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Coordinating to avoid the catastrophe

Vitus Bühl∗ Robert C. Schmidt†
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Abstract

In the presence of a tipping point for dangerous climate damages, the cooper-

ation problem of climate protection can be transformed into a coordination prob-

lem that is much easier to deal with (Barrett, 2013). This holds in particular if

the amount of greenhouse gas emissions that triggers the catastrophe is precisely

known, while the well-known free-rider problem re-appears if the location of the

threshold is sufficiently uncertain. In this paper, we focus on the question how the

non-signatories (outsiders of a climate agreement) coordinate to avoid the catas-

trophe, if the tipping point is known. In particular, in light of a multiplicity of

equilibria in this coordination problem, the assumption that outsiders will always

successfully coordinate to avoid the threshold, even if this is in their collective in-

terest, seems overly optimistic. We analyze how the probability that the outsiders

coordinate on an equilibrium in which the threshold is avoided, affects the incen-

tives of countries to join the climate coalition. In some cases, there are multiple

equilibria at the participation stage: an equilibrium with full participation, and an

equilibrium in which a much smaller coalition forms – just large enough to achieve

an outcome in which the catastrophe is avoided with positive probability.

Keywords : tipping point, climate catastrophe, coordination game, international environ-

mental agreement, climate cooperation
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1 Introduction

Whilst anthropogenic climate change itself gains more and more attention, also the idea

of possible tipping points is getting spread. The latter can be reached when thresholds for

a maximal increase in temperature, which is often linked to the CO2eq-concentration in

the atmosphere, are exceeded so that catastrophic or at least dangerous climate damages

occur (Lenton 2011).

In contrast to the standard model, where climate damages and abatement costs are

continuous functions, as for example in Barrett (1994), and the international problem of

abating emissions is seen as a social dilemma, Barrett (2013) argues that in the presence

of tipping points the social dilemma may be reduced to a mere coordination problem.

In the latter paper this is true if the potential damage of exceeding the threshold is

high and the position of the threshold is known with sufficient precision. In this situation

a climate treaty would only serve as a coordination device, to pin down the amount of

abatement each country has to contribute.

Under those circumstances, cooperation turns out to be very stable. A coalition acting

as a Stackelberg leader can, by committing to abate only a certain amount thus leaving

a gap to the needed threshold, punish countries which are not in the coalition to abate

their maximum feasible amount of emissions. This results if the gap, left by the coalition,

to reach the threshold is exactly the sum of the outsiders maximal abatements they are

willing to contribute to deter the catastrophe. Therefore every outsider would be better

off by joining the coalition (or indifferent in the knife-edge-case).

In our paper we drop the assumption made in Barrett (2013) that outsiders are always

able to coordinate on the equilibrium to close the gap (if this is a feasible equilibrium)

and thereby prevent the catastrophic climate damages when the coalition on its own does

not abate enough to stay on the save side of the threshold.

The reason for doing this is that Barrett’s assumption (Barrett 2013) seems overly

optimistic (from the perspective of the coalition members), whilst an assumption that the

outsiders always fail to coordinate on the equilibrium to prevent the catastrophe, if such

an equilibrium exists, seems overly pessimistic. The first case would imply, that coalition

members only abate the minimal amount for which it still holds, that the outsiders fill the

gap to reach the threshold. In this case the outsiders would be better off than letting the

catastrophe happen, or in the knife-edge-case, they would be indifferent between abating,

therefore preventing the catastrophe or contributing nothing. Latter would then trigger

the catastrophe. Considering this indifference it seems implausible to assume that the

outsiders are always able to coordinate on the equilibrium to prevent the catastrophe.

On the other hand the assumption that the outsiders never coordinate on the equi-

librium which prevents the catastrophe leads to small coalition sizes, as there will be

only enough members to prevent the catastrophe on their own while the outsiders are
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freeriding and abating nothing.

This paper seeks to bridge the gap between these two, kind of extreme, assumptions,

where on the one hand outsiders never coordinate and on the other hand always coordinate

to prevent the catastrophe. To achieve this, we assume that the outsiders may fail to

coordinate on the preventing equilibrium if such an equilibrium exists, with a certain

probability. This probability is assumed to depend on the amount of abatement the

outsiders have to achieve to prevent the catastrophe and the number of outsiders.

2 The Model

There are N ex ante symmetric countries, facing a potential climate catastrophe. The

tipping point for reaching the catastrophe is located at Q̄, so that the catastrophe occurs

if the total abatement of all countries, Q =
∑

i qi satisfies Q < Q̄, where qi ≥ 0 is

the abatement of emissions of country i. If the catastrophe occurs, each country incurs

damages of X > 0. The tipping point is avoided and no damages are incurred if Q ≥ Q̄.

Country i’s abatement costs are given by C(qi), with C ′(qi) > 0, and C ′′(qi) ≥ 0 for all

qi > 0 and C(qi) = 0 for qi = 0.

The game comprises three stages: in stage 1, each country decides whether or not to

join a climate coalition; in stage 2, the coalition members collectively decide about their

abatement targets, so as to maximize the joint welfare of the coalition members; in stage

3, the outsiders choose their abatement levels individually and non-cooperatively. The

game is analyzed by backwards induction. We denote by k the number of signatories

that join the coalition in stage 1, and by Qc the total abatement of all coalition members

chosen in stage 2. The number of non-signatories is denoted by n = N − k, and their

total abatement is denoted Qn.

The following observation will facilitate the characterization of equilibria: there is

a maximum abatement effort per country, denoted by q̃, that any country would still

be willing to invest in order to prevent the catastrophe, assuming that this country is

pivotal. This maximum effort is given by:

C(q̃) = X ⇔ q̃ = C−1(X).

We assume throughout that

q̃ < Q̄ < Nq̃. (1)

If Q̄ > Nq̃, there can never exist an equilibrium in which the catastrophe is avoided with

strictly positive probability, as the total abatement required for this would exceed the

maximum willingness to abate aggregated over all countries. If, by contrast, Q̄ < q̃, there

is clearly no equilibrium (in pure strategies) in which the catastrophe may occur, as a
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single country would be willing to prevent the catastrophe on its own, if no other country

invests any effort to prevent it.

Stage 3:

We focus on equilibria in pure strategies. However, following Karp and Sakamoto (2019),

we assume that in case of a multiplicity of equilibria, the equilibrium that is actually

played is chosen randomly. If Qc ≥ Q̄, then the joint efforts of the coalition members are

sufficient to prevent the catastrophe. Then there is a unique equilibrium in stage 3, such

that the abatement of all outsiders is zero: qni = 0. Any deviation by an outsider that

entails a positive abatement effort leads to a lower welfare for this country. If Qc < Q̄,

there can be two equilibrium types in stage 3: either the outsiders coordinate to avoid

the catastrophe, such that their joint abatement effort Qn satisfies: Qn = Q̄−Qc, or they

fail to avoid the catastrophe, in which case none of these countries chooses any positive

abatement effort: qni = 0 for all outsiders. It is easy to see, that there can be no other

equilibrium outcome in stage 3: if Qn > Q̄ − Qc, then at least one outsider can gain a

strictly higher welfare by (slightly) lowering its effort, without triggering the catastrophe.

