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Abstract 

Knowledge-based capital is a key factor for productivity growth. Over the past 15 years, it has been 

increasingly recognised that knowledge-based capital comprises much more than technological 

knowledge and that these other components are essential for understanding productivity develop-

ments and competitiveness of both firms and economies. We develop selected indicators for 

knowledge-based capital, often denoted as intangible capital, on the basis of publicly available data 

from online platforms. These indicators based on data from Facebook and the employer branding 

and review platform Kununu are compared by OLS regressions with firm-level survey data from the 

Mannheim Innovation Panel (MIP). All regressions show a positive and significant relationship be-

tween survey-based firm-level expenditures for marketing and on-the-job training and the respective 

information stemming from the online platforms. We therefore explore the possibility of predicting 

brand equity and firm-specific human capital with machine learning methods. 
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1 Introduction 

Knowledge-based capital is a key factor for productivity growth. Over the past 15 years, it has been 

increasingly recognised that knowledge-based capital comprises much more than technological 

knowledge and that these other knowledge components are essential for understanding productivity de-

velopments and competitiveness of both firms and economic aggregates (sectors, regions, and econo-

mies). In the tradition of the new growth theory (Romer, 1986, 1990; Lucas, 1988) knowledge-based 

capital, also denoted as intangible capital, is often measured by the stock of technological knowledge 

and is approximated by accumulated R&D expenditure or the stock of patents. 

Corrado et al. (2005, 2009) have proposed a classification of intangible capital goods that comprises 

three main components: (1) innovative property, (2) computerised information, and (3) economic com-

petencies. While the first two components are already covered by different statistical surveys (R&D 

survey on technical knowledge, innovation survey on technical and non-technical innovation-related 

knowledge, investment surveys on expenditure on computerised information such as software and data-

bases), comprehensive statistical data on economic competencies are scarce. These competencies in-

clude in particular firm-specific human capital, organisational capital, as well as brand equity. 

In this paper, we describe a new way of measuring investments in economic competencies that do not 

require firm surveys but are calculated on the basis of publicly available data from online platforms. We 

focus on two types of economic competencies: investments in brand equity and investments in firm-

specific human capital. For brand equity, we use the number of “likes” of a company on Facebook as 

our indicator. Individual ratings (by employees) on the employer branding and review platform Kununu 

provide information for both the “company image” (brand equity) and on-the-job training/career devel-

opment (firm-specific human capital). Both platforms are market leaders in their respective segment in 

Germany. Compared to survey-based data, publicly available platform data provide a much broader 

coverage at substantially lower costs, a much higher timeliness, and a much higher frequency.  

However, the quality of platform data might be contested. In order to provide a first test of data validity, 

we compare the two newly developed indicators with survey-based expenditures on marketing (brand 

equity) and on-the-job training (firm-specific human capital), using data from the Mannheim Innovation 

Panel (MIP), which is the German part of the Community Innovation Survey of the European Commis-

sion. The results show a positive and significant relationship between firm-level expenditures for mar-

keting and on-the-job training and the respective information stemming from the online platforms Fa-

cebook and Kununu. We therefore explore the possibility of predicting brand equity and firm-specific 

human capital with machine learning methods. However, the (additional) explanatory power of the plat-

form data is limited. 
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The rest of the paper is structured as follows: Section 2 provides an overview of the economic literature 

on intangible capital as well as on the literature on using platform-based data for economic research. 

Section 3 introduces our data collection approach and the survey data for comparison and provides de-

scriptive statistics of our estimation sample. The empirical approach and the results of our OLS regres-

sions comparing the platform and the survey data are presented in Sections 4 and 5. Section 6 explores 

the possibility of predicting firm-level intangible capital expenditures with machine learning methods. 

Section 7 concludes. 

2 Literature Review 

Our research relates to the ongoing efforts in improving the measurement of knowledge-based capital. 

The terms knowledge-based capital and intangible capital are used as synonyms in this strand of the 

literature. Research related to intangible capital was largely initiated by the seminal papers of Corrado 

et al. (2005, 2009), which proposed a framework for the classification of intangible capital. 

On the sectoral and total economy level, a large number of studies has been released in the past ten years 

trying to improve the measurement of intangible capital and more importantly also analysing the eco-

nomic impact of intangible capital. Notable contributions with respect to the economic implications of 

intangible capital are amongst others Corrado et al. (2013), Roth and Thum (2013), Chen et al. (2016), 

Niebel et al. (2017), Corrado et al. (2017), Chen (2018) and Adarov and Stehrer (2019). Roth (2019) 

offers a recent review of the literature, while Haskel and Westlake (2018) provide a more comprehensive 

overview of the topic. 

Apart from measuring intangibles at the sectoral and total economy level, a number of firm-level surveys 

with special focus on intangibles were conducted (Awano et al., 2010a; Awano et al., 2010b; Perani and 

Guerrazzi, 2012; European Commission, 2014). Furthermore, there exists a number of studies analysing 

the impact of knowledge-based capital on firm performance based on pre-existing general firm surveys 

(Crass et al., 2014; Di Ubaldo and Siedschlag, 2020; Rammer et al., 2020). 

The paper also relates to the growing literature of using web-scraped data for economic research. 

Claussen and Peukert (2019) show a strong increase in articles published in journals on the Financial 

Times 50 list between 2000 and 2018 that use data crawling for different use cases with data obtained 

from online platforms. Specifically, with the availability of many potential data sources on the Internet 

and a growing computing power, the possibility of viable web-based indicators has expanded in the last 

decades. For example, Ginsberg et al. (2009) use Google search query data to predict influenza-like 

disease activity in the United States. Similarly, Choi and Varian (2012) use search engine data to develop 

a set of economic indicators, e.g., for unemployment claims. Besides search query data being a viable 

predictor for a wide range of outcomes nowadays (see Gentzkow et al. (2019) for a brief overview on 
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nowcasting), other studies specifically leverage online platform data to approximate and predict eco-

nomic outcomes. For instance, restaurant data from Yelp has been employed to measure local business 

activity, neighborhoods’ socioeconomic characteristics, and consumption patterns (Glaeser et al., 2018; 

Dong et al., 2019; Davis et al., 2019). 

