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The Example of Internet Search
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Abstract

The rise of dominant firms in data driven industries is often credited to their alleged data

advantage. Empirical evidence lending support to this conjecture is surprisingly scarce. In this

paper we document that data as an input into machine learning tasks display features that

support the claim of data being a source of market power. We study how data on keywords

improve the search result quality on Yahoo!. Search result quality increases when more users

search a keyword. In addition to this direct network effect caused by more users, we observe a

novel externality that is caused by the amount of data that the search engine collects on the

particular users. More data on the personal search histories of the users reinforce the direct

network effect stemming from the number of users searching the same keyword. Our findings

imply that a search engine with access to longer user histories may improve the quality of its

search results faster than an otherwise equally efficient rival with the same size of user base

but access to shorter user histories.
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1 Introduction

The role of data in the success of firms is the subject of much debate. Data are often

mentioned as a crucial input of production, so much so that academics and the press label

data as “the world’s most valuable resource” (The Economist, 2017). From a competition

policy perspective the success of tech companies relying on data as one of their main inputs

raises concerns that data might constitute a source of market power.1 According to the data

feedback loop hypothesis (Newman, 2014) there is a self-reinforcing cycle between the success

of firms and the amount of data they control. This hypothesis is often put forward to explain

the rise of dominant players in data driven industries.2

While the rise of data-driven superstar firms in digital industries such as Amazon, Google,

Facebook, Netflix and Spotify lends some credit to the hypothesis that data might constitute

a source of market power, independent empirical evidence systematically examining the

impact of data on the performance of firms remains scarce. The handful of existing studies

on the topic suggest that data are essentially like any other ordinary input: All of these

studies report evidence for diminishing returns to scale from additional data (He et al., 2017;

Yoganarasimhan, 2019; Claussen et al., 2019; Bajari et al., 2019). If there were diminishing

returns to scale in data, it may be relatively easy for potential entrants to obtain sufficient

data to be viable. The finding of these studies therefore cast some doubt on the popular

narrative of data being a special input and the root cause of competitive advantage.

In this paper we provide empirical evidence that additional data matter and document

how data improves the quality of internet search results. Our findings indicate that data do

not simply constitute an input into a static production technology: instead, they simultane-

ously shift the efficiency boundary of the search result matching technology outwards. While

1Depriving rivals of data was an important pillar of the European antitrust proceedings against Google,
resulting in a record fine of 4.3 billion euro (European Commission, 2018, recitals 111, 114, 458, 514, 739,
860(3), 1318, 1348)

2The European Commission announced its plan to enforce opening up the data of dominant tech com-
panies to rivals. It argued that the high degree of market power resulting from the data advantage can
enable large players to set the rules on the platform and unilaterally impose conditions for the access of data.
(European Commission, 2020)
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our empirical evidence is consistent with a technology that displays diminishing returns to

scale, the improvement of efficiency with larger amount of data provides a novel rationale

for an inherent competitive advantage from big data.

We analyze search traffic data from Yahoo!. We observe users entering keywords in

the search bar of the search engine and follow their subsequent interaction with the search

results. The search engine collects the logs of users’ clicks on the search result page shown

in response to these queries. The data obtained are valuable because they allow the search

engine to learn from the observed click behaviour and improve the quality of search results.

Over time, data on the users’ action accumulate along two different dimensions. First, as

more users enter a specific keyword, the amount of data collected on the feedback for that

keyword increases. We call this the keyword dimension of data accumulation. Generally, data

on a specific search keyword are collected across different users. The amount of data collected

in the keyword dimension is therefore directly related to the number of individuals searching

that keyword. Second, the more often the search engine observes the clicks of individual

users, the more information it can collect on the individual preferences and interests of

users. We refer to this as the user dimension of data accumulation.

Both dimensions are relevant for the predictive performance of the search engine. More

data in the keyword dimension allow the search engine to determine common preferences

across users. A user being the first to enter a keyword will generally be confronted with

results of a lower quality than a user entering the same keyword at a later point in time.

This is because, over time, the feedback provided by users allows for determining a general

quality ranking of search results. Learning in the keyword dimension can be viewed as

a data-enabled direct network effect: Additional users will generally increase the quality

experienced by a specific user through learning from data in the keyword dimension.

The data collected on the user dimension allow the search engine to derive preferences

specific to the user. In conjunction with the information that the search engine obtains on

other users, data on the user dimension allow the search engine to determine user profiles.

2



Users with similar profiles, revealed through overlapping preferences in the past, will also be

more likely to have overlapping preferences in the future. When confronted with the task of

finding relevant search results for a specific user searching a keyword, the search engine builds

its prediction based on the feedback obtained from similar users who previously searched the

same keyword.

In this paper, we highlight the importance of the interaction between the user and key-

word dimensions of data for the ability of search engines to learn. Our main result is that

the improvement of search result quality through additional data in the keyword dimension

is positively affected by the amount of data collected in the user dimension. Keywords that

are repeatedly searched by different users improve faster in quality when the search engine

has more information, i.e. data, on the users searching that keyword. Learning from ad-

ditional data in the keyword dimension becomes more efficient with additional data in the

user dimension. Hence, search engines with longer search histories on their users learn faster

as their user base grows.

Intuitively, the result can be understood in the following way. The value of the feedback

that a user provides is determined by the amount of information the search engine has on the

user. More information on the user makes the feedback she provides more valuable because

the search engine can relate the feedback to a more detailed user profile. More information on

users searching a specific keyword allows the search engine to tailor search results to specific

user profiles more efficiently. If the search engine has, on average, more data on the searchers

that provide feedback on a specific keyword, this will lead to a faster quality increase as a

function of the data collected across different users searching that keyword. More data in the

user dimension allow the search engine to determine more rapidly what a specific user wishes

to see when searching a specific keyword. Without personal information, the search engine

cannot learn which type of user prefers which type of search results for a specific keyword.

It is only by combining individual data across different users that the search engine can

learn which information in the user profiles is relevant to individualize search results for a
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keyword. The more information the search engine has on the user profiles, the more likely

it is that it will pick up the relevant information necessary to improve the quality of search

results for specific user types.

Our results provide evidence that data-driven services benefit from an externality that

goes beyond usual direct network effects. Learning in the keyword dimension is comparable

to direct network effects: More users generate more data on keywords which benefits other

users of the search engine. Additionally, our analysis suggests that these direct network

effects are reinforced by data collected in the user-dimension. Augmented by user-specific

data, learning in the keyword dimension occurs faster and, thus, more efficiently.

This additional externality is unique to data-driven industries and confer an additional

competitive advantage to the incumbent firm. To understand the implications of our results

consider two firms A and B with the same number of users: Under conventional direct

network effects, both firms should be equally competitive because they benefit from the

same size in user base. However, our results suggests that if one firms has more information

on its users, it will be more competitive by virtue of the additional externality that we reveal,

which can be viewed as an additional data network effect.

From a competition policy perspective, our results are consistent with the hypothesis that

a firm with a larger database has a competitive advantage and that lack of data constitutes

a barrier to entry. Our results therefore call for a consideration of database sizes in merger

decisions between firms that rely heavily on data for their business models. Our findings

suggest that the ability to combine data on users across different services might be extremely

valuable.

Our paper is related to a nascent strand of literature dealing with the impact of big

data on firm performance. Several contributions approach the topic of scale economies in

data from a policy perspective: Lambrecht and Tucker (2015), Sokol and Comerford (2015),

and Tucker (2019) argue that the era of digitization poses no special challenge for antitrust

authorities and that network effects from data accumulation should be expected to be weak.
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Newman (2014) and Grunes and Stucke (2015), on the other hand, argue that data can

play an important role for firms in securing competitive advantages over rivals and call for

a reorientation of antitrust policy to better account for the role of data as a barrier to

entry. Schepp and Wambach (2015) submit that current competition law should be flexible

enough to address the new challenges posed by digitization but emphasize the role of data

in understanding dynamics in digital marketplaces. Argenton and Prüfer (2012), Prüfer

and Schottmüller (2017) and Hagiu and Wright (2020) model competition in data-driven

markets. Economies of scale due to nonrivalry of data and associated welfare effects have

been analyzed in Jones and Tonetti (2020). Casadesus-Masanell and Hervas-Drane (2015)

analyze the implication of consumer privacy for competition.

Bajari et al. (2019) provide theoretical support for diminishing returns from data and em-

pirically analyze the impact of data on the predictive performance of Amazon’s retail forecast

system. Their findings are consistent with diminishing returns from repeatedly observing a

product in the forecast system. Additionally, Bajari et al. (2019) investigate to what extent

observing additional products in the same product category improves performance of the

algorithm and find no noticeable effect. As a result, they conclude that economies of scope

from data are weak. In contrast, He et al. (2017) find indication for economies of scope in

the context of search engine data.

Our findings are related to the notion of economies of scope according to which algorithms

benefit from increased data-variety in addition to sheer data-quantity. Our results reveal

that combining different sources of data (user-specific data with data gleaned across users)

benefits the firm by further increasing the efficiency of the matching technology. However,

the mechanism of action we propose is also distinct from economies of scope in that it builds

on synergies between user-specific data and the size of the user base. Our insights speak to

the notion that artificial intelligence continuously improves with data. This notion is also put

forward in Posner and Weyl (2018), who argue that returns from data in the machine learning

context follow a different paradigm than in classical statistics. Our findings provide empirical
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support for their view, according to which the true value of data in the machine learning

context can only be assessed by considering the overall learning of the system (Posner and

Weyl, 2018, p. 227).

Our research is further related to Chiou and Tucker (2017) who use an exogenous policy

change in the data retention policy as an identification strategy to analyze returns from

data. Chiou and Tucker (2017) find no indication that reducing the retention time of user

specific information affects search result quality. Claussen et al. (2019) and Yoganarasimhan

(2019) document the important role of personalized data for the predictive performance of

algorithms. Both studies find evidence for diminishing returns to additional data collected

on users. We add to this literature by exploring the simultaneous interaction between the

user and keyword dimensions of data and by proposing a new mechanism whereby data on

individual users reinforce the learning from data on keywords. Our paper is also broadly

related to Decarolis and Rovigatti (2019) and Decarolis et al. (2020) who study competition

in the online advertising market for search engines.