And if 0 < Qn < Q̄ − Qc, then the catastrophe occurs with certainty, so that any non-

signatory that chooses a strictly positive effort, can reach a higher welfare by deviating

to an effort level of zero.

Clearly, if Q̄−Qc > nq̃, then the unique equilibrium in stage 3 entails qni = 0 for all

outsiders. Hence, it remains to characterize the set of equilibria for the intermediate case

where Q̄−nq̃ ≤ Qc < Q̄. In other words, this is the case where the total effort required for

the non-signatories to avoid the catastrophe satisfies: Qn ∈ (0, nq̃]. Unless Qn = nq̃ holds

exactly, there is a multiplicity of equilibria of the type where the catastrophe is avoided,

as the exact distribution of the burden of abatement among the non-signatories is not

fully determined. In the simplest case, this burden is shared equally, so that qni = qn

holds for all non-signatories, where qn = Qn/n. With strictly convex abatement costs,

this is also the most efficient outcome.

Lemma 1. If Q̄ − Qc ∈ (0, q̃), the equilibrium where qni = 0 for all outsiders fails to

exist, so in any pure-strategy Nash equilibrium in stage 3, the catastrophe is avoided with

certainty. If Q̄−Qc ∈ [q̃, nq̃], both types of equilibria co-exist.

Proof of Lemma 1. Considering the first case and imagining the situation, that non of

the outsiders would abate any emissions. In this situation at least one of the outsiders

would be willing to abate the whole amount Q̄ − Qc as it is smaller then q̃, so that this

country would still be better off than not abating and therefore incurring the damage X.

In the second case however, if no outsider abates any emissions, no outsider on its own can

gain any increase in welfare, by deviating, thus abating up to q̃, as the catastrophe would
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still happen with probability 1, therefore this is one type of equilibrium for this case. On

the other hand, if the outsiders collectively would abate Q̄ − Qc, while no outsider has

to abate more than q̃, the catastrophe would be avoided with certainty. If any outsider

deviates in this situation by reducing its emissions, the catastrophe would happen with

probability 1 again, therefore the deviating outsider would be strictly worse off. Hence

in the second case the two types of equilibria coexist.

Let us denote by Fn(Q̄ − Qc) the probability that countries coordinate on the equi-

librium where qni = 0 for all outsiders. Figure 1 illustrates the finding of Lemma 1. If

Q̄ − Qc < q̃, then in stage 3, there is no equilibrium in which the catastrophe occurs,

hence, Fn(Q̄ − Qc) = 0. Conversely, if Q̄ − Qc > nq̃, there is no equilibrium in which

the catastrophe is avoided, so that Fn(Q̄−Qc) = 1. However, in the intermediate range:

Q̄ − Qc ∈ [q̃, nq̃], according to Lemma 1, both types of equilibria co-exist. This cor-

responds to the light green area in Figure 1. For values of Q̄ − Qc in this range, the

probability with which the outsiders fail to prevent the catastrophe, can lie anywhere

between 0 and 1.
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Figure 1: Probability of outsiders to not prevent catastrophe, as function of Q̄−Qc

We follow Karp and Sakamoto (2019) by assuming that a randomization device selects

among the set of equilibria. This selection may depend on the size of the “gap” (to

prevent the catastrophe), Q̄ − Qc , as well as on the number of outsiders that need to

coordinate, n. The notation Fn(Q̄ − Qc) highlights this dependency, but suppresses the

information on how the burden of abatement is split among the non-signatories, in case

they coordinate on an equilibrium in which the catastrophe is avoided (with certainty).

Again, in the simplest case, one may assume that the burden is split equally among the

non-signatories, but there are other equilibria in which the burden is split differently.

While this does not affect the (expected) welfare of the coalition members, it does affect
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the welfare of the non-signatories, and hence, the stable coalition size (to be determined

in stage 1). We will return to this issue later.

The chances of coordinating on an equilibrium in which the catastrophe is avoided,

may depend also on the (average) burden per outsider, if the catastrophe is to be avoided.

For example, it may be plausible to assume that the outsiders are more likely to coordinate

to avoid the catastrophe, if the burden per outsider is lower. Hence, it is convenient to

define:

fn(qn) ≡ Fn(Q̄−Qc = nqn),

where qn ≡ Q̄−Qc

n
is the average burden per outsider, if the catastrophe is avoided (under

an equal burden sharing, it holds that qni = qn).

A simple case is if the outsiders always coordinate to avoid the catastrophe, if such

an equilibrium exists. In Figure 1, the function Fn(Q̄−Qc) would then be at the bottom

of the light green rectangle in the intermediate range. However, the assumption that the

outsiders always successfully coordinate to avoid the catastrophe seems overly optimistic.

Especially with many outsiders, coordination may easily fail. On the other hand, to

assume that outsiders never avoid the catastrophe, if such an equilibrium exists, seems

overly pessimistic. A simple way to bridge these extreme views is to assume, that there

is a smooth transition from Fn = 0 to Fn = 1 as the “gap” Q̄ − Qc is raised gradually

from q̃ to nq̃. A linear transition is indicated in Figure 1, see the dashed green line in

the center of the figure. In terms of the function fn, this linear relation is depicted in

Figure 2, for two different values of n, denoted n1 and n2, such that n1 > n2.
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𝑞𝑞�/𝑛𝑛2 

Figure 2: Probability of outsiders to not prevent catastrophe, as function of qn

Clearly, under the above linear assumption, the function fn increases more steeply

with the average burden per outsider, qn, if n is smaller.

Below, we will analyze coalitional stability for this linear relation, but before we get
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there, it might be useful to characterize the two extreme cases which our model wants to

bridge the gap in between.

Border cases

As mentioned there are two rather extreme cases, where the outsiders either never coordi-

nate on the equilibrium to avoid the catastrophe or always coordinate on this equilibrium,

always provided such an equilibrium exists. To illustrate these two cases seems useful to

later analyse the somewhat intermediate approach of our model. For those border cases

we assume a quadratic cost function C(q) = q2

2
.

Case 1: Outsiders always coordinate on catastrophe-preventing equilibrium if

possible The first case is where the outsiders always coordinate on the equilibrium to

prevent the catastrophe, if this exists. The existence of such an equilibrium is dependent

on the abatement a possible coalition would leave the outsiders. As mentioned in Lemma

1, an equilibrium where the catastrophe is avoided exists for Q̄−Qc ∈ [0, nq̃]. Therefore a

coalition could always push each of the outsiders to abate q̃ by leaving a gap of Q̄−Qc =

nq̃. As assumed, Q̄ < Nq̃, which means that in a situation with a coalition size of

k = 0 at least one outsider would prefer to form a singleton coalition, thereby abating

Q̄−nq̃ < q̃. It is easy to see, that also the remaining outsiders want to join the coalition,

as they always end up abating Q̄−(N−k)q̃
k

< q̃, so that their welfare is strictly higher in the

coalition. This process only ends when the grand coalition is reached. Latter is stable as a

deviation of an coalition member, by abating less than Q̄/N would trigger the catastrophe

so that each country would have an additional welfare loss of X = C(q̃) > C( Q̄
N

) where

the right hand side is the maximum saving a deviating country could gain, by abating 0.