In recent years there has also been a lot of research in the field of web-based innovation indicators. For 

example, Gök et al. (2015) develop an indicator for R&D activities based on website data. Similarly, 

Kinne and Lenz (2019) as well as Pukelis and Stanciauskas (2019) use texts on firm websites to create 

a statistical model to predict a company’s innovation status. Axenbeck and Breithaupt (2019) investigate 

the relationship between a wide variety of firm website characteristics and the firm innovation status. In 

addition, Krüger et al. (2020) make use of texts and hyperlinks on firm websites, create an inter-firm 

network and investigate its relationship with firm innovativeness. 

Social media data have also been used to analyse brand equity activities of firms, as social media have 

become a key channel for marketing and customer interaction (Bruhn et al., 2012). While many studies 

aim at deriving insights on firms' marketing performance (see Misirlis and Vlachopoulou, 2018) or to 

assess the use of social media by firms (see Arora et al., 2014), fewer studies are linked to the subject 

of this paper, to derive a measure of brand equity at the firm level. For example, Coursaris et al. (2016) 

calculate an engagement score based on the number of likes, comments and shares on companies’ posts 

on Facebook and find that the engagement level has a positive effect on brand equity. Chung et al. (2015) 

use information (posts, comments, likes) from Facebook pages of 100 large Korean firms and demon-

strate that these indicators are positively related to market performance. Tirunillai and Tellis (2012) use 

indicators on chatter activities (product reviews on websites) for fifteen firms and find that the volume 

of chatter has a strong positive relationship with firms' returns. Luo et al. (2013) manually classify web 

blogs on nine large firms from the computer and software industry in terms of positive or negative 

sentiment along with blog volume data and find a strong leading effect of this brand indicator on firm 

equity value. All these studies focus on a relatively small number of large firms since large firms tend 

to be much more engaged on social media than small and medium-sized firms. In our study, we add to 

the literature by deriving social media based indicators for a large number of firms across all industries 

and size classes. 

Using data from professional networking platforms such as LinkedIn or employer review platforms 

(such as Glassdoor, RateMyEmployer or JobAdviser) to assess firms' human capital is much less fre-

quent. Most works using this type of social media data focus on its role for employees (see Aguado et 

al., 2019), employee response to firm events (see Gortmaker et al., 2020) and recruiting (see Chiang and 

Suen, 2015; Zide et al., 2014) rather than a measure of employers' human capital. Ji et al. (2017) use 

data from the employer review platform Glassdoor to derive indicators on job satisfaction and find a 

positive association with lower financial reporting risk. Pisano et al. (2017) use LinkedIn data to analyse 

whether ownership concentration affects the disclosure of human capital information via social media 



5 

platforms. Banerji and Reimer (2019) analyse the social connections of firm founders based on LinkedIn 

information to investigate the impact of connectedness (as a specific indicator of firm-specific human 

capital) on funds raised and find a strong positive relationship. 

In this paper, we contribute to the literature in two ways. First, we describe a fairly generalizable method 

for matching and linking firm-level survey data and platform-based data. Second, using publicly avail-

able information from social media, we are able to derive new indicators of firm-specific human capital 

and brand equity that can complement firm surveys, thus improving the measurement of knowledge-

based capital. 

3 Data and Descriptive Statistics 

3.1  Data Collection 

3.1.1 Identifying Platform Profiles 

The aim of our data collection effort is to identify company information related to brand equity and 

firm-specific human capital from digital platforms (Facebook and Kununu1) and compare this infor-

mation with survey-based indicators on the two aspects of firms' economic competencies taken from the 

German Innovation Survey (the “Mannheim Innovation Panel” - MIP). The MIP is the German part of 

the Community Innovation Survey (CIS) coordinated by Eurostat. The survey rests on a stratified ran-

dom sample and is representative for the entire population of German enterprises (see Peters and Ram-

mer, 2013). 

Our data collection strategy is illustrated in Figure 3-1. For all firms that participated in the MIP survey 

conducted in 2017 (1) we create a specific search in Google based on the firm's website URL (2) to 

derive the platform URL of each company for the two platforms, Facebook and Kununu. We download 

the page behind the URL and check whether it is really the company from the survey. If there is a match 

(3), we can analyse the platform profiles (4).  

                                                      
1 We also scraped the MIP 2017 company profiles on Twitter. The number of firms on Twitter is rather low, so we decided to 
not use Twitter data. 
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Figure 3-1: Data Collection Approach 

 

The Google search included the company's website URL, the platform name and the search operator 

“site:platform URL”, which only returns results from the platform page. This approach only necessitates 

some identifying information of a company and allows to be generally applied to different online plat-

forms. We assume to be so specific that the first search result must be the platform profile of the searched 

company - unless there is none. Subsequently, we take the received platform URL of the first search 

result and download the HTML code of the page, which is often the start page of the company on the 

respective platform. Finally, we extract the initially selected company's key information, which should 

ideally also be on the platform page, link it to the survey and verify the match. 

The sample of our analysis includes 7,498 companies.2 To verify whether our search described in Figure 

3-1 identified the right company on the platform, we compare information from the platform profile 

with the information from the survey, such as the company name or website URL. For Facebook, this is 

straightforward since companies are obliged to state their website URL on the start page. On the Kununu 

site of a company, which is not managed by the company, there is no corresponding imprint. We there-

fore analyse the similarity of the company name on Kununu and from the MIP. In a first step, we do 

exact string matching. If no exact match was established, the Python package fuzzywuzzy is used to 

perform a fuzzy string matching. For this purpose, we use the fuzzywuzzy functions ratio, partial_ratio, 

token_sort_ratio and token_set_ratio and equally weight the results. In addition, a minimum threshold 

                                                      
2 In total, 8,278 firms participated in the MIP 2017. For about 9% of the firms, no URL of the company website was available. 
A first search result on Google produced Facebook URLs for 7,330 firms and Kununu URLs for 4,759 firms. 

Company survey

Standardized Google search:
„Info of the company + Name of the 
platform + site:URL of the platform“

Use information 
on URL from 
company 
survey

Download page of first 
search result

Link profiles based on 
URLs or company names

Check matches
• automatically
• manually

Obtain valid
platform profiles

merge platform data 
with company survey

Mannheim Innovation
Panel (MIP 2017)

1

2

3

4
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of 50 percent is defined. If multiple entries are above the threshold, we choose the MIP entry with the 

highest fuzzy matching score. 

The search was carried out at the end of 2017. We obtained 2,114 company platform profiles for Kununu 

and 1,539 for Facebook, representing 28.2% and 20.5%, respectively, of our sample (see Figure 3-2). In 

the case of Facebook, the share is comparable to other studies based on the retrieval of corporate profiles 

on online platforms (see Bertschek and Kesler, 2018). For 598 firms, we found both a Kununu and a 

Facebook page. 