The paper proceeds as follows: In Section 2, we present the data and define the quality

measure we use for analysis. Section 3 outlines our empirical strategy to assess network

effects in data as the search engine learns from more data. Section 4 presents the results of

our empirical analysis, which consists of two parts. The first part presents evidence for the

search engine learning from data by taking a long run perspective. Using a proxy variable

technique, we show that keywords with more data on the user dimension prior to the period

our sample was constructed achieve a higher observed quality level in our sample. The

second part focuses on the observed quality evolution of search results returned to keywords

during our sample period. We show that the quality of search results improves with more

data accumulating on the keyword. The quality improves faster when the searches are

entered by users on whom the search engine already gathered more data. Section 5 discusses

identification using a stylized model of statistical learning. Section 6 concludes.
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2 The Data

The data we use stem from Yahoo! and contain fully anonymized search logs spanning a

period of 32 days from July 1, 2010 till August 1, 2010, inclusive. An observation in our

database contains a keyword identifier, a cookie identifier essentially corresponding to the

computer on which the search was conducted, the precise time the keyword was entered in

the search bar, the ordered list of the top ten organic result URLs and the sequence of clicks

performed by the user. In total, we have approximately 80 million observations from 29

million users (identified by the cookie) searching for 67 thousand different keywords. As the

search keywords are anonymized, we do not observe the number of words in the query. We

however observe when the same combination of keywords was entered as these search terms

have the same identifier.

Figure 1: Search Result Layout at Yahoo!, 2011

Figure 1 illustrates the structure of the typical search result page at Yahoo! at the time

the data were collected. The search keyword, highlighted in yellow next to the Yahoo! logo,

is the sequence of characters the user enters in the search bar in her quest for information.

Our analysis focuses on the quality of the organic search results URLs, which are highlighted

in yellow in the search result list. Paid advertisements are displayed on the north and east

edges of the result list. This general layout of the search result page remained largely intact
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up to today, with search engines typically devoting the top and east edges of the result page

to ads, and present up to 10 organic search result URLs in the middle area.

2.1 Measuring Search Result Quality

For each search session we observe a log that records the actions of the user on the result

page. This usually consists of a series of clicks on the retrieved search result links, possibly

returning from those URLs to the search result page, until the user clicks on a search result

link from where she does not browse back to the result page to continue her search. If the

user does not return to the result page to continue her search, the log ends. To measure the

quality of search results to a specific keyword, we create a binary variable of search result

quality based on the users’ actions taking the values good (encoded as 1) or bad (encoded as

0).

We deem the search result quality as good if the last recorded click in a log occurs on

the top displayed organic URL. This measure takes into account the fact that users have a

natural tendency to perform their first click on the top displayed URL. If a user performs her

first click on the top displayed URL and subsequently returns to the result page to choose a

URL further down the result list, the search result quality is encoded as bad.

Based on this criterion, we calculate the click through rate as the fraction of searches

ending on the first URL. The click through rate on the first URL for keyword i is defined as:

ctr
{1}
i =

∑
si∈Si

1{lcpis = 1}∑
si∈Si

1{lcpis 6= 0}
(1)

Where 1 denotes the indicator function and lcpis the last click position recorded for

search si. Si is the set of searches considered in the computation of the click through rate

for keyword i. For example, if the click through rate is computed for a particular day, then

Si is the set of all the searches on that particular day. Finally, lcpis = 0 denotes a final click

8



on an advertisement URL, which we ignore in the computation of the click through rate.

Advertisement URLs are paid content that might be displayed even if the content is not

relevant to the user. Because we want to measure the performance of the search engine in its

ability to find relevant content for searches where the user was interested in organic content,

we decided to ignore clicks on advertisement URLs in the main quality measure. Our results

remain qualitatively unaffected if we consider alternative click based quality measures or if

we include ads in the analysis (see Appendix A.3 and Appendix A.4).

Click through rates on the top URLs are an intuitive measure for search result quality,

whose variations are widely used in the information retrieval literature (Joachims, 2002).

Users expect the most relevant search result be displayed at the most prominent position

on the search result page. A user clicking on top-displayed URLs and not returning to the

search result page means she was satisfied with the information found under that link.

In the Appendix we assess the robustness of our results when using an editorial quality

measure. In particular, our data set also contains 659,000 query-URL pairs with editorial

relevance judgments Yahoo! collected from human experts. The correlation coefficients

between the ctr1 measure and two editorial quality measures that we consider are 0.45

and 0.55, and hence clearly show positive correlation of moderate magnitude. The editorial

quality measure is explained and discussed in depth in Appendix A.1. We present the results

of our main analysis when using the editorial quality measure in Appendix A.2.

3 Empirical Strategy

3.1 Measuring Learning from Data

In this subsection we discuss the variables used to study the search engines ability to learn

from data and improve the quality of search results. We focus on two different dimensions

of data: First, the keyword dimension, which captures the amount of data that accumulates

through searches performed on a particular keyword. The number of users determines how
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much training data the search engine has for a given keyword. In the keyword dimension,

learning from data is akin to direct network effects: with more users searching on the same

keyword, the search engine has more training data available to solve the task to predict the

most relevant search results to display to that particular keyword.

The second dimension captures the amount of data that the search engine collected on

the users searching a specific keyword. The value of user-specific data is widely recognized by

companies relying heavily on predictive technologies, such as Netflix, Amazon and Google.3

For internet search, it is common wisdom that data on user search histories are useful because

they allow fine-tuning search results for the individual preference of each searcher. In this

article we emphasize that the importance of data on the user dimension goes beyond the

fact that they allow fine tuning search results for a particular user: We show that more

data on the user dimension - longer observed search histories for users - allow the search

engine to learn faster from more data on various keywords. Data in the user dimension

therefore acts as a catalyst for learning from data in the keyword dimension. They can

amplify network effects stemming from more users and are a key yet so far underemphasized

source of competitive advantage and market power.

Our results are consistent with the following learning mechanism that drive network

effects based on data: When a user searches for a particular keyword, the search engine

engages in user profiling to establish similarities between the current user and past users

who entered the same keyword. Search results that proved relevant to past users with a

similar profile are also more likely to be relevant for the current user. Establishing similarities

between the current user and past users is facilitated by the amount of data the search engine

collects about users. Intuitively, the more data the search engine collects on users, the more

likely it is to find overlap in their browsing behaviour

With more data collected in the keyword dimension, the search engine learns which search

3Netflix explains on its website the use of person-related information to suggest movies: “Personalization
is one of the pillars of Netflix because it allows each member to have a different view of our content that
adapts to their interests and can help expand their interests over time. It enables us to not have just one
Netflix product but hundreds of millions of products: one for each member profile” (Netflix, 2020).
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Keyword i over time t′ ≤ t t′ = t

Sit = 3

Hit =
∑

t′≤tHit′

Sitx
Hit′ = 10

Sit′ = 1

x
Hit′ = 13

Sit′ = 2

y
Hit′ = 19

Sit′ = 3

Figure 2: Variable Description

results are relevant for similar user profiles by deducing which information in the overlapping

browsing behaviour of user is informative about their preferences for the keyword. Because

more data on the users makes it easier to elicit the relevant characteristics to determine

relevant search results for specific user profiles, the search engine is able to retrieve more

relevant search results when more data on the users are available.

In the machine learning literature, the idea of training algorithms for prediction tasks

based on the overlap of past user preferences is known as collaborative filtering.4 It appears

intuitive that this method requires both training data in the keyword dimension and data in

the user dimension. A user being the first to search a keyword may likely be confronted with

relatively poor search results because the search engine has no previous training data on the

keyword. Similarly, a lack of data on the users does not allow the search engine to tailor

results to user profiles. We argue here that these two dimensions of data are not independent

from each other: the amount of data in the user dimension increases the efficiency of learning

in the keyword dimension. This in turn has serious implications for economies of scale, and

consequently for competition between search engines. To the best of our knowledge, we are

the first to systematically study the interaction between the user and keyword dimensions

of data. We now introduce the variables capturing both data dimensions.

- Sit: The cumulative number of searches for keyword i at time t. It describes the

size of training sample for keyword i at time t.

4See Adomavicius and Tuzhilin (2005) for an overview of the different architecture types of recommender
systems.
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- Hit: The average user history for keyword i. It captures the average amount of

data the search engine had on the users that entered the keyword in the search bar of

the search engine until time t. Denote by Hit′ the length of the search history of the

user querying keyword i at time t′ ≤ t, then Hit =
∑

t′≤tHit′

Sit
.

Figure 2 illustrates how both variables are computed at a given point in time t. The

average user history is a natural measure for the amount of data the search engine collected

on the users who searched for a specific keyword. Throughout the analysis, we track search

result quality as a function of Sit, a measure for the amount of training data available

for keyword i. We explore a novel externality in learning from data that provides a new

perspective on the value of data. Data on individual users are particularly valuable, because

learning from data along the keyword dimension becomes faster when the average amount

of data collected in the user dimension, captured by Hit, increases.

3.2 Data Generating Process

Before turning to the analysis of search result quality and data volume we pause to discuss

the nature of our sample in more detail.

Our dataset is a snapshot of searches observed through a one month period. We do not

know how often the search engine had observed the sampled keywords and users prior to

the sample period. For example, in theory it is possible that the keywords we observe often

are only popular during the month of our sample, but had never been searched upon before.

This may be the case for example for news related searches. We do not directly observe the

overall amount of data the search engine had collected on keywords and users before our

sample started, because we only observe a snapshot of the overall search traffic.

With our data spanning over a one-month period, the variables that we observe constitute

the monthly counterpart of the true variables we are interested in, namely Sit and Hit. We

denote the observed counterparts si and hi for which we drop the index t since we focus on

a fixed time span of one month. Intuitively, keywords with more searches and longer user
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histories during the month of our data are likely to also have experienced more searches

and longer user histories previously. In the further analysis we will restrict attention to

keywords for which we observe approximately the same number of searches every day. The

vast majority of the keywords in the sample fall into this category, as relatively few keywords

experienced rapid jumps or drops in the number of searches over time in our sample.

Focusing on keywords with a relatively stable search activity over time is useful: since

these keywords see a fairly constant number of searches every day during the period we

observe them, it appears reasonable to assume that these keywords had seen a similar search

pattern also prior to our sample period. If that is the case, we can compare keywords that

received more and less searches in our sample and assume that this also held in the period

before the sample started. In other words, the monthly counterparts si and hi constitute

good proxy measures for Sit and Hit.

