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Abstract:
The functional income distribution in the US and most OECD countries has been character-
ized by an increasing capital income share and a declining wage share over the last decades.
We present new evidence for the US economy that this fact is not only explained by technical
change and globalization, but also by the dynamics of capital and labor income taxation,
automation capital, and population growth. In the empirical analysis, we find indications for
cointegrating equations for the 1974-2008 period. Permanent effects on factor shares emanate
from labor (relative to capital) tax shocks. Changes in relative factor taxation also perma-
nently affect the use of robots. Variance decompositions reveal that taxing accounts for up to
22% and up to 35% of observed changes in the two income shares and in automation capital,
respectively. In a second step, we present a standard neoclassical growth model augmented
by automation capital and capital adjustment costs that is able to replicate the dynamics of
the observed functional income distribution in the US during the 1965-2015 period. In par-
ticular, we demonstrate that the fall in the wage share would have been significantly smaller
if labor and capital income tax rates had remained at their respective level of the 1960s.



1 Introduction

The functional income distribution in most OECD countries has changed significantly

during recent decades. Fig. 1.1 displays the wage share as an annual time series ranging

from 1960 to 2018 in the United States (US), Japan, and the Euro-12 area, respectively.

Evidently, the wage share in total income has declined by 8% to 15% over the last 50

years in these economies, most markedly in Japan.

Many hypotheses have been formulated on the factors that contribute to the explana-

tion of the rising capital income share and the declining wage income share. Globaliza-

tion and skill-biased technological change are among the prime reasons. More recently,

Piketty (2014) has brought attention to an additional channel in order to explain the

declining share of wage income. In his seminal book on ‘Capital in the Twenty-First

Century’ he points out that the real interest rate is higher than the economic growth

rate over recent decades and, accordingly, the income share that is directed towards the

capitalists is increasing over time. However, the premises of his hypothesis crucially

depend on the assumption that the capitalists have an extremely high and empirically

unobserved savings rate. If they consume part of their income, the wealth-income ratio

and the capital income might even fall over time for realistic savings rates.1

In the US economy, the decrease in the wage share –and the simultaneous (slight)

increase in the capital income share– (Fig. 1.2) is mirrored by the shrinking difference

in the income taxes on labor and capital income and the decline in the population

growth rate (Fig. 1.3). Since labor and capital income are subject to different amounts

of allowances and exemptions and have to be paid from households and the corporate

sector (differing with regard to their tax treatment), capital and labor income are not

burdened equally by the US tax system. Fig. 1.3 (left schedule) presents the effective

capital and labor income tax rates for the US during 1954 to 2010 as computed by

Gomme et al. (2011). Evidently, capital income was taxed more heavily than labor

income in the last century; however, during recent years, the tax rates on capital and

labor income have converged. The average capital and labor income rates for this

period amount to 41% and 23%, respectively. Another development during recent

1To see this, assume a simple economy with two agents, a capitalist and a worker. Assume fur-

thermore that the worker consumes all his income, while the capitalist saves 50% of his income. For

a constant growth rate g = 2% and a real interest rate of r = 3% and an initial capital-income ratio

of 4, it is easy to show that the capital income share falls by half, from 12% to 6%, within 140 years.
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decades that coincides with the fall in the wage share is the behavior of population

growth rate which has fallen, in annualized terms, from 1.7% in 1950 to 0.7% in recent

years. The dynamics of the quarterly population growth rate are displayed in the right

schedule of Fig. 1.3.

Figure 1.1: Adjusted wage as a share of GDP [%], 1960-2018: Japan, US, Eurozone
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Note: Percentage of GDP at current prices; Source: AMECO database, OECD

Both developments of the income tax rates help to understand why the income of the

production factor labor has declined. The downward trend in the capital income tax

rate has increased the incentives to build up capital, while labor supply has declined

both because of increase in the labor income tax rate and because of lower population

growth. As argued by Heer and Irmen (2014), among others, the relative decline

in the labor force has increased incentives to invest in labor-saving technology. As

we observe empirically, automation capital replaces labor in the production process.

Lower population growth and a decline in the difference between capital and labor

income taxes precipitate this process. As automation capital replaces labor, the wage

share minimaly declines both empirically and in model simulations. A series to proxy

automation capital by the (nowcasted) stock of robots per 1,000 (full time) employees

in the US is shown in Fig. 1.4.

In the first part of the paper, we provide empirical evidence supporting this hypoth-

esis. We find indications for cointegrating relationships for the period from the first
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Figure 1.2: Quarterly US capital share (left schedule) and wage share (right schedule)
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Sources: Fernald (2014) for capital share; wage share: own calculation based on Bureau of Economic Analysis

(BEA) series for GDP and gross domestic income (GDI), the latter has been adjusted for self-employed income;

see the Appendix for detail.