Case 2: Outsiders never coordinate on catastrophe-preventing equilibrium

if another equilibrium exists The other extreme case occurs, when the outsiders

never coordinate on the catrastophe-preventing equilibrium, if this and the catastrophe-

inducing equilibrium exist. As this case is a little bit more complicated, we will solve it

using backwards induction also, but being a little bit more explicit, starting with stage

3: The outsiders either abate Qn = Q̄ − Qc for Q̄ − Qc ≤ q̃ or they abate Qn = 0 for

Q̄−Qc ≤ 0. While the latter is clear, the former comes from Lemma 1, where it is proven,

that for Qn ≤ q̃ there is no equilibrium where the outsiders do not abate, therefore the

only remaining equilibrium is abating Qn ≤ q̃. This brings us to Stage 2, where the

coalition either abates Qc = Q̄− q̃ for Q̄− q̃ ≤ kq̃ and k < N , Qc = 0 for Q̄− q̃ > kq̃ or

Qc = Q̄ for Q̄ ≤ kq̃ and k = N . It is easy to see that the size of a coalition which abates

a positive amount Qc = Q̄− q̃ > 0 is given by k ≥ Q̄−q̃
q̃

. As a deviation in stage 2, by a

country lowering abatement, would immediately trigger the catastrophe, thus incurring
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a damage of X = C(q̃) ≥ C(qc), there is no incentive for such a behaviour in this

stage. Stage 1 comprises the coalition formation. Lets first look at the grand coalition,

where k = N . Such a coalition avoids the catastrophe with certainty, as Q̄ < Nq̃ and

therefore C( Q̄
N

) ≤ C(q̃) = X. Deviating at this Stage would give a coalition size of

k = N − 1, whereas the one outsider will be left with a gap of q̃. This abatement qn = q̃

is strictly larger than what the deviating country would have had to abate in the coalition

qc(k∗ = N) = Q̄
N

, so that no country has an incentive to leave the grand coalition. This

also means that a coalition which comprises k = N − 1 members is never stable, because

the remaining outsider always prefers to join the coalition. This leaves us with coalition

sizes, for which it holds that k ≥ Q̄−q̃
q̃

and k < N − 1. This coalition, together with the

outsiders would prohibit the catastrophe with certainty. To describe what coalition sizes

are possible let us start with the minimal viable coaltion size kmin = Q̄−q̃
q̃

. Should one

of the coalition members decide to deviate by leaving the coalition, then the remaining

coalition stays inactive in stage 2, by not abating, thus triggering the catastrophe. The

proof is straight forward. If it holds exactly that kmin = Q̄−q̃
q̃
⇔ Qc = kq̃ = Q̄− q̃, than

any country leaving the coalition would cause the coalition to remain inactive, because

to prevent the catastrophe the remaining coalition members would still have to abate

Qc = Q̄ − q̃ = kq̃ but with k − 1 members, thus each member would have to abate

strictly more than q̃. In the following we will use r ≡ Q̄−q̃
q̃

as a short-hand notation. For

a coalition of the size k = r to be externally stable, we have to compare the welfares

an outsider has in this situation with the welfare a coalition member has at k∗ = k + 1.

If it holds that πc(k∗) ≥ πn(k) than the coalition is externally not stable. Formally the

condition for external instability can be written as:

πc(k∗) = −
( Q̄−q̃
k+1

)2

2
≥ πn(k) = −

( q̃
N−k )2

2

After rearranging we find that the coalition is externally not stable if:

r ≤ k + 1

N − k

Please note that the right-hand side of this equation is growing in k. Replacing k with

r, as the minimal possible value, we get:

r ≤ r + 1

N − r

so that it depends on r and N if the coaltion is externally stable. What can be seen

though, is that when the coalition of size k is not externally stable, then only the grand

coalition is stable, because the right-hand side of the equation grows in k while the left-

hand side stays at r. If on the other hand the coalition is externally stable, we have two
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stable coalition sizes. First k = kmin and secondly k = N .

Stage 2:

In stage 2, there are three types of equilibrium outcomes that may arise. The simplest

case is the case where the coalition members decide not to abate any emissions, and the

outsiders also don’t abate, so that the catastrophe occurs with certainty. In each of the

other two cases, the signatories choose positive efforts, and the catastrophe is avoided

with strictly positive probability. One possibility is that the signatories choose positive

efforts, while outsiders invest a small effort (equal to Qn = q̃) and the catastrophe is

avoided with certainty, hence: Qc = Q̄ − q̃. The other possibility is where Qc < Q̄ − q̃,
so that a larger effort of the non-signatories is needed to avoid the catastrophe, and the

catastrophe occurs with strictly positive probability (smaller than 1).1

We maintain our earlier convention that qn ≡ Q̄−Qc

n
denotes the average burden per

outsider, IF the catastrophe is avoided in stage 3. This still allows for the case where the

outsiders only select such an equilibrium with a certain probability, and do not avoid the

catastrophe with the remaining probability, fn(qn).

We assume that signatories allocate their efforts equally among them. This is the

most plausible assumption, given ex ante symmetric countries. In stage 2, the expected

welfare per signatory is, thus:

πc = −C(qc)− fn(qn)X. (2)

The coalition members, acting cooperatively, seek to maximize πc over qc, anticipating

the behavior of the non-signatories in the subsequent stage 3. Unlike in stage 3, there

is no coordination problem among the signatories. Because they take their decisions

jointly and cooperatively, they simply select the value of qc (burden per signatory) that

maximizes the welfare per signatory. The welfare maximum is obviously unique. The

maximizer, qc, is generally also unique, except for some knife-edge cases where two (or

more) values of qc lead to the same maximum welfare.

To characterize the outcome of stage 2, we thus proceed in the following steps, corre-

sponding to the three possible types of equilibrium outcome mentioned at the beginning

of this subsection. We first calculate the welfare per signatory in the two “extreme cases”.

One extreme case is where signatories do not abate at all, and non-signatories do not fill

the gap. The resulting welfare per country is obviously given by −X. The other “ex-

treme” case is where signatories avoid the catastrophe mostly on their own, such that

Qc = Q̄ − q̃. This implies qc = (Q̄ − q̃)/k, so that πc = −C((Q̄ − q̃)/k). Welfare in

1Another possible case for some general distribution of the probability-function fn(qn) might be
Qc = 0, and the outsiders nevertheless avoid the catastrophe with probability 1. To rule this out, we
assume that fn(qn = 0) ≥ 0 and fn(qc > 0) > 0.
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these two cases is then compared with the welfare in case of an “interior solution”, such

that Q̄ − nq̃ < Qc < Q̄ − q̃ ⇔ Q̄ − Qc ∈ (q̃, nq̃). If such an interior solution exists, it is

characterized by the following condition:

C ′(qc) = −f ′n(qn)X
∂qn

∂qc
.