This would be much less likely to hold for queries that experience a rapid boost in searches

in the sample: such queries may for example relate to news, where we would not know how

often the keyword had been entered prior to our sample period. For example, consider a

rapidly booming query observed 50 times, all on a single day and never otherwise in the

sample, and another query observed once on each of the 32 days of our sample. While in the

sample it appears that the booming query was observed more often (50 times), it is possible

and even likely that the search engine has more observations on the query that occurs less

often (32 times) in the sample: that query was most likely entered regularly also prior to

our sample.5

To select the keywords with relatively stable search patterns over the days of our sample,

we calculate for each observed keyword the number of searches per day. Take first the

limiting case of a query that does not experience popularity changes during the sample

period and receives the same number of searches each day. Then this query accumulate each

day 100/32 percent of its total observed monthly searches. We will refer to the special case

5In Appendix B, we discuss in more depth the detailed assumptions under which it is reasonable to focus
on constantly searched queries.
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with the number of daily searches uniformly distributed as even accumulation criterion. We

define tolerance levels that determine the maximum percentage point deviation a keyword

is allowed to have on one particular day. For instance, a tolerance level of ten percentage

points indicates that on each day of the sample, a keyword is not allowed to accumulate

more than (100/32 + 10) percent of its total searches in order to be retained in the sample.

Intuitively, the narrower the tolerance interval, the better the quality of sit and hit as

proxy variables. The largest tolerance level we consider is 50 percentage points, such that a

keyword is allowed accumulate up to 100/32 + 50 ≈ 53 percent of its total searches in one

day without being dropped. The narrowest tolerance level is ten percentage points, meaning

that a keyword is allowed to accumulate up to 13 percent of its total searches in one day

without being dropped.6

Importantly, while focusing attention to keywords that see relatively similar number of

searches every day allows us to reduce the noise in our data, this is not crucial for our

analysis. We obtain the same qualitative effects when using the full sample as well.

In subsection 4.1 we will show that keywords with longer user histories and more searches

previous to our sample have higher quality search results.

4 Results

Our empirical analysis consists of two parts. In the first part, we take a long run perspective

on the data. We take into account that the search engine may have gathered data on the

keywords we observe already before the sample period. Depending on the number of searches

and the average user history before our sample period, keywords should differ in the quality

level we observe in our sample. If the search engine learns faster with additional data in

the user dimension, keywords with a longer average user history in the past should, ceteris

paribus, experience a higher quality level.

6Nearly 90 percent of the keywords display a search pattern over time that falls within the narrowest
tolerance level we consider.
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We first discuss long term trends, looking at the search result level of queries in our

sample as a function of the proxied number of searches and average user history prior to the

sample period. Focusing on keywords with a relatively stable number of searches over time

helps better isolate how additional data drives learning.

In the second part, we analyze the quality evolution of keywords over the sample period.

Building on the insights from the first part, we take into account the unobserved number

of searches and average user history prior to the sample period. If the search engine learns

faster with additional data in the user dimension, keywords with a longer average user history

should, ceteris paribus, experience a larger increase in quality. We confirm that this is indeed

the case. The learning observed within the sample period is consistent with the long run

dynamics documented in the first part of the analysis.

4.1 Long Run Analysis

In this subsection we study the quality level of queries in our sample as a function of the

number of searches and the average user history previous to the sample period. If search

result quality increases faster with more data in the user dimension, we would expect that

search results for keywords with a longer average user history prior to the sample period

lead to higher quality search results when we observe them. If we could access the entire

search history for each keyword and each user we observe in the sample, we would directly

estimate the following equation:

ctr1
i = f(Sit, Hit) + εi (2)

Where ctr1
i is the click through rate on the first URL for keyword i based on all the

searches we observe. Sit the number of searches previous to the sample period and Hit the

average user history previous to the sample. εi is the error term. Since we do not observe

Sit and Hit, we estimate:
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ctr1
i = f(si, hi) + εi (3)

Where si and hi denote the number of searches and the average user history we observe

for keyword i during our sample period.

Throughout this analysis, we assume that larger values of si and hi induce larger average

values of Sit and Hit. Thus, we assume that (i) keywords for which we observe more searches

during the sample were on average searched more often before the sample period, and, (ii)

keywords with a longer average user history during the sample have, on average, a longer

user history previous to the sample period.

Estimation is performed by local linear regression on a grid s×h, where s = {0, 0.1, 0.2, .., 1}

and h = {Q1, Q3}. The values of s denote number of searches in tens of thousand. Q1 and

Q3 denote the lower and upper quartiles of the distribution of the average user histories.78

Figure 3 shows the results of our analysis. The solid line in Figures 3a and 3b correspond

to keywords with longer user histories, taken at the upper quartile (h = Q3) of the user

history distribution. The dashed line depicts keywords with short user histories, which

we set at the lower quartile (h = Q1) of the distribution of user histories. In Figure 3a,

estimation was performed using all the keywords in the sample. In Figure 3b keywords that

deviate no more than ten percentage points from the even accumulation criterion (100/32

percent of searches per day) were considered. According to the discussion in subsection 3.2,

the results in Figure 3b are more informative about the true relationship between the quality

of keywords and Sit and Hit.
9

The solid lines in Figure 3 map out the quality level as a function of the number of times

the keyword was searched upon, s, for keywords with a long average user history. The dashed

7The number of searches we observe is truncated at 10, 000. The lower quartile is equal to 2.79, the
upper quartile is equal to 4.78. These numbers might appear low but can be explained by the fact that we
observe a random sample and that users are observed only three times on average in our sample.

8In Appendix C, we present the details on the estimation method.
9The reader is referred to Appendix B for an in depth discussion of the relationship between si and hi

and the unobserved Sit and Hit.
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Figure 3: Average search result quality by keyword depending on the total number of searches,
with 95 % confidence intervals

lines map out the quality level for keywords with a short average user history.10 Note that

when we focus on keywords that accumulate searches more evenly over time in Figure 3b,

the observed pattern for keywords with a short average user history normalizes.

Figure 4 shows the difference in the search result quality level between keywords with

a long and short average user history for a given number of searches, s. The black line in

Figure 4 shows the difference for the results in Figure 3a. The line with the lightest grayscale

shows the difference for the results in Figure 3b, when only those keywords were considered

that accumulate searches over time most evenly. The other lines show the differences for

intermediate tolerance levels with a lighter grayscale indicating a stricter tolerance level.

Figure 4 reveals that the measured impact of the average user history increases as we grad-

ually drop keywords that accumulate searches less evenly over time: Gradually reducing the

measurement error in the proxy variables also increases the measured impact of the average

user history. This is in line with what we expect to see when the relationship between the

average user history and the quality of search results was causal and we increase the quality

of the proxy variables.

From Figure 4, we also see that the difference in quality between keywords with a long

10The quartiles of the average user history distributions are determined based on all the keywords in the
sample, i.e. they do not vary across the different populations of keywords considered.
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Figure 4: Impact of longer average user history on quality level. Different tolerance levels for
deviation from even accumulation criterion are considered.

and short average user history tends to increase with additional searches on the keywords.

This divergence in quality levels is in line with the hypothesis of more efficient learning from

additional searches through a longer average user history. The measured divergence will be

at the core of Section 5, where we will analyze whether potential sources of confoundedness

might rationalize the documented divergence when a longer average user history does not

lead to faster learning.

The findings of this subsection can be summarized as follows: First, our data are consis-

tent with diminishing returns to scale in the total number of searches, S. Second, we find

that more data on the individual users amplify network effects: learning from the keyword

dimension of data (S) becomes faster as more data on the user dimension (H) accumulates.

Third, the relationship between search result quality and data in the user dimension be-

comes stronger when we focus on keywords that accumulate searches more evenly over time.

Fourth, we observe a divergence in quality between keywords with a long and short average

user history as more data in the keyword dimension (S) becomes available.

These results are consistent with the claim that data may constitute a source of market

power. A search engine with more data on the individual search histories of its users will
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always outlearn the rival on new keywords, and any keyword that the two search engine

had observed equal times previously. The following analysis of the learning in the sample

confirms this finding.

4.2 Quality Evolution within the Sample Period

We now turn to the analysis of how search result quality changed during the 32 days of

our sample period. We again focus on changes in search result quality as a result of more

data accumulating in the keyword and user dimensions, respectively si and hi. Consistent

findings with the results from subsection 4.1 would imply a positive concave relationship

between the quality evolution of keywords and si. Furthermore, for the same value of si, we

would expect the quality increase to be more pronounced for keywords with a larger average

user history, hi.

Subsection 4.1 reveals a strong relationship between the unobserved Sit and Hit and the

quality level of a keyword during the sample period. It is also to be expected that Sit and

Hit will strongly impact the quality evolution we observe for keywords during the sample

period. For instance, in the presence of diminishing returns to scale, larger Sit should, ceteris

paribus, reduce the measured quality evolution of keywords.

The results from subsection 4.1 suggest that controlling for the quality level that keywords

reached should help to control for Sit and Hit. We therefore estimate the following equation:

∆ctr1
i = f(si, hi, ictr

1
i ) + εi (4)

∆ctr1
i denotes the difference in the click through rate on the first URL between the first

and last 100 searches that we observe for a keyword. ictr1
i denotes the click through rate on

the first URL for the first 100 searches that we observe for a keyword.11 ictr1 is an intuitive

11Note that by construction estimating Equation 4 requires us to focus on keywords with at least 200
searches during the period of our sample. Estimating Equation 4 for all the keywords in our sample is
frustrated by regression to the mean. Regression to the mean arises in any kind of analysis where observations
are classified based on a noisy measure of the initial outcome. The regression to the mean phenomenon and
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Figure 5: Average quality increase of keywords with 95% confidence intervals. Each panel stands
for a different initial quality level.

measure for the quality a keyword reached at the beginning of our sample period, which

helps to account for differences in the unobserved Sit and Hit.

Estimation is performed by local linear regression on the grid ictr × s× h.12 The values

of ictr are given by {0.25, 0.5, 0.75} and the values of s by {0.02, 0.1, 0.2, ..1}. The values of

h are identical to the ones chosen is subsection 4.1. Figure 5 shows the result of estimating

Equation 4 on the grid ictr × s × h. Each panel stands for a different initial quality level.

The solid lines within each panel map f̂ as a function of s for keywords with a long average

user history, the dashed lines for keywords with a short average user history.