Figure 1.3: Quarterly US income tax rates and population growth (SA): each in %
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quarter of 1974 to the fourth quarter of 2008 (henceforth, 1974:q1-2008:q4). Perma-

nent effects on factor shares emanate from shocks in relative factor taxation. Changes

in relative factor taxation also permanently and sizably affect the use of automation

capital. The forecast error variance decomposition (FEVD) analysis of fitted vector

error correction (VEC) models reveals that taxing policies account for up to roughly

22% of observed changes in the two income shares and for up to about 35% of the

dynamics in automation capital.

In the second part of the paper, we formulate a model that incorporates all these

explanatory factors of the dynamics for the functional income distribution. Accord-

ingly, we set up a neoclassical growth model with a production function in physical
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Figure 1.4: Robots per 1K workers in the US: annual and nowcasted quarterly data
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starting 1994:q4 they are obatined from Acemoglu and Restrepo (2019), original source: IFR;

Solid blue line: nowcasted (pseudo-)quarterly data; detail on nowcasting is given in Appendix

Sources: Tani (1989), Acemoglu and Restrepo (2019), IFR, CPS

capital and augmented labor where the latter production factor is simply the sum of

automation capital and labor so that automation capital substitutes linearly for labor.

With this model, we compute the dynamics of the wage share, the capital stock, the

automation capital stock and endogenous labor over the period 1965-2029. We assume

that automation capital was not introduced into production until 1965. As additional

elements of the model, we use the time series of labor and capital income tax rates as

well as the population growth rate displayed in Fig. 1.3. To render the model even

more realistic, we also introduce quadratic adjustment costs of capital in the tradition

of Hayashi (1982). As a result, our model is able to replicate the downward trend in

the wage share closely; in particular, it replicates the drop in the wage share from 62%

to 57% between 1965 and 2015.

The paper is organized as follows. In Section 2, we present time series evidence for the

US economy relying on cointegration analysis and VEC models. An extensive range

of corresponding test detail and robustness checks is summarized in the Appendix.

Section 3 presents a neoclassical growth model augmented by automation capital in

production which allows us to study i) the dynamic effects of capital and labor income

taxes and ii) replicate the dynamics of the wage share relative to the capital share over
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the period 1965-2015. Section 4 presents our results from the transition analysis in the

model with automation capital. We demonstrate that all variables population growth,

capital income taxes, and labor income taxes have a significant effect on the long-run

wage share, while the drop in the wage share has been mainly caused by the decline

in the capital income tax rate. Section 5 concludes. The methodological description of

the model’s transition analysis is delegated to the Appendix.

2 Empirical Analysis

2.1 Time series

To work with a decent sample length, allowing the use of multivariate time series

techniques, we throughout consider series in quarterly frequency for the US economy.

Our data set entirely spans the period from the first quarter of 1974 to the fourth

quarter of 2008. The limiting factor with regard to the length of our sample is the

quarterly series for US labor and capital income tax rates taken from Gomme et al.

(2011). The corresponding limiting factor regarding the start of the empirical analy-

sis is Tani (1989) who provides the numerator of the early part of actual datapoints

(in the 1970s biannually and as of the 1980s up to the middle of the decade in an-

nual frequency) for the nowcast of the automation capital series as shown in Fig. 1.4.

That is the industrial robot population in the US, where industrial robot is defined

by the still in use Industrial Organization for Standardization (ISO) definiton.2 The

denominator in the construction of datapoints underlying the dots in Fig. 1.4 prior

to 1986 is the corresponding annual average of the seasonally adjusted (SA) number

of full time employees in the US provided in the Current Population Survey (CPS).

The ISO normed definition of robots and the expression in “per thousand workers”

units allows us to combine it with corresponding annual data from the International

Federation of Robotics (IFR) as provided by Acemoglu and Restrepo (2019) in order

to nowcast a quarterly series of automation capital. For detail on the used nowcasting

technique, based on the procedure proposed by Shumway and Stoffer (2008) relying on

2Accordingly, the “industrial robot is an automatic position-controlled reprogrammable multifunc-

tional manipulator having several degrees of freedom capable of handling materials, parts, tools, or

specialized devices through variable programmed motions for the performance of a variety of tasks”

(Tani, 1989, p. 192).
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the Kalman filter in combination with the expectation maximization (EM) algorithm,

see the Appendix.

Fernald (2014) provides the capital share of income series in quarterly frequency. Quar-

terly series for the US population (in thousand) stems from the BEA and is provided,

as not SA series, in the FRED Federal Reserve Bank of St. Louis database. We sea-

sonally adjust this series by means of X12-ARIMA. Also from FRED we retrieve the

BEA series of US quarterly gross domestic income, i.e. compensation of employees in

the form of paid wages and salaries, and corresponding GDP series, from which we

construct our wage share series.

