Oehler, Andreas; Rummer, Marco; Smith, Peter N.

Working Paper
IPO Pricing and the Relative Importance of Investor Sentiment: Evidence from Germany

Diskussionsbeiträge - Bank- und Finanzwirtschaftliche Forschung (BAFIFO), No. 26

Provided in Cooperation with:
University of Bamberg, Chair of Finance

Suggested Citation: Oehler, Andreas; Rummer, Marco; Smith, Peter N. (2004) : IPO Pricing and the Relative Importance of Investor Sentiment: Evidence from Germany, Diskussionsbeiträge - Bank- und Finanzwirtschaftliche Forschung (BAFIFO), No. 26, Otto-Friedrich-Universität Bamberg, Lehrstuhl für Betriebswirtschaftslehre, insbesondere Finanzwirtschaft, Bamberg

This Version is available at:
http://hdl.handle.net/10419/22501

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
IPO Pricing and the Relative Importance of Investor Sentiment – Evidence from Germany*

Andreas Oehler* / Marco Rummer* / Peter N. Smithb

*aDepartment of Economics and Management, Bamberg University, Germany

bDepartment of Economics and Related Studies, University of York, UK

Revised Version, July 2004

Abstract:

The underpricing phenomenon of Initial Public Offerings (IPOs) has been widely studied across different stock markets around the world and has often been explained to be as a result of asymmetrically distributed information and ex-ante uncertainty. However, as Ritter and Welch (2002) argue to the contrary, these theories are unlikely to explain the persistent pattern of high initial returns during the first trading day as well as other features of the returns data. This paper add some further alternative explanations to the traditional theory while focusing on German IPOs during the 1997 to 2001 period and covering a sample of 410 firms. Using time series regressions the cyclical behaviour of the issue activity is examined and we report, using VAR analysis, that lagged underpricing and IPO volume influence the decision to go public. The cross-sectional regression analysis, using both censored and uncensored data, shows that the initial returns are mainly influenced by investor sentiment and demand, and less by ex-ante uncertainty, especially during the dot-com boom.

JEL Classification: G10, G12, G24, G32

Key Words: Initial Public Offerings (IPO), Underpricing, Investor Sentiment, Hot-issue Markets, Ex-ante Uncertainty

* Corresponding to. Andreas Oehler, Marco Rummer, Bamberg University, Chair of Finance, Kirscheackerstr. 39, D-96045 Bamberg, phone: (+49) 951-863-2536, fax: (+49) 951-863-2538, e-mail: finanz@sowi.uni-bamberg.de, internet: http://www.uni-bamberg.de/sowi/finanz.

The paper benefited from discussions with Wolfgang Bühler, James Gill, Leslie Godfrey, John Hutton, Aydin Ozkan, Klaus Röder, Ray da Silva Rosa, Dirk Schiefer, Oliver Schwindler and Ben Warner. We also thank seminars participants at the Bamberg University, Freiburg University and at the Deutsche Bundesbank and participants at the Portuguese Finance Network Conference 2004, SAM/IFSAM-Conference 2004, Money Macro and Finance Conference 2004 and European Investment Review Conference 2004. We particularly thank Angelica Gonzales for valuable comments on a previous version. The authors are grateful to Stefan Günther, Nils Nawroth, and Philipp Federspieler for technical support. The usual disclaimer applies.
IPO Pricing and the Relative Importance of Investor Sentiment – Evidence from Germany

Revised Version, July 2004

Abstract:
The underpricing phenomenon of Initial Public Offerings (IPOs) has been widely studied across different stock markets around the world and has often been explained to be as a result of asymmetrically distributed information and ex-ante uncertainty. However, as Ritter and Welch (2002) argue to the contrary, these theories are unlikely to explain the persistent pattern of high initial returns during the first trading day as well as other features of the returns data. This paper add some further alternative explanations to the traditional theory while focusing on German IPOs during the 1997 to 2001 period and covering a sample of 410 firms. Using time series regressions the cyclical behaviour of the issue activity is examined and we report, using VAR analysis, that lagged underpricing and IPO volume influence the decision to go public. The cross-sectional regression analysis, using both censored and uncensored data, shows that the initial returns are mainly influenced by investor sentiment and demand, and less by ex-ante uncertainty, especially during the dot-com boom.

JEL Classification: G10, G12, G24, G32

Key Words: Initial Public Offerings (IPO), Underpricing, Investor Sentiment, Hot-issue Markets, Ex-ante Uncertainty
1 Introduction

Since the early 1970s, a huge and systematic increase from the offer price of an initial public offering (IPO, hereafter) in the primary market to its first-day (closing) price in the secondary market has been documented (for early research, see Stoll and Curley (1970), Logue (1973), Reilly (1973), Ibbotson (1975)). From an issuer’s point of view this phenomenon is usually called underpricing and has been confirmed for many stock markets by a steadily growing body of research (for an exhaustive survey, see Ritter (1998, 2003) and Brounen and Eichholtz (2002).

A plethora of theoretical explanations, which are not mutually exclusive have been advanced to explain why owners of a company would rationally sell shares to outsiders for less than the apparent maximum price achievable (see Loughran and Ritter, 2002). In their analysis, most researchers assume that underpricing is a deliberate act by either the underwriter or the issuer as a result of asymmetric information and therefore due to ex-ante uncertainty. Given the empirical findings, especially the high initial returns during the dot-com boom, one generally should ask the following questions about the suitability of these ‘traditional’ explanations: First, why does the degree of underpricing fluctuate so much and what is influencing these oscillations? Second, why are underwriters and issuer not able to reduce the amount of money left on the table and also why do firms prefer to go public during these periods and therefore give away such a significant amount of money? Third, and most important, why is the degree of underpricing highest during periods when investors appear to be most optimistic?

In order to explain the large fluctuations in underpricing and the influence of overly optimistic investors during the dot-com boom it is important to consider the ideas of bounded rationality and the importance of investor sentiment. Dorn (2003) shows while analyzing pre-IPO trading for the German stock market that investors are willing to overpay for IPOs. In line with this finding is the research of Ljungqvist et. al. (2003) who show that “rational” investors are willing to pay a higher price for IPOs if sentiment or exuberance is high towards newly issued stocks. Cook, Jarrell and Kieschnicke (2003) examined this model empirically and conclude that “the role of investor sentiment is more important
than previously thought”. Bartov, Mohanram and Seethamraju (2003) report that a dummy for risky
IPOs has no effect on setting the final offer price and therefore provide an example for the fact that
risk is might not be that important for pricing IPOs. Given these findings, the questions arises: why
has the positive sentiment towards IPOs not been exploited by the underwriters or the issuer?
Purnandandam and Swaminathan (2002) show for the US stock market that the median IPO is
overvalued by 50 % compared to its matched industry benchmark. Liu and Song (2001) conformingly
report that IPOs are on average overvalued. Combining all this, one has to conclude that IPOs were
not sold too cheaply but at a price which made the IPO a success for the issuer despite the
underpricing. Therefore the offer price, which has been set using the information about demand during
the bookbuilding period, represents some sort of upper bound in the sense of Tinic’s (1988) legal
liability hypothesis. We conclude that the unusually high degree of underpricing may be influenced by
high demand and strong interest of investors. This therefore seems to be one of the missing pieces
required to explain the puzzle of the underpricing phenomenon. The main contribution of this paper is
consequently the attempt to sharpen the distinction between the IPO valuation on the one hand\(^1\) and
the allocation- and demand-related determinants on the other hand\(^2\).

Additionally, difficulties in constructing a sound empirical database have meant that analyses of the
underpricing phenomenon in the German stock market are limited. Most research on the German stock
market focuses clearly on more traditional determinants and offers only a selective view of a small
number of observations\(^3\). We present results using a newly assembled and corrected data set for
Germany covering 410 IPOs over the years 1997-2001.

We analyze different industry sectors as well as different stock market segments and find that
underpricing is highest on the ‘Neuer Markt’, a new established stock market segment for young and
fast growing companies. This follows the results of Loughran and Ritter (2003) and Ljungqvist and

\(^1\) i.e., asymmetric information, adverse selection, ex-ante uncertainty.
\(^2\) i.e., hot markets; investor sentiment (ignoring the risk-return trade off, beliefs unwarranted by fundamental
values, overreaction, overoptimism, overconfidence, self attribution); behavioural aspects of underwriters and
issuers (“leaving money on the table”).
\(^3\) For example, see Wasserfallen and Wittleder (1994), Ljungqvist (1997), Aggarwal and Leal (1998), Löffler
Wilhelm (2003), amongst others, who also focus on the “new economy” sector in the US. We consider treating the Neuer Markt as a hot issue market and assess the cyclical behaviour of issue activity (i.e. IPO volume) and average underpricing. We find that underpricing peaks during the first quarter and therefore shows some sort of a January effect for the German stock market. Consistent with Lowry and Schwert (2002), we report that issue activity is influenced by past IPO volume and underpricing. Our analysis of the cross section of 410 IPOs between 1997 and 2001 uses both censored and uncensored data estimation methods. Tobit methods are used to accommodate the influence of price support in truncating the distribution of the dependent variable. We show that this influences the cross-section analysis quite substantially. We conclude from our estimation that underpricing is mainly influenced by investor sentiment and, therefore, by the demand of potential investors, and less by ex-ante uncertainty, especially during the dot-com boom.

The paper is organized as follows. Section 2 sheds some light on theoretical aspects and selected previous research and presents the hypotheses that motivate the data analysis. Section 3 describes the data set and gives a short overview about the German stock market. Section 4 describes the firm characteristics and presents results on industry groups’ impact, market segmentation, dynamics of the IPO cycle and the cross-sectional regression results. Section 5 concludes our analysis.

2 Theory, Related Research and Hypotheses

2.1 Theory and Related Research

Ritter and Welch (2002) summarize the valuation- and information-related topics of the traditional analyses of the underpricing phenomenon as follows: “… the solution to the underpricing puzzle has to lie in focusing on the setting of the offer price, where the normal interplay of supply and demand is suppressed by the underwriter.” Therefore, they stress the characteristics of a primary or contract market under asymmetric information.
Asymmetric information uncertainty arises from the fact that both the issuer or underwriter (if there are no agency conflicts between them) is better informed than investors and vice versa. This uncertainty generates adverse selection and signaling problems: high-quality issuers can afford to sell their shares at a lower price, i.e., leave money on the table, because they trust in future issuing activity and analyst coverage (see Welch (1989), Chemmanur (1993)). The latter means that the issuer or underwriter faces a placement problem. Under the realistic assumption that investors are differentially informed (and consequently the issuers or underwriters), they fear a winner’s curse (see Rock (1986), Koh and Walter (1989)) or a (negative) informational cascade as investors judge the sentiment or interest of other investors (see Welch (1992), Amihud et. al. (2003)).

Other explanations of underpricing of this type include in this range like the traditional information-gathering perspective of bookbuilding, i.e., information revelation during the road show (see Benveniste and Spindt (1989), Benveniste and Wilhelm (1990), Spatt and Srivastava (1991)) and the filing period (see Hanley (1993), Lee et. al. (1999), Cornelli and Goldreich (2001, 2002)), seem incapable of explaining the measured magnitude of underpricing (see Ritter and Welch (2002)).