From the left panel of Figure 5, we can read that keywords with ictr1 = 25%, h = Q3 and

s = 10, 000 experience an average increase of eight percentage points in the click through

rate on the first URL. Keywords with h = Q1 and otherwise identical parameters experience

a quality increase of only 4.8 percentage points.

Data on the user dimension amplifies learning from data on the keyword dimension:

Keywords with longer average user history, ceteris paribus, display a larger quality increase

its impact on our analysis is discussed in more detail in Appendix D.
12Details on the estimation method and bandwidth selection are given in Appendix C.
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than keywords with a shorter average user history.13 Consistent with diminishing returns

to scale from additional searches on a keyword, we observe a concave pattern between the

measured quality evolution and the number of searches, s. Furthermore, the average quality

increase diminishes ceteris paribus with a larger initial quality level, which is also in line

with diminishing returns in S, the number of searches on a keyword.14

In summary, four key results emerge from this analysis on how data matters for search

result quality. First, search engines learn from data on user response to search results shown

in response to the same keyword. Search result quality improves for queries that are searched

upon more. Second, the personal dimension of data matters for learning. Data in the user

dimension enable faster learning from data in the keyword dimension. Third, the learning

does not fade off fast. We observe quality improvements even at the most searched upon

keywords. Fourth, personal data matters even for new queries. This last point is particularly

important for the question whether data may constitute an entry barrier. It implies that

between two hypothetical search engines, even if they had an equal number of users, the new

entrant will be at a disadvantage and increasingly so: the established firm will have observed

longer search histories of its users and will be able to provide higher quality search results

even to queries that are new to both search engines.

The findings from this subsection match our expectations from the analysis of the long run

dynamics. The fact that keywords with a higher quality level improve less in quality is in line

with the pattern of diminishing returns to scale from St, which we found in subsection 4.1.

Additionally, we find larger quality increase for keywords with a longer average user history.

This indicates that data on the user dimension allows the search engine to learn faster from

13For estimation, we removed all keywords that accumulate more than 50% of the total searches during the
sample period within a single day. Further narrowing the tolerance level of the even accumulation criterion
does not significantly impact the results.

14The negative quality evolution measured for keywords with ictr1 = 0.75 and h = Q1 (dashed line in
lower right panel) might be due to the fact that those keywords experience an increase in the click through
rate on URLs positioned below the first URL. Thus, clicks on the URLs below the first one might cannibalize
clicks on the first URL. In Appendix A.3, we analyze the quality increase of keywords based on the click
through rate of the first three URLs. Based on this quality measure, we find no indication for a negative
average quality evolution for keywords that start from a higher initial quality level.
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data in the keyword dimension. This effect explains the marked quality differences between

keywords with a long and short average user history in subsection 4.1.

5 Identification

Sections 4.1 and 4.2 showed that data in the user dimension enhance learning from data in

the keyword dimension. We argued that more data may constitute a source of market power,

as more data in the user dimension may allow an incumbent to learn faster than an equally

efficient rival.

In this section we discuss in detail to which extent unobserved heterogeneity can confound

our results. To do so, we introduce a functional form assumption that allows us to model

faster learning in the keyword dimension through additional data in the user dimension.

The model also allows us to take into account the impact of two potential confounding

factors: (i) unobserved heterogeneity across keywords of different types and (ii) unobserved

heterogeneity with respect to the age of keywords (i.e. the time elapsed since the keyword

was first entered into the search engine). If keywords with a longer average user history are

either easier or older this could explain the higher quality levels we observed in subsection

4.1. We show here that it is unlikely that our results are rationalized by confounding factors.

We start by introducing and discussing our functional form assumption for the quality

evolution process of keywords. The quality of the search results shown for keyword i at time

t, (Qit), is a function of the number of times the keyword has been searched till that time

(Sit) and the average amount of user specific data for that keyword (Hit):

Qit(Sit, Hi, µi) = 1− (1− µi)
S
δ(Hi)
it

= 1− (1− µi)
(Ti × si)δ(Hi)

(5)

The function in Equation 5 is concave in Sit and its image always lies in the interval

[0, 1] if Sit > 1, δ(Hi) > 0 and µi ∈ [0, 1], which we assume. Qit converges to 1 as Sit

approaches infinity. The function δ(Hi) determines the speed of convergences as a function
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of Sit. Larger values of δ imply a faster convergences to 1. More data in the user dimension

increases the speed of learning from more searches on the same keyword if ∂δ(Hi)/∂Hi > 0.

If in turn ∂δ(Hi)/∂Hi = 0, data on user history do not impact the speed of learning from

more searches on a keyword.15

We denote the type of keywords by µi, which captures the intrinsic difficulty to find

relevant search results for the keyword. A larger value of µi corresponds to a keyword

for which it is easier to retrieve relevant search results. Keywords with a larger value of

µi start from a higher quality level and, ceteris paribus, remain on a higher quality level.

Heterogeneity in µi is one source of potential confoundedness that we will study in this

section. The second source of potential confoundedness stems from the fact that a search

engine may have observed some keywords a longer time ago first. We will refer to Ti as the

age of the keyword, namely the time elapsed since the search engine first ever observed that

keyword. The decomposition Sit = Ti × si emphasizes that the total number searches at

time t can written as the product of the number of months a keyword existed until time t,

Ti, and the average number of searches per month, si.
16

Despite its simple parametric form, we believe that the function in Equation 5 provides a

realistic approximation of statistical learning for two reasons. First, it captures diminishing

returns to scale from additional searches through the concavity of the functional form in

S. Second, the maximum achievable quality level is bounded, which captures the idea that

the prediction accuracy of a model can not be increased indefinitely, i.e. that there is an

irreducible error term.17

Based on the functional form of Equation 5, we can analytically derive the expected

15In the functional form assumption of Equation 5, we neglect the possibility that Hit might be time

varying. As discussed in Appendix B, Hit should generally increases over time. Neglecting this dynamic in

the functional form assumption amounts to assuming that the time varying nature of Hit is negligible. We
consider this restriction innocuous under the detailed assumptions formulated in the data generating process
in Appendix B. It implies that differences in the age of keywords only impact quality through the resulting
difference in Sit when keywords have the same average user history in a given period.

16The reader should note that is corresponds to the assumption that keywords accumulate evenly over
time. We refer to Appendix B for a detailed discussion of this assumption.

17See Bajari et al. (2019) for an extensive treatment of the properties of statistical learning.
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quality level of keywords conditional on observing si = s and hi = h. This mimics the

scenario we face in subsection 4.1 and allows us to analyze under which assumptions on the

distribution of µ and T we can generate data consistent with ours when the average user

history does not affect the speed of learning from additional data in the keyword dimension.18

Consider the conditional expected quality, given a tuple {si = s, hi = h}:

E[ctr1
i |s, h] =

∫ T̄

0

∫ 1

0

(
1− 1− µi

(s× Ti)δ(h)

)
f(µi,Ti|s, h)dµidTi (6)

Where T̄ describes the maximum number of months a keyword existed before the sam-

ple period. 19 Through the conditional density function f(µi,Ti|s, h), we can introduce

correlation between the unobserved and the observed variables. We consider two scenar-

ios. First, potential confoundedness related to the type only, which we model by assuming

f(µi,Ti|s, h) = f(µi|s, h)× f(Ti). Second, potential confoundedness related to the age only,

which we model by f(µi,Ti|s, h) = f(Ti|s, h)× f(µi).

We want to understand under which assumptions on f(µi|s, h) and f(Ti|s, h), the condi-

tional expectation in Equation 6 generates the divergence observed in Figure 4 in subsection

4.1 if ∂δ(Hi)/∂Hi = 0, i.e. when learning in the keyword dimension is not strengthened

by more data in the user dimension. Divergence is defined in the following way: Denote

by hl a long average user history and by hs a short average user history. For the differ-

ence in the conditional expectations between hl and hs given s, we write E[ictr1
i |s,∆h] =

E[ictr1
i |s, hl] − E[ictr1

i |s, hs]. We observe a divergent pattern if E[ictr1
i |s,∆h] > 0 and

∂E[ictr1
i |s,∆h]/∂s > 0, i.e. if the difference in the expected quality between hs and hs

is positive and increases with s.

Confoundedness is modelled by first order stochastic dominance. For instance, we model

the case in which a longer average user history is associated with a higher type by assuming

18We focus on subsection 4.1 because the pattern in the data that we observe in subsection 4.2 can be
generated under weaker assumptions on confoundedness.

19The reader should note that since we assume that Hit is not time varying, we can write Hit = Hi =
hi = h.
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that F (µi|s, hs) > F (µi|s, hl), which implies that E(µi|s, hs) < E(µi|s, hl). We denote the

difference in the conditional expectations between hl and hs for type and age by E[µi|s,∆h]

and E[Ti|s,∆h]. Changes in the conditional expectations E[µi|s,∆h] and E[Ti|s,∆h] are

assumed to be caused by changes in the degree of first order stochastic dominance. For

instance, ∂E[µi|s,∆h]/∂s >= 0 corresponds to ∂
[
F (µi|s, hs)− F (µi|s, hl)

]
/∂s >= 0.

We now state our main result, which we prove in Appendix E:

Proposition 1 First, consider the case f(µi,Ti|s, h) = f(µi|s, h)× f(Ti), i.e. confounded-

ness in types. If ∂δ(Hi)/∂Hi = 0, E[ictr1
i |s,∆h] > 0 ∀s and ∂E[ictr1

i |s,∆h]/∂s > 0 ∀s

can only occur if E[µi|s,∆h] > 0 ∀s and ∂E[µi|s,∆h]/∂s > 0 ∀s. Second, Consider the

case f(µi,Ti|s, h) = f(Ti|s, h) × f(µi), i.e. confoundedness in age. Further assume that

∂f(µi,Ti|s, h)/∂s > 0, i.e. more popular keywords are on average older. If ∂δ(Hi)/∂Hi = 0,

E[ictr1
i |s,∆h] > 0 ∀s and ∂E[ictr1

i |s,∆h]/∂s > 0 ∀s can only occur if E[Ti|s,∆h] >

0 ∀s and ∂E[Ti|s,∆h]/∂s > 0 ∀s.