2.2 VEC model analysis

In the following we rely on the popular maximum likelihood (ML) based framework for

estimation and inference in cointegrating systems that is also referred to as “Johansen

approach.” Before going into detail of the VEC model (VECM) analysis, it is advisable

to clarify the central variables which are to be included. These series are the two tax

rates as well as the two corresponding income shares. While it is, due to natural log

transformation, technically feasible to jointly consider the labor and capital income

shares, a joint integration of both types of income tax rates, despite taking natural

logs, into a particular VECM specification is for reasons of (near perfect) collinearity

not viable. An alternative to including both tax rates is the construction and use of

the labor-tax-to-capital-tax ratio (LCTR, Fig. 2.1) which serves as a workaround in

our VECM specifications. It organically takes care of the historical tax policy mix.

2.2.1 Johansen procedure

Our reduced form model space consists of three central dimensions: a relatively exoge-

nous variable Xt (population growth), a policy variable Yt (the factor tax policy mix,

that is, the LCTR), and a multivariate group of response variables Wt (our automation

capital proxy and the two factor shares), making it

Zt = [Xt, Yt,Wt]⇒ Zt = A1Zt−1 + A2Zt−2 + ...+ ApZt−p + ut, (2.1)

which is summarized in standard VEC notation as

∆Zt = Γ1∆Zt−1 + Γ2∆Zt−2 + ...+ Γp−1∆Zt−p−1 + ΠZt−1 + ut, (2.2)
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Figure 2.1: Labor-tax-to-capital-tax ratio (LCTR), 1954:q1 to 2008:q4
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where Γi = (I−A1−A2 − ...−Ap) for all i = 1, ..., p. Π can be thought of as being

composed of adjustment speed matrix a, and long run coefficients matrix b, such that

Π = ab′, where b′Zt−1 is the vectorial analogue to the error correction term in the

Engel-Granger approach. For an exemplary unity lag order

∆Zt =


∆Yt

∆Xt

∆Wt

 = Γ1


∆Yt−1

∆Xt−1

∆Wt−1

+ Π


Yt−1

Xt−1

Wt−1

+ et = Γ1



∆Yt−1

∆Xt−1

∆W1 t−1

∆W2 t−1

∆W3 t−1


+



a11 a12 a13 a14

a21 a22 a23 a22

a31 a32 a33 a34

a41 a42 a43 a44

a51 a52 a53 a54




b11 b21 b31 b41 b51

b12 b22 b32 b42 b52

b13 b23 b33 b43 b53

b14 b24 b34 b44 b54





Yt−1

Xt−1

W1 t−1

W2 t−1

W3 t−1


+ et

;

(2.3)

and the central requirement of cointegration (CI) is a reduced rank of Π = a
n×r

(
b
n×r

)′
,

that is, Zt ∼ I (1) ⇒ ∆Zt−1 ∼ I (0) ⇒ ΠZt−1
!∼ I (0) for ut ∼ I (0), allowing for
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up to (n − 1) = 5 − 1 = 4 CI-relationships of the form b′Zt−1 ∼ I (0), r ≤ (n − 1)

cointegrating vectors ∈ Π, i.e. r columns of b form r linearly independent stationary

combinations of variables ∈ Zt.

In a first step of the Johansen-procedure, we perform augmented Dickey-Fuller (ADF)

tests for unit roots for all series of our dataset as described in the preceding section.

In all cases, except the population series, for which the following holds for its log first

differences transform, the unit root hypothesis cannot be rejected at a one percent level

of significance according to the MacKinnon approximate p-values. For any of the log

first differences transforms the null of a unit root is rejected at all conventional levels

of significance. The order of integration of variables that are considered is the same,

i.e. I(1); see the Appendix for detail. In a second step the choice of the appropriate

lag length is made resorting to likelihood ratio (LR) testing, where we set, following

Schwert (1989), pmax =
[
12 · (T/100)

1
4

]
with rectangular parantheses denoting the

nearest integer part of the argument which in our case, i.e. for T = 140, equals 13

quarters.