Despite this, it is interesting to introduce the length of the subscription period and the width of the bookbuilding range as signals of IPO quality to investors (see below, 2.2). An additional demand-related explanation for underpricing refer to the costs of going public in general.

Habib and Ljungqvist (2001) document empirical results that suggest underpricing can be interpreted as a necessary cost component of going public and therefore can be interpreted as a partial substitute for marketing expenditures. Ritter and Welch (2002) argue against this view as it cannot plausibly explain the severe underpricing during the IPO or Internet bubble some years ago. They cannot believe that an underwriter could not have easily placed shares with half the degree of underpricing observed. We think that this critique is true for a descending but not for an increasing market where investors definitively expected large underpricing. If IPOs are underpriced on average, investors have an incentive to discern which will be underpriced most (see Sherman and Titman (2002)). In other words, high underpricing stimulates stronger issuing activity of companies with different quality (for example, see Loughran and Ritter (1995)), while increasing underpricing tends to
be an instrument in cold issuing periods. Furthermore, on the supply side the change in the issuer objective function may work in the same direction, i.e., issuing firms increasingly acquiesced in leaving money on the table (see Ljungqvist and Wilhelm (2003), Loughran and Ritter (2003)).

Concentrating on (secondary) market-related variables while taking bounded rationality and the role of investor sentiment into consideration for explaining the price behavior of IPO stocks, the literature offers a couple of results, but no consensus.

Krigman et. al. (1999) document a positive correlation between the magnitude of underpricing and aftermarket trading. The trading volume in the secondary market is higher, the greater the underpricing is (for related evidence, see Ellis, Michaely, and O’Hara (2000), Boehmer and Fishe (2001)).

Loughran and Ritter (2002) explore the agency conflict between issuer and underwriter and use prospect theory to explain that the greater the recent increase in issuer’s wealth, the less is the bargaining effort in negotiations with the underwriter over the offer price. One answer to the question of why issuers do not choose a more efficient selling mechanism like auctions (for example, see Biais and Faugeron (2002)) is the spinning or corruption hypothesis introduced by Loughran and Ritter (2002) (see also the evidence presented in Klein and Zoeller (2003)). Additionally, Bradley and Jordan (2002) and Lowry and Schwert (2002) document results that when the overall stock market rally underwriters do not fully adjust the offer price. Based on the prospect theory explanation it follows that the only partial adjustment ends in a higher underpricing (offer prices are not raised as much as they could have been in the demand scenario). Furthermore, Ljungqvist et. al. (2003) demonstrate results that the sluggish adjustment of the offer price is driven by the difference in opinion between rational and sentiment investors.

Another part of the literature focuses on climate effects and growing investor sentiment. The initial price run-up (and subsequent underperformance) is more excessive in “hot” periods of high IPO volume. Ritter (1984, 1991, 1998) documents that cycles exist in both the volume and the average underpricing of IPOs (see also Ibbotson and Jaffe (1975)). Periods of high average initial returns and rising volume of IPOs are known as “hot issue” markets. Ritter and more recently Brailsford et al. (2000) show results for different countries. They argue that overoptimistic investors and analysts’
optimism signal riskier companies to take advantage of the “window of opportunity” to conduct an IPO (see also the prediction in Ljungqvist et. al. (2003) that average issuer quality decreases). This is consistent with the findings in Loughran et. al. (1994) that issuers “time” their IPOs to coincide with periods of excessive optimism and in Lee et. al. (1991) that more firms go public when investor sentiment is high.

Helwege and Liang (2002) present evidence that technological innovations are not the primary determinant of hot markets, but they reflect greater investor optimism (for related evidence, see Lerner (1994), Loughran and Ritter (1995)). A related topic of investor sentiment lies in the positive feedback trading explanation where investors assume positive correlations in initial IPO returns, i.e., initial returns are likely to be bid up if the price of other recent issues has risen (for example, see Rajan and Servaes (1995)). Lowry and Schwert (2002) find empirically that the autocorrelation of monthly average first-day returns is even higher if 1998 to 2001 is included in the sample.

Another line in the IPO literature deals with the role of the (lead) underwriter and her influence on the aftermarket price, not only by pre-IPO decisions (offer price setting, allocation of shares), but also through actively participating in the secondary market. Underwriters are able to control for the amount of shares allocated in the market. Nowadays, the Green Shoe option (greenshoe, hereafter), so called after the first IPO that used it, is a standard instrument in allocating shares if there is strong demand. This overallotment option which amounts up to 15 percent of the shares offered enables the underwriter to buy back and retire the shares, as if they had never been offered, if the price weakens in the aftermarket (for example, see Ellis, Michaely, and O’Hara (2000)). Aggarwal (2000) presents empirical evidence that underwriters taking a (naked) short position prior to the IPO offering, especially in offerings where weak demand is anticipated, and provide price support by stimulating demand, the so called aftermarket short covering. She argues that price support can be seen as a complement to underpricing because underwriters try to prevent that potential buyers renege on their orders and cause a negative cascade if the aftermarket price is below the offer price.

A further interesting stream of IPO research focuses on the effect of underwriter’s prestige or reputation (for an overview, see Logue et al. (2002)). While earlier studies find that more prestigious
underwriters have left less money on the table, at least in the 1980s (see Beatty and Ritter (1986), Carter and Manaster (1990), and Carter et. al. (1998)), other studies present evidence that this relation reversed in the 1990s (Beatty and Welch (1996)). Benveniste et al. (2003) and Loughran and Ritter (2003) recently report evidence for a positive relation between underpricing and underwriter prestige during the 1999/2000 hot market.

2.2 Hypotheses and Explanatory Variables

Based on the theoretical considerations and the insights of the literature reviewed above, we derive a set of explanatory variables which allow us to distinguish the importance of investor sentiment relative to that of ex-ante uncertainty in a joint analysis.

Considering the dynamics of the IPO market cycle and increasing investor sentiment we expect that more companies have an incentive to go public and to take advantage of the “window of opportunity” (see the discussion above and the related results in Baker and Wurgler (2000) who suggest timing ability of IPO issuers). In order to account for the issuing activity we use the volume of IPOs and calculate the total number of new issues during the last 30 days prior to an IPO. Due to the fact that volume is supposed to increase after periods of high underpricing the sign clearly depends on the state of the IPO cycle (hot or cold). Hence, a negative sign is expected as issuing activity tends to decrease when underpricing is highest (see the discussion above and the more recent results in Lowry (2003)).

More generally, we suggest that underpricing of IPOs can be attributed to rising stock markets. Aggarwal and Kunz (1994) and McGuiness (1992) were among the first who claimed this proposition. Loughran and Ritter (2002) show that initial returns are predictable based on market returns. They document the large effect that one percent increase in the market return during three weeks prior to the IPO date results in an initial return which is 1.3 percent higher. Giudici and Roosenboom (2002) present similar results for the ‘new’ European stock markets and suggest that the ‘Internet euphoria’ has an impact on underpricing. To capture this effect, we calculate a holding period return based on a
suitable stock market index; the ‘Nemax All Share’ which represents all listings on the German new market (‘Neuer Markt’) for 30 days prior to an IPO.

Additionally, Ljungqvist (1997) argues that underpricing could be influenced by general macroeconomics conditions and their observation by investors (business climate) which forces the demand- or market-related underpricing, too. In order to incorporate this effect, the business climate index of current and future business expectations for Germany is used in our study.

Due to the role of underwriters in aftermarket trading and their use of the overallotment option for price support we newly introduce a dummy variable of greenshoe option usage by the underwriter. The indicator takes the value one if the maximum greenshoe has been allocated and zero otherwise. As outlined above, a positive sign is expected, especially in hot markets.

Considering ex-ante uncertainty which is mainly determined by asymmetric information problems, Ritter (1984) suggests that there would be a high degree of uncertainty about the fundamentals of a new issue, especially if the operating history of a firm is short. Consistent with his analysis, we use the age of a company as a proxy for such uncertainty perception of investors. We expect that the lower the age the higher the underpricing is.

Since Beatty and Ritter (1986) have introduced the idea that smaller IPOs yield a higher initial return because the offerings are more risky, market capitalization has been used as a measure for ex-ante uncertainty. Beyond this, Ljungqvist and Wilhelm (2003) document increases in mean and median issue size among U.S. IPOs as the market became hotter during the late 1990s. Contrary to the traditional asymmetric information hypothesis, we argue that in a more demand-led or investor-related market that higher IPO size subsequently leads to a greater coverage in the public and the media and, therefore, investors overpay for IPOs that are in the news. The latter is consistent with the findings in Dorn (2003) for the German Market. Because our market capitalization variable is defined inversely, we expect a negative correlation, in contrast to the ex-ante uncertainty argument.

The traditional view of ex-ante uncertainty says that divergence in opinion between investors may lead to an increase in underpricing. Aggarwal and Conroy (2000) argue that delaying the first trade may enable the underwriter to better gauge market demand and could thus be an indicator of greater
initial divergence in opinion to be followed by a higher underpricing (see also Loughran et. al. (1994)). Contrary to this, in hot markets like in the 1998/1999 period where demand is very strong, underwriters reduce the subscription period. Following a demand and sentiment driven view we expect a negative relation between the length of the subscription period and underpricing, especially in hot markets where the sentiment effect dominates the uncertainty perception.

In a similar way, the bookbuilding range prior to the setting of the offer price signals ex-ante uncertainty in the more traditional view: the larger the range the higher the underpricing. As argued above, from an investor sentiment point of view a smaller range signals strong demand and therefore higher initial returns in the secondary market.

Consistent with the more recent studies cited above on the relation between underwriter’s reputation and underpricing, we expect a positive relationship, especially in hot markets (see Loughran and Ritter (2003)). Krigman et. al. (1999) show in their analysis that issuers tend to select their underwriters based on their ability to attract media attention. We use a dummy variable based on a ranking of all underwriters which is calculated using the total number of accompanied issues. The lead underwriters are grouped into three quantiles. The variable values one if the underwriter belongs to the highest rank and zero otherwise.

A summary of the proposed explanatory variables and the expected sign according to our investor sentiment and demand hypothesis as well as ex-ante uncertainty can be found in Table I.

Please insert Table I around here
3 Dataset

3.1 Essential Features of the German Market

German secondary equity markets are fragmented both vertically and horizontally. In the horizontal dimension, stock trading is segmented into eight regional exchanges and one electronic trading system XETRA which is operated by the Deutsche Börse AG. While the most liquid stocks are cross listed on all markets, the Frankfurt Stock Exchange is by far the largest competitor which is run by the Deutsche Börse AG, too. The others are in Berlin, Bremen, Düsseldorf, Hamburg, Hannover, München, and Stuttgart; some of them have specialized in a niche strategy like the warrant market EUWAX at Stuttgart. In our analysis, we focus on the Frankfurt markets managed by the Deutsche Börse AG because they cover more than 90 percent of the German equity market.