Proposition 1 states that, if ∂δ(Hi)/∂Hi = 0, a divergent pattern in E[ictr1
i |s,∆h] can

only occur if the confoundedness exactly replicates this pattern. To understand what this

means, consider the case of the unobserved type of keywords. Divergence in E[ictr1
i |s,∆h]

cannot simply be explained by an average difference in type between keywords with h = hl

and h = hs. Instead, what is required is that the average difference in type between h = hl

and h = hs increases with s. Similarly for age, any positive age difference between h = hl

and h = hs would have to increase with s in order to rationalize the data in the absence

of network effects. Proposition 1 imposes restrictive condition on the confoundedness to

generate the data we observe: The positive correlation between types or age and the average

user history needs to increase monotonically with s.20

20Note that for age confoundedness in Proposition 1, we introduce the assumption that keywords with a
larger monthly search quantity need to be on average older. We consider this a weak additional restriction.
An increasing age gap between keywords with a long and short average user history as a function of s with
a simultaneous decrease of the average age with s seems artificial. Furthermore, it should also be noted
that potential confoundedness between the age and average user history seems at odds with the results
in subsection 4.2. If keywords with a longer average user history are older, on average, we would expect
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Figure 6: Evolution of quality differences when data in the user dimension boost learning from
data in the keyword dimension. We assume no simultaneous confoundedness.

By contrast, if data obtained on the user dimension boost learning in the keyword di-

mension, the pattern observed in our data arises naturally. Figure 6 schematically describes

the three main patterns we would observe in this case if the data were generated by the

model introduced in this section, absent confoundedness. The pattern we observe depends

on the average age of the keywords. For a young average age, we would observe a divergent

pattern as the one presented in Figure 6a. As the average age increases, initially the pattern

becomes similar to that shown in Figure 6b before reaching a state similar to that shown in

Figure 6c.21

The main reason for the three different patterns is that all keywords eventually converge

to the same quality limit. This is what explains the transition from the pattern shown in

Figure 6a to the pattern shown in Figure 6b. After an initial phase of divergence in quality

between hl and hs, quality starts to converge after a certain threshold, S∗, is reached. Because

this threshold is first reached by keywords with a large number of searches per month, we

observe the pattern in Figure 6b for an intermediate average age of keywords. As the average

age of keywords increases, the location of the kink shifts to the left, which eventually leads

them to experience a smaller quality increase during our sample than keywords with a shorter average user
history The same cannot be said about potential confoundedness with respect to the type, which is generally
compatible with the results found in subsection 4.2. If keywords with a longer average user history are of
a higher type, this implies a younger age than compared to keywords with a short average user history if
both have the same initial quality level. This difference in age implies that keywords with a longer average
user history are on the steeper part of the learning curve as compared to keywords with shorter average user
history.

21We provide a formal discussion of the change in the pattern in Appendix E.
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Figure 7: Evolution of quality differences induced by unobserved heterogeneity as average age of
keywords increases.

to a pattern similar to 6c. The average age that marks the transition between the different

phases mainly depends on the difference in the speed of convergences between hl and hs.

The functional form in Equation 5 implies that, when data on the user dimension do not

impact learning from data on the keyword dimension, initial quality differences continuously

diminish. As a consequence, we would not observe persistent differences in the data only

due to unobserved heterogeneity. Observed quality differences between keywords with a

long and short average user history vanish as the average age of keywords increases. Figure

7 illustrates how the quality differences between keywords with a long and short average

user history, which are caused by confoundedness, vanish as the average age of keywords

increases.22

The analysis of this section highlights that strong assumptions on the unobserved hetero-

geneity are required to generate patterns consistent with our data if the average user history

does not impact the speed of learning from more searches on the same keyword. In con-

trast, when data in the user dimension boost learning in the keyword dimension, our model

generates patterns consistent with our data if the average age of keywords is in a certain

range. The results of this section suggest that simultaneous confoundedness of age and type

22The pattern shown in Figure 7 is just one example of many potential patterns generated through
heterogeneity. The main point of Figure 7 is to illustrate that any initial differences in quality generated
through unobserved heterogeneity vanish monotonically, not to suggest a specific shape of the observed
divergence.
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would require assumptions similar to the one formulated for each factor of confoundedness in

isolation, i.e. confoundedness between the unobservables and the average user history needs

to be reinforced with S in order to generate the patterns observed in the data.

6 Conclusion

In this paper we propose a mechanism that rationalizes the hypothesis of data as a source

of market power. We find evidence that more comprehensive data about the users’ personal

search histories triggers faster learning from data on searches upon the same keyword. Our

results suggest that a search engine with longer user search histories is able to provide higher

quality search results to the same keyword observed previously equal times.

We view the mechanism that we propose as a network effect from additional data: More

data increase the efficiency of the technology, thereby causing positive externalities similar

to those created by more users in a network. The search engine improves as it observes more

users entering the same keyword. This is akin to the classical network effect, whereby more

users improve the search result quality. In addition, we document another effect of learning

from data: more data on the users’ personal search histories lead to faster learning from

data obtained on searches on the same keyword.

Our results provide a novel insight in the discussion on the necessary scale for a search

engine to operate effectively in a competitive environment: data may provide first movers

an advantage that can become difficult for rivals to overcome. This is because more data on

user search histories allow the search engine to learn faster on observed click behaviour for

the same keyword. Search engines with access to longer user search histories need less users

to reach a given search result quality for the same keyword.

Our findings rationalize why data on users might be particularly valuable for firms op-

erating data-driven technologies. Because data is not simply an input but also a technology

shifter, our results suggest that data have the potential to confer a significant competitive
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advantage and to act as an barrier to entry. Our results call for awareness from antitrust

policy regarding any potentially anti-competitive behaviour of firms seeking to deepening

knowledge about their existing customer base. For instance, our results suggest that the

benefits from locking in customers might be substantial. Similarly, merging databases across

different services with a large overlap in the user base might grant firms a data advantage

that is difficult to overcome for competitors. In this context, it is important to understand

how market demand reacts to quality differences. This is an empirical question that remains

to be answered.

Our research also reveals that there may be a strong relationship between privacy and

competition policy, since the privacy interest of users may be weighed off against the ex-

ternalities potentially generated through personalized information. These externalities may

be positive when they enable better search results. But they may also accumulate into an

advantage in data that helps a firm cement its market power. Our findings call for a careful

interaction between privacy and competition policy that preserves the benefit of competition

but may even allow for some data sharing to create a level playing field and tap positive

externalities. In light of our findings, the right to data portability, which enables users of IT

services to easily carry their personal data to other service providers, implemented in Article

20 of the EU General Data Protection Regulation, is a step in a right direction.

However, our findings also suggest that in order to substantially benefit entrants, the right

of data portability would have to be exerted by a sufficient number of users switching to the

new entrant. A lack of coordination and the under appreciation of the externalities involved

in carrying private data to the potential entrant might result in only a few customers making

use of data portability and, consequently, in sub-optimal levels of switching. A systematic

theoretical and empirical assessment of user switching in light of externalities from data

across users would be a valuable contribution to future research.
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A Robustness Analysis with Alternative Quality Mea-

sures

This Appendix provides robustness checks for the results presented in sections 4.1 and 4.2

using alternative quality measures. Appendix A.1 provides an introduction and discussion of

the editorial quality measures before presenting the corresponding results in Appendix A.2.

In Appendix A.3, we present results based on alternative click-based quality measures.

A.1 Editorial Quality Measures – Introduction

Our data set contains 659, 000 query-URL pairs with editorial relevance judgments collected

from human experts. The editorial quality judgments assess the relevance of a URL for a

specific query by a categorical grade ranging from zero (not at all relevant) to four (highly

relevant). By aggregating the editorial quality judgments for multiple URLs displayed on

the same search result page, it is possible to obtain an overall grade for the quality of the

result page.

Editorial quality measures are often used in the information retrieval (IR) literature

to assess the quality of different algorithms in an offline environment and to compare the

quality of various algorithms in an experimental setting (Chuklin et al., 2013). Editorial

quality measures are criticised for often struggling to capture user preferences in an online

setting, which led IR researchers to develop relevance metrics based on user click behaviour

(Chuklin et al., 2013). We nevertheless repeat the analysis of repeat the analysis of sections

4.1 and 4.2 based on editorial quality measures.

A commonly used quality measure in the information retrieval (IR) literature is the so-

called discounted cumulative gain (DCG). The informational gain of a specific URL for a

specific topic is directly assessed by the relevance grade that ranges from zero to four. The

position of the URL on the result page determines by how much this informational gain is

discounted. For example, assume that a specific URL is rated with a relevance grade of four
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relative to the searched topic. Furthermore, assume that this URL is shown on the second

position of the corresponding result page. Then, we say that the discounted gain (DG) of

this URL is given by:

DG =
2relj − 1

log2(j + 1)
=

24 − 1

log2(2 + 1)
, (7)

Where j stands for the position and rel for the relevance grade of the URL. The numerator

captures the informational gain that the user obtains by being provided this with this URL.

The denominator discounts for the fact that the URL is displayed in the second position:

The user had to scan through the search result page to be provided with this URL. Note that

by applying the logarithm of base two to the denominator, the gain of a document displayed

on the first position is not discounted.

To assess the quality of the entire result page, one can add up the discounted gain of all

documents displayed on the first results page. Assume for convenience that all ten documents

on the first result page are assigned a relevance judgment, then the discounted cumulative

gain is given by:

DCGp =

p=10∑
j=1

2relj − 1

log2(j + 1)
, (8)

Two criteria determine the value of the DCG: (I) the general relevance of the documents

available on the result page and (II) the ranking of the documents. (I) simply captures

the idea that providing documents with relevant content is generally desirable (i.e. a lot of

documents rated four are better than a lot of documents rated with a grade of one). (II)

captures the idea that, given a specific set of documents with a given relevance, it is desirable

to display the most relevant documents at the top of the result page (the ordering 4,3,2 is
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better than the ordering 2,3,4). The DCG captures both dimensions.

Obviously, in order to be able to compute the DCG for the entire result page, we need

relevance judgments for all the URLs displayed on the page. This is only rarely the case in

our dataset. Another shortcoming of the DCG measure is that the measure only allows a

meaningful comparison between result pages if both pages are exactly the same number of

consecutively graded URLs starting from the URL displayed on the top. It is, for example,

not possible to directly compare a search result page where the first two URLs are graded

with a result page where the first three URLs are graded. It is also not possible to directly

compare a result page where the first three URLs are rated with a result page where only the

first and third URLs are rated but the grade for the second is missing. Therefore, comparing

result pages based on a DCG measure with a certain depth p requires that all compared

pages have URLs consecutively rated until p.