As Π = − (I−A1−A2 − ...−Ap), or equivalently Π =
∑p

i=1 Ai − I, the Johansen-

procedure makes use of Granger’s Representation Theorem which states that if matrix

Π has reduced rank r < n with n denoting the number of non-stationary variables

considered, then there exist n × r matrices a and b each with rank r such that Π =

ab′ and b′Zt ∼ I (0); r then is the number of cointegration relations (cointegrating

rank) and each column of b is a cointegrating vector. However, before estimating Π,

deterministic components of general system

∆Zt = Γ1∆Zt−1 + ...+ Γp−1∆Zt−p−1

+a


b

m1

d1


′ (

Zt−1 1 t
)

+ m2 + d2t+ ut (2.4)

need to be chosen. The above system can discriminate four central versions: (v1) No

intercept or trend in the cointegrating equation (CE) or VAR part (d1 = d2 = m1 =

m2 = 0); (v2) intercept and no trend in CE part and neither intercept nor trend in

VAR part (d1 = d2 = m2 = 0), i.e. the no linear trend in data case (first differences

have zero mean); (v3) intercept in CE part and VAR part, but no trends (d1 = d2 = 0),

i.e. no linear trends in levels of data case; (v4) intercept in CE part and VAR part

8



paralleled by a linear trend in CE part or VAR part, i.e. the linear trend in the CE case,

sometimes also referred to as exogenous growth case. Following the Pantula Principle,

we start with the most restrictive model, i.e. r = 0 in combination with v1, moving

gradually to the least restrictive model or to r = n − 1 in combination with v4. For

each gradual step, the trace-test statistics is compared with the critical value and the

iteration stops when for the first time the null of no cointegration is not rejected. This

determines the order of Π, i.e. the number of cointegration vectors. Besides trace-based

rank testing, we cross-check and validate our findings with maximum eigenvalue and

information criteria-based cointegration rank tests. For detail see the Appendix.

2.2.2 Identification strategy

Our set-up implies an identification scheme for the VAR part of the VECM specification

that resembles what has become known as “Slow-r -Fast” scheme –named after order

of partitioning of dependent variables’ vector by nature of its, partially sub-vectorial,

elements– in the literature (Stock and Watson, 2016, p. 455, pp. 477-478). It has been

used, in particular, to identify monetary policy shocks (Bernanke et al., 2005). Under

this scheme so-called slow-moving variables such as output and prices do not respond

to monetary policy rate dynamics or to movements in fast-moving variables, such as

expectational variables, within the period. This renders a block recursive scheme,

for which the ordering within the respective elements of the partitioned Zt vector is

not decisive for the system rotation matrix. In our application, population growth is

supposed to be “the least” endogenous and does not respond to the policy variable, i.e.

to either the labor or the capital tax rate or to the LCTR, and to any of the response

variables, which are comprised of our automation capital measure and the two factor

shares, i.e. the labor share and capital share of income. As we are only interested

in the responses to innovations in the tax policy variables, the ordering within Wt

is uncritical. For the ∆Z (VAR-) part of the respective VECM, the following block

recursive scheme to identify responses to innovations ε, with orthogonalized analogues

η, is implied
ηXt

ηYt

ηWt

 =


HXX 0 0

HY X HY Y 0

HWX HWY HWW




εXt

εYt

εWt

 for Φ (L) ∆Zt =


ηXt

ηYt

ηWt

 , (2.5)

where Zt is partitioned Zt =
(
Xt Yt Wt

)′
, and HWW is square.
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2.2.3 Results

Our lag order selection of p = 13 for (2.1), (2.2), corresponding to pmax, is supported

by the adequate Likelihood ratio (LR) test. The Johansen testing procedure fails to

reject the null of at most three cointegrating equations in (2.1), (2.2) for all versions,

(v1) to (v4), of VECM representation (2.4). The second cointegration equation in the

standardly used Johansen-normalization identification clearly indicates a statistically

significant equilibrium relationship between the LCTR series and the two factor shares.

Additionally, our specification is stable adhering to the implied eigenvalue stability con-

dition. Further detail on these findings confirming the acceptability of our specification

is summarized in the Appendix.

Figure 2.2: Orthogonalized IR functions of factor shares to LCTR shock
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Impulse response (IR) functions of factor shares in response to a relative increase of

taxing labor vis-à-vis capital, i.e. to a positve LCTR innovation, are given in Fig. 2.2.

A positive one percent LCTR shock lets the capital share of production permanently

increase by five percent. The wage share response (right schedule of Fig. 2.2) is

negative. Though also permanent in nature, it is quantitatively less pronounced.

The use of robots per 1,000 workers as a response variable reasonably shows a per-

manent negative reaction to a positive shock of population growth (left schedule of

Fig. 2.3) with an orthogonalized one percent shock implying a long-run decrease of
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five percent. In contrast, the automation capital use in the US responds to relative

factor taxation in a more pronounced fashion, peaks after 25 quarters, and lies slightly

below 0.5 percent after two decades (right schedule of Fig. 2.3).

Figure 2.3: Orthogonalized IR functions of automation capital use series
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Note: Left (Right) diagram shows response to population growth (LCTR) impulse.