Figure 3-2: Identified Platform Profiles 

 

 
Note: In total, there are 7,498 companies with valid URLs for the company website that participated in the MIP 2017 survey. 
Out of these 7,498 companies, we were able to identify 28.2% companies with a Kununu page and 20.5% companies with a 
Facebook page. 

3.1.2 Obtaining Kununu Ratings for Training and Image 

Kununu is an employer branding and review platform founded in 2007 and was acquired by Xing (a 

German competitor of LinkedIn) in 2013. Albeit having a dedicated website for companies in the U.S., 

Kununu has a strong focus on German-speaking countries (Germany, Austria, and Switzerland). Besides 

an overall score/rating, employees can evaluate their company within different categories. For our pur-

poses, the individual ratings for “company image” and “on-the-job training/career development” are the 

relevant categories (see Figure 3-3). “Company image” is within the framework for intangible capital 

by Corrado et al. (2005, 2009) related to brand equity as it reflects the firm's public image, which is a 

major factor for a firm's marketing success. The rating for “on-the-job training/career development” is 

directly linked to firm-specific human capital as it evaluates the relevance and effectiveness of a firm's 

human capital development efforts from the employees' point of view. Kununu data were collected in 

August 2018 with historical data back to 2010 (see Table A-1 in Appendix A).  

2,114 (28.2%)

1,539 (20.5%)

1,516

941

598
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Figure 3-3: Example of the Methodology Using the Kununu Platform 

 
Note: This is just an example for a Kununu page of a firm. It does not necessarily mean that the firm is in our sample. Screen-
shots of the Kununu page are in German language and were automatically translated by Google Translate. The numbers 1-4 
refer to the numbers in Figure 3-1. 

3.1.3 Obtaining Facebook Likes  

Data from Facebook were collected in December 2017 and the first week of January 2018. The relevant 

data on each of the companies' Facebook pages are the number of “likes” and the URL of the website 

of the company. The latter is needed to check whether our Google search indeed identified the right 

company and to merge the number of “likes” on the Facebook page with the survey data on intangibles 

and other company characteristics in the MIP 2017 survey. Within the framework of intangible capital 

by Corrado et al. (2005, 2009), the number of "likes" is related to brand equity as it reflects positive 

values associated with a firm in the general public. A high number of “likes” indicates that the firm's 

efforts to establish a favourable perception of its activities, products and services have been - at least to 

some extent - successful. We scraped the start page of the company profile on Facebook which includes 

the number of “likes” and the URL of the company website (see Figure 3-4). Obtaining historical Face-

book data was not possible since Facebook has massively restricted API access (see Table A-1 in Ap-

pendix A) as a result of the Facebook–Cambridge Analytica data scandal in early 2018. 

MIP 2017
1

2
3

4
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Figure 3-4: Example of the Company Profile on the Facebook Platform 

 
Note: This is just an example for a Facebook page of a firm. It does not necessarily mean that this firm is also in our sample. 
Some elements of the Facebook profile of the company were manually removed for the sake of clarity. 

3.2 Survey Data: Mannheim Innovation Panel (MIP) 

We use data from the Mannheim Innovation Panel (MIP) to test the relevance of our measures of brand 

equity and firm-specific human capital derived from information provided on online platforms. The MIP 

is the German contribution to the Community Innovation Survey (CIS) of the European Commission 

and follows the survey methodology of the CIS. The MIP sample is a stratified random sample of about 

13 percent of the target population, which includes firms with 5 or more employees from manufacturing 

and business-oriented services. The response rate of the 2017 survey was 25 percent, resulting in 8,278 

observations. For a more detailed description of the survey see Peters and Rammer (2013) and Behrens 

et al. (2017). 

For our analysis, two variables from the MIP 2017 survey are used, the amount of expenditure for mar-

keting in 2016, and the amount of expenditure for employee training in 2016. Marketing expenditures 

include all in-house and contracted out expenditures for advertising and branding (incl. commercial 

marketing), reputation building, conceptual design of marketing strategies, market and costumer re-

search, and the installation of new distribution channels. Pure selling costs are not considered as mar-

keting expenditures. Employee training expenditures include all in-house and contracted out expendi-

tures for training and further education of employees, including payroll costs of employees for working 

time used to attend training. Expenditures for vocational education are not part of training expenditures. 

6,339 firms provided data on their marketing expenditures, and 6,419 reported the amount of training 

expenditures. 
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3.3 Descriptive Statistics 

3.3.1 Kununu Data 

Table 3-1 and Table 3-2 show the summary statistics for our estimation sample for the analysis of the 

relationship between our knowledge-based capital indicators stemming from the employer branding and 

review platform Kununu and the MIP 2017 survey-based expenditures for knowledge-based capital.  

We restrict our sample to company profiles with at least four ratings between January 2017 and August 

2018 as there is a trade-off between data quality and number of data points (i.e., more ratings per com-

pany on Kununu implies better data quality, but fewer data points). This reduces the number of obser-

vations with Kununu data on “training” to 813 in the full sample (see Table A-2 in Appendix A) and 

519 in the estimation sample (see Table 3-1). The number of observations with Kununu data on “com-

pany image” is reduced to 805 in the full sample (see Table A-2 in Appendix A) and 492 in the estima-

tion sample (see Table 3-2). These numbers are much lower than the total number of firms of 8,278 

participating in the MIP 2017 survey (see Table A-4), reflecting the fact that only a smaller part of the 

entire firm population is represented on the Kununu platform. Overall, Industry J (Information and Com-

munication) is over-represented in our estimation sample compared to the total MIP 2017 sample (see 

Table A-4). Furthermore, we do have much fewer firms with less than 10 employees in our sample 

compared to the full MIP 2017 sample (see Table A-5). This is driven by the fact that the ratings on 

Kununu are coming from the employees of the firm. For firms with less than 10 employees it is less 

likely to reach our minimum threshold of four ratings between January 2017 and August 2018. 

Table 3-1: Summary Statistics – Training: Kununu Rating - Estimation Sample 

 N Mean Median SD Min Max 
Training: Kununu rating 519 3.31 3.38 0.79 1 5 
Training expenditures (MEUR) 519 1.10 0.060 13.8 0.00097 300 
Turnover (MEUR) 519 404.2 27.5 2671.4 0.080 46800 
Number of employees 519 1238.3 165 8614.6 1 122608 
Number of Kununu ratings (Training) 519 22.9 9 74.3 4 1174 

 Note: These data contain only firms with at least four detailed ratings on Kununu between January 2017 and August 2018. 
“Number of Kununu ratings (Training)” is not part of the regressions in Section 5.1. Four is the lower threshold for the number 
of ratings. All firms with less than four ratings between January 2017 and August 2018 are not part of the empirical analyses. 