We will discuss uniqueness of an interior solution (if such exists) below. Existence of an

interior solution requires that the corresponding value of qc that solves the above first-

order condition, indeed lies in the “interior range”, i.e., that it satisfies Qc = kqc < Q̄− q̃.2

Otherwise, a corner solution is obtained such that Qc = Q̄ − q̃, and the catastrophe is

avoided with certainty.

In a final step, welfare in these cases is compared, and signatories select the value of

qc that delivers the maximum welfare.

In an interior solution, the condition qn = Q̄−Qc

n
is satisfied, which (together with

Qc = kqc) implies
∂qn

∂qc
= −k

n
.

Furthermore, from the definition of q̃, we have: X = C(q̃). The above first-order condition

can thus be rewritten as:

C ′(qc) =
k

n
C(q̃)f ′n

(
Q̄− kqc

n

)
.

If an interior solution exists, this condition implicitly defines the corresponding value of

qc.

If fn(qn) is either linear or convex in qn in the interior range, and C(q) is convex in q,

then the solution to the above first-order condition (if there is a solution) is unique. To

see this, notice that an increase in qc leads to a rise in the left-hand side of the condition,

C ′(qc), while the right-hand side is either declining in qc, or constant (in the linear case).

In order to obtain more specific results, we will in the following adopt the linear

specification of the function fn that corresponds to the dashed line in Figure 1 (middle

part of the figure). It is straight-forward to verify that the linear specification corresponds

to:

Fn(Q̄−Qc) =

Q̄−Qc

q̃
− 1

n− 1
.

Hence:

fn(qn) =
nqn − q̃
(n− 1)q̃

,

2The other condition, Qc > Q̄− nq̃ ⇔ Q̄−Qc < nq̃, is never binding, as will be argued below.
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which yields:

f ′n(qn) =
n

(n− 1)q̃
.

The above first-order condition then simplifies to:

C ′(qc) =
k

n− 1

C(q̃)

q̃
.

Let us impose even more structure on the model, by assuming that the abatement cost

function has the following quadratic specification: C(q) = q2/2. Then C ′(qc) = qc and

C(q̃) = q̃2/2, so that we immediately obtain:

qc =
kq̃

2(n− 1)
, and qn =

Q̄− kqc

n
=

2(n− 1)Q̄− k2q̃

2n(n− 1)
. (3)

By inserting the above expressions for qc and qn in (2), the resulting welfare per signatory

in case of an interior solution in stage 2 can be written as:

πc = − q̃2

8(n− 1)2

(
−k2 + 4(n− 1)

Q̄− q̃
q̃

)
.

using r ≡ Q̄−q̃
q̃

as a short-hand notation, and replacing n by N − k, this welfare can be

expressed as a function of the coalition size k:

πc(k) = − q̃2

8(N − k − 1)2

(
4(N − k − 1)r − k2

)
. (4)

Recall that this is the welfare per signatory in case of an interior solution. After some

rearrangements, we can also express the probability with which the outsiders fail to

prevent the catastrophe (in case of an interior solution) as a function of k:

fn =
2(n− 1)r − k2

2(n− 1)2
,

where n = N − k.

Let us now compare the above results for the different types of outcomes that may

arise. Let us start by investigating when the case where the coalition members decide

not to abate any emissions, and the outsiders also don’t abate, may arise. Such a case

can only emerge as an equilibrium outcome in stage 2, if it holds true that – given

Qc = 0 – in stage 3, the non-signatories indeed choose not to abate with probability 1.

This amounts to the following condition: Q̄ ≥ nq̃, hence, if the coalition is sufficiently

large: k ≥ N − Q̄/q̃.3 Notice, that this is a necessary, not a sufficient condition, for the

case to arise where no country abates any positive amount. Intuitively, given our earlier

3It is easy to verify that this condition is equivalent to r ≥ n− 1.
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assumptions, non-signatories have the advantage that if they choose to abate a positive

amount, they always avoid the catastrophe with certainty. In other words, none of their

abatement efforts are “wasted”. By contrast, signatories cannot recoup their abatement

efforts invested in stage 2, in case the outsiders fails to coordinate on an equilibrium in

which the catastrophe is avoided in stage 3. In such a case, the signatories’ efforts are

indeed wasted. Anticipating this possibility, the signatories may decide not to invest into

abatement at all.

Also for the case where the catastrophe is avoided with certainty, and Qc = Q̄− q̃ so

that outsiders contribute only a small amount of Qn = q̃ to the aggregate abatement, a

simple necessary condition can be formulated. Namely, Qc = Q̄− q̃ can only be optimal

if qc = Qc/k = Q̄−q̃
k

< q̃, hence, if k > Q̄−q̃
q̃

= r. Otherwise, signatories would rather not

abate at all, and let the catastrophe occur with certainty. Again, the condition k > r is

just a necessary, not a sufficient condition for this case to arise in equilibrium.

Next, we investigate under what conditions an interior solution can emerge, such that

the catastrophe occurs with strictly positive probability (smaller than 1), and signatories

as well as non-signatories choose positive abatement effort, given by (3). For this to be

the case, it must hold that qn ∈ (q̃/n, q̃) (see Figure 2). The case where qn ≥ q̃ ⇔
Qc ≤ Q̄ − nq̃ cannot emerge. This would imply that signatories leave a “gap” for the

non-signatories that is so large, that each of them prefers not to abate at all, rather than

to avoid the catastrophe. The catastrophe would, thus, occur with certainty, so that any

positive abatement efforts of the signatories would be wasted, amounting to a welfare per

signatory below −X. Hence, this outcome is from the signatories’ perspective strictly

inferior to the outcome where no country abates any positive amount at all. By contrast,

the condition qn > q̃/n ⇔ Qc < Q̄ − q̃ plays an important role. If it is violated, an

interior solution does not exist, as the welfare per signatory is higher in the case where

Qc = Q̄ − q̃, so that the catastrophe is avoided with certainty (corner solution). The

condition qn > q̃/n can be rewritten as follows, using (3):

2(n− 1)
Q̄− q̃
q̃
≥ k2,

or equivalently:

r ≥ k2

2(N − k − 1)
=

k2

2(n− 1)
≡ rcrit1 . (5)

The other crucial condition for an interior solution to exist is πc ≥ −X, where πc is the

welfare of a signatory given in (4). If this condition is violated, then signatories prefer not

to abate any positive amount, thereby triggering the catastrophe with certainty, rather

than to invest an effort of qc per country according to (3). The condition πc ≥ −X can

12



be rewritten as:

4(n− 1)
Q̄− q̃
q̃
− k2 ≤ 4(n− 1)2,

or equivalently

r ≤ 4(N − k − 1)2 + k2

4(N − k − 1)
= n− 1 +

k2

4(n− 1)
≡ rcrit2 . (6)

Next, we analyze for what coalition sizes k an interior solution can exist at all. An interior

solution exists if r lies in between the two critical values stated in (5) and (6). Hence, an

interior solution can only exist if rcrit2 > rcrit1 , or equivalently:

k <
2(N − 1)

3
.