Table 2.1: FEVD values for an LCTR shock by response variable

Step Capital share Wage share Automation capital

10 0.010460 0.126208 0.296361

20 0.050732 0.118803 0.354056

30 0.080220 0.125973 0.347809

40 0.085780 0.127680 0.332902

50 0.086906 0.129162 0.325100

60 0.090602 0.128036 0.313584

70 0.091387 0.123696 0.299503

80 0.091690 0.117447 0.289272

Table 2.1 shows some FEVD statistics for the three response variables, capital share,

wage share and automation capital, given a positive LCTR innovation. After about

30 to 40 quarters, relative factor taxation accounts for up to 9% (13%) of observed

11



changes in the capital (labor) income share and for up to 35% of the dynamics in the

automation capital series. While the effect starts to die out after 20 years (falling below

30%) for the use of robots, it only slightly diminishes for the two factor shares.

3 The Neoclassical Growth Model with Dynamic Taxes and

Automation Capital

In this section, we present our neoclassical growth model that is augmented by au-

tomation capital. In addition, we integrate the dynamics of the tax rates on capital

and labor income.

3.1 Households

The number of households is denoted by Nt. Population grows at rate nt:

Nt+1 = (1 + nt)Nt. (3.1)

Households maximize inter-temporal utility

U0 =
∞∑
t=0

βt [u(ct, 1− lt) + ν(gt)] , (3.2)

where ct, 1 − lt, and gt denote consumption, leisure, and government consumption in

period t. The household is endowed with one unit of time in each period t and supplies

labor at the amount of lt. The utility from government consumption gt is additively

separate so that gt does not affect household optimization with respect to consumption

and labor.

Instantaneous utility u(., .) is specified as a Cobb-Douglas function:

u(c, l) =
1

1− η
(
cθl1−θ

)1−η
, (3.3)

where θ and 1− θ denote the weights of consumption and leisure in utility.

Households own two kind of assets, traditional capital kt and automation capital pt (in

per capita terms), which both depreciate at the common rate δ:

(1 + nt)kt+1 = (1− δ)kt + ikt , (3.4a)

(1 + nt)pt+1 = (1− δ)pt + ipt . (3.4b)
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Investment on physical and automation capital is denoted by ikt and ipt , respectively.

Following Hayashi (1982), we introduce quadratic adjustment costs for both kinds of

capital kt and pt with x ∈ {k, p} symmetrically:

Φx(ixt , xt) = ixt + a1
(ixt )

2

2(a2 + xt)
, (3.5)

where, in addition to the standard specification of Φ(.) as, for example, in Heer and

Scharrer (2018), a small constant a2 is introduced to handle the case with zero automa-

tion capital, pt = 0.

The household receives income from labor wtlt, which is taxed at the rate τ lt , and

interest income on both physical capital, rkt kt, and automation capital, rpt pt, which are

both taxed at rate τ kt , respectively. In addition, the household receives government

transfers trt in period t. The household spends his income on consumption ct, which is

taxed at the constant rate τ c, and on investment in both forms of capital. Accordingly,

the household budget constraint is presented by:

(1+τ c)ct+Φk(ikt , kt)+Φp(ipt , pt) = (1−τ lt )wtlt+(1−τ kt )rkt kt+(1−τ kt )rpt pt+trt. (3.6)

The first-order conditions of the household are presented by:

λt(1 + τ c) = θc
θ(1−η)−1
t (1− lt)(1−θ)(1−η), (3.7a)

λt(1− τ lt )wt = (1− θ)cθ(1−η)t (1− lt)(1−θ)(1−η)−1, (3.7b)

qkt = λt

(
1 + a1

ikt
a2 + kt

)
, (3.7c)

qpt = λt

(
1 + a1

ipt
a2 + pt

)
, (3.7d)

(1 + nt)q
k
t = β

{
λt+1

[
(1− τ kt+1)r

k
t+1 − a1

(
ikt+1

)2
2(a2 + kt+1)2

]
+ qkt+1(1− δ)

}
, (3.7e)

(1 + nt)q
p
t = β

{
λt+1

[
(1− τ kt+1)r

p
t+1 − a1

(
ipt+1

)2
2(a2 + pt+1)2

]
+ qpt+1(1− δ)

}
, (3.7f)

where qt and qpt denote Tobin’s q on pyhsical and automation capital, respectively, and

are equal to the Lagrange multipliers on the capital accumulation equations.3

3The first-order conditions are derived in the Appendix.
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3.2 Production

We consider the production function following Steigum (2011) and Prettner (2017):4

Yt = A [Lt + κPt]
1−αKα

t . (3.8)

with the aggregate labor supply Lt ≡ Ntlt, aggregate automation capital Pt ≡ Ntpt,

and aggregate traditional capital Kt ≡ Ntkt.