Table 3-1 shows that the average rating for on-the-job training of the companies in our estimation sample 

is 3.31 (scale: 1-5; for more details see Figure B-1 and Figure B-4 in Appendix B), while the expendi-

tures for on-the-job training stemming from the MIP 2017 survey are on average 1.1 million Euro. As 

there are very large firms with more than 122 thousand employees and more than 46 billion Euro in 

turnover in our sample, the average number of employees is at 1,238 and the average annual turnover is 

about 400 million Euro. However, the respective median values are much lower. The average number 

of ratings of a company on Kununu in our sample for on-the-job training is 22.9. Table 3-2 displays the 
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descriptive statistics for our estimation sample for our measure of brand equity on Kununu, which is the 

rating of the current and past employees for the “company image”. Compared to the rating for on-the-

job training, the average assessment of the employees for the image of their company is noticeably larger 

(3.62 vs 3.31). Figure B-2 and Figure B-5 provide more details about the distribution of the ratings. The 

average number of ratings for “company image” is slightly lower than for “training” (21.7 vs 22.9).  

Table 3-2: Summary Statistics - Image: Kununu Rating - Estimation Sample 

 N Mean Median SD Min Max 

Image: Kununu rating 492 3.62 3.75 0.80 1 5 
Marketing expenditures (MEUR) 492 6.98 0.11 81.4 0.0010 1480 
Turnover (MEUR) 492 312.7 27.4 1765.2 0.22 25763 
Number of employees 492 1014.4 158 7189.5 3 122608 
Number of Kununu ratings (Image) 492 21.7 8.50 72.7 4 1171 

 Note: These data contain only firms with at least four detailed ratings on Kununu between January 2017 and August 2018. 
“Number of Kununu ratings (Training)” is not part of the regressions in Section 5.1. Four is the lower threshold for the number 
of ratings. All firms with less than four ratings between January 2017 and August 2018 are not part of the empirical analyses. 

3.3.2 Facebook Data 

Table 3-3 displays the summary statistics for our estimation sample for the analysis of the relationship 

between the number of Facebook “likes” and the MIP 2017 survey-based marketing expenditures. In 

total, we have 944 companies with non-zero and non-missing data in our estimation sample. A company 

in our sample has on average 9,684 Facebook “likes” and 2.4 million Euro of marketing expenditures3. 

Overall, the firms in our estimation sample are on average larger than in the entire MIP 2017 sample. 

Especially the size class of firms with 0 to 9 employees is under-represented in our sample as these firms 

are less likely to have a Facebook page (see Table A-7). Therefore, the average turnover in our estima-

tion sample is 58.2 million Euro and each company has on average close to 220 employees. However, 

these average numbers are generally driven by very large companies. All median values are by a large 

amount lower than the mean (see Table 3-3, column 4), 

Table 3-3: Summary Statistics - Image: Facebook Likes - Estimation Sample 

 N Mean Median SD Min Max 

Image: Facebook likes 944 9683.8 224 98292.4 1 1702502 
Marketing expenditures (MEUR) 944 2.40 0.032 48.8 0.00048 1480 
Turnover (MEUR) 944 58.2 5 434.9 0.027 11630 
Number of employees 944 218.4 40.5 1090.8 1 25247 

Note: These data contain only firms with at least one like on Facebook as of December 2017/January 2018 and non-zero 
marketing expenditures in 2016. 

                                                      
3 Figure B-3 and Figure B-6 in Appendix B provide a histogram for the number of “likes” and a scatterplot for the relationship 
between the number of “likes” and the marketing expenditures. 
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4 Empirical Approach 

We analyse the relationship between our newly developed platform-based indicators for brand equity 

and firm-specific human capital and the MIP 2017 survey-based measures on marketing expenditure 

and on training expenditure. These knowledge-based assets belong, within the framework of Corrado et 

al. (2005, 2009), to the group of economic competencies which are usually not measured within official 

statistics. For our cross-sectional data4, we analyse this relationship with standard OLS regressions con-

taining a set of firm-level control variables: 

ln𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖/𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑖𝑖 =   𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒 ln(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2016,𝑖𝑖 + 𝑿𝑿𝒊𝒊𝜸𝜸 + 𝑒𝑒𝑖𝑖 (1) 

  

ln𝑌𝑌𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑖𝑖 denotes the number of “likes” on Facebook in December 2017/January 2018, ln𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖 is the 

average rating for the period from January 2017 to August 2018 for the item “image“ on Kununu. The 

vector of control variables 𝑿𝑿𝒊𝒊 includes turnover, the number of employees, and a set of 23 industry 

dummies. The number of Facebook “likes” and the average score for the item “company image/career 

development” on Kununu are our indicators for the intangible asset brand equity.  

Furthermore, we study the explanatory power of our indicator for firm-specific human capital via the 

following OLS regression: 

ln𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖 =   𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒 ln(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)2016,𝑖𝑖 + 𝑿𝑿𝒊𝒊𝜸𝜸 + 𝑒𝑒𝑖𝑖 (2) 

  

𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖 is the average rating for on-the-job training for the period from January 2017 to August 2018 

for the employer branding and review platform Kununu. The vector of control variables 𝑿𝑿𝒊𝒊 includes 

once more turnover, the number of employees, and a set of 23 industry dummies. 

As an extension to our OLS regressions, which are just evaluating the relationship between the platform- 

and the survey-based data, we employ a machine learning (ML) approach for predicting firm-level ex-

penditures for marketing and on-the-job training based on our platform indicators. Details can be found 

in Section 6. 

                                                      
4 We gathered historical Kununu data for the years prior to 2017. Thus, in principle, it would be possible to do fixed effects 
panel regressions with the full MIP panel and the historical Kununu platform data. However, due to the limited number of 
observation/ratings in early years on Kununu, this was, after all, not feasible. 
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5 Estimation Results 

5.1 Kununu 

Table 5-1 shows the results for our OLS regressions for the relationship between the MIP 2017 survey-

based measures for knowledge-based capital and our platform-based indicators. We estimate four dif-

ferent models described in Equation (1) and Equation (2). In column (1), we regress the Kununu rating 

for training on the log of the survey-based expenditures for training and a set of control variables. Col-

umn (3) displays the analogous results for the company image. In columns (2) and (4), we use log trans-

formations of the dependent variables, as the Kununu ratings are slightly skewed (see Figure B-1 and 

Figure B-2). As mentioned before, we restrict our sample analysing the Kununu data to company profiles 

with at least four ratings between January 2017 and August 2018. More ratings per company on Kununu 

imply better data quality. But, on the other hand, the number of observations in our regressions is dra-

matically reduced. Given the data, the lower bound of at least four ratings per company is in our view 

sensible. We also provide robustness checks with varying thresholds. 