Until the 5th of June 2003, the vertical fragments mainly consisted of three regulated market segments and two additional segments under private law (for an overview and more details see http://deutsche-boerse.com/dbag/). The ‘Amtlicher Handel’ created as a regulated segment for most of the liquid stocks was complemented by the ‘Geregelter Markt’ in the mid-eighties as a special segment for small- and mid-caps. The ‘Freiverkehr’ is a nearly unregulated inter-broker trading segment. The ‘Neuer Markt’ was founded in 1997 to support German growth stocks. Later on, an additional segment, the ‘SMAX’, was created for small caps from the old economy where the listing requirements were lower than in the ‘Neuer Markt’, but higher than in the traditional ‘Geregelter Markt’ (for an overview of the European new market wave in the 1990s, see for example Bottazzi and Da Rin (2002) and Ritter (2003)).

As a consequence of the bursting bubble in 2000/2001 and the following consolidation both the regulators and the Deutsche Börse AG made a clean sweep. Facilitated by changes in the Stock Exchange Act (‘Börsengesetz’) and the Stock Exchange Admission Regulation (‘Börsenzulassungs-Verordnung’) German exchanges now have more discretion in shaping their segments. While the two segments ‘Amtlicher Handel’ and ‘Geregelter Markt’ as defined by law exist in all German exchanges, the Deutsche Börse AG has created two new segments, additionally, the ‘General Standard’ and the
‘Prime Standard’. The former one defines the basic requirements and the latter is designed for issuers aiming at international standards. Theoretically there would be four market segments, but in fact there are only two because the differences between the ‘Amtlicher Handel’ and the ‘Geregelter Markt’ within either the general standard and the prime standard are minimal.

3.2 Description of the IPO Sample

The dataset used in this paper covers the period 1997-2001 and contains all initial listings on the Frankfurt Stock Exchange. Companies being traded nationally or internationally before going public on the Frankfurt Stock Exchange have been excluded. Therefore, our ‘sample universe’ consists of 424 firms. Data for some explanatory variables, which are used for the cross-sectional analysis, like book-building range, subscription period or foundation year are not available for 14 IPOs. Therefore, the ‘regression sample’ covers 410 firms.

Initial Public Offerings are taken from the Frankfurt Stock Exchange web pages and Factbooks, and always double checked with the IPO prospectus, company’s homepage or investor relations department, the IPO database of the ‘Börsenzeitung’, and the IPO database of OnVista, in order to explore missing firms and entities which have been publicly traded before nationally or internationally.\(^4\) The company’s foundation year is taken from the IPO prospectus, the company’s web pages or the investor relations department. The Information about the bookbuilding period and price range are collected from the IPO prospectus, the Frankfurt Stock Exchange web pages or the IPO databases of ‘Börsenzeitung’ and OnVista. The use of the greenshoe is taken from the ‘Börsenzeitung’ web pages, ad-hoc information services or the company’s investor relations department. The information about the number of issued stocks is taken from the IPO prospectus, and Deutsche Bank IPO database. The information about the underwriter is taken from the Frankfurt Stock Exchange web pages and the IPO database of the ‘Börsenzeitung’. The free float information is taken from the Frankfurt Stock Exchange web pages, the IPO prospectus and the Deutsche Bank IPO database. The

\(^4\) WindWelt for example was missing on the web pages and Factbooks of the Deutsche Börse AG.
secondary market prices are obtained from the KKMDB database at the University of Karlsruhe.\footnote{We thank Hermann Göppl for providing the data.} Daily closing prices of the different stock market indices are taken from Datastream. Industry classification (C-DAX classification) is taken from the Frankfurt Stock Exchange web pages or from OnVista, ‘Börsenzeitung’, and Comdirect web pages. The business climate index is from the monthly OECD statistics.

4 Empirical Analysis

4.1 Firm Characteristics

To provide general information, Table II shows some details based on descriptive statistics for each year and the whole sample period. We also split the year 2000 into two subperiods because in March 2000 the bubble started to burst. We have chosen January to July for the first subperiod as after July the number of IPOs decreased sharply and the stock market experienced another decline but this time even more severe. To use March instead of July, the peak of the stock market indices for separating the sample would not take the well documented conservatism phenomenon into account, which states that investors need some time to finally realize a sentiment change.

The average issue volume which has been calculated by including the exercised greenshoe amounts to 107.97 Million € over the sample period but is highly skewed due to some big offerings as the median is only 36.79 Million €. The smallest issue was OAR Consulting in 1998 with 4.3 Million € and the largest IPOs were Deutsche Post in Nov. 2000 with 5,842 Million €, Infineon in March 2000 with 5,379 Million €, and T-Online in April 2000 with 2,538 Million €. Hence, the biggest IPO is
1,358 times bigger than the smallest. The issue volume fluctuates quite substantially peaking in 2000 due to big offerings in the second subperiod. These figures are much higher than earlier years. For example, Ljungqvist (1997) reports for 1970-1993 a mean of 134.7 Million DM (68.87 Million €) and median of 57.2 Million DM (29.25 Mill. €).

Market capitalization which gives a better feeling of the different company sizes, as it also covers shares retained by the issuer, demonstrates that the biggest firms were brought to the public in 2000 and 2001. The largest firm measured in market capitalization at the IPO date was Infineon with 21,584 Million €. This shows that either big firms do not care much about the stock market sentiment or are simply too slow to react fast enough to a short living IPO boom. Especially, the clear decrease in median but slow decrease in the mean supports this idea. Jindra (2000) finds in his analysis for the U.S. market that a small number of firms issue seasoned equities while they are undervalued. Examining this group, he explores the idea that this cluster consists mainly of large and old companies issuing little equity. Similarly, in our sample the age of the company increases in the second sub period of 2000 and in 2001, and the issue volume tend to decrease because the median of the issue volume drops rather sharply.

The average age of 17.59 years compared to 52 years reported for the earlier years by Ljungqvist (1997) together with the low sample minimum of 0.98 and median of 10.32 suggests that the majority of firms which went public during the sample period on the Frankfurt Stock Exchange are relatively recently founded firms. This result is in line with an average age of U.S. IPOs of 13.3 (median 7 years) for the years 1996-2000 reported by Ljungqvist and Wilhelm (2003) and also with Loughran and Ritter (2003).

The initial returns are again heavily right skewed. The average first-day return amounts to 44.47% and peaks at a stunning 444.44% for Biodata Information Technology in February 2000, the peak of the IPO boom. The annual average return fluctuates quite substantially with 64.10% in 1998 and 5.32% in 2001. Therefore, it is quite obvious that the different degree of underpricing reported all over the

6 As we exclude the unregulated ‘Freiverkehr’ due to unreliable data, we use the issue volume without the ‘Ungeregelter Freiverkehr’ reported by Ljungqvist (1997), to compare our figures.
world depends mainly on the reported time period. Kiss and Stehle (2002) report an initial return of 49.04% for the ‘Neuer Markt’ over the period 1997 to 2001. Erhardt and Stehle (1999) report for 1960-1995 only moderate underpricing of 15.79% with a sample maximum of 200%. During our sample period 15 firms have an excess return of more than 200% and 65 new issues gain more than 100%. The first-day closing price was below the offer price for 65 new issues representing 15.85% of the sample. This result is above the 8.7% reported by Wasserfallen and Wittleder (1994) for the 1961-1987 period and exceeds slightly the 15% stated by Hansson and Ljungqvist (1992) for the years 1978-1991.

To get a first idea about the investor sentiment prevailing during the sample period one could look at the price revision which is measured as the percentage change of the expected offer price during the bookbuilding range. This figure is assumed to reflect the information acquired from investors during the information process (see Hanley et al. (1993) and Ljungqvist and Wilhelm (2003)). The average is a 3.92 percent increase with a median of 6.98%. It is rather interesting that during 1998 until early 2000 which can be considered as the IPO boom, the price revision is highest and that the acquired information leads in 2001 and late 2000 to a reduction of the expected offer price. Price revisions are obviously influenced by the width of the bookbuilding range as this sets the upper and lower limit. Again, it can be seen from Table I that during periods of high underpricing and therefore high price revision, the width of the bookbuilding range is rather low. Ljungqvist and Wilhelm (2003) find an average price revision of 5.8% which peaks at 18.7% in 1999, this relative high figure is due to the fact that in the US the initial price range can be adjusted upwards during the offer period, leading to a potentially higher price revision. Thus, simply comparing U.S. and German figures lead to a biased conclusion. Bookbuilding days, reflecting the subscription period, are lowest during periods of high first-day returns. This time series shows a negative trend at the beginning of the sample and is increasing as the return of the stock market index is decreasing which indicates a cool down of the investor sentiment after the bubble. The idea that investor sentiment drives IPOs first-day returns is supported by the buy and hold return of the Nemax All Share Index which represents all stocks traded on the ‘Neuer Markt’, as this return is highest when underpricing peaks.
The sample period was dominated by the IPO boom and high public attention towards the ‘New Economy’. In order to have a closer look at the different industry groups, Table III shows some descriptive statistics whilst Table IV presents results of additional dummy regressions.

Please insert Table III around here.

From Table III it is apparent that ‘software’ represents, with 147 firms, the majority of the Initial Public Offerings during the sample period and that ‘software’ combined with ‘technology’, the two biggest industry groups, represent 55.37% of all IPOs. We group ‘media’ (49 firms), ‘pharma & health’ (35 firms), ‘software’ (147 firms), ‘technology’ (80 firms), and ‘telecommunications’ (19 firms), which represent 80.49% of the total sample, together to form the ‘New Economy’. It’s rather interesting that IPOs out of this group yield the highest underpricing but also the highest negative first-day return.

Brainpower N.V., belonging to the ‘software’ group, went public in September 2000 and yields a initial return of -30.00% and LS Telecom AG, belonging to the ‘telecommunications’ groups yielding a first-day return of -28.40%. The highest initial returns were reported for Biodata Information Technology AG, ‘technology’ group (IPO in February 2000) and Drillisch AG, ‘telecommunications’ group, (IPO in April 1998) yielding 444.44% and 403.50%, respectively. It’s also interesting to note that the ‘software’ group includes the biggest high flyer but also many firms with zero or negative first-day returns. Out of the ‘New Economy’ 188 IPOs yield a zero or negative first-day return, representing 45.85% of this sample. These results support the observation of Schultz (2003) who finds that firms which are relatively unprofitable, use periods of good investor sentiment and high first-day return, the so called ‘windows of opportunity’ (Loughran and Ritter (1995)) to go public.

7 12 firms had to be grouped manually, by using the Fact book and Nemax-Classification codes of the Deutsche Börse AG, as the C-Dax-classification code of the Deutsche Börse AG was not available.
Ritter (1984), Helwege and Liang (2002), and Rajan and Servaes (1997) show that the ‘hot issue’ market is due to an increased issue activity of some industries. Inspecting Table II it becomes obvious that the German hot-issue market is mainly represented by the software and technology group, representing 55.37% of the total sample. The ‘New Economy’ represents 330 firms and therefore 80.49% of the regression sample.

Again, these results highlight the fact that the reported results clearly depend on the underlying period. As we start our analysis with the foundation of the ‘Neuer Markt’ and therefore, prior to the IPO-Boom, and also includes the year 2001, which is clearly surrounded by a negative investor sentiment, we control for different market conditions in our below empirical analysis.