Firms maximize profits

Πt = Yt − wtLt − rktKt − rptPt,

implying the first-order conditions

wt = (1− α)A

[
Kt

Lt + κPt

]α
, (3.9a)

rpt = (1− α)κA

[
Kt

Lt + κPt

]α
, (3.9b)

rkt = αA

[
Lt + κPt
Kt

]1−α
. (3.9c)

In equilibrium, profits are zero due to the assumption of constant returns to scale and

competitive goods and factor markets.

3.3 Government

The government spends its tax revenue on government consumption and transfers:

Ntgt +Nttrt = Nttaxt, (3.10)

with per capita taxes taxt presented by

taxt = τ cct + τ ltwtlt + τ kt r
p
t pt + τ kt r

k
t kt. (3.11)

4In addition to these authors, we introduce a productivity factor κ of automation capital Pt. For

the specification with κ = 1.0, we find that the wage share drops to 10% in the first year when the

households build up automation capital Pt > 0.
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3.4 Equilibrium conditions

In equilibrium, the resource constraint (in per capita terms) of the economy is presented

by:

yt = ct + gt + Φk(ikt , kt) + Φp(ipt , pt). (3.12)

Accordingly, total production is spent on private and public consumption and invest-

ment in both capital goods.

3.5 Initial steady state without automation capital

In the initial steady state corresponding to the time period t = 0 (which we set to

1965), the stock of automation capital is set equal to zero, p0 = 0. We also assume

that the population growth rate n, the tax rates τ c, τ l, and τ k are all constant and

equal to the values prevailing in 1965. The economic growth rate of the economy is

also equal to zero.

Therefore, the initial steady state is represented by the following 8 equations in the 8

endogenous variables k, l, ik, c, w, rk, qk, and λ:

Al1−αkα = c+ g + Φk(ik, k), (3.13a)

w = (1− α)A

[
k

l

]α
, (3.13b)

rk = αA

[
l

k

]1−α
, (3.13c)

1− τ l

1 + τ c
w =

1− θ
θ

c

1− l
, (3.13d)

ik = (n+ δ)k, (3.13e)

qk = λ

(
1 + a1

i

a2 + k

)
, (3.13f)(

1 + n

β
− (1− δ)

)
qk

λ
= (1− τ k)rk − a1

(ik)2

2(a2 + k)2
, (3.13g)

(1 + τ c)λ = θcθ(1−η)−1(1− l)(1−θ)(1−η). (3.13h)

3.6 Automation Capital and Asymptotic Steady State

Assume that population growth is constant in the long run, nt = n. In addition, the

tax rates are constant, too, with τ kt = τ k and τ lt = τ l. The factor prices are presented

15



by

wt = (1− α)A

[
k̃t

1 + κp̃t

]α
, (3.14a)

rpt = (1− α)κA

[
k̃t

1 + κp̃t

]α
, (3.14b)

rkt = αA

[
1 + κp̃t

k̃t

]1−α
. (3.14c)

with k̃t ≡ kt
lt

and p̃t ≡ pt
lt

.

It is straightforward to show that, asymptotically, the two returns on the assets must

be equal, rk = rp,5 implying

(1− α)κA

[
k̃t

1 + κp̃t

]α
= αA

[
1 + κp̃t

k̃t

]1−α
,

or

k̃t =
α

1− α
1 + κp̃t
κ

. (3.15)

Therefore, the asymptotic real interest rate on capital is equal to

rk = rp = αα(1− α)1−ακ1−αA. (3.16)

In the long-run equilibrium with positive growth, γ > 0, the coefficient ikt /(a2 + kt)

converges to ikt /kt = ik/k. From the equation for the capital stock accumulation, (3.4a),

we get

ik

k
= (1 + n)(1 + γ)− 1 + δ, (3.17)

with kt+1/kt ≡ 1 + γ.

The first-order condition with respect to ikt , (3.7c), implies

q

λ
= 1 + a1

ik

k
. (3.18)

From first-order condition with respect to kt+1, (3.7e), we get

1 + n

β

q

λ
= (1 + γ)θ(1−η)−1

[
(1− τ k)rk − a1

2

(
ik

k

)2

+
q

λ
(1− δ)

]
. (3.19)

In this derivation, we have used the fact that leisure converges to one in the long

run so that the growth factor of the Lagrange multiplier λt converges to λt+1/λt =

(1 + γ)θ(1−η)−1.

5See the Appendix.
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3.7 Calibration

We calibrate the model as follows. Assume that we have initially picked two values for

A and κ. Next, we assume that the economy is in steady state without automation

capital in the year 1965. Therefore, the income tax rates τ l and τ k as well as the

population growth rate are equal to the values prevailing in 1965.

In the initial steady state, capital kt is constant implying that ikt is constant, too:

(n+ δ)k = ik.