If k exceeds this value, which implies that the coalition comprises around two thirds of

all countries or more, then there is no interior solution. Then if r is sufficiently small,

which means that the damages are large relative to the necessary efforts to avoid them,

then the coalition avoids the catastrophe mostly on its own (i.e., Q̄−Qc = q̃). Otherwise,

the signatories prefer not to abate at all, and let the catastrophe occur with probability

1. The indifference point between these two cases is where r = k, as this corresponds to

qc = q̃ given Q̄−Qc = q̃ (see above).

Figure 3 illustrates the values of the crucial parameter r, capturing the damages and

necessary efforts to avoid them, for which the three types of outcomes indicated at the

beginning of this section occur, depending on the coalition size k. Note, that the critical

values for r shown in this figure only depend on the parameter N . They are independent

of the parameters X and Q̄, reflecting the damages if the catastrophe occurs, resp. the

total efforts needed to avoid the catastrophe. These enter the above conditions ((5) and

(6)) only via the (combined) parameter r.

Interestingly, as Figure 3 illustrates, the formation of a coalition of an intermediate

size can prevent countries from avoiding the catastrophe, in situations where the catas-

trophe would be avoided with positive probability under a smaller (or a larger) coalition

size. This effect is again related with our earlier assumption that in case of an interior

solution, coalition members cannot be sure if their efforts are fruitful or wasted, whereas

in the absence of any coalition, efforts are never wasted. This leads to an efficiency loss

under partial cooperation (i.e., if there is a coalition with relatively few members). By

contrast, in the absence of any coalition, countries only avoid the catastrophe with a cer-

tain probability, but IF they invest in abatement, the efforts are never wasted and Q = Q̄

is precisely satisfied. In the presence of a sufficiently large coalition, this efficiency loss

vanishes. But in this case, the outsiders free-ride to a large extent on the efforts of the

signatories, who avoid the catastrophe (mostly) on their own. This explains, why for
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Figure 3: Possible types of outcomes, depending on coalition size k

fairly large values of k (k > 2(N−1)
3

), the catastrophe may still occur with probability 1

for values of r, such that in the absence of any cooperation, the catastrophe would be

avoided with strictly positive probability. Only if there is a grand coalition (k = N), or

a coalition of N − 1 countries, all of these effects are absent. To see this, notice that if

k = N − 1, the catastrophe is avoided if and only if r ≤ N − 1, which is equivalent to

Q̄/N ≤ q̃. We are now ready to analyze the equilibrium coalition size(s) in this model.

Stage 1:

There are often multiple ‘stable’ (i.e., equilibrium) coalition sizes in this model. Let us

directly begin with the following observation:

Proposition 1. Under a known location of the threshold Q̄, the grand coalition (k∗ = N)

is always stable, while a coalition of size N − 1 is never stable.

Proof of Proposition 1. Recall that our earlier assumption that Q̄ < Nq̃ implies r <

N − 1. Hence, if a grand coalition forms, it always avoids the catastrophe with certainty,

and the welfare per country strictly exceeds −X. Under a coalition size of k = N − 1,

by contrast, the coalition members always set Qc = Q̄ − q̃, so that the only remaining

outsider obtains a welfare of −X. This is because there is no coordination problem in this

case, so that the signatories can assure that the catastrophe is avoided, and yet, force the

outsider to invest her maximum effort (q̃) to prevent the catastrophe. The outsider, thus,

strictly prefers to deviate at the participation stage, thereby joining the coalition.

The result builds heavily on the assumption that the location of the threshold is

precisely known from the outset. In an extension, we will consider also the case where
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the location of the threshold is not known with certainty from the outset. Then different

results will be obtained, as the coalition members generally cannot be sure that the

outsider avoids the catastrophe with certainty, if they leave too much of the burden to

the remaining outsider. We will return to this issue later.

The next observation is, that for coalition sizes k < N , but sufficiently close to N , any

remaining outsiders strictly prefer to deviate and join the coalition. In Proposition 1, this

was already indicated for k = N − 1, but often, it also holds for somewhat smaller values

of k. As k decreases, the incentives to join for the outsiders are, however, declining. This

is because (for sufficiently large values of k) the coalition always leaves a ‘gap’ of the same

size: Q̄ − Qc = q̃ for the outsiders to avoid the catastrophe, but as k declines, there are

more outsiders (n = N−k) who share that burden. Therefore, there is a critical coalition

size, below which the incentive for the outsiders to join the coalition are reversed, and

instead, it becomes profitable for insiders to leave the coalition (or, more precisely: to

deviate at the participation stage by not joining the coalition). To determine the critical

coalition size that separates the case where outsiders prefer to deviate by joining from

the case where insiders prefer to deviate by not joining the coalition, it is necessary to

specify how outsiders share the burden of “closing the gap” to avoid the catastrophe.

Lemma 2. Under the assumption that outsiders split the burden equally, so that each

outsider abates qn = (Q̄−Qc)/n to close the gap, provided that Q̄−Qc ∈ (0, q̃], the critical

coalition size that separates the case where outsiders prefer to deviate by joining from the

case where insiders prefer to deviate by not joining the coalition, is characterized by:

r =
k

n
.

Proof of Lemma 2. Note that for sufficiently large values of k, the catastrophe is always

avoided with certainty and the signatories avoid it mostly on their own (so Q̄−Qc = q̃).

Hence, the welfare per signatory equals the welfare per non-signatory if and only if qc = qn,

where qc = (Q̄− q̃)/k, and qn = q̃/n. This immediately yields r = k/n.

Lemma 2 has an interesting policy implication. Namely, if the international commu-

nity seeks to coordinate on a cooperative agreement that comprises most (in our model:

all) countries, it is necessary to start building a sufficiently large coalition. The coalition

size needs to reach at least a certain “threshold size” (in our model, it is implied by

the condition r = k/n). Once that is achieved, the coalition “stabilizes itself”, as any

remaining outsiders actually prefer to deviate and join the coalition. This is due to the

threshold in the climate system. The signatories leave a burden for the outsiders that is

on average larger than the burden per insider. By contrast, if countries fail to coordinate

on a coalition that has at least this threshold size, cooperation unravels as countries prefer

to exit the coalition.
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The “threshold coalition size” that separates the case where outsiders prefer to deviate

by joining from the case where insiders prefer to deviate by not joining the coalition, is

illustrated in Figure 4 (see the red curve), for the case where the outsiders share their

burden of abatement equally. For k = N − 1, the critical value r = k/n equals N − 1.

However, if r is very close to N−1, exiting the coalition is not a profitable deviation, as a

coalition of size N−2 is already too small to prevent the catastrophe at all (see Figure 4).

For smaller values of r, given a coalition size below the critical value, a deviation “to the

left” (by not joining) is profitable, while for a coalition size above the critical value, a

deviation “to the right” by joining is profitable.

If outsiders do not share their burden of abatement equally, there must be at least

one outsider that finds deviating at the participation stage by joining the coalition more

attractive than implied by the red curve (r = k/n) in Figure 4. Given our assumption of

ex ante symmetric countries, the most natural case is where the identities of countries that

carry a higher burden than others, are determined randomly.4 Due to the convexity of the

abatement cost function, this means that the critical coalition size above which outsiders

prefer to deviate and join the coalition, is then smaller. In Figure 4, this would correspond

to a (non-parallel) shift of the red curve to the left. To simplify the exposition, we will

in the following focus on the case where the outsiders share the burden of abatement

equally. Nevertheless, the key insights of our analysis do not depend on this simplifying

(and rather natural) assumption. Qualitatively, our main results are preserved also under

alternative assumptions about this burden sharing.