Table 5-1: OLS Regressions Kununu 

 (1) (2) (3) (4) 

Dependent Variable: Training: 
Kununu rating 

ln(Training: 
Kununu rating) 

Image: 
Kununu rating 

ln(Image: 
Kununu rating) 

     

ln(Training expenditures) 0.0680* 0.0237*   
 (1.81) (1.88)   
     

ln(Marketing expenditures)   0.0842*** 0.0272*** 
   (3.13) (3.19) 
     

ln(Turnover) 0.0121 0.0103 -0.0407 -0.00946 
 (0.28) (0.68) (-0.83) (-0.61) 
     

ln(Number of employees) -0.0590 -0.0238 -0.0459 -0.0160 
 (-1.06) (-1.27) (-0.78) (-0.83) 
     

Industry dummies  Yes Yes Yes Yes 
     

adj. R^2 0.139 0.139 0.128 0.132 
Observations 519 519 492 492 
Robust t statistics in parentheses   

* p<0.10, ** p<0.05, *** p<0.01   
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These robustness checks varying the minimum number of ratings can be found in Table A-8 and Table 

A-9 in the Appendix. Requiring at least 3 or 5 ratings does not qualitatively change the results. With a 

minimum of 6 ratings, training gets insignificant due to the reduced number of observations. A minimum 

of 10 ratings, leads to a further drop in the number of observations resulting in insignificant results for 

both the image and training. For another robustness check, we removed the Kununu ratings of ex-em-

ployees, as especially in case they were fired, the resulting ratings could have a bias. However, the 

removal of the ex-employees, does not change results fundamentally. 

All columns indicate a positive and significant relationship between the survey-based expenditure 

measures and our platform-based indicators. The main difference between columns (1) and (2) vs (3) 

and (4) are the higher significance levels of the latter. 

5.2 Facebook 

Table 5-2 presents the results for our OLS regressions for the relationship between the MIP 2017 survey-

based marketing expenditures and the number of Facebook “likes” in December 2017/January 2018. In 

column (1), we regress the log of the number of Facebook likes on the log of the survey-based marketing 

expenditures of the firm. In column (2), we add turnover and the number of employees as explanatory 

variables. In column (3), we additionally include industry dummies. As before with the Kununu data, 

we observe a positive and highly significant relationship between the survey-based expenditures for 

marketing and our platform-based indicator (corresponding to the number of Facebook “likes”). 

Table 5-2: OLS Regressions Facebook 

 (1) (2) (3) 

Dependent Variable: ln(Image: Facebook 
likes) 

ln(Image: Facebook 
likes) 

ln(Image: Facebook 
likes) 

    

ln(Marketing expenditures) 0.522*** 0.454*** 0.455*** 
 (15.67) (8.23) (8.34) 
    

ln(Turnover)  0.0589 0.106 
  (0.72) (1.11) 
    

ln(Number of employees)  0.0550 0.0178 
  (0.65) (0.19) 
    

Industry dummies  No No Yes 
    

adj. R^2 0.261 0.265 0.364 
Observations 944 944 944 
Robust t statistics in parentheses  

* p<0.10, ** p<0.05, *** p<0.01  
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6 Prediction of Expenditures on Knowledge-Based Capital based on Ma-
chine Learning 

In this section, we discuss the use of machine learning methods to predict internal firm expenditures 

with the help of pre-existing firm and platform data. The basic idea is that internal expenditures could 

be estimated using (semi-) public data. The major advantage of this approach is that the expenditures 

could be updated more regularly as the platform data is often updated. The firm data (number of em-

ployees, industry, turnover and expenditures) is based on the Mannheim Innovation Panel (MIP).  

Our analysis is based on the estimation samples from Section 3.3. As feature variables of the machine 

learning models, we choose the turnover of the firm, number of employees, industry and scraped data 

from Kununu and Facebook. The target variable is the amount of firm-specific expenditure on “on-the-

job training/career development” or “company image" from the MIP survey. We remove some “outlier” 

corporations from our samples, because in the worst case, all “outlier” corporations are randomly as-

signed to the test dataset. This is a problem that predominantly occurs in smaller datasets. Based on each 

target variable, the entries above the 99% percentile are removed. Additionally, the target variable is 

log-transformed for the machine learning, but the predictions are transformed back with the exponential 

function before the evaluation metrics are calculated. This step is useful as the target variable distribu-

tions are skewed. A standardization of the feature variables “number of employees” and “turnover” is 

performed. As a result, the variables have a mean of zero and standard deviation of one in the training 

dataset. The transformation is performed to improve the performance of neural networks. The training 

data standardization parameters are also used to standardize the test data in order to avoid a data leakage. 

As we use the standardization parameters of the training data, the mean and standard deviation of the 

test data may not be zero and one. The categorical industry information is converted into dummy varia-

bles as most machine learning methods can only work with numerical data. Several machine learning 

regression models are trained for our analysis: Neural networks (NN), random forests (RF), k-nearest-

neighbour (KNN) and support vector machines (SVM). An overview of the methods is given in Friedman 

et al. (2001). For each model we perform a 10 fold cross validation to find suitable model parameters 

and more robust models. The corresponding model parameters in the software packages are listed in 

italics and brackets. The neural network has three dense layers with the sizes 16, 8, and 1, uses the 

“ReLu” and “linear” (last layer) activation function and the “mean absolute error” objective function. 