Consequently, the IR literature deals extensively with the imputation of relevance grades

for URLs with missing grades. Usually, imputed grades are assigned based on click through

rates (CTR) for the URL with the missing grade that take into consideration existing rel-

evance grades of nearby URLs. Repeating such an exercise for the present dataset would

be extremely burdensome and costly. It is for this reason that we decided to take another

approach and to repeat the analysis based on two DCG-measures with different depth p:

DCG1 and DCG3. The DCG1 measure can be calculated for approximately 90 percent of

the searches in the data set. The DCG3 measure can only be computed for roughly one-third

of the searches.

While the DCG1 measure allows us to compute a grade for most of the searches in our

data, it only takes into account the first URL. As a consequence, a results page can only

be assigned 5 possible grades. While the DCG3 measure allows for 125 different possible

grades, it can only be computed for a fraction of the observed searches.

Each combination of relevance judgments gives rise to a particular DCG-value. These

DCG-values can be used to establish an ordinal ranking of the relevance judgment combina-
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Figure 8: y-axis: DCG3 value, x-axis: Ordinal ranking of relevance judgment-combinations ac-
cording to their DCG3 value

tions from 1 (lowest DCG-value) to 5 (highest DCG-value) in the case of the DCG1 measure

and from 1 to 125 in the case of the DCG3 measure. Figure 8 depicts the DCG-values

(y-axis) against their ordinal ranking (x-axis) for the DCG3 measure.

Figure 8 illustrates the convex nature of the DCG-measure: the difference in DCG-values

between the relevance judgment combination (4,4,4) and (4,4,3) is larger than the difference

in DCG-values between the relevance judgment combination (0,0,1) and (0,0,0). In other

words, incremental improvements of relevance judgment combinations lead to higher DCG

increases as we move along the ordinal ranking of URL-combinations. This is due to the fact

that the relevance judgments enter the DCG formula in the exponent.

This property is mechanical rather than informative about the true added quality gain

for customers. In the above example it is debatable, whether the improvement from (0,0,0)

to (0,0,1) is more or less valuable to the consumer than the improvement from (4,4,3) to

(4,4,4). Classical economic thinking would suggest that the former is more valuable than

the latter, if relevance judgments could be interpreted directly as “information-units”.

If we use the ordinal ranking of the URL-combinations each incremental improvement

is valued the same. An improvement for a given keyword would then be larger, the more

“steps” it improved on the ordinal ranking. This choice seems the most sensible to us. It is
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for this reason that we opt for the ordinal rank dictated by the DCG measure rather than

for the DCG measure itself to perform our analysis. For the remainder of the analysis, we

refer to the editorial quality measures as rank1 and rank3, respectively. The correlation

coefficient between rank1 and ctr1 is 0.55. The correlation coefficient between rank3 and

ctr1 is 0.49.

A.2 Editorial Quality Measures – Results

Figure 9 shows the results of estimating Equation 3 on the grid s × h with rank1 as the

dependent variable. In Figure 9a, estimation is performed for all keywords in the sample.

In Figure 9b estimation is performed for the subset of keywords that do not deviate by

more than ten percentage point from the even accumulation criterion. Figure 10 shows the

corresponding analysis with rank3 as the dependent variable.

For both editorial quality measures, only minor changes to the observed pattern are

caused by dropping keywords that see less steady search patterns over time. The changes

are larger when we perform the same exercise using the click-based quality measures and

removal keywords that see more rapid boosts in searches on some days.

Nevertheless, Figures 11 and 12 reveal that the effect of removing keywords do not accu-

mulate evenly increases the measured impact of the network effect for both editorial quality

measures in a similar way as does the click-based quality measure. Furthermore, the di-

vergent pattern in the quality levels between keywords with a long and short average user

history that we observe for the click-based quality measures is also present when using the

editorial quality measures.

Figures 13 and 14 show the results of estimating Equation 4 on the grid ictr × h × s

for rank1 and rank3, respectively. For both editorial quality measures, we normalized the

quality to lie in the interval [0, 1] when analyzing the quality evolution of keywords.

In both Figure 13 and Figure 14, we observe that the measured quality increase generally

declines with the initial quality level. Furthermore, the quality increase of keywords with

36



a long average user history is always weakly larger than the quality increase measured for

keywords with a short average user history.

For the rank1 measure, we observe no difference between long and short keywords for

the lowest initial quality level. The large confidence intervals reflect the fact that only few

keywords start from this quality level in our sample. For the second highest initial quality

level, the observed pattern roughly corresponds to our expectations of differential learning

speeds between keywords with a long and short average user history. A general problem that

we see with the rank1 measure is its very crude scale, which only allows for five different

quality grades. If differential learning between keywords with a long and short average cookie

length occurs on a more granular level within the sample period, the rank1 measure is likely

to poorly capture differential learning.

For the rank3 measure, the difference in learning between keywords with a long and

short average user history is most pronounced for the lowest initial quality level. For larger

initial quality levels, the difference is not pronounced. The large confidence intervals that we

observe for all initial levels reflect the loss of observations associated with using the rank3

quality measure.

Altogether, the results obtained with the editorial quality measures are in line with the

results obtained using the click-based quality measures. The divergence of the quality levels

observed in Figures 11 and 12, and the differential learning speed observed in Figures 13 and

14 for lower initial quality levels are in line with the hypothesis that additional data in the

user dimension boosts learning from data in the keyword dimension.
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Figure 9: Average quality of keywords with 95 % confidence intervals
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Figure 10: Average quality of keywords with 95 % confidence intervals
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Figure 11: Impact of longer average user history on quality level. Different tolerance levels for
deviation from even accumulation criterion are considered.

0.0 0.2 0.4 0.6 0.8 1.0
# Searches (×10 4)

8

9

10

11

12

13

14

Qu
al
ity
 D
iff
er
en
ce
 (r

an
k3
)

all
50pp
20pp
10pp

Figure 12: Impact of longer average user history on quality level. Different tolerance levels for
deviation from even accumulation criterion are considered.
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Figure 13: Average quality increase of keywords with 95% confidence intervals. Each panel stands
for a different initial quality level.
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Figure 14: Average quality increase of keywords with 95% confidence intervals. Each panel stands
for a different initial quality level.
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A.3 Alternative Click Based Quality Measures – Results

In this Appendix, we present the results obtained with two alternative click-based quality

measures. For the first, search result quality is encoded as “good” if the last recorded click

occurs on one of the first three organic URLs. For the second, search result quality is encoded

as “good” if the last recorded click occurs on one of the first ten organic URLs. We denote

the first alternative click based measure by ctr3 and the second by ctrall. For ctrall, search

result is only considered “ bad” if the searcher ends the search on the second result page or

leaves the search engine without finding a URL she considers relevant.

Table 1: Correlation click based vs. editorial measures

ctr1 ctr3 ctrall

rank1 0.55 0.51 0.41
rank3 0.49 0.45 0.34

From Table 1, it can be seen that the correlation between the click based quality measures

and each editorial quality measure decreases as the criterion for a “good” search result

quality is defined more broadly. Furthermore, each click based quality measure correlates

more highly with the editorial quality measure of depth one.

Figure 15 shows the results of estimating Equation 3 on the grid s × h with ctr3 as

the dependent variable. The results in Figure 15a are based on all the keywords in the

sample. Figure 15b shows the results for the population of keywords that deviate no more

than ten percentage points from the even accumulation criterion. Figure 16 repeats the

same exercise for the ctrall quality measure. Figures 17 and 18 shows the consequence of

continuously narrowing the tolerance interval for the even accumulation criterion on the

measured network effects for the ctr3 and ctrall quality measure, respectively. All Results

are qualitatively identical to the results obtained based on the ctr1 quality measure.

Figures 19 and 20 show the results of estimating Equation 4 on the grid ictr × h × s

for ctr3 and ctrall, respectively. The results are qualitatively identical to the ones obtained

41



based on the ctr1 quality measure.

Its is noteworthy that, in general, the measured network effect between keywords with

a long and short average user history tends to decrease as we broaden the set of URLs

that determine a “good” search result quality. We find this result intuitive: It requires less

personalized knowledge to get three out of ten or ten out of ten results right as it requires to

get one out of ten results. A more broadly defined quality measure therefore de-emphasizes

the value of personalized information.

Another noteworthy difference to the results in the main section is that the quality

evolution during the sample period is now also positive for keywords with a high initial

quality level and a short average user history. This indicates that the decrease in the click

through rate on the first URL, which we found in Section 4.2, corresponds to an increase

in the click through rate for URLs further down the results list, i.e. that URLs further

down the result list cannibalize clicks on the first URL. Again, it seems intuitive to see this

phenomenon occur for keywords with a short average user history, where the search engine

lacks the information to target individual preferences.

Altogether, the results based on the alternative click-based quality measure prove to be

robust to the results presented in the main section of the paper. Minor differences to the

results in the main section appear to be sensible.
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Figure 15: Average quality of keywords with 95 % confidence intervals
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Figure 16: Average quality of keywords with 95 % confidence intervals
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Figure 17: Impact of longer average user history on quality level. Different tolerance levels for
deviation from even accumulation criterion are considered.
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Figure 18: Impact of longer average user history on quality level. Different tolerance levels for
deviation from even accumulation criterion are considered.
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Figure 19: Average quality increase of keywords with 95% confidence intervals. Each panel stands
for a different initial quality level.
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Figure 20: Average quality increase of keywords with 95% confidence intervals. Each panel stands
for a different initial quality level.
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A.4 Counting clicks on advertisement URLs – Results

This Appendix gives the results for the robustness checks when search result quality is

encoded as good if the last click occurs on the first URL or an Advertisement URL. The

click through rate is now computed as follows:

ctr
{1ad}
i =

∑
si∈Si

1{lcpis ∈ {0, 1}}∑
si∈Si

1{lcpis = Ω}
(9)

In comparison to the other click based quality measures used in the paper, the denomina-

tor now sums up all the searches in S. The numerator now considers clicks on advertisement

URLs as “good” search result quality. For completeness, it should be noted that the data

description offers no clear guidance on the exact nature of the clicks that we characterize as

“ads”. These clicks could be clicks on ads but also clicks on spelling suggestions or refor-

mulations of the original keyword the user submitted. The results in Figures 21, 22 and 23

show that our conclusions remain unaffected by whether or not, we count these clicks or not.
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Figure 21: Average quality of keywords with 95 % confidence intervals
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Figure 22: Impact of longer average user history on quality level. Different tolerance levels for
deviation from even accumulation criterion are considered.
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B Formal Discussion of Data Generating Process

In subsection 4.1, we use the variables we observe, si and hi, as proxy measures for Sit and

Hit and demonstrate that keywords for which the proxies indicate larger values of Sit and Hit

are on a higher quality level. In this Appendix, we are interested in the formal relationship

between si and hi and their unobserved counterparts at time t, which denotes the beginning

of our sample period.