4.2 Underpricing of Industry Groups and Market Segmentation

Before we start our econometric analysis we have a closer look at the different industry groups as well as at the three stock market segments. Loughran and Ritter (2002) report that internet and technology stocks show higher mean first-day returns and Ljungqvist and Wilhelm (2003) find a significant and positive influence of internet and high-tech companies, which he labeled ‘New Economy’, on price revision and the degree of underpricing. Lowry and Schwert (2002) find that the ‘high tech’ industry is surrounded by higher underpricing. Thus, we run different dummy regressions using the industry classifications and the vertical stock market segmentation as regressors and present the results in Table IV.

Please insert Table IV around here

Regressing the initial return on the different industry dummies, where initial return is defined as $\ln(P_t/P_{\text{offer}})$, P_t represents the first-day closing price and P_{offer} the offering price, respectively, shows
that in (1) none of the industry classifications which can be considered as the ‘New Economy’ have a significant effect.

There is quite a controversy whether first-day returns should be adjusted for market movement or not. Erhardt and Stehle (1999) point out that it does not make a big difference if the initial return is adjusted for the market movement or not. Loughran and Ritter (2002) show that the average market return was 0.05% per day in the U.S. market. In our sample the average return of the Nemax All Share index, calculated as the arithmetic mean, was only 0.098% per day. Given this result both methods seem to be adequate, if the correct benchmark has been chosen. We also analyze the potential impact of the price support, adjusting the raw returns for market movement would introduce bias into our analysis. Thus, we use raw returns which have been used by nearly all recent studies.

Surprisingly, none of the industry dummies yield a significant result. Only ‘transportation & logistics’ and ‘finance’ are close to the 10% level. Using only industries belonging to the ‘New Economy’ as explanatory variables in Regression (2) shows on the one hand that ‘media’, ‘software’ and ‘technology’ yield a significant and positive regressor and on the other hand that ‘pharma’, which mainly comprises of biotechnology companies, and the ‘telecommunication’ sector does not yield a significant result. Due to these results one could maintain the argument that the C-DAX classification, used by the Frankfurt Stock Exchange, was not very precise at this time period. Taking this possibility into account we group the ‘New Economy’ to one single dummy which yields a significant result and a highly significant F-statistic.

Examining the impact of the different market segments in regression (3) shows that a listing on the ‘Neuer Markt’ boosts the underpricing by 14.2%. This result supports the hypothesis outlined above, that the initial return is driven by investor sentiment and strong demand for the new issue, as this stock market segment had been closely watched by investors and the media which led to many
oversubscribed8 issues in 1999 and 2000. This argument is supported theoretical by Merton (1987) who shows that investors are only able to cover a limited amount of stocks.

4.3 Hot-Issue Markets: The Dynamics of the IPO Market Cycle

Ritter (1984) and Hansen et al. (1987) were the first to demonstrate that the issuing activity is time dependent and that hot-issue periods are characterized by large first-day returns and increasing number of new issues. They are usually followed by periods of low underpricing and relatively few IPOs. This results have also been reported by Loughran and Ritter (2002) and Lowry (2003), recently. Wasserfallen and Wittleder (1994) show for Germany over the period 1961-1987 that hot and cold issue periods can be distinguished by analyzing the trading volume and the monthly degree of first-day returns.

Please insert Figure I around here

Analyzing Figure I which graphs the quarterly IPO volume no clear lead-lag relationship between the two series can be distinguished, as proposed by Lowry and Schwert (2002) in the U.S.

In order to shed more light on the hot-issue market and the potential seasonality in the time series different regression are used and stated below.

8 Examples for oversubscribed issues: Deutsche Börse AG (23-times), Dr. Hönle AG (2-times), Infineon (33-times), OnVista AG (80-times), Pgam Advanced Technologies AG (13-Times), PopNet Internet AG (70-times), Sunways AG (33-times), T-online (4,4-times), and Winter AG (14-times).
4.3.1 Seasonality of the Initial Return and Number of IPOs

While examining the graph it is apparent that the underpricing per quarter exhibits a clearly decreasing seasonal cycle and that it nearly always peaks at the first quarter. The issue activity shows the clustering pattern predicted by Schultz (2003) for the U.S.

Please insert Table V around here

In regression (7), (9), and (11) the dependent variable, is represented by IR1, and in regression (8), (10), and (12) by IPO-Volume. Dummy1, dummy2, and dummy3 are coded one for the first, second and third quarter of the year, respectively, and zero otherwise. The trend-dummy is coded one for the first quarter, two for the second, and increases up to 19 for the last quarter in the sample period. The results are stated in Table V.

The lag length of the augmented Dickey-Fuller test has been chosen by using the general to simple approach of Ng and Perron (1995), or by applying the Schwartz and Akaike info criterion. This shows for the average initial return on a quarterly basis a t-statistic of 0.071 and for the quarterly IPO volume -2.287 (10% critical value: -2.690). Given the results we cannot reject the null hypothesis of both series having a unit-root. Admittedly, the evidence for IPO volume is not very strong, but as the impact of potential nonstationarity, which has not been treated appropriately, is rather devastating for the OLS regression, we use the first difference of IPO volume and IR1 as dependent variables.

Neither initial return nor issue activity show a clear trend, as none of these trend dummies is significant and no F-statistic yields a significant value. From regression (9) it can be seen, that underpricing is highest during the first quarter of the year. This suggests the existence of some form of the January effect. Lowry (2003) finds examining IPOs between 1960 and 1996 that the issue activity is lower during the first quarter of the year which she assumed is due to the ‘quiet period’ between Christmas and New Year. We cannot confirm this pattern but find that issue activity is highest during the second quarter of the year as the dummy2 is significant at the 5% level. A first idea about the
relationship between IPO volume and underpricing can be obtained by combining regression (11) and (12) as dummy1 has a p-value of 0.015 and dummy2 a p-value of 0.017, respectively. Thus, the high average first-day return of the first quarter is followed by an increase in the issue activity.

Rather surprising is the relatively high adjusted R^2 of 0.511 and 0.372 for IR1 and volume in Regression (11) and (12), respectively. This suggests that these variables (IR1 and volume) can be described quite well during the years 1997 to 2001 by variables which cover the seasonality effect. Therefore, we include the issue activity which should proxy the seasonality quite well in our cross-section analysis of the first-day return.

The above patterns suggest high first-order autocorrelation coefficients. Lowry (2003) reports that the first-order autocorrelation of quarterly IPO volume between 1960 and 1996 equals 0.87 and that some evidence for nonstationarity can be found. Brailsford et al. (2000) report 0.66 and 0.89 for the first order autocorrelations coefficient of monthly average initial returns and IPO volume. In our sample the first-order autocorrelation coefficient of quarterly average initial returns and volume is 0.251 (t-statistic: 0.993) and 0.803 (t-statistic: 5.398), respectively. The first-order autocorrelation coefficient of monthly data yields 0.567 (t-statistic: 5.205) for IR1 and 0.612 (t-statistic: 5.840) for volume. These lower levels of persistence may reflect the more turbulent period that we analyze and offer a greater challenge for our more structural cross-section modeling.

4.3.2 Predictability of the Issue Activity (IPO volume)

The lower levels of persistence we find raise the question of the relationship between IPO volume and initial return. From inspecting the graphs in Figure I no exact period can be distinguished which shows the anticipated relationship of high average initial returns being followed by high issue activity. But it can be seen from Table II that the high underpricing in 1998 is followed by a clear increase in issue activity during the years 1999 and 2001. Additionally, regressions (11) and (12) show also some evidence of a lead-lag relationship.
Ibbotson and Jaffé (1975) run a time series regression of IPO volume on lagged values of monthly average underpricing in order to test the influence of past initial return on the issue activity. As their regressors are insignificant they conclude that the timing of new issues is not related to the degree of underpricing of the previous month. Ritter (1984) re-examined this matter analyzing the graphs and found, that the issue activity is influenced by lagged initial returns. Recently, Lowry and Schwert (2002) find that IPO volume is influenced by past average monthly initial return.

We re-examine Ibbotson and Jaffé (1975) regression for our data. Due to doubts about the exogeneity of the explanatory variables we use different restricted and unrestricted vector autoregressions in order to have a closer look at issue activity as well as monthly average initial returns. Lowry and Schwert (2002) note that VAR models allow for substantial serial correlation. The lag length for regression (16) and (17) has been chosen using the Akaike information criteria.

Please insert Table VI around here

For regression (13) the variables have been tested for nonstationarity using the augmented Dickey-Fuller test, where again the lag length has been chosen using the general to simple approach. We can reject the null hypothesis of IR1 and volume having a unit root at the 1% level.

Supporting the theory that high initial return is followed by an increase in issue activity we find that variable IR1(t-2) and IR1(t-3) have a positive coefficient and p-values of 10.711 and 20.103, respectively. Contrary to Ibbotson and Jaffé (1975), we can conclude while examining regression (13) that an increase in underpricing in period t-3 of one percent point will lead to four additional issues in period t.

A more profound implication can be drawn from the following restricted and unrestricted VAR models, where we first analyze the dynamic behavior of the issue activity and subsequently, monthly average initial returns.
From the Granger causality statistics for the unrestricted VAR Regression (14) it can be seen, as IR1 has a χ^2 (Wald) statistic of 11.82385 (p-value: 0.0187), that lagged values of monthly average initial returns help to predict IPO activity. To have a closer look at the dynamics we plot simple impulse response functions in Figure II. The first row shows the effect of an unexpected Cholesky one standard deviation increase in volume and IR1 on the issue activity. It can be seen from the left hand side figure that volume peaks in t+5 and t+9 after a shock in volume. From the right hand side figure it can be ascertained that a one standard deviation increase in IR1 cause a sharp increase in the issue activity after a few month, which persists over a longer period. Also plotted are plus/minus two standard error bands, which yields an approximate 95 percent confidence interval for each of the impulse responses.

Contrary, while analyzing the dynamic behavior of monthly average initial return, the Granger causality test for the unrestricted VAR regression (15) yields an insignificant result for the IPO activity. Given these results we run a restricted VAR where we solely use lagged values of IR1 as explanatory variables. The results are stated as regressions (16) and the Granger F statistics yield a significant effect at the one percent level. The second row of Figure II shows a shock of IR1 and the dynamic impact on initial returns. It can be seen that the innovation in t slowly dies away over time and shows a convex function.

4.4 Cross-Section Regression

In this section we examine the relationships between underpricing, ex-ante uncertainty, investor sentiment as well as other explanatory variables and the possible impact of price support. Regressions (18) and (19) are presented to assess if ex-ante uncertainty or investor sentiment is the main force
driving initial returns during our sample period. Regressions (20) and (21) measure the influence of the hot-issue markets. Regressions (22) and (23) combine all variables to give an overall comparison of the strength of the two approaches. The range of regressions has been chosen to give an impression of the robustness of the models concerned. Finally, regressions (24) and (25) are presented to assess the impact of sd, i.e., the standard deviation of aftermarket closing prices divided by the issue price, on the models concerned.