The optimizers “Adam”, “Adadelta” and “SGD” (optimizer) are considered. The random forest is trained 

with 1,000 and 5,000 trees (n_estimators), the “mean absolute error” (criterion), a maximum depth of 

2, 5, 10 and 20 (max_depth) as well as “None” and “auto” as maximum number of features (max_fea-

tures). The k-nearest neighbors method considers the nearest 1, 2, 5, 10, 25 and 50 data points (n_neigh-

bors) and the weighting schemes “uniform” and “distance” (weights). The support vector machine con-

siders the kernel “linear”, “rbf”, “sigmoid” and “poly” (kernel) to map the data into a high-dimensional 

vector space and the regularization parameters 1, 2 and 5 (C). Non-specified parameters are set to the 
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default options. The parameter spaces are in theory expandable to retrieve improved results. For the 

training 67% of the data was used and 33% was reserved for model testing. In addition, we perform five 

random test train splits in order to be able to make a statement about the sensitivity of the splits. For 

model training and evaluation, we use the Python packages Keras (Chollet, 2015) and Scikit-learn 

(Pedregosa et al., 2011). Keras is used as the neural network implementation and the other machine 

learning models are based on Scikit-learn. We use the Mean Absolute Error (MAE) metric as evaluation 

measure, because it is commonly used and can be interpreted directly. For example, a MAE of 0.1 means 

that there is an average absolute difference of 100,000 Euros between the actual expenditure and our 

prediction. 

Table 6-1: Predictive power for training expenditures based on Kununu data 

Features Result 
Number of 
employees Turnover Industry Training Kununu N Best model MAE 

   x 513 RF 0.22 (0.04) 
x x   513 RF 0.15 (0.03) 
x x x  513 RF 0.14 (0.03) 
x x x x 513 RF 0.15 (0.03) 

The results are based on the mean values of five random train-test splits. The standard errors for MAE are mentioned in the brackets. A baseline 
model taking the non-transformed mean or median of the target variable in the train dataset as prediction has a MAE of 0.31 and 0.22. 

Note: Target variable: Training expenditures. Firms with zero marketing expenditure, turnover or employees are dropped (es-
timation sample criterions). Six outliers are dropped based on the 99th percentile of the target variable. All numbers are rounded 
on two decimal places. The MAE reports the best “Mean Absolute Error” value for the specified set of models. 

 

Table 6-2: Predictive power for marketing expenditures based on Kununu data 

Features Result 
Number of 
employees Turnover Industry Image Kununu N Best model MAE 

   x 487 KNN 1.04 (0.09) 
x x   487 SVM 0.88 (0.09) 
x x x  487 RF 0.87 (0.08) 
x x x x 487 RF 0.86 (0.10) 

The results are based on the mean values of five random train-test splits. The standard errors for MAE are mentioned in the brackets. A baseline 
model taking the non-transformed mean or median of the target variable in the train dataset as prediction has a MAE of 1.45 and 1.05. 

Note: Target variable: Marketing expenditures. Firms with zero marketing expenditure, turnover or employees are dropped 
(estimation sample criterions). Five outliers are dropped based on the 99th percentile of the target variable. All numbers are 
rounded on two decimal places. The MAE reports the best “Mean Absolute Error” value for the specified set of models. 
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Table 6-3: Predictive power for marketing expenditures based on Facebook data 

Features Result 
Number of 
employees Turnover Industry Image Facebook N Best model MAE 

   x 934 KNN 0.26 (0.02) 
x x   934 NN 0.23 (0.02) 
x x x  934 NN 0.22 (0.02) 
x x x x 934 RF 0.21 (0.01) 

The results are based on the mean values of five random train-test splits. The standard errors for MAE are mentioned in the brackets. A baseline 
model taking the non-transformed mean or median of the target variable in the train dataset as prediction has a MAE of 0.42 and 0.27. 

Note: Target variable: Marketing expenditures. Firms with zero marketing expenditure, turnover or employees are dropped 
(estimation sample criterions). Ten outliers are dropped based on the 99th percentile of the target variable. All numbers are 
rounded on two decimal places. The MAE reports the best “Mean Absolute Error” value for the specified set of models. 

 

Table 6-1 shows the predictive performance for training expenditures based on Kununu and MIP data. 

Kununu data alone is as good as a baseline model with MAE of 0.22, but the MIP data explains more of 

the data with MAE of 0.14. Combining both feature sets does not improve the performance. In this case, 

the web-scraped data worsens our predictions slightly. Table 6-2 shows the predictive performance for 

internal marketing expenditures based on Kununu and MIP data. The model based on web-scraped data 

is as good as the baseline model. The MIP data, on the other hand, can again explain more of the data 

with MAE of 0.87. As expected, combining both feature sets does only slightly affect the performance. 

Lastly, Table 6-3 shows the results for the prediction of the internal marketing expenditure based on the 

Facebook and MIP data. A model based on the platform data has a MAE of 0.26, but is outperformed 

by a model based on the MIP data. Combining both feature sets results in a model with MAE of 0.21. 

This suggests that the web-scraped data has a positive effect on our predictions. 

The results are robust, in the sense, that we can see the same pattern across different predictions. Plat-

form data alone has a relatively small or no predictive power as the baseline models yield similar MAE 

values. MIP data explains a higher amount of the data and outperforms the platform data. Combining 

platform data (Facebook or Kununu) with MIP data has at most a slight effect or no effect on the results.  

The main problem in our analysis is the low number of observations as we are limited to firms with data 

on firm-level training or image expenditure. Unfortunately, the coverage of MIP firms on Kununu and 

Facebook is relatively low as illustrated in Figure 3-2. However, we expect a better performance with 

an increasing number of observations. Machine learning models based on small data sets are, to some 

extent, sensitive to sample splitting. For example, all large corporations could fall into the test dataset 

leading to non-robust results. Our results are therefore based on the mean values of five random train-

test splits. The reported standard errors are in some cases relatively high (up to 0.10). Additionally, the 

data is not representative. For example, small companies are underrepresented. This can lead to prob-

lems in the generalizability of the machine learning approach. The information about the “best model” 
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should not be interpreted too extensively as multiple models often perform only slightly different. Ran-

dom forests are known to have a relatively good performance on tabular data. Therefore, it is not sur-

prising that random forest are in the most cases the best model. The performance could be further im-

proved with modified random forest models, e.g. boosted trees. Random forests, on the other hand, have 

the major disadvantage that the methodology is based on weighted averages. A random forest can there-

fore never predict firm-level expenditures that lie outside the training set. In summary, the MIP and 

platform data can be used to a limited extent to estimate the internal expenditures of companies. 
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7 Conclusions and Future Research 

This paper aimed at developing new indicators for intangible capital of firms on the basis of publicly 

available data from online platforms. These basic indicators for brand equity and firm-specific human 

capital, which are part of the intangibles framework developed by Corrado et al. (2005, 2009), were 

taken from the social media platform Facebook and the employer branding and review platform Kununu. 