Reducing the approximation error we make from substituting Sit and Hit by their proxy

variables si and hi amounts to reducing Var[Sit|s, h] and Var[Hit|s, h] for each tuple {si =

s, hi = h} that we condition on. Conditioning on a tuple {si = s, hi = h} induces a distri-

bution over Sit and Hit. The expectations of these distributions, E[Sit|s, h] and E[Hit|s, h],

describe the expected values of Sit and Hit for each tuple {si = s, hi = h}. The variances

describe the heterogeneity over Sit and Hit for each tuple {si = s, hi = h}. The larger the

variances, the larger the error we make from substituting Sit and Hit by si and hi.

We now introduce a generating process under which Var[Sit|s, h] and Var[Hit|s, h] are

minimized.

DGP 1: Keywords originate at random time and have constant monthly popularity. i.e. the

number of searches for the keywords is constant in every month. I.e. siτ = si ∀τ ,

where τ denotes a month.

DGP 2: If two keywords follow DGP 1 and have the same average user history in month τ ,

they also have the same average user history in month τ + 1.

To understand why DGP 1 and DGP 2 reduce the variance, it is crucial to note

that there are two sources of heterogeneity that (potentially) influence Var[Sit|s, h] and

Var[Hit|s, h]: (i) the number of months a keyword existed before the period of our sample,

and, (ii) the monthly variability of siτ (for Var[Sit|s, h]) and hiτ (for Var[Hit|s, h]). The

conditions formulated in DGP 1 and DGP 2 eliminate the second source of heterogeneity.
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By DGP 1, all keywords for which we observe a given number of searches during the

sample period had the same monthly popularity in all previous periods. By DGP 2, all

keyword for which we observe a given average user history during our sample also had the

same average user history in all previous periods. Therefore, if we can determine a population

of keywords for which DGP 1 and DGP 2 is a plausible approximation, we can approximate

Sit and Hit more accurately through si and hi.
23

DGP 2 can be understood in the following way: keywords differ in the type of user who

search the keyword. One dimension of the user type is the usage intensity of the search

engine, which determines Hit. DGP 2 states that if two keywords have the same average

user type in one month, they will also have the same average user type in the next month.

Since neither experience a change in popularity (note that we assume that DGP 1 holds),

this is a sensible assumption to make since no change in popularity indicates that the user

type did not change. By contrast if DGP 1 does not hold, it is also likely that the user type

changed and therefore that DGP 2 does not hold. For the sake of this analysis, we assume

that if DGP 1 is violated than DGP 2 cannot hold.

Note that DGP 2 states a weaker assumption than DGP 1 because it does not require

that the average user history is constant. While a constant monthly popularity seems a

realistic approximation for the evolution of the total search quantity of a keyword that

reached its steady state, a similar assumption for the average user history appears unrealistic.

This is because the search engine continuously collects data on users, which suggest that the

average user history should have tendency to increase.

Given the above reasoning, it is sufficient to develop a method to detect keywords for

which DGP 1 is a poor approximation. By removing these keywords, we can focus on a

population of keywords for which Var[Sit|s, h] and Var[Hit|s, h] is minimal. By DGP 1,

we need to drop keywords for which the monthly popularity that we observe is a unreliable

measure for the monthly popularity in previous periods. Because we have no information on

23It should be noted that, to simplify analysis, we abstract from the fact that si and hi are subject to
sampling error.
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the previous periods, we rely on the simple heuristic that keywords that experience popularity

changes during our sample period do likely not follow DGP 1.

The heuristic relies entirely on the intuition that popularity changes in the sample are

indicative of long term patterns in popularity: A keyword that increases in popularity during

each day in our sample is likely on a long run upward trend. Similarly, a keyword on a

downward trend in our sample is likely also on a long run downward trend. Both patterns,

upward or downward trends in our sample, could also be indicative of an oscillating long

run popularity, with phases of high and low popularity. The key point is that all mentioned

scenarios are inconsistent with DGP 1.

Next, we provide formal arguments why DGP 1 and DGP 2 reduce the variances. We

discuss each assumption separately.

B.1 DGP 1

Throughout, we assume that keywords originate at random time in the past. Denote by

Ti, the number of months a keywords existed previous to the sample period. We denote

the average monthly popularity of a keyword by si. Note that, by construction, we have

Sit = Ti× si. The total number of searches previous to the month our data were sampled is

equal to the number of months a keywords existed previous to the sample period times the

average monthly popularity.

Therefore, for the population of keywords that do not follow DGP 1, we have that

Var[Sit|s, h] = Var[si × Ti|s, h]. If we make the assumption of conditional independence

between si and Ti, the conditional variance of the product si × Ti is given by σ2
sσ

2
T +

σ2
sµ

2
T + µ2

sσ
2
T. Where σ denote conditional variances and µ conditional expectations. For a

population of keywords that follows DGP 1, we have σ2
s = 0 and, consequently, the variance

reduces to µ2
sσ

2
T, which is obviously smaller.

The assumption that we must make above, in addition to conditional independence, is

that µs and σ2
T do not change when dropping keywords that do not follow DGP 1. This
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amounts to assuming that keywords that do not follow DGP 1 have si that randomly deviate

from µs. Furthermore, they must be drawn from the same distribution of Ti.

B.2 DGP 2

For DGP 2, first note that we can write Hit =
∑Ti

1 wτ×hτ , where τ denote months previous

to the sample period and hτ is the average user history in month τ . wτ is the monthly weight

given by sτ/Sit, where sτ is the number of searches in month τ . We have
∑Ti

1 wτ = 1. Thus,

the average user history previous to the sample period is the weighted monthly average user

history, where the weights are the ratio of the number of searches in a given month in the

total number of searches previous to sample period.

If we would assume that hτ = h ∀τ , then Hit = h and by DGP 2, Var[Hit|s, h] = 0.

While we find it realistic to assume that the monthly popularity of keywords sτ stays roughly

constant, as stated in DGP 1, we do not believe it is a realistic assumption for the average

user history. Instead, it is more realistic to assume that the average user history increases

over time as users continuously interact with the search engine. This is why DGP 2 is

formulated more broadly.

DGP 2 states that for a given h there is a unique sequence of monthly average user

histories previous to the sample period: {h1, ..., hτ , hτ+1, ..., hTi
}. The only source of hetero-

geneity between keywords is the length of the sequence determined by Ti.

Thus, if DGP 2 holds, for two keywords i and j with Ti 6= Tj, we have that hτi = hτj

for all τ ≤ min{Ti,Tij}. If DGP 2 would not hold, in addition to the heterogeneity in the

length of the sequences, we would in general have that hτi 6= hτj for τ ≤ min{Ti,Tij}. It is

logical that this additional heterogeneity can only increase Var[Hit|s, h] = 0.
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C Details on Kernel Estimation

Throughout the paper, estimation is performed by means of local linear regression. The

employed kernel for the weighting of the observations is a radial Gaussian kernel. The

bandwidth of the kernel determines the standard deviation of the Gaussian distribution

used for weighting, which is identical for each dimension. The off-diagonal elements of the

covariance matrix are set to zero. For estimation, all explanatory variables are normalized to

lie in the interval between zero and one. Because all explanatory variables only take positive

values, this transformation amounts to dividing each explanatory variable by its maximum

value.

For the analysis of subsection 4.1 and all the associated robustness checks in appendices

A.2 and A.3, the bandwidth is set to 0.1, irrespective of the employed quality measure and

the considered subsample resulting from dropping keywords that do not follow DGP 1 and

DGP 2. For the analysis of Section 4.2 and all associated robustness checks, in appendices

A.2 and A.3, the bandwidth is set to 0.15.

Table 2 reports the optimal bandwidths determined by leave one out cross validation for

each quality measure/subsample combination considered in the analysis of subsection 4.1

and the corresponding robustness checks in appendices A.2 and A.3. Table 3 reports the

optimal bandwidths determined by leave one out cross validation for each quality measure

for the analysis in subsection 4.2 and the corresponding robustness checks in appendices A.2

and A.3.

Throughout the analysis, we trade reduced variance for increased bias, which means that

we selected a bandwidth larger than the optimal bandwidth determined by leave one out

cross validation. As shown in Tables 2 and 3, the bandwidth chosen for the analysis in

subsection 4.1 is further away from the optimal bandwidth determined by cross validation

than the bandwidth we chose for the analysis in subsection 4.2.

Figures 24 and 25 show the results for the analysis performed in subsection 4.1 when

employing a bandwidth of 0.05, which is close the optimal bandwidth determined by the
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cross validation procedure. The irregular patterns observed in Figures 24a and 24b indicate

that the selected optimal bandwidth tends to over-fit the data. Figures 24 and 25 also

demonstrate that the results in subsection 4.1 are not driven by the selection of a wider

bandwidth, which is reassuring.
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Table 2: Optimal Bandwidths for Analysis of Section 4.1

all dev:50pp dev:20pp dev:10pp

ctr1 0.03 0.03 0.04 0.04
ctr3 0.03 0.03 0.04 0.05
ctrall 0.03 0.03 0.04 0.05
rank1 0.04 0.04 0.06 0.1
rank2 0.04 0.04 0.04 0.05
rank3 0.04 0.06 0.1 0.08

Table 3: Optimal Bandwidths for Analysis of Section 4.2

dev:50 pp

ctr1 0.11
ctr3 0.10
ctrall 0.09
rank1 0.06
rank2 0.10
rank3 0.14
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Figure 24: Average quality of keywords with 95% confidence intervals
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Figure 25: Impact of longer average user history on quality level. Different tolerance levels for
deviation from even accumulation criterion are considered.
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D Regression to the Mean (RTM)

The regression to the mean (RTM) problem arises in any analysis in which observations

are classified based on an initial outcome (i.e based on the dependent variable). Intuitively,

the problem arises because subjects are “erroneously” allocated to a category based on a

single (or few) observation(s), which is not representative for the average of that subject.