To illustrate this, we can look at a rather extreme case, where only one of the outsiders,

which is determined randomly, has to abate the missing q̃. In this case each of the

outsiders faces a chance of p = 1/n to abate q̃ and a chance of (1− p) = 1− 1/n to abate

nothing. Therefore the expected cost of an outsider can be written as E(cn) = − q̃2

2n
. As

it still holds, that fn = 0, because Q̄ − Qc ≤ q̃, E(cn) is also the expected welfare of

an outsider. As before, it must hold, that πc = πn, so −−q̃2
2n

= −1
2
( Q̄−q̃

q̃
)2. Solving this

equation yields that the separation line now can be described as r = k√
n
≥ k

n
for n, k ≥ 1

resulting in the above described (non-parallel) shift to the left.

As Proposition 1 indicates, the grand coalition is always stable (given a known thresh-

old). Furthermore, as argued above, given a large value of r (very close to N − 1), even

if k < N , a deviation of an insider by not joining the coalition is not profitable, if the

deviation induces the entire coalition to become inactive in terms of abatement, while it

is active without the deviation. The crucial condition here is that a deviation “to the

left” (by not joining) can only be profitable, if the critical line r = k is not crossed. This

brings us to the next result:

4For example, half of the outsiders may not invest in abatement at all, while the others split the
burden equally.
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Figure 4: Direction of profitable deviations at stage 1 (green arrows), depending on k

Proposition 2. If r ≥ 2(N−1)
3

, k∗ = dre, where dre is the smallest integer at least as

large as r, is a stable coalition size, if dre < N − 2.

Proof of Proposition 2. Given a coalition size that satisfies k = dre, a deviation of a

(prospective) coalition member at the participation stage, thereby not joining the coali-

tion, is never profitable, as this deviation leads to a coalition size that falls short of the

critical size k = r, which renders the entire coalition inactive. The country, thus, strictly

prefers to stay inside the coalition (by joining in stage 1). Furthermore, a deviation by an

outsider, thereby joining the coalition, is also not profitable, if dre < N − 2, because the

deviation is insufficient to cross the critical curve r = k/n (a necessary but not sufficient

condition for such deviation to be profitable) – see Figure 4. To show that this also holds

for small values of N and what actually is the lowest value of N for which such a situation

can arise, we go into a little bit more detail here. First we pin down the lowest value N

for which it holds that r ≥ 2(N−1)
3

and dre < N − 2, so that the described situation can

arise. The lowest N clearly comes from r = 2(N−1)
3

= N − 3. Thus Nmin = 7. Next we

show, that the intersection of k = r/n and a vertical line at k = N − 2 is lower than
2(N−1)

3
for N ≥ 7. To achieve this, we solve r = k/n = k

N−k for k and get the intersection

with k = N − 2. This can be noted as Nr
1+r

= N − 2 and yields r = N−2
2

, which is clearly

smaller than 2(N−1)
3

for N > 2. Therefore the critical line can never be crossed in this

situation as it always lies right of N − 2 for r = 2(N−1)
3

. Only if dre = N − 2, deviating

from k = dre to k′ = N − 1 crosses the critical curve r = k/n, so that the deviation

might be profitable. To see if such a deviation actually is profitable we compare the

welfare of an outsider, where k = N − 2 and the welfare of a coalition member, when

k = N − 1. Former yields πn(k = N − 2) = − q̃2

2n2 = − q̃2

8
, while the latter can be written

as πc(k = N − 1) = −1
2
( Q̄−q̃
N−1

)2. For a deviation of an outsider at k = N − 2 it must
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hold that πc(k = N − 1) > πn(k = N − 2). Solving this inequality leads to r ≤ (N−1)
4

.

Inserting the lowest possible value r = 2(N−1)
3

yields:

2(N − 1)

3
≤ N − 1

4

which only holds for N = 1. As the described situation only arises if N > 6, this poses

a contradiction, so that a deviation of an outsider at k = N − 2 is never profitable

for r ≥ 2(N−1)
3

. For dre = N − 1, a deviation to k′ = N − 1 is always profitable, see

Proposition 1.

Figure 5 illustrates the results of Propositions 1 and 2.5 The green lines indicate the

stable coalition sizes for the given value of the (combined) parameter r.6 For any value

of r (with r < N − 1, which is equivalent to Q̄ < Nq̃), k∗ = N is a stable coalition size

(Proposition 1). Furthermore, for 2(N−1)
3
≤ dre < N − 2 (where the right inequality is

equivalent to r ≤ N −3), also k∗ = dre is a stable coalition size, where dre is the smallest

integer at least as large as r.

Figure 5: Stable coalition sizes k∗ (green lines) for r ≥ 2(N−1)
3

Note, that the equilibrium where k∗ = dre (for r ≥ 2(N−1)
3

) is of a “threshold type”.

This means that the stable coalition size is just large enough to lie above some critical

threshold. Here, this threshold is the critical coalition size (characterized by the condition

k ≥ r), below which the signatories would remain inactive, so that the catastrophe occurs

for sure. To prevent this inaction of the coalition, the signatories prefer to stay inside

5The range of values shown in the figure correspond to a rectangle in the top right corner of Figure 4.
6Of course, the stable coalition size k∗ depends on the parameter r (and not vice versa). For better

comparability with our earlier figures, we maintain the convention that k is on the horizontal, and r on
the vertical axis.
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the coalition, rather than “leaving it” (by not entering in stage 1). By contrast, the

equilibrium with k∗ = N is not of a threshold type.

It is interesting to note, that the equilibrium with k∗ = N corresponds to the outcome

that is obtained under the assumption that outsiders always coordinate to avoid the

catastrophe, if avoidance is an equilibrium (this variant of the model is analyzed in detail

in the section ”Border cases”). In that case, the signatories can extract the maximum

willingness to abate from the outsiders by lowering their own efforts, so that they obtain

a higher welfare than the outsiders. Any remaining outsiders, thus, always prefer to join

the coalition. Similarly, the equilibrium where k∗ = dre (for r ≥ 2(N−1)
3

) corresponds

to the outcome that is obtained under the assumption that outsiders never coordinate

to avoid the catastrophe, if non-avoidance is an equilibrium (also found in the section

”Border cases”). In that case, the outsiders free-ride on the efforts of the signatories,

and a coalition forms that is just large enough to invest in abatement. In this sense,

our model “inherits” properties of each of these extreme cases and, at least for a range

of parameter values, displays both of these equilibrium types. However, the analysis of

equilibria in the present model is not completed yet.

Let us now turn to the analysis of stable coalition sizes k∗ ≤ d2(N−1)
3
e (if such exist).

Here, the threshold r = k no longer plays a role. Instead, the type of outcome (no

avoidance, interior solution, avoidance with Q̄−Qc = q̃) now depends on the location in

the k-r-space relative to the critical values rcrit1 and rcrit2 , as well as r = k/n (see Figure 3).