We compare these indicators by means of OLS regressions with firm-level survey data on marketing 

and training expenditure taken from the German part of the Community Innovation Survey. All regres-

sions show a positive and significant relationship between the firm-level expenditures for marketing and 

on-the-job training and the respective information stemming from the online platforms. Various robust-

ness checks confirm the validity of the results. 

However, there are also caveats with our current approach. Due to the limited presence of smaller firms 

on online platforms, we are currently predominantly capturing medium-sized and larger firms. Further-

more, although we do find a positive and significant relationship between our platform-based indicators 

and the survey-based numbers in our OLS regressions, predicting expenditures based on an explorative 

machine learning approach shows that the platform data alone have little or no predictive power. 

Using data from online platforms can nevertheless provide a useful source for establishing firm-level 

indicators on intangible assets in the field of economic competencies, which are difficult to measure 

through surveys or from balance sheet data. But in order to better utilise this data source, more research 

is required. First, we need a better understanding of the dynamic relationship between activities on 

online platforms related to a firm's knowledge-based capital, and the actual firm activities to build up 

and maintain such capital. Secondly, comparative analysis of different platform data are needed to better 

assess the value of the information that can be derived from various platforms. Finally, analyses on the 

relationship between the newly derived indicators on firms' economic competencies on the one hand 

and firm performance on the other (e.g., through productivity analysis) would provide additional insight 

into the validity of these indicators. For this purpose, time-series data on both platform-based indicators 

and firm performance measures would be required. 
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Appendix 

A Additional Tables 

Table A-1: Overview of Possible Dimensions on Platforms 

 Kununu Facebook 
Information on the start page 
 

Grade, scale, recommendations, 
hits, benefits 

Number of “likes” obtained with-
out the Facebook Graph API. 
 

Historic information 
 

Individual/detailed ratings (includ-
ing “company image” and “on-the-
job training/career development”) 
are available with a time stamp, so 
the data can be reconstructed his-
torically. 

Get company and user contribu-
tions including comments and 
“likes” via the Facebook Graph 
API. You only get the current num-
ber of fans. 

Remarks 
 

Problem of deletion/change API access massively restricted in 
the wake of the Facebook–Cam-
bridge Analytica data scandal early 
2018. 

Table A-2: Summary Statistics - Kununu - Full Sample 

 N Mean Median SD Min Max 
Training: Kununu rating 813 3.29 3.35 0.77 1 5 
Image: Kununu rating 805 3.56 3.67 0.79 1 5 
Training expenditures (MEUR) 1568 0.42 0.019 7.96 0 300 
Marketing expenditures (MEUR) 1548 2.50 0.040 46.0 0 1480 
Turnover (MEUR) 1961 252.3 10.3 2222.4 0 57550 
Number of employees 2051 774.8 70 6643.5 0 156487 
Number of Kununu ratings (Training) 2114 9.91 2 43.3 0 1174 
Number of Kununu ratings (Image) 2114 9.83 2 43.1 0 1171 
ln(Training: Kununu rating) 813 1.16 1.21 0.26 0 1.61 
ln(Image: Kununu rating) 805 1.24 1.30 0.25 0 1.61 
ln(Training expenditures) 1356 -3.49 -3.69 1.84 -7.71 5.70 
ln(Marketing expenditures) 1321 -2.63 -2.81 2.19 -8.11 7.30 
ln(Turnover) 1957 2.47 2.33 2.15 -5.30 11.0 
ln(Number of employees) 2045 4.35 4.25 1.74 0 12.0 

Note: Full Sample means the merge of the MIP 2017 survey with the identified Kununu profiles (see Figure 3-2). The “Number 
of Kununu ratings” shows the descriptive statistics for all 2,114 MIP 2017 firms with a Kununu profile. The number of obser-
vations for “Kununu rating” is lower as we restrict the data to firms with at least 4 ratings between January 2017 and August 
2018. 
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Table A-3: Summary Statistics - Facebook - Full Sample 

 N Mean Median SD Min Max 

Image: Facebook likes 1498 15905.7 215.5 142384.2 1 3687320 
Marketing expenditures (MEUR) 1165 1.95 0.020 44.0 0 1480 
Turnover (MEUR) 1425 134.5 4.23 1891.5 0 57550 
Number of employees 1498 465.2 35 5436.4 0 156487 
ln(Image: Facebook likes) 1498 5.71 5.37 2.30 0 15.1 
ln(Marketing expenditures) 1012 -3.24 -3.51 2.11 -8.11 7.30 
ln(Turnover) 1421 1.69 1.46 2.09 -5.30 11.0 
ln(Number of employees) 1492 3.77 3.56 1.69 0 12.0 

Note: Full Sample means the merge of the MIP 2017 survey with the identified Facebook profiles (see Figure 3-2). 

Table A-4: Sector Coverage Kununu 

 MIP 2017 Full Sample 
Estimation 

Sample 
(Training) 

Estimation 
Sample (Im-

age) 
 N Percent N Percent N Percent N Percent 

A - Agriculture, forestry and fishing 13 0.16       

B - Mining and quarrying 98 1.18 5 0.24 1 0.19 2 0.41 
C - Manufacturing 3664 44.26 996 47.11 241 46.44 220 44.72 
D - Electricity, gas, steam, air condi-
tioning supply 135 1.63 56 2.65 11 2.12 9 1.83 

E - Water supply,sewerage,waste 
management,remediation 386 4.66 44 2.08 11 2.12 8 1.63 

F - Construction 204 2.46 25 1.18 4 0.77 5 1.02 
G - Wholesale, retail trade, repair of 
motor vehicles 435 5.25 106 5.01 26 5.01 27 5.49 

H - Transportation and storage 543 6.56 109 5.16 20 3.85 16 3.25 
I - Accommodation and food service 
activities 15 0.18 1 0.05     

J - Information and communication 615 7.43 260 12.30 78 15.03 79 16.06 
K - Financial and insurance activi-
ties 255 3.08 95 4.49 23 4.43 21 4.27 

L - Real estate activities 53 0.64 7 0.33     

M - Professional, scientific and tech-
nical activities 1329 16.05 282 13.34 75 14.45 75 15.24 

N - Administrative and support ser-
vice activities 502 6.06 119 5.63 28 5.39 28 5.69 

O - Public administration and de-
fence, compulsory social security 2 0.02       

P - Education 10 0.12 4 0.19     
Q - Human health and social work 
activities 2 0.02       

R - Arts, entertainment and recrea-
tion 7 0.08 3 0.14 1 0.19 1 0.20 

S - Other service activities 10 0.12 2 0.09   1 0.20 
Total 8278 100.00 2114 100.00 519 100.00 492 100.00 
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Table A-5: Size Classes Kununu  

 MIP 2017 Full Sample Estimation Sample 
(Training) 

Estimation Sample 
(Image) 

# of 
Employees N Percent N Percent N Percent N Percent 

0-9 2326 28.69 224 10.92 21 4.05 24 4.88 
10-49 3274 40.38 633 30.86 108 20.81 108 21.95 
50-249 1752 21.61 708 34.52 190 36.61 176 35.77 
250+ 755 9.31 486 23.70 200 38.54 184 37.40 
Total 8107 100.00 2051 100.00 519 100.00 492 100.00 

Note: For 171 firms in the MIP 2017 sample, the number of employees is not available in the data. 