The first-order conditions with respect to ikt and kt+1 in steady state without automa-

tion capital imply the following two equations

qk

λ
= 1 + a1

n+ δ

a2 + k
k, (3.20a)

1 + n

β

qk

λ
= (1− τ k)αAkα−1l1−α − a1

(n+ δ)2k2

2(a2 + k)2
+
qk

λ
(1− δ), (3.20b)

which can be solved for qk/λ and k for given calibration l̄ = 0.3 and standard param-

eterization for the discount factor β = 0.96 and the depreciation rate δ = 7% as, for

example, applied by Trabandt and Uhlig (2011). The parameters of the adjustment

cost function, a1 = 12, is taken from Heer and Schubert (2012). The small constant a2

which allows the function evaluation for zero automation capital is set equal to 0.1. In

order to have an initial wage share of 62%, we set α = 38%.

With the help of k and l, we can compute y, ik, w, and rk for given value of A. Following

Trabandt and Uhlig (2011), we set the government consumption share in GDP equal to

18%. We keep the assumption that the government-GDP share remains constant during

the transition and in the final steady state. The resource constraint, c = y−Φk(ik, k)−g
implies steady-state consumption c. Given the first-order conditions with respect to

labor and consumption, we can calibrate θ = 0.3938. Finally, we can derive the steady-

state value of λ and, hence, q using the value of 1/2 for the intertemporal elasticity

of substitution, 1/η. To compute the asymptotic steady state growth rate γ, we solve

(3.16)-(3.19), for rk, q/λ, γ and ik/k. We iterate this procedure by trying different

values of A and κ until the long-run growth rate is equal to 2.0% and the decline in

the wage share is approximately equal to that prevailing during 1965-2010. Therefore,

we choose the values of A = 24.9 and κ = 0.0073.

In the computation of the transition, we assume that, after the final period of transition,

k, p, ik, ip, and c all grow at the common rate γ.

17



4 Results from the Model’s Transition Analysis

We first describe the benchmark economy with automation capital and the dynamic

tax rates prevailing during 1965-2010. We show that the model explains the drop in

the wage share from 62% to 57% that took place between 1965 and 2015. In the second

part of this section, we perform an analysis where we study the individual effects of the

two tax rates and the population growth rate. We demonstrate that the wage share

would have been several percentage points higher if the tax rates had not changed since

1965.

4.1 Benchmark

Figs. 4.1 and 4.2 illustrate the transition dynamics in our model economy during 1965-

2030. The transition is computed assuming the following:

1. The economy is in steady state prior to 1965. The wage share amounts to 62.0%

during this period. The steady state values of the tax rates (17.9% and 47.3%

on labor and capital income) and the population growth rate (1.7%) are equal to

the values prevailing in 1965.

2. In 1965, the transition starts. The initial capital stock is given by the initial

steady-state capital stock. Households build up savings and supply labor accord-

ing to their Euler equations for both forms of capital and their optimal first-order

condition with respect to labor supply.6

3. The tax rates and the population growth rates during 1965-2015 are identical to

their empirical counterparts.

4. In 1965, the households start to invest in automation capital pt as well.

5. After 2010, the tax rates on both labor (28.3%) and capital income (37.0%) as

well as the population growth rate (0.9%) remain constant.

As is evident from the first row of Fig. 4.1, both traditional capital kt (upper left

panel) and automation capital pt (upper right panel) grow over time. As we argue in

the Appendix, our model behaves like the ’Ak’-model of Romer (1986) asymptotically

6In the Appendix, we describe the computation of the transitional dynamics in more detail.
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Figure 4.1: Transition Dynamics in the Model with Automation Capital and Adjust-

ment Costs, Part I
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Figure 4.2: Transition Dynamics in the Model with Automation Capital and Adjust-

ment Costs, Part II
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and converges to an economy that is displaying a growth rate of 2.0%. In the first year

of transition, labor increases from 0.300 in the old steady state to 0.319 in 1966. The

household substitutes labor intertemporally and increases its labor supply during the

initial years of the transition when labor income taxes are low. Between 1966 and 2015,

labor supply drops from 0.319 to 0.274 (lower right panel).7 This is the effect of two

channels which are simultaneously at work in our model. First, labor is replaced by

automation capital in production. Second, the incentives to supply labor are reduced

because of the increase in labor income taxes τ lt from 17.9% to 28.3% in the US during

1965-2010. The dominant factor on the labor supply is the change in tax rates, while

7Eventually, labor supply is completely replaced by automation capital and declines to zero. In

our benchmark case, the lower limit lt = 0 is reached by the year 2069.
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the substitution effect of labor by automation capital accounts for approximately one

third. For example, with constant labor income tax rates τ l = 17.9%, the labor supply

in 2015 would have only dropped to 0.302. Consumption (lower left panel) falls between

1970 and 1985 because of two reasons. First, labor supply decreases while labor income

taxes increase so that the net wage income declines. Second, the household increases

savings as the capital income taxes falls. In the long run, consumption grows at the

endogenous growth rate.

