includes 5 insignificant three-year period dummies and 13 sector dummies. ‡The quantity index of ICT capital
services (EU KLEMS) by sectors serve as additional instruments. Robust standard errors in parentheses. ∗p < 0.10, ∗∗p < 0.05,
∗∗∗p < 0.01.
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Table A2. Technological opportunities (weighted) and innovation (panel).

All ICT Green ICT Pure ICT P/G ICT
Dependent variable: number of patentst 1 2 3 4

Linear Feedback Part
Constant −1.163 1.145 −2.308 −3.453

(4.513) (0.843) (4.115) (3.862)
ln(R& D-intensity in t) (R& D/employ.) −0.008 −0.002 −0.006 −0.005

(0.014) (0.002) (0.014) (0.014)
Dummy for missing R& D information in t −0.060 −0.022∗ −0.038 −0.016

(0.110) (0.013) (0.110) (0.111)
ln(firm size in t) (no. of employees) 0.801 −0.016 0.817 0.834

(0.543) (0.017) (0.553) (0.562)
Dummy for weigh. high-opp. ICT IPC t−1 0.857 −0.130 0.987∗∗ 1.116∗∗

(0.573) (0.144) (0.495) (0.451)
Dummy for no patents in t−1 −0.094 −0.115∗ 0.021 0.136

(0.244) (0.061) (0.209) (0.188)
ln(Herfindahl t−1) −0.093 −0.003 −0.089 −0.086

(0.072) (0.007) (0.071) (0.070)
ln(external R& D, NACE 2-dig. sector) −0.098 −0.041 −0.057 −0.016

(0.126) (0.038) (0.091) (0.058)
ln(firm age in t) −0.131 0.055 −0.187 −0.242∗

(0.181) (0.037) (0.157) (0.139)
ln(firm age in t)2 −0.027 −0.017 −0.011 0.006

(0.057) (0.014) (0.046) (0.036)
Observations 8653 8653 8653 8653

Notes: †The model includes 5 insignificant three-year period dummies and 13 sector dummies. ‡The quantity index of ICT capital
services (EU KLEMS) by sectors serve as additional instruments. Robust standard errors in parentheses. ∗p < 0.10,
∗∗p < 0.05,∗∗∗p < 0.01.

Table A3. Technological opportunities (weighted) and innovation (LPM).

All ICT Green ICT Pure ICT P/G ICT
Dependent variable: dummy for a patentt 1 2 3 4

Linear Feedback Part
Number of patents in t−1 0.246∗∗∗ 0.292∗∗∗ 0.248∗∗∗ 0.220∗∗∗

(0.022) (0.035) (0.023) (0.023)
Log-Link Part
Constant −0.083 −0.069 −0.103 −0.090

(0.095) (0.042) (0.093) (0.093)
ln(R& D-intensity in t) (R& D/employ.) 0.004∗∗∗ 0.000 0.004∗∗∗ 0.004∗∗∗

(0.001) (0.001) (0.001) (0.001)
Dummy for missing R& D information in t 0.036∗∗ 0.002 0.039∗∗ 0.038∗∗

(0.017) (0.007) (0.016) (0.016)
ln(firm size in t) (no. of employees) 0.032∗∗∗ 0.014∗∗∗ 0.031∗∗∗ 0.029∗∗∗

(0.004) (0.002) (0.003) (0.003)
Dummy for weigh. high-opp. ICT IPC t−1 0.163∗∗∗ 0.060∗∗ 0.167∗∗∗ 0.177∗∗∗

(0.035) (0.027) (0.035) (0.035)
Dummy for no patents in t−1 −0.083∗∗ −0.054∗∗∗ −0.084∗∗∗ −0.088∗∗∗

(0.032) (0.015) (0.032) (0.032)
ln(Herfindahl t−1) 0.011∗∗ 0.007∗∗∗ 0.011∗∗ 0.010∗

(0.005) (0.002) (0.005) (0.005)
ln(external R& D, NACE 2-dig. sector) 0.001 −0.000 0.002 0.003

(0.004) (0.002) (0.004) (0.004)
ln(firm age in t) −0.006 0.003 −0.001 −0.003

(0.012) (0.006) (0.012) (0.012)
ln(firm age in t)2 −0.001 −0.001 −0.002 −0.001

(0.002) (0.001) (0.002) (0.002)
Dummy for location in East Germany in t −0.008 0.005 −0.010 −0.009

(0.013) (0.006) (0.013) (0.013)
Observations 5597 5597 5597 5597

Notes: †The model includes 5 insignificant three-year period dummies and 13 sector dummies. ‡The quantity index of ICT capital
services (EU KLEMS) by sectors serve as additional instruments. Robust standard errors in parentheses. ∗p < 0.10, ∗∗p < 0.05,
∗∗∗p < 0.01.
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Table A4. Technological opportunities (weighted) and innovation (share).

All ICT Green ICT Pure ICT
Dependent variable: number of patentst 1 2 3

Linear Feedback Part
Number of patents in t−1 0.654∗∗∗ 0.540∗∗∗ 0.674∗∗∗

(0.120) (0.124) (0.116)
Log-Link Part
Constant −5.007∗∗ −6.959∗∗ −5.825∗∗

(2.134) (3.006) (2.642)
ln(R& D-intensity in t) (R& D/employ.) 0.008 0.022 0.011

(0.024) (0.043) (0.028)
Dummy for missing R& D information in t 0.211 0.208 0.260

(0.309) (0.739) (0.366)
ln(firm size in t) (no. of employees) 0.409∗∗∗ 0.295∗∗∗ 0.437∗∗∗

(0.092) (0.083) (0.110)
Weigh. share of high-opp. ICT IPC cl. in t−1 0.009∗ −0.001 0.012

(0.006) (0.004) (0.008)
Dummy for no patents in t−1 −0.456 −1.994∗∗∗ −0.097

(0.808) (0.312) (1.105)
ln(Herfindahl t−1) 0.196∗∗ 0.379∗ 0.182∗

(0.087) (0.205) (0.094)
ln(external R& D, NACE 2-dig. sector) 0.048 −0.034 0.064

(0.068) (0.117) (0.075)
ln(firm age in t) −0.150 0.731∗ −0.200

(0.153) (0.424) (0.157)
ln(firm age in t)2 0.024 −0.157∗∗ 0.038

(0.029) (0.066) (0.030)
Dummy for location in East Germany in t −0.100 −0.541 −0.034

(0.275) (0.882) (0.296)
ln(pre-sample mean) (of the dependent var.) 1.498∗∗∗ 0.667∗∗∗ 0.680∗∗∗

(0.321) (0.083) (0.085)
Observations 8653 8653 8653
Hansen J-test statistic 1.100 2.841 0.892
Hansen J-test [p-value] [0.577] [0.242] [0.640]

Notes: †The model includes 5 insignificant three-year period dummies and 13 sector dummies. ‡The quantity index of ICT capital
services (EU KLEMS) by sectors serve as additional instruments. Robust standard errors in parentheses. ∗p < 0.10, ∗∗p < 0.05,
∗∗∗p < 0.01.
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