In modeling the initial returns, as noted above, the possible existence of aftermarket price support has an important impact on the estimation method as the price support of underwriters could lead to a shift of negative observations, which would lead to a truncation of the left hand side of the distribution. Using Ordinary Least Squares (OLS) in the presence of a censored dependent variable could lead to biased and inconsistent parameter estimates as the error term would not have a zero mean.

To show the impact of price support, consider the following model:\footnote{This argument follows Ruud (1993), Greene (1993), and Mihurko (2000).}

\[
\tilde{R}_i = \beta_0 + \sum_{i=1}^{n} \beta_i x_i + \sum_{j=1}^{m} \beta_j z_j + \epsilon_i; \text{ where } \epsilon_i \sim N(0, \sigma^2)
\]

where \(\tilde{R}_i\) denotes the true underlying first-day return, \(x_i\) denotes the different proxies for the estimation of the ex-ante uncertainty and \(z_j\) represents other explanatory variables. Due to price support the true value of the initial return, \(\tilde{R}_i\), has to be transformed, as outlined above, into a observable random variable, \(R_i\) by:

\[
R_i = \begin{cases}
\tilde{R}_i & \text{if } \tilde{R}_i > 0 \\
0 & \text{if } \tilde{R}_i \leq 0
\end{cases}
\]
Thus the true mean\(^{10}\), \(\beta_0 + E\left[\sum_{i=1}^{n} \beta_i x_i + \sum_{j=1}^{m} \beta_j z_j \right]\) is therefore estimated by using the observable returns \(R_i\).

Please insert Table VII around here

Given our theoretical explanations and the earlier results it is not surprising that only \textit{age} has the sign which would have been expected according to Rock’s (1986) theory (see regression (22)). As the t-statistics for most of the variables intended to measure both ex-ante uncertainty and investor sentiment, across regression (18) to (23) are close or above 2, the wrong sign can hardly be due to possible multicollinearity (Kennedy (1996)).

The negative signs of the new variables \textit{bbd} (length of subscription period) and \textit{bbw} (width of bookbuilding range) indicate that the ‘speculative’ effect dominates. Calculating the exact percentage impact of the above variables in the OLS regression (22) shows that IR1 increases by 10.19\% and 9.70\% if \textit{bbd} and \textit{bbw} fall by one percent, respectively. If we control for the possible truncation of returns at zero, the Tobit regression (23) shows that IR1 increases by 11.04\% and 10.77\% if \textit{bbd} and \textit{bbw} decline one percent. \textit{Age} is significant at the one percent level and yields a negative coefficient, which suggest that the true market value for older companies can be better evaluated than for younger firms. Wasserfallen and Wittleder (1994) report a negative and insignificant relationship between underpricing and the age of the company for the years 1961-1987. Ljungqvist and Wilhelm (2003) find a significant and negative relationship for 1996 to 2000 supporting our results.

\textit{Marketcap} has a negative impact as would be expected given the argument that the initial return is mainly driven by the investor sentiment; bigger firms are associated with a higher first-day return. Even though, the results lack significance at conventional levels one could maintain the argument that speculative investors submit more purchase orders for these companies in hope that stocks of bigger

\(^{10}\) The true mean is the expectation of the true model.
firms perform better in the secondary market. Despite this, Ljungqvist (1997) reports a positive and significant relationship between underpricing and offer size. Wasserfallen and Wittleder (1994) use the level and not the inverse of the gross proceeds, but cannot find a significant relationship between underpricing and the size of the company.

The negative coefficient estimates on the variables bbd and bbw could lead one to argue that the unusually high first-day return is driven mostly by speculative investors purchasing orders in the secondary market than by ex-ante uncertainty about the true market value of the IPO. Following this argument a smaller bookbuilding range and shorter subscription period represent more certainty for the underwriter about the true market value which, according to Kim and Ritter (1999), is strongly influenced by investor demand. This argument is supported by the fact that in our data the holding period return after the first 30 trading days is still 12.79%. By contrast, Hansson and Ljungqvist (1992) report a negative return for the first weeks of trading during the years 1978-1991.

Loughran and Ritter (2002) show that 86% of all IPOs in the U.S. over the period 1990 to 1998 had an average bookbuilding range of 2 $ (measured as the difference between upper and lower bound), compared to 4.08 € (equivalent\footnote{We used the exchange rate 1€ = 0.97 $ (equally weighted average during our sample period). At the current exchange Rate 1€ = 1.25 (1st of March 2004) the difference between the upper and lower bound of the bookbuilding range would be 3.266 $.)} to 4.20 $). This high figure, compared to the U.S., indicates the difference in the bookbuilding process, as in the U.S. the initial price range can be adjusted upwards or downward, which is not possible in Germany. This raises the question about how underwriters set the subscription period and bookbuilding range for individual IPOs. In our data the average bookbuilding period and the bookbuilding range divided by the midpoint is 6.3 days and 18.95% for firms with zero or negative first-day return and 5.7 days and 17.02% for firms with positive first-day returns, respectively. The average announced greenshoe represents 12.01% of the issue volume for non-successful IPOs and 11.16% for underpriced issues. All this could be interpreted as hinting that if the underwriter anticipates poor prospects for the IPO, they will increase both the period during which investors can subscribe and the range of the possible issue prices. It should be noted in this context
that rather surprisingly the Nemax All Share index rose on average 19.75% during the last 90 trading
days prior to the IPO for successful issues and -9.11% for IPOs with zero or negative first-day return.

The negative and highly significant coefficient on volume provides evidence that the reported
seasonality of the issue activity quite substantially influences the first-day return. Consequently,
average underpricing decreases as the number of new issues increases. Therefore, this suggests that the
market takes some time to respond to high first-day returns. Lowry (2003) suggests that during some
periods investors are overly optimistic and are willing to pay more for firms than they are worth. The
variable market, measured as the buy-and-hold return during the last 30 trading days prior to the IPO,
and the dummy variable greenshoe, are positive and significant at the 1% levels. The result of these
variables again supports the idea that underpricing is mainly driven by investor sentiment and strong
demand for the IPO.

In contrast to Ljungqvist (1997), the business cycle variable bc is insignificant at standard
confidence levels which leads either to the conclusion that business climate has no effect on the initial
return. Measurement error in the OECD variable during the IPO boom is an alternative explanation.
Both underwriter dummies also lack statistical significance.

As outlined above, the possible existence of aftermarket price support could have an important
impact on the consistency of the estimation method. Using OLS in the presence of a censored
dependent variable could lead to biased and inconsistent parameter estimates. In order to account for
this phenomenon we provide estimates using the Tobit method. The differences between the results for
the two estimation methods in (18) to (23) are rather small, the coefficients change only slightly as
does the level of significance. The variables in regression (21) which are supposed to measure the
impact of the hot-issue market all become slightly more significant and the variables in regression (19)
all become slightly less significant. One noticeable change is the sign of the variable underwriter2
which is in regression (21) positive and, therefore, strengthening the idea that underwriter who
accompanied many IPOs are able to grip the investor sentiment and demand best. Overall, the
difference between the OLS and Tobin regressions suggest that the effect of the censored data is not as
big as might be anticipated.
The adjusted R^2 of regression (20) emphasizes the fact that variables influenced by the existence of the hot-issue market and therefore optimistic investors explain the variation in the initial return best. The adjusted R^2 of 33.3% is well above the 21% reported by Wasserfallen and Wittleder (1994) and also exceeds the 31.2% given by Ljungqvist (1997).

Wasserfallen and Wittleder (1994) used a set of variables and reported that only standard deviation shows a significant effect. To round off our reassessment of the underpricing puzzle for the German market we incorporate this variable to document the stunning effect of this often used risk measure on our explanatory variables. The variable age becomes insignificant. The variables `marketcap` and `underwriter2` become significant at the 10% level and `underwriter1` slightly misses this level in regression (24). The Tobit estimates show that this time `underwriter1` becomes significant, whereas `underwriter2` is insignificant. Sd itself is highly significant using both estimation methods. The adjusted R^2 jumps to an amazing 50% level. The RESET-test had to be rejected for one and two fitted values at the one percent level, but cannot be rejected for all other regressions. Therefore, incorporating sd changes the results quite substantial. This effect could be due to serious correlation between sd and other explanatory variables. Therefore, running a regression where sd is the dependent variable shows that age, bbd, greenshoe, and nemax are highly significant and that underwriter1, underwriter2 and marketcap are slightly insignificant. Ljungqvist (1997) noted that this variable might induce simultaneity bias due to failure of strict exogeneity. This is due to the fact that price support effectively limits volatility by inducing a low bound. Additionally, it can be argued that standard deviation might be jointly endogenous due to the fact that underpricing may influences the price movements in the secondary market. Given the above outlined argument, we have to conclude that the standard deviation should not be used as an explanatory variable in the analysis of underpricing.

A crucial question has been raised by our analysis. Why do the issuers and/or underwriter not set the initial bookbuilding range higher in order to earn more money for the issuer and to reduce the amount of money left on the table? This question is even more important for Germany as the initial price range can not be adjusted upwards, as in the U.S. Loughran and Ritter (2002) report that during the 1990 to 1998 period the issue price was below the initial price range for 27.3 % and above the
initial price range for 24.3% of the IPOs. Allowing the adjustment of the initial price range would in our opinion mislead more unprofitable firms to go public during an IPO-Boom as they can maximize their revenue, thus resulting in an even more potential damage to the private investor.

There are different, but not mutually exclusive explanations for this question. First, a lower issue price makes it easier to find investors and, therefore, reducing marketing costs (see Baron (1982)). Second, investors who are eager for hot IPOs start trading with the underwriter and, therefore, pay fees for transaction and accounts in order to get hot-issue shares allocated. Third, following Tinic’s (1988) legal liability hypothesis underwriters cannot raise the issue price any further as this could cause legal frictions in the future.

Loughran and Ritter (2002) show, using Prospect theory, that issuers care more about the change in their wealth rather than the level of wealth. Daniel (2002) states that during hot-issue periods the bargaining power of the underwriter is stronger than of the issuer, therefore resulting in a lower issue price. Due to the closed order book, this can be used by the underwriter to allocate the stocks to his favorite customers which results in a stronger business relationship. In support of this view, Ljungqvist and Wilhelm (2004) find that few firms change underwriter for their first Seasoned Equity Offering.

Another proposed explanation for not setting the issue price too high is based on Welch’s (1992) cascade theory. Daniel (2002) shows that an exaggerated offer price would cause high quality investors to drop out of the offer, thus, possibly starting a negative cascade. The fact that the potential first-day return to the investor was 44.47% during the sample period and peaks at 64.10 % in 1998 suggests that the order of magnitude of underpricing is too large for this theory to be persuasive.

Finally, as noted above Purnandandam and Swaminathan (2002) as well as Liu and Song (2001) showed that IPOs are already overvalued at the time of their first trading. Therefore the chosen offer price as well as the bookbuilding range represents an upper bound in the sense of Tinic’s (1988) legal liability hypothesis.