Because over time the outcome associated with a subject tend to revert to the average value

commonly observed for that subject, studies that rely on a classification based on an initial

outcome are prone to be affected by the RTM effect.

In the context of the analysis in subsection 4.2, there is the concern that the initial quality

of keywords is a bad measure for the true initial quality of the keywords. If a keyword is

assigned to the low initial quality group “by chance”, because it happened to experience

a large idiosyncratic deviation from its true quality in the beginning of the sample period,

it will naturally revert to its true average quality subsequently. This might lead to the

erroneous conclusion that keywords with a low initial quality display a high quality increase,

whereas in reality they simply revert to their natural average. Intuitively, the problem is

more pronounced if we rely on a few observations to assess the quality; i.e. if we rely on an

imprecise measurement of the true initial quality.

Figure 26 shows the result of the analysis of subsection 4.2 when we compute the initial

quality of the keywords based on the searches a keyword experiences during the first day of

the sample. In one day, a keyword with 200 searches experiences approximately six searches

on average (200/32). Note that in subsection 4.2, we use the first 100 searches to determine

the initial quality. As shown in Figure 26, the estimated quality increase is especially “

irregular” for keywords with a low total search quantity: Keywords with a low initial quality

experience a quality increase of roughly 10 percentage points.

To assess to what degree the results are driven by regression to the mean, we apply the

correction formula discussed in Barnett et al. (2004). This formula is derived under the as-

sumption of normally distributed stationary data and when observations are classified based
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on thresholds. For example, the formula can be applied in treatment analysis when inter-

ested in the effect for individuals who are below a certain income threshold. The underlying

assumption is that, absent treatment, there is no significant income trend and that income

is normally distributed for the studied population. To the best of our knowledge, no formula

exists for our specific application.

Our analysis does not rely on thresholding and our data are highly non-normally dis-

tributed and non-stationary. Our kernel estimation approach defines weights for observations

close to the kernel centroid. Observations are assigned less weight the further away they are

from the kernel centroid. To apply the formula, we ignore the weighting and estimate the

average RTM effect as if all observations are equally weighted. However, we only include

observations for which the average user history and the total number of searches are within

one standard deviation of the kernel centroid.

More precisely, imagine we want to approximate the RTM effect for the estimate at the

kernel centroid defined by an initial quality level of ctr1 = 25% s = 2000 and h = Q1. Imagine

that in the estimation we specified a standard deviation of 0.1 for the radial Gaussian kernel.

To approximate the RTM, we apply the formula in Barnett et al. (2004) to all observations

for which the Euclidean distance to the kernel centroid in the space spanned by s and h is

less than or equal to 0.1. By doing so, the RTM is calculated for the observations that had

most weight during the estimation.

The left column of Figure 27 displays the approximated RTM effect for the results pre-

sented in Figure 26. As shown, the RTM effect seems to explain much of the observed quality

changes observed for small search quantities in Figure 26. The right column of Figure 27

displays the approximated RTM for the analysis presented in subsection 4.2. As can be

seen, the regression to the mean effect appears to be much less pronounced when we use 100

observations to estimate the initial quality.

At around 4, 000 searches the estimated RTM effect in the left column of 27 has roughly

the same magnitude as the RTM effect in the right column of Figure 27. This is the range in
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which the number of searches in one day corresponds to roughly 100 searches. Our heuristic

to assess the RTM effect seems to deliver sensible results. When both methods to assess the

initial quality rely on the same number of searches, the estimated RTM effect is similar. It

is also worthwhile to note that the estimated effect seems mostly only marginally different

between keywords with a long and short average user history . This lessens the concern

that the observed differences in the quality increase between keywords with a long and short

average user history observed subsection 4.2 are driven by a differential impact of the RTM

effect.
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Figure 26: Analogue results to Figure 5 of subsection 4.2 if analysis is performed based on quality
differences between first and last day and the initial quality is assessed based on the
click through rate on the first day.
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Figure 27: Left column: Estimated Regression to the mean effect when analysis is based on
difference in the click through rate between first and last day. Right column: Estimated
Regression to the mean effect for results in 5 of subsection4.2
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E Model Discussion

E.1 Proof of Proposition 1

E.1.1 Confoundedness in types

We start by proving the first case considered in Proposition 1. The first case deals with

confoundedness in types under simultaneous unconfoundedness in age, which is modelled

by f(µi,Ti|s, h) = f(µi|s, h) × f(Ti). The strategy of the proof is to rule out a convergent

pattern in the type heterogeneity as data generating process for our data. We remind the

reader that changes in expected values are assumed to be induced by first order stochastic

dominance.

Proof. Consider two distinct values for the average user history h, hl and hs, with hl > hs.

Absent network effects, the difference between conditional initial qualities given si = s and

Ti = T is given by E[µ|s,∆h]/(s × T)δ(h), because Ti ⊥ h, s. Assume that E[µ|s̃,∆h] < 0

for some s = s̄, i.e. queries with a longer average user history are on average of a lower

type for s = s̄. Since this implies that E[µ|s̄,∆h]/(s × T)δ(h) < 0 ∀T, the integral of

the latter expression over T, which yields E[ctr1
i |s,∆h] must be negative. Hence, absent

network effects, it is not possible that the model generates a pattern consistent with our

data if E[µ|s,∆h] < 0 for some s. Now assume that E[µ|s,∆h] >= 0 ∀s, and consider

a convergent pattern, i.e. ∂E
∂s

[µ|s,∆h] <= 0 ∀s. Any s and s, such that s > s, implies

that E[µ|s,∆h]/(s×T)δ(h) > E[µ|s,∆h]/(s×T)δ(h) ∀T. Consequently, we must have that

E[ctr1
i |∆h, s] > E[ctr1

i |∆h, s] for any s and s such that s > s.

The proof rules out that a convergent pattern in the types could generate a divergent

pattern in the initial quality. To see that a divergent pattern in types can in principle generate

the data, note that a divergent pattern in types allows the possibility that E[µ|s,∆h]/(s ×

T)δ(h) < E[µ|s,∆h]/(s × T)δ(h) for T < T?. I.e. if keywords are not too old, for example if

all T in the age distribution are below T?, the divergent pattern in types can be conserved.
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Note that for larger T the inequality reverses, which suggest that the divergent pattern is

not stable. Furthermore, the expression E[µ|s,∆h]/(s× T)δ(c) illustrates that differences in

average type vanish for larger T, hence, if the age distribution puts more weight on older

queries, E[ctr1
i |∆h, s] becomes smaller.

E.1.2 Confoundedness in age

The proof for age confoundedness is slightly more complex. In the case of type confounded-

ness, the proof is facilitated by the property that differences in quality caused by differences

in the type of keywords vanish at the same speed, independently of the type of keywords. The

absolute quality difference between two keywords i and j with si = sj = s and Ti = Tj = T

caused by differences in types is given by |µj − µi|/(s × T)δ(h). By contrast, the absolute

quality difference between two keywords i and j with si = sj = s and µi = µj = µ caused by

differences in age is given by
(
(1−µ)×|Tδ(h)

j −T
δ(h)
i |

)
/
(
s×Ti×Tj

)δ(h)
. The last expression

reveals that the same age difference leads to a smaller quality difference if the corresponding

product of the ages is larger.

Proof. Given s̄ and µ, the difference in the expected initial quality between hl and hs can

be written as
∫ (

1 − 1−µ
s̄×T

)
f(T|s̄, hl)dT −

∫ (
1 − 1−µ

s̄×T

)
f(T|s̄, hs)dT. The latter expression is

integrated over f(µ) to obtain E[ctr1
i |∆h, s̄]. If F (T|s̄, hs) FODs F (T|s̄, hl), which implies

E[T|s̄,∆h] ≤ 0, because 1− 1−µ
s̄×T

is a strictly increasing function in T, it follows that
∫ (

1−
1−µ
s̄×T

)
f(t|s̄, hl)dT−

∫ (
1− 1−µ

s̄×T

)
f(t|s̄, hs)dT ≤ 0 ∀µ and therefore E[ctr1

i |∆h, s̄] ≤ 0. Hence,

absent network Effects, the model cannot generate a pattern consistent with our data if

E[T|s̄,∆h] ≤ 0 for some s = s̄. Now assume that E[ti0|s,∆h] >= 0 ∀s, and consider

a convergent pattern, i.e. ∂E
∂s

[ti0|s,∆h] ≤ 0 ∀s. From
∫ (

1 − 1−µ
s×T

)
f(T|s, hl)dT −

∫ (
1 −

1−µ
s×T

)
f(T|s, hs)dT, it is easy to see that for larger s, the difference between the integrals

reduces if f(T|s, hl) and f(T|s, hs) do not depend on s. Furthermore, reduction in the

FOD of F (T|s, hl) over F (T|s, hs) also reduces the difference between the integrals for each

s. Finally, if we replace f(T|s, hl) and f(T|s, hs) by f
′
(T|s, hl) and f

′
(T|s, hs), such that
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each F
′

FOD F and F
′
(T|s, hl) − F ′(T|s, hs) ≤ F (T|s, hl) − F (T|s, hs) ∀s, the difference

between the integrals also reduces. Thus, if an increase in s is accompanied by a decrease

in the FOD of F (T|s, hl) over F (T|s, hs), which implies ∂E
∂s

[ti0|s,∆h] ≤ 0 ∀s, a divergent

pattern cannot be generated, unless F (T|s, hl) and/or F (T|s, hs) increase with s, which we

rule out.

E.2 Discussion of the Model under Network Effects and no Het-

erogeneity

It is easy to show that the difference in quality between any two keywords i and j with

Hi > Hj and Sit = Sij = S and µi = µj = µ is positive ∀S, µ. Furthermore it is a concave

function in S with an unique maximum S?, which is increasing for S < S? and decreasing

for S > S?. Keywords with a larger monthly popularity s reach the region s× T = S > S?

earlier as a function of T. Thus, when integrating over T, keywords with a larger monthly

popularity, s, will be assigned more weight over the domain S > S?. This is true ∀µ.

Therefore E[ctr1
i |s,∆h] first decreases for larger s.
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