The dynamics of the factor prices wt and rkt during 1965-2030 are displayed in the

upper row of Fig. 4.2. Since traditional capital kt, on the one hand, increases during

1965-2005, while the initial increase in the automation capital, on the other hand, is

relatively moderate, the wage rate wt increases over time. Consequently, the interest

rate on traditional capital, rkt , also falls. Production yt (lower left panel) increases

over time and the growth rate converges to its asymptotic rate, while Tobin’s q on

physical capital, qkt , declines over time. As is evident from the first-order condition

(3.7c), the dynamics of Tobin’s q mimic that of marginal utility from consumption, λt.

As consumption ct continues to increase, λt falls.

Figure 4.3: Wage Share Dynamics
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The dynamics of the wage share, wtlt/yt, are illustrated in Fig. 4.3. Our model with

automation capital (red line) is able to replicate the downward trend of the wage share

in the US economy (black line) during 1965-2015. In fact, the model is able to generate

a drop in the wages by five percentage points between 1965 and 2015 as observed

empirically. This effect is explained by the substitution of labor for automation capital.

The income share accruing to these two production factors is constant and amounts to

1− α = 62%, while the relative income share of automation capital is increasing over
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time at the expense of the residual share for labor.

4.2 Experiments

In this section, we conduct three counterfactual experiments. In the first experiment,

we keep the population growth rate constant during the transition setting it equal to

the value in 1965. The effect on the wage share is illustrated by the red line in Fig. 4.4.

In comparison to the benchmark case (black line), the wage share decreases. Therefore,

if population growth had not declined during the last 55 years, the wage share would

be lower by approximately 0.26 percentage points in 2015. This seems small, but keep

in mind that the population growth rate has only declined from 1.7% to 0.9% in the

US economy during 1965-2015. The fall in the population growth rate is associated

with an increase in the endogenous growth rate as the capital deepening intensifies.

Figure 4.4: Wage Share, Income Taxes, and Population Growth

W
ag

e 
sh

ar
e

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
56

57

58

59

60

61

62

Benchmark

Experiment1

Experiment2

Experiment3

In our second experiment (blue line), we also set the labor income tax rate constant

and equal to its initial steady state value of 17.9%. As a consequence, the incentives

to supply labor are higher than in the benchmark economy and, therefore, less labor

is substituted by automation capital. The wage share in 2015 would increase by 1.01

percentage points so that the wage share only would have dropped to 57.7%.

Finally, in our third experiment (green line), we set all three exogenous variables, the

two income tax rates on labor and capital income, τ lt and τ kt , as well as the population

growth rate nt constant and equal to their respective values in 1965. As a consequence

of the lower capital income tax rate, the incentives to build up capital increase and,

therefore, the ratio of traditional capital to augmented labor, kt/(lt+κpt), increases. As
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a consequence, the marginal product of labor is higher than in the benchmark case and

the incentives to supply labor rise. Therefore, less automation capital pt is substituted

for labor lt. In addition, the growth rate of the economy is smaller so that the speed at

which labor is replaced by automation slows down. As a consequence, the wage share

increases by an additional 2.5 percentage points in comparison to the experiment 2.

Combining all three effects — the changes in the two tax rates and in the population

growth rate — account for the larger part of the decline in the wage share in the US.

In fact, for the values of these variables prevailing in 1965, the US wage share would

have only dropped from 62% in 1965 to 60.2% rather than 57% in 2015.

Figure 4.5: Transition Dynamics in Experiments 1-3
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Fig. 4.5 illustrates the dynamics of the traditional capital stock kt, automation capital

pt, consumption ct, labor lt, the wage rate wt, and the interest rate on traditional

capital, rkt , (from upper left to lower right panel) in these experiments and compares

them with those in the benchmark economy. The dynamics confirm our arguments

above. The lower population growth rate (red line) has little effects on the dynamics

of capital and labor in comparison with the benchmark (black line) so that the two

lines almost coincide. The lower labor income tax rate (blue line) increases both labor

and physical capital while it decreases automation capital. It increases labor because

of the substitution effect in labor supply. It also increases capital because the marginal

product of capital rises. Finally, the higher capital income tax rate under experiment

3 (green line) decreases the accumulation of traditional capital stock kt, and, hence,

the interest rate would be much higher, while wages decline.

Notice further that the two tax rates on labor and capital income affect the asymp-
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totic growth rate (not illustrated). In experiment 2, the growth rate declines by 0.1

percentage point, from 2.0