12 See Daniel (2002) for an interesting description of the pricing process of Microsoft.
5 Conclusion

Previous studies often claim that underpricing is a deliberate activity either by the underwriter or the issuer. Stimulated by unusually high first-day returns during the Dot-com bubble and the view that underpricing is a combination of true discount and market reaction, we ask the question whether underpricing during the IPO boom is really driven by ex-ante uncertainty or by investor sentiment and demand. In order to shed more light on this important question we analyze a sample of 410 German IPOs which went public on the Frankfurt Stock Exchange over the period 1997 to 2001, using both OLS and censored data estimation. The concluding cross section analysis builds on an initial analysis of the cyclical behaviour of issue activity and underpricing, and, additionally, on the possible existence of underwriter price support in the German secondary market.

Analyzing the hot-issue market during our sample period we find that underpricing peaks during the first quarter of the year, thus, showing a form of January effect for the German IPO market. Analyzing the lead-lag relationship between issue activity and underpricing we find that the decision to go public is influenced by both past underpricing and volume. Additionally, we find that volume and initial return are serially correlated.

Building upon these results we run different cross-section regressions. Interestingly, the variables bbd (length of the subscription period) and bbw (width of the bookbuilding range) have negative effects. This leads to the conclusion that underwriters as they are setting these periods and price ranges in advance, expect higher demand of possible investors and, therefore, less uncertainty about the true market value of the upcoming IPOs which are finally more heavily underpriced. We also show that older companies can be evaluated best leading to lower first-day returns. Variables measuring investor sentiment and demand, like the average issue volume, market movement and usage of the greenshoe show very significant results. We conclude that during periods characterized by the presence of highly optimistic investors, ex-ante uncertainty is not the dominating source for underpricing and that investor sentiment dominates the determination of the initial return. Therefore, to our point of view,
the change in investor sentiment is influencing the fluctuations of initial returns and also explains the impact of highly optimistic or even greedy investors on high initial returns.

References

Erhardt, O., Stehle, R., 1999, Renditen bei Börseneinführungen am deutschen Kapitalmarkt, Zeitschrift für Betriebswirtschaft 69, 1395-1422.

Table I
Summary of the proposed explanatory variables

<table>
<thead>
<tr>
<th>Explanatory variable</th>
<th>Abbreviation</th>
<th>Expected impact on underpricing (sign)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investor sentiment and demand hypothesis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age of the company</td>
<td>Age</td>
<td>+</td>
</tr>
<tr>
<td>Inverse of the company’s market capitalisation at the IPO</td>
<td>Marketcap</td>
<td>-</td>
</tr>
<tr>
<td>Length of the subscription period</td>
<td>Bbd</td>
<td>-</td>
</tr>
<tr>
<td>Width of the bookbuilding range</td>
<td>Bbw</td>
<td>-</td>
</tr>
<tr>
<td>Number of completed IPOs prior to the offer (i.e. IPO cycles)</td>
<td>Volume</td>
<td>-</td>
</tr>
<tr>
<td>Usage of the Greenshoe</td>
<td>Greenshoe</td>
<td>+</td>
</tr>
<tr>
<td>Business climate index</td>
<td>Bc</td>
<td>+</td>
</tr>
<tr>
<td>Development of the Nemax All Share Index prior to the IPO</td>
<td>Nemax</td>
<td>+</td>
</tr>
<tr>
<td>Experience’ of the Underwriter (1st quantile)</td>
<td>Underwriter1</td>
<td>+</td>
</tr>
<tr>
<td>Experience’ of the Underwriter (2nd quantile)</td>
<td>Underwriter2</td>
<td>-</td>
</tr>
<tr>
<td>Ex-ante uncertainty hypothesis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table II
Descriptive statistics about sample firms

The sample covers the 1997 – 2001 period and 410 firm. The initial public offerings were taken from the Frankfurt Stock Exchange web pages and Factbooks and always double checked with the company’s prospectus, homepage or investor relations department, the IPO database of the ‘Börsenzeitung’ and the IPO database of OnVista. Issue volume is the number of issued shares (and therefore including the exercised Greenshoe) multiplied by the issue price. Market capitalization is calculated by multiplying the issue price with the total amount of shares at the time of the IPO. Age is calculated as the time period between the foundation of the company and its issue date. If the firm has gone through mergers or restructuring prior going public, the foundation date of the oldest predecessor has been chosen. Initial return (IR1) is calculated as \((P_t/P_{offer})-1\), where \(P_{offer}\) is the offer price at the end of the bookbuilding period and \(P_t\) is the closing price of the first trading day. The expected offer price is computed as the midpoint of the indicative filing range. Price revision is calculated as the update between the expected offer price and the issue price in percent. Bookbuilding days are calculated as the difference between start and end of the subscription period. The width of the bookbuilding range represents the difference between the upper and lower bound divided by the midpoint. The return of the Nemax All Share index has been calculated as holding period returns for the different time periods, therefore as \((P_t/P_{t-1})-1\), where \(P_t\) represents the level of the index at the end of the period and \(P_{t-1}\) the level of the index at the beginning of the period.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of firms</td>
<td>410</td>
<td>16</td>
<td>62</td>
<td>165</td>
<td>150</td>
<td>(111)</td>
<td>(39)</td>
<td>17</td>
</tr>
<tr>
<td>Missing firms</td>
<td>14</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>(0)</td>
<td>(0)</td>
<td>(0)</td>
</tr>
<tr>
<td>Issue volume in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mill. €</td>
<td>Mean</td>
<td>107.97</td>
<td>57.20</td>
<td>49.87</td>
<td>76.02</td>
<td>169.64</td>
<td>(153.62)</td>
<td>(215.22)</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>36.79</td>
<td>30.10</td>
<td>26.47</td>
<td>35.19</td>
<td>43.78</td>
<td>(49.18)</td>
<td>(35.10)</td>
</tr>
<tr>
<td>Market capitalisa-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tion in Mill. €</td>
<td>Mean</td>
<td>374.27</td>
<td>252.01</td>
<td>143.69</td>
<td>240.66</td>
<td>620.87</td>
<td>(652.73)</td>
<td>(530.16)</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>125.50</td>
<td>92.04</td>
<td>82.58</td>
<td>124.80</td>
<td>153.33</td>
<td>(160.00)</td>
<td>(134.75)</td>
</tr>
<tr>
<td>Age of the company</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>17.59</td>
<td>35.75</td>
<td>19.94</td>
<td>19.55</td>
<td>12.13</td>
<td>(11.80)</td>
<td>(13.05)</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>10.32</td>
<td>11.68</td>
<td>14.92</td>
<td>10.05</td>
<td>9.53</td>
<td>(9.66)</td>
<td>(9.40)</td>
</tr>
<tr>
<td>IR1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>44.47</td>
<td>38.11</td>
<td>64.10</td>
<td>40.89</td>
<td>45.41</td>
<td>(54.12)</td>
<td>(20.63)</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>16.40</td>
<td>19.84</td>
<td>38.36</td>
<td>13.73</td>
<td>19.25</td>
<td>(25.63)</td>
<td>(5.17)</td>
</tr>
<tr>
<td>Price Revision</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>3.92</td>
<td>7.01</td>
<td>8.23</td>
<td>3.91</td>
<td>2.50</td>
<td>(4.80)</td>
<td>(-4.06)</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>6.98</td>
<td>8.38</td>
<td>7.13</td>
<td>6.90</td>
<td>6.82</td>
<td>(7.32)</td>
<td>(-3.61)</td>
</tr>
<tr>
<td>Bookbuilding days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>5.87</td>
<td>5.69</td>
<td>4.92</td>
<td>5.69</td>
<td>6.35</td>
<td>(6.09)</td>
<td>(7.10)</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>5.00</td>
<td>3.50</td>
<td>3.00</td>
<td>5.00</td>
<td>6.00</td>
<td>(5.00)</td>
<td>(7.00)</td>
</tr>
<tr>
<td>Bookbuilding range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>17.58</td>
<td>17.04</td>
<td>15.71</td>
<td>17.21</td>
<td>18.30</td>
<td>(17.10)</td>
<td>(21.69)</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>16.84</td>
<td>17.11</td>
<td>15.03</td>
<td>16.22</td>
<td>17.34</td>
<td>(16.95)</td>
<td>(18.87)</td>
</tr>
<tr>
<td>Return of Nemax All Share Index</td>
<td>114.58</td>
<td>97.44</td>
<td>173.86</td>
<td>66.23</td>
<td>-39.55</td>
<td>12.32</td>
<td>-45.76</td>
<td>-61.39</td>
</tr>
</tbody>
</table>
Table III

Underpricing by industry groups

The sample covers the 1997 – 2001 period and 410 firm. The initial public offerings were taken from the Frankfurt Stock Exchange web pages and Factbooks and always double checked with the company’s prospectus, homepage or investor relations department, the IPO database of the ‘Börsenzeitung’ and the IPO database of OnVista. Industry classification (C-DAX classification) is taken from the Frankfurt Stock Exchange web pages or where not available from OnVista, ‘Börsenzeitung’, and Comdirect web pages. Initial return (IR1) is calculated as \((P_t / P_{offer}) - 1 \), where \(P_{offer} \) is the offer price at the end of the bookbuilding period and \(P_t \) is the closing price of the first trading day. IR negative states the number of IPOs having zero or negative first day returns. As in some groups only one firm went public the standard deviation could not be calculated and therefore ‘n.a.’ is stated.