Let us define kcrit1 as the value of k that solves k = rcrit1 for k ∈ [0, 2(N−1)
3

]. Additionally

let us define kcrit2,left as the value of k that solves k = rcrit2 for k being left of the minimum

of the rcrit2 -curve and kcrit2,right as the value of k that solves k = rcrit2 for k being right of

said minimum.

In case of an equilibrium in the interior range, hence, a value of k such that an

interior solution is obtained in stage 2, the stable coalition size can be approximated by

the condition: πn(k) = πc(k). In most cases, this will give a reasonable approximation of

the actual coalition size(s) that satisfy the conditions of internal and external stability.

The expected payoff of a non-signatory is:

πn(k) = −(1− fn(qn))C(qn)− fn(k)X.

Equalizing the payoff per outsider with the payoff per signatory yields the condition:

C(qc) = C(qn)(1− fn(qn)).

Replacing qc and qn by the expressions given in (3) yields a higher-order polynomial in the

coalition size k. Hence, we cannot provide a closed-form solution for the stable coalition

size, if there is a stable coalition size that yields an interior solution, but this coalition
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size can be computed numerically. Still we can provide some conditions for which certain

kinds of outcomes have to arise.

Proposition 3. For any value of r ∈ ( 2
N−2

, N − 1), there exists at least one more stable

coalition size, in addition to k∗ = N , and k∗ = dre (for r ≥ 2(N−1)
3

). That additional

stable coalition size is strictly smaller than k∗ = dre (for r ≥ 2(N−1)
3

), resp. weakly smaller

than k∗ = dkcrit1 e (for r < 2(N−1)
3

).

Proof of Proposition 3. Consider first a (given) coalition size of k = 0. Then either it

holds true that at least a single country prefers to form a (singleton) coalition, or no

country prefers to cooperate. In the latter case, k∗ = 0 is a stable coalition size. This

case can only arise if r is sufficiently large. Otherwise it must hold that the expected

welfare of the single coalition member would be higher than the expected welfare the

country would have received, when staying an outsider. Therefore we have to compare

those welfares, where we can write the expected welfare for every country, if the coalition

size equals zero, to be

πn(k = 0) = −q̃2N
2r +N(1 + r)2 − (1 + r)3

2N2(N − 1)
.

and the expected welfare of the single coalition member to be

πc(k = 1) = − q̃
2(4(N − 2)r − 1)

8(N − 2)2

From those two equations we can calculate if a single coalition member can achieve a

higher welfare, then by staying outside of the coalition and therefore gaining the welfare

where there is no coalition at all. By setting πn(k = 0) = πc(k = 1) and solving for r we

can get the value of r, where at least one country would be indifferent to form a singleton

coalition. This value can be written as:

3

√
N2
(
8N3 − 68N2 + 3

√
3
√

64N4 − 696N3 + 2747N2 − 4302N + 2187 + 239N − 243
)

6 (N − 2)2/3

+
2 (N − 5)N

8
3

3
√
N2 − 4N + 4

3
√

3N − 6

· 1
3
√

8N3 − 68N2 + 3
√

3
√

64N4 − 696N3 + 2747N2 − 4302N + 2187 + 239N − 243

+
N

3
− 1 = rmax

(7)

For all values of r above this rmax, no country has an incentive to form a singleton
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coalition, which means, that if additionally r ≥ 2(N−1)
3

holds, the only stable coalition

size in addition to k∗ = N , and k∗ = dre is k∗ = 0. This is area A in Figure 7.

If on the other hand r ≤ rmax and r ≥ 2(N−1)
3

(Area B in Figure 7) then there has

to be an interior solution with k∗ ≥ 1. This is because even if the singleton coalition is

not externally stable, the coalition size may only grow so large that the rcrit2 -curve is not

crossed (k ≤ bkcrit2,leftc). This area can only exist if N ≥ 6 as only then rmax is strictly

larger than 2(N−1)
3

as can be seen in see Figure 6.

Figure 6: rmax (dotted), rcrit2,min (solid) and r = 2(N−1)
3

(dashed) depending on N

The next area we look at is where it holds that r ≤ rmax and r < 2(N−1)
3

. This area can

be further divided into a small part where r lies between 2(N−1)
3

and above the minimum

of the rcrit2 -curve (Area C in Figure 7) and the larger rest below, but where r > 2
N−2

still

holds.

To get the r-value of the minimum of the rcrit2 -curve we calculate the first order

condition through differentiation with respect to k:

δrcrit2

δk
=
−4N2 + (10k + 8)N − 5k2 − 10k − 4

4 (N − k − 1)2 = 0

This yields two solutions for k, of which only the following constitutes the k for a mini-

mum, which can be proven easy by the second derivative (not shown).

kmin =

(
1−
√

5

5

)
(N − 1)
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Inserting this back into the equation for rcrit2 yields:

rcrit2,min =
(
√

5− 1)(N − 1)

2

In this area it is certain, that there are two additional stable coalition sizes. This

situation alwas occurs for N ≥ 3 as can be seen in Figure 6, because it must hold that

rcrit2,min <
2(N−1)

3
. One has to be a true interior solution, for the same reasons discussed

for area B. The second stable coalition size can be of the interior kind or it may be at

k∗ = dkcrit1 e. This is due to the fact, that for coalition sizes below the values of k that

satisfy r = k/n, countries have an incentive to leave the coalition, unless this directly

triggers the no-avoidance or they reach the interior zone. Therefore these incentives to

exit are not reversed for r < 2(N−1)
3

, as long as k > dkcrit1 e continues to hold. This follows

from the fact that in this range, it always holds that Q̄−Qc = q̃, but the more outsiders

there are, the lower the burden per outsider. This implies that the coalition size falls,

at least until we enter the range of the interior solution. Hence, there must be a stable

coalition size weakly smaller than k∗ = dkcrit1 e (for r < 2(N−1)
3

), and greater than kcrit2,right.

Only if kcrit2,right ≥ dkcrit1 e − 1 it is clear, that the second additional equilibrium is exactly

at k∗ = dkcrit1 e, because any coalition member leaving at this k∗ would immediately put

the remaining coalition in the no avoidance zone.7

Figure 7: Different areas of Proposition 3 for N = 20

7Actually, there is a very small area directly above the minimum of the rcrit2 -curve, where the wideness
of the avoidance zone is smaller than 1. Due to the integer constraint on k, it could happen that the
no-avoidance-zone is simply jumped when the coalition size k grows or shrinks by 1. However, up to
today no case of this actually happening could be found numerically.
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For the last area D in Figure 7 of this Proposition it can only be concluded, that there

is a stable coalition size k for which it must hold that 1 ≤ k∗ ≤ dkcrit1 e. This reasoning

is quite analogue to the right-hand side interior equilibrium in area C. For coalition sizes

below the values of k that satisfy r = k/n and r ≤ rcrit2,min, countries will always leave the

coalition, unless they reach the interior zone. Therefore these incentives to exit are not

reversed for r < 2(N−1)
3

, as long as k > dkcrit1 e continues to hold. Hence, there must be a

stable coalition size weakly smaller than k∗ = dkcrit1 e and strictly greater than 0.