 

Table A-6: Sector Coverage Facebook 

 MIP 2017 Full Sample 
Estimation 

Sample 
 N Percent N Percent N Percent 
A - Agriculture, forestry and fishing 13 0.16 1 0.06   

B - Mining and quarrying 98 1.18 9 0.58 3 0.32 
C - Manufacturing 3664 44.26 686 44.57 407 43.11 
D - Electricity, gas, steam, air conditioning sup-
ply 135 1.63 28 1.82 19 2.01 

E - Water supply, sewerage, waste management, 
remediation 386 4.66 37 2.40 24 2.54 

F - Construction 204 2.46 27 1.75 19 2.01 
G - Wholesale, retail trade, repair of motor ve-
hicles 435 5.25 97 6.30 66 6.99 

H - Transportation and storage 543 6.56 104 6.76 66 6.99 
I - Accommodation and food service activities 15 0.18 5 0.32 4 0.42 
J - Information and communication 615 7.43 173 11.24 112 11.86 
K - Financial and insurance activities 255 3.08 57 3.70 32 3.39 
L - Real estate activities 53 0.64 7 0.45 5 0.53 
M - Professional, scientific and technical activi-
ties 1329 16.05 191 12.41 116 12.29 

N - Administrative and support service activities 502 6.06 109 7.08 67 7.10 
O - Public administration and defence, compul-
sory social security 2 0.02     

P - Education 10 0.12 2 0.13 1 0.11 
Q - Human health and social work activities 2 0.02 1 0.06 1 0.11 
R - Arts, entertainment and recreation 7 0.08 3 0.19 2 0.21 
S - Other service activities 10 0.12 2 0.13   

Total 8278 100.00 1539 100.00 944 100.00 
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Table A-7: Size Classes Facebook 

 MIP 2017 Full Sample Estimation Sample 
# of 

Employees N Percent N Percent N Percent 

0-9 2326 28.69 277 18.49 132 13.98 
10-49 3274 40.38 573 38.25 379 40.15 
50-249 1752 21.61 430 28.70 292 30.93 
250+ 755 9.31 218 14.55 141 14.94 
Total 8107 100.00 1498 100.00 944 100.00 

Note: For 171 firms in the MIP 2017 sample, the number of employees is not available in the data. 

 

Table A-8: Robustness Check: OLS Regressions Kununu - A Least 3 Ratings 

 (1) (2) (3) (4) 

Dependent Variable: Training: 
Kununu rating 

ln(Training: 
Kununu rating) 

Image: 
Kununu rating 

ln(Image: 
Kununu rating) 

     

ln(Training expenditures) 0.0945*** 0.0341***   
 (2.70) (2.87)   
     

ln(Marketing expenditures)   0.0886*** 0.0274*** 
   (3.37) (3.17) 
     

ln(Turnover) 0.0199 0.0119 -0.0403 -0.00998 
 (0.47) (0.81) (-0.88) (-0.68) 
     

ln(Number of employees) -0.0916 -0.0331* -0.0544 -0.0160 
 (-1.64) (-1.71) (-0.99) (-0.88) 
     

Industry dummies  Yes Yes Yes Yes 
     

adj. R^2 0.126 0.129 0.136 0.137 
Observations 613 613 582 582 
Robust t statistics in parentheses   

* p<0.10, ** p<0.05, *** p<0.01   

  



29 

Table A-9: Robustness Check: OLS Regressions Kununu - A Least 5 Ratings 

 (1) (2) (3) (4) 

Dependent Variable: Training: 
Kununu rating 

ln(Training: 
Kununu rating) 

Image: Kununu 
rating 

ln(Image: Kununu 
rating) 

     

ln(Training expenditures) 0.0820** 0.0284**   
 (2.00) (2.10)   
     

ln(Marketing expenditures)   0.0907*** 0.0275*** 
   (3.11) (3.05) 
     

ln(Turnover) 0.00118 0.00684 -0.0714 -0.0196 
 (0.03) (0.46) (-1.39) (-1.20) 
     

ln(Number of employees) -0.0659 -0.0266 -0.0211 -0.00571 
 (-1.15) (-1.38) (-0.34) (-0.28) 
     

Industry dummies  Yes Yes Yes Yes 
     

adj. R^2 0.131 0.131 0.105 0.104 
Observations 433 433 413 413 
Robust t statistics in parentheses   

* p<0.10, ** p<0.05, *** p<0.01   
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B Additional Graphs  

Figure B-1: Histogram Training: Kununu Rating 

 

 

Figure B-2: Histogram Image: Kununu Rating 
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Figure B-3: Histogram Ln(Image: Facebook Likes) 

 

 

Figure B-4: Scatterplot Training: Kununu Rating vs MIP Ln(Training Expenditures) 

 

0
.0

5
.1

.1
5

.2
.2

5
D

en
si

ty

0 5 10 15
ln(Image: Facebook likes)

Estimation Sample - 944 Observations

0
.0

5
.1

.1
5

.2
.2

5
D

en
si

ty

0 5 10 15
ln(Image: Facebook likes)

Full Sample  - 1498 Observations

1
2

3
4

5

-10 -5 0 5
ln(Training expenditures)

Training: Kununu rating Fitted values

Estimation Sample - 519 Observations

1
2

3
4

5

-10 -5 0 5
ln(Training expenditures)

Training: Kununu rating Fitted values

Full Sample - 531 Observations



32 

Figure B-5: Scatterplot Image: Kununu Rating vs MIP Ln(Marketing Expenditures) 

 

 

Figure B-6: Scatterplot: Ln(Facebook Likes) vs MIP Ln(Marketing Expenditures) 
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