<table>
<thead>
<tr>
<th>Industry Group</th>
<th>Number of IPOs</th>
<th>Min</th>
<th>Maximum</th>
<th>Median</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>IR negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automobile</td>
<td>6</td>
<td>-0.01</td>
<td>0.76</td>
<td>0.07</td>
<td>0.18</td>
<td>0.29</td>
<td>1</td>
</tr>
<tr>
<td>Banks</td>
<td>3</td>
<td>0.14</td>
<td>1.38</td>
<td>0.43</td>
<td>0.65</td>
<td>0.65</td>
<td>0</td>
</tr>
<tr>
<td>Basic resources</td>
<td>1</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>n.a.</td>
<td>0</td>
</tr>
<tr>
<td>Chemicals</td>
<td>2</td>
<td>0.01</td>
<td>0.71</td>
<td>0.36</td>
<td>0.36</td>
<td>0.49</td>
<td>0</td>
</tr>
<tr>
<td>Construction</td>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>n.a.</td>
<td>0</td>
</tr>
<tr>
<td>Consumer-cyclical</td>
<td>5</td>
<td>-0.04</td>
<td>0.09</td>
<td>0.00</td>
<td>0.01</td>
<td>0.05</td>
<td>2</td>
</tr>
<tr>
<td>Financial services</td>
<td>17</td>
<td>-0.08</td>
<td>1.66</td>
<td>0.28</td>
<td>0.56</td>
<td>0.66</td>
<td>4</td>
</tr>
<tr>
<td>Food & beverages</td>
<td>1</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>n.a.</td>
<td>0</td>
</tr>
<tr>
<td>Industrial</td>
<td>20</td>
<td>-0.11</td>
<td>0.76</td>
<td>0.04</td>
<td>0.16</td>
<td>0.25</td>
<td>6</td>
</tr>
<tr>
<td>Machinery</td>
<td>6</td>
<td>-0.08</td>
<td>0.16</td>
<td>0.00</td>
<td>0.01</td>
<td>0.08</td>
<td>3</td>
</tr>
<tr>
<td>Media</td>
<td>49</td>
<td>-0.22</td>
<td>3.56</td>
<td>0.20</td>
<td>0.62</td>
<td>0.87</td>
<td>13</td>
</tr>
<tr>
<td>Pharma & health</td>
<td>35</td>
<td>-0.09</td>
<td>2.46</td>
<td>0.08</td>
<td>0.34</td>
<td>0.57</td>
<td>8</td>
</tr>
<tr>
<td>Retail</td>
<td>8</td>
<td>-0.16</td>
<td>1.66</td>
<td>0.17</td>
<td>0.39</td>
<td>0.61</td>
<td>2</td>
</tr>
<tr>
<td>Software</td>
<td>147</td>
<td>-0.30</td>
<td>3.52</td>
<td>0.26</td>
<td>0.50</td>
<td>0.71</td>
<td>32</td>
</tr>
<tr>
<td>Technology</td>
<td>80</td>
<td>-0.18</td>
<td>4.44</td>
<td>0.26</td>
<td>0.46</td>
<td>0.69</td>
<td>15</td>
</tr>
<tr>
<td>Telecommunications</td>
<td>19</td>
<td>-0.28</td>
<td>4.04</td>
<td>0.27</td>
<td>0.51</td>
<td>0.94</td>
<td>3</td>
</tr>
<tr>
<td>Transp. & logistics</td>
<td>9</td>
<td>-0.07</td>
<td>0.69</td>
<td>0.02</td>
<td>0.10</td>
<td>0.23</td>
<td>3</td>
</tr>
<tr>
<td>Utilities</td>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>n.a.</td>
<td>0</td>
</tr>
</tbody>
</table>
Table IV

OLS industry and stock market segment regression

The sample covers the 1997 – 2001 period and 410 firm. The initial public offerings were taken from the Frankfurt Stock Exchange web pages and Factbooks and always double checked with the company’s prospectus, homepage or investor relations department, the IPO database of the ‘Börsenzeitung’ and the IPO database of OnVista. Industry classification (C-DAX classification) is taken from the Frankfurt Stock Exchange web pages or where not available from OnVista, ‘Börsenzeitung’, and Comdirect web pages. Initial return \((IR_1)\) is calculated as \(\ln(P_t/P_{\text{offer}})\), where \(P_t\) is the first day closing price and \(P_{\text{offer}}\) the offer price after the bookbuilding period, respectively. The industry dummies take the value one if the firm belongs to the particular C-DAX industry classification and zero otherwise. The dummy ‘Neuer Markt’ (nm), SMAX (smax), and ‘Amtlicher Handel’ (ah) take the value one if the firm went public on this specific stock market segment, respectively, and zero otherwise. We exclude industries with less than 4 IPOs. The Models are estimated using OLS and the standard errors are adjusted for heteroskedasticity of the error term using White’s (1980) methodology. The results of the t-statistics (two-sided test) are denoted in brackets. The reported F-statistic is for the significance of the proposed models. We use ***, **, and * to denote significance at the one percent, five percent and ten percent level, respectively. The Number of observations is 410.

<table>
<thead>
<tr>
<th>No. of regression</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variable</td>
<td>IR1</td>
<td>IR1</td>
<td>IR1</td>
<td>IR1</td>
<td>IR1</td>
<td>IR1</td>
</tr>
<tr>
<td>Constant</td>
<td>0.216 *</td>
<td>0.181 ***</td>
<td>0.181 ***</td>
<td>0.185 **</td>
<td>0.183 **</td>
<td>0.159</td>
</tr>
<tr>
<td></td>
<td>(1.735)</td>
<td>(4.327)</td>
<td>(4.333)</td>
<td>(2.437)</td>
<td>(2.354)</td>
<td>(1.143)</td>
</tr>
<tr>
<td>Automobile</td>
<td>-0.075</td>
<td>-0.187</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.381)</td>
<td>(-0.945)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumer-cyclical</td>
<td>-0.205</td>
<td>-0.127</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.985)</td>
<td>(-0.614)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial services</td>
<td>0.149</td>
<td>0.181</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.971)</td>
<td>(1.187)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>-0.088 *</td>
<td>-0.080</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.587)</td>
<td>(-0.540)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machinery</td>
<td>-0.206</td>
<td>-0.126</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-1.045)</td>
<td>(-0.646)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Media</td>
<td>0.151</td>
<td>0.187 ***</td>
<td>0.033</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.119)</td>
<td>(2.751)</td>
<td>(0.238)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharma & health</td>
<td>0.011</td>
<td>0.046</td>
<td>-0.100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.081)</td>
<td>(0.612)</td>
<td>(-0.703)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retail</td>
<td>0.045</td>
<td>0.034</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.247)</td>
<td>(0.186)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software</td>
<td>0.103</td>
<td>0.138 ***</td>
<td>-0.042</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.805)</td>
<td>(2.660)</td>
<td>(-0.313)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td>0.087</td>
<td>0.122</td>
<td>-0.032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.659)</td>
<td>(2.056) **</td>
<td>(-0.242)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telecommunications</td>
<td>0.090</td>
<td>0.125</td>
<td>-0.037</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.598)</td>
<td>(1.314)</td>
<td>(0.241)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transp. & logistics</td>
<td>-0.137</td>
<td>-0.157</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.777)</td>
<td>(0.369)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Economy</td>
<td>0.131 ***</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.812)</td>
<td>(0.924)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nm</td>
<td>0.145 *</td>
<td>0.142 *</td>
<td>0.208 **</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.853)</td>
<td>(1.640)</td>
<td>(2.295)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smax</td>
<td>-0.016</td>
<td>-0.018</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.200)</td>
<td>(-0.213)</td>
<td>(0.034)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ah</td>
<td>-0.085</td>
<td>-0.084</td>
<td>-0.028</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-0.988)</td>
<td>(-0.983)</td>
<td>(-0.314)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-statistic</td>
<td>1.577 *</td>
<td>2.175 *</td>
<td>7.909 ***</td>
<td>7.728 ***</td>
<td>5.784 ***</td>
<td>2.299 ***</td>
</tr>
<tr>
<td>R² (adjusted)</td>
<td>0.017</td>
<td>0.014</td>
<td>0.016</td>
<td>0.048</td>
<td>0.045</td>
<td>0.045</td>
</tr>
</tbody>
</table>
FIGURE I

Time pattern of underpricing and IPO activity

The sample covers the 1997 – 2001 period and 410 firms. The initial public offerings were taken from the Frankfurt Stock Exchange web pages and Factbooks and always double checked with the company’s prospectus, homepage or investor relations department, the IPO database of the ‘Börsenzeitung’ and the IPO database of OnVista. Industry classification (C-DAX classification) is taken from the Frankfurt Stock Exchange web pages or where not available from OnVista, ‘Börsenzeitung’, and Comdirect web pages. Initial return (IR1) is calculated as \(\frac{P_t}{P_{\text{offer}}} - 1 \), where \(P_{\text{offer}} \) is the offer price at the end of the bookbuilding period and \(P_t \) is the closing price of the first trading day. Number of IPOs is calculated as the number of IPOs. Values are quarterly averages calculated using equal weights.
Table V
Seasonality in IPO volume and underpricing

The sample covers the 1997 – 2001 period and 410 firm. The initial public offerings were taken from the Frankfurt Stock Exchange web pages and Factbooks and always double checked with the company’s prospectus, homepage or investor relations department, the IPO database of the ‘Börsenzeitung’ and the IPO database of OnVista. The dependent variable in regression (7), (9), and (11) is the initial return at the first trading day (IR1), measured as \((P_t/P_{offer}) \), where \(P_{offer} \) is the offer price at the end of the bookbuilding period and \(P_t \) is the closing price of the first trading day. The dependent variable in regression (8), (10), and (12) is the IPO volume (volume), measured as the number of IPOs. The quarterly averages have been calculated using equal weights. Dummy1, dummy2 and dummy3 are coded 1 for the first, second and third quarter of the year, respectively, and zero otherwise. Trend takes the value 1 in the first quarter of 1997 up to 19 during the third quarter in 2001. The Models are estimated using OLS and adjusted for serial correlation of the error term using the consistent covariance developed by Newey and West (1987). The results of the t-statistics (two-sided test) is denoted in brackets. The reported F-statistic is for the significance of the proposed models. We use ***, **, and * to denote significance at the one percent, five percent and ten percent level, respectively. The Number of observations is 19.

<table>
<thead>
<tr>
<th>No. of regression</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
<th>(11)</th>
<th>(12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variable</td>
<td>IR1</td>
<td>Volume</td>
<td>IR1</td>
<td>Volume</td>
<td>IR1</td>
<td>Volume</td>
</tr>
<tr>
<td>Constant</td>
<td>0.083</td>
<td>-0.443</td>
<td>-0.069</td>
<td>-5.500</td>
<td>0.349</td>
<td>-10.703</td>
</tr>
<tr>
<td>(0.171)</td>
<td>(-0.043)</td>
<td>(0.428)</td>
<td>(-1.102)</td>
<td>(0.934)</td>
<td>(1.075)</td>
<td></td>
</tr>
<tr>
<td>Trend</td>
<td>-0.172</td>
<td>1.440</td>
<td>-0.018</td>
<td>(-0.172)</td>
<td>1.440</td>
<td>(0.651)</td>
</tr>
<tr>
<td>(0.001)</td>
<td>(-0.107)</td>
<td>(0.428)</td>
<td>(-1.102)</td>
<td>(-0.083)</td>
<td>(0.223)</td>
<td></td>
</tr>
<tr>
<td>Trend²</td>
<td>0.649</td>
<td>5.250</td>
<td>0.660</td>
<td>6.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2.839)</td>
<td>(0.744)</td>
<td>(2.838)</td>
<td>(0.969)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dummy1</td>
<td>0.031</td>
<td>0.700</td>
<td>-0.061</td>
<td>3.173</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-0.143)</td>
<td>(0.105)</td>
<td>(-0.272)</td>
<td>(0.530)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-statistic</td>
<td>0.048</td>
<td>1.984</td>
<td>7.271</td>
<td>2.268</td>
<td>4.554</td>
<td>3.012</td>
</tr>
<tr>
<td>R² (adjusted)</td>
<td>-0.126</td>
<td>0.104</td>
<td>0.525</td>
<td>0.183</td>
<td>0.511</td>
<td>0.372</td>
</tr>
</tbody>
</table>
Table VI

Hot issue market

The sample covers the 1997 – 2001 period and 410 firm. The initial public offerings were taken from the Frankfurt Stock Exchange web pages and Factbooks and always double checked with the company’s prospectus, homepage or investor relations department, the IPO database of the ‘Börsenzeitung’ and the IPO database of OnVista. IPO volume, $volume$, is measured as in Ibbotson/Jaffe (1975) as the number of IPOs per month. The initial return ($IR1$) is measured as P_t/P_{offer}, where P_{offer} is the offer price at the end of the bookbuilding period and P_t is the closing price of the first trading day. The monthly averages have been calculated using equal weights. Regression (13) is estimated using OLS and adjusted for serial correlation of the error term using the consistent covariance developed by Newey and West (1987). The results of the t-statistics (two-sided test) is denoted in brackets. The reported F-statistic is for the significance of the proposed model. Regressions (14) to (17) are OLS estimations of an unrestricted VAR. The lag length for (16) and (17) has been chosen using the Akaike Information Criteria. We use ***, **, and * to denote significance at the one percent, five percent and 10 percent level, respectively.