Proposition 4. For any value of r ∈ (0, 1
N−1

), there exists only k∗ = N as a stable

coalition size.

To be continued: This has to be checked for r ∈ [ 1
N−1

, 2
N−2

] as the singleton coalition

k∗ = 1 is feasible and k′ = k∗ + 1 would cross the critical curve r = k/n of k = r/n as a

necessary but not sufficient condition for this deviation to be profitable. If it is profitable

only the grand coalition would be stable. Otherwise additionally k∗ = 1 would be a stable

coaliton size.

Proof of Proposition 4. This proof is straight forward. As for r < 1
N−1

it always holds,

that r < rmax so the singleton coalition will be formed. Upon forming this coalition

the critical curve r = k/n is already crossed, so that the coalition grows until the grand

coalition is reached. Therefore, there can not be any other equilibrium for this range of

r-values.

2.1 Preliminary numerical equilibrium and welfare analysis

As mentioned before, the actual stable coalition sizes in the described model depend on

the used parameters and the form of the cost- and probability-function used in the model.

Also the different welfare outcomes therefore depend on those. In the following we provide

a numerical example using the above specified forms for the cost- and probability-function

(quadratic, linear). Additionally we will set Q̄ = 1000 and N = 20, so that Figure 7 still

applies. X and therefore q̃ will be implicitly determined by the level of r. To keep

the analysis compact, we will only provide one example for every area B-D, so that we

will look at 3 different levels of r in the course of this section. For each example we

will calculate the stable coalition sizes, the abatement levels for coalition members and

outsiders, their resulting welfares and the global welfare Πglobal. The aim of this section

is to show what welfare level in comparison to the grand coalition can be achieved at the

additional stable coalition sizes.

Starting in area B, we set r = 13 and get the results shown in Table 1. Due to space

limitations we only show coalition sizes relevant for the analysis of stable equilibria.
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Table 1: Results for r = 13 (Area B)

r 13
k 0 1 5 6 7 13 20
qn 50.0 52.53 62.41 64.36 65.71 10.2 —
qc — 1.98 12.76 16.48 20.83 71.43 50
q̃ 71.43 71.43 71.43 71.43 71.43 71.43 71.43
fn(qn) 0.68 0.72 0.86 0.89 0.91 0 0
πn -2140.17 -2223.8 -2469.46 -2499.93 -2516.95 -52.06 —
pic — -1840.44 -2287.46 -2415.17 -2546.59 -2551.02 -1250
Πglobal -42803.44 -44092.72 -48479.26 -49490.08 -50546.55 -33527.7 -25000

Beginning with k = 0 it can be seen that this coalition size is externally unstable, so

that at least the singleton coalition will be formed. Upon forming the singleton coali-

tion the only member significantly reduces its abatement efforts, while the outsiders raise

abatement levels (if they coordinate on the catastrophe-preventing equilibrium) to com-

pensate this reduction. The described external instability continues (not shown) up until

k = 6. here we find that this coalition size is externally and internally stable. Interest-

ingly at this coalition size the expected global welfare is lower than in the case of k = 0,

where there is no cooperation at all. 8. Also the probability of the catastrophe to occur

is significantly larger then with k = 0. The second stable coalition size is the threshold

equilibrium (non-interior) at k = 13. Here we have a significant higher welfare than for

the interior solution. The last stable equilibrium for this parameter constellation is the

grand coalition (k = 20), which also yields the highest global welfare.

Table 2: Results for r = 12 (Area C)

r = 12
k 0 1 6 7 8 12 13 20
qn 50.0 52.52 63.82 64.84 64.69 26.1 10.99 —
qc — 2.14 17.75 22.44 27.97 65.93 71.01 50
q̃ 76.92 76.92 76.92 76.92 76.92 76.92 76.92 76.92
fn(qn) 0.63 0.67 0.82 0.83 0.83 0.24 0 0
πn -2329.1 -2429.66 -2789.45 -2812.89 -2808.2 -981.72 -60.38 —
πc — -1970.1 -2573.44 -2706.9 -2836.32 -2898.2 -2520.92 -1250
Πglobal -46582.06 -48133.62 -54492.93 -55515.78 -56388.97 -42632.17 -33194.62 -25000

Moving to area C, we set r = 12 and obtain the results shown in Table 2. Analogous

to area B, the singleton coalition is formed and the coalitions reimain externally unstable

until k = 7, which is the first interior solution for this parameter combination. As in area

B this solution yields a lower global benefit and a higher probability of the catastrophe

to happen than the situation where k = 0. This time there is a second interior solution

for k = 12. This equilibrium yields a slightly higher global welfare than for k = 0, but

8Latter is just used as a benchmark, as it is not a stable coalition size. The other benchmark is the
grand coalition which is a stable equilibrium.
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Table 3: Results for r = 4 (Area D)

r 4
k 0 1 6 7 8 20
qn 50.0 52.34 51.65 45.51 34.85 —
qc — 5.56 46.15 58.33 72.73 50
q̃ 200.0 200.0 200.0 200.0 200.0 200.0
fn(qn) 0.21 0.22 0.2 0.16 0.1 0
πn -5197.37 -5481.01 -5089.11 -4130.58 -2530.46 —
πc — -4429.01 -5088.76 -4965.28 -4628.1 -1250
Πglobal -103947.37 -108568.25 -101780.1 -88454.43 -67390.32 -25000

still is quite far from the result of the grand coalition. Interestingly the probability for

the catastrophe to occur is significantly lower.

Last we look at area D, therefore setting r = 4, which yields the results shown in

Table 3. Again we find a stable interior solution, this time at k = 7. In this case it holds,

that the global welfare is slightly higher and fn(qn) is slightly reduced than for k = 0, but

also this interior solution falls short, when compared to the results of the grand coalition

at k = 20.

To be continued: Maybe we can provide an analytical solution, when interior solutions

are worse than no coalition at all.

3 Preliminary Conclusion

First of all we could show, that, by introducing a probability for the outsiders to not

coordinate on the catastrophe-preventing equilibrium if there exists more than one feasible

equilibrium, there may be an additional kind of stable coalition sizes, which we describe

as interior solutions. Those interior solutions are characterized by the fact that, even

as the threshold is known with certainty, the catastrophe is only avoided with a certain

probability strictly larger than 0 and lower than 1. Generally it seems to hold, that

equilibria in the interior range (if such exist), do not yield significant welfare gains,

relative to the fully non-cooperative benchmark. In fact, the resulting welfare under this

type of cooperation can be even lower than in the absence of any cooperation, as we

showed with some numerical examples. The reason for this finding is that for very low

values of k, the few signatories only join the coalition in order to commit themselves not

to abate a lot. Then the non-signatories raise their efforts in response. So in a small

coalition, the signatories are actually the free-riders, while the outsiders abate more (in

case they coordinate to prevent the catastrophe). Only if the coalition size is sufficiently

large, the coalition members move from “free-riding” towards “contributing a lot”, while

the outsiders more and more play the role of free-riders. Hence, a small coalition (in the

interior range) is only profitable to a rather small extent, if at all.
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