<table>
<thead>
<tr>
<th>No. of regression</th>
<th>(13) OLS Volume</th>
<th>(14) OLS - VAR Volume</th>
<th>(15) OLS - VAR IR1</th>
<th>(16) OLS - VAR IR1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimation method</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dependent variable</td>
<td>OLS</td>
<td>OLS - VAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume, t-1</td>
<td>0.237 **</td>
<td>0.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume, t-2</td>
<td>0.034</td>
<td>-0.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume, t-3</td>
<td>0.007</td>
<td>0.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume, t-4</td>
<td>0.407 ***</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$IR1_{t-1}$</td>
<td>1.245 (0.963)</td>
<td>0.230 (0.189)</td>
<td>0.612 *** (4.153)</td>
<td>0.616 *** (4.365)</td>
</tr>
<tr>
<td>$IR1_{t-2}$</td>
<td>1.855 (1.509)</td>
<td>2.431 * (1.710)</td>
<td>-0.148 (-0.861)</td>
<td>-0.143 (-0.871)</td>
</tr>
<tr>
<td>$IR1_{t-3}$</td>
<td>3.993 *** (3.006)</td>
<td>1.782 (1.271)</td>
<td>0.112 (0.660)</td>
<td>0.134 (0.829)</td>
</tr>
<tr>
<td>$IR1_{t-4}$</td>
<td>0.701 (0.530)</td>
<td>-0.019 (-0.119)</td>
<td>-0.002 (-0.011)</td>
<td></td>
</tr>
<tr>
<td>R^2 (adjusted)</td>
<td>0.233</td>
<td>0.516</td>
<td>0.214</td>
<td>0.264</td>
</tr>
</tbody>
</table>

Granger F-tests

<table>
<thead>
<tr>
<th>Lagged variable</th>
<th>F-statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>0.727</td>
</tr>
<tr>
<td>IR1</td>
<td>11.824 **</td>
</tr>
<tr>
<td>Variables</td>
<td>6.667 ***</td>
</tr>
</tbody>
</table>

| Sample size | 57 | 56 | 56 | 56 |
The sample covers the 1997 – 2001 period and 410 firm. IPO volume, *volume*, is measured as in Ibbotson/Jaffe (1975) as the number of IPOs per month. The initial return (*IR1*) is measured as P_t/P_{offer}, where P_{offer} is the offer price at the end of the bookbuilding period and P_t is the closing price of the first trading day. The monthly averages have been calculated using equal weights.
Table VII
OLS-and Tobin-regression of underpricing

The sample covers the 1997 – 2001 period and 410 firm. The initial public offerings were taken from the Frankfurt Stock Exchange web pages and Factbooks and always double checked with the company’s prospectus, homepage or investor relations department, the IPO database of the ‘Börsenzeitung’ and the IPO database of OnVista. Initial return (IR_1) is calculated as \(\ln(P_t/P_{offer})\), where \(P_t\) is the first day closing price and \(P_{offer}\) the offer price after the bookbuilding period. \(Bbd\) (bookbuilding days) is calculated as the difference between start and end of the subscription period. \(Age\) is calculated as the difference between the foundation of the company and the IPO. If the firm has gone through mergers or restructuring prior going public, the foundation date of the oldest predecessor has been chosen. The width of the bookbuilding range (\(bbw\)) represents the difference between the upper and lower bound divided by the midpoint. The inverse of the total amount of shares at the issue date multiplied by the issue price yields the variable \(marketcap\). \(Volume\) represents the total number of IPOs 30 days prior to the issue date. The dummy variable \(greenshoe\) takes the value one if the total greenshoe has been used after the IPO and zero otherwise. \(Bc\) is the business climate index from the OECD statistics during the last month (i.e. 30/31 days). \(Nemax\) is calculated as the holding period return of the Nemax All Share index during the last 30 trading days prior to the IPO. Underwriter1 and underwriter2 are dummy variables based on a ranking which divides the underwriter, according the total number of accompanied IPOs, into three quantiles. The variable underwriter1 and underwriter2 is coded one if the underwriter belongs to the highest or second quantile, respectively, and zero otherwise. \(Sd\) is the standard deviation of aftermarket closing prices divided by the issue price. All variables excluding the dummies, \(nemax\) and \(bc\) are transformed by the natural logarithm. The Models are estimated using OLS, adjusted by White’s (1980) standard errors, and censored data estimation (Tobin). The results of the t-statistics (two-sided test) are denoted in brackets. The reported F-statistic stands for the significance of the proposed model. We use ***, **, and * to denote significance at the one percent, five percent and ten percent level, respectively.

<table>
<thead>
<tr>
<th>No. of Regression</th>
<th>(18)</th>
<th>(19)</th>
<th>(20)</th>
<th>(21)</th>
<th>(22)</th>
<th>(23)</th>
<th>(24)</th>
<th>(25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimation method</td>
<td>OLS</td>
<td>Tobin</td>
<td>OLS</td>
<td>Tobin</td>
<td>OLS</td>
<td>Tobin</td>
<td>OLS</td>
<td>Tobin</td>
</tr>
<tr>
<td>Dependent variable</td>
<td>(IR_1)</td>
<td>(IR_1)</td>
<td>OLS</td>
<td>Tobin</td>
<td>OLS</td>
<td>Tobin</td>
<td>OLS</td>
<td>Tobin</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.154</td>
<td>-0.286</td>
<td>0.507 ***</td>
<td>0.699 ***</td>
<td>0.506</td>
<td>-0.623</td>
<td>-0.145</td>
<td>-0.179</td>
</tr>
<tr>
<td></td>
<td>(-0.486)</td>
<td>(-0.658)</td>
<td>(-2.510)</td>
<td>(-3.015)</td>
<td>(-1.412)</td>
<td>(-1.460)</td>
<td>(-0.460)</td>
<td>(-0.491)</td>
</tr>
<tr>
<td>Age</td>
<td>-0.051 ***</td>
<td>-0.076 ***</td>
<td>-0.046 ***</td>
<td>-0.070 ***</td>
<td>0.009</td>
<td>-0.021</td>
<td>-0.021</td>
<td>-0.021</td>
</tr>
<tr>
<td></td>
<td>(-3.634)</td>
<td>(-3.477)</td>
<td>(-3.219)</td>
<td>(-3.636)</td>
<td>(0.731)</td>
<td>(-1.256)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marketcap</td>
<td>-0.024</td>
<td>-0.032</td>
<td>-0.016</td>
<td>-0.018</td>
<td>-0.028 *</td>
<td>-0.032 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-1.304)</td>
<td>(-1.344)</td>
<td>(-0.909)</td>
<td>(-0.838)</td>
<td>(-1.907)</td>
<td>(-1.759)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bbd</td>
<td>-0.110 ***</td>
<td>-0.126 ***</td>
<td>-0.097 ***</td>
<td>-0.117 ***</td>
<td>-0.058 *</td>
<td>-0.074 **</td>
<td>-0.074 **</td>
<td>-0.074 **</td>
</tr>
<tr>
<td></td>
<td>(-2.730)</td>
<td>(-2.634)</td>
<td>(-2.728)</td>
<td>(-2.669)</td>
<td>(-1.899)</td>
<td>(-1.982)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BBW</td>
<td>-0.238 ***</td>
<td>-0.281 ***</td>
<td>-0.102 **</td>
<td>-0.114 **</td>
<td>0.082 *</td>
<td>-0.074</td>
<td>-0.145</td>
<td>-0.145</td>
</tr>
<tr>
<td></td>
<td>(-3.826)</td>
<td>(-3.722)</td>
<td>(-2.009)</td>
<td>(-1.730)</td>
<td>(-1.777)</td>
<td>(-1.314)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>-0.069 ***</td>
<td>-0.093 ***</td>
<td>-0.073 ***</td>
<td>-0.099 ***</td>
<td>-0.090 ***</td>
<td>-0.119 ***</td>
<td>-0.119 ***</td>
<td>-0.119 ***</td>
</tr>
<tr>
<td></td>
<td>(-3.250)</td>
<td>(-3.475)</td>
<td>(-3.321)</td>
<td>(-3.747)</td>
<td>(-5.017)</td>
<td>(-5.259)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greenshoe</td>
<td>0.224 ***</td>
<td>0.324 ***</td>
<td>0.212 ***</td>
<td>0.312 ***</td>
<td>0.113 ***</td>
<td>0.189 ***</td>
<td>0.189 ***</td>
<td>0.189 ***</td>
</tr>
<tr>
<td></td>
<td>(7.292)</td>
<td>(7.927)</td>
<td>(6.765)</td>
<td>(7.680)</td>
<td>(3.800)</td>
<td>(5.281)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bc</td>
<td>-0.098</td>
<td>-0.064</td>
<td>-0.087</td>
<td>-0.028</td>
<td>-0.203</td>
<td>-0.145</td>
<td>-0.145</td>
<td>-0.145</td>
</tr>
<tr>
<td></td>
<td>(-0.598)</td>
<td>(-0.332)</td>
<td>(-0.513)</td>
<td>(-0.146)</td>
<td>(-1.352)</td>
<td>(-0.882)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table VII - continued

<table>
<thead>
<tr>
<th></th>
<th>Nemax</th>
<th>Underwriter1</th>
<th>Underwriter2</th>
<th>Sd</th>
<th>F-statistic</th>
<th>R² (adjusted)</th>
<th>Sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.922 ***</td>
<td>1.025 ***</td>
<td>0.864 ***</td>
<td>0.954 ***</td>
<td>0.696 ***</td>
<td>0.732 ***</td>
<td>0.188 ***</td>
</tr>
<tr>
<td></td>
<td>-0.004 (-0.088)</td>
<td>-0.016 (-0.296)</td>
<td>-0.035 (-0.766)</td>
<td>-0.051 (-0.918)</td>
<td>0.063 (-1.615)</td>
<td>-0.087 * (-1.823)</td>
<td>-0.004 (-0.211)</td>
</tr>
<tr>
<td></td>
<td>-0.011 (-0.211)</td>
<td>0.010 (0.163)</td>
<td>-0.041 (-0.824)</td>
<td>0.028 (0.464)</td>
<td>-0.073 * (-1.735)</td>
<td>-0.070 (-1.373)</td>
<td>-0.004 (-0.211)</td>
</tr>
<tr>
<td></td>
<td>0.188 ***</td>
<td>0.216 ***</td>
<td>0.188 ***</td>
<td>0.216 ***</td>
<td>0.188 ***</td>
<td>0.216 ***</td>
<td>0.188 ***</td>
</tr>
</tbody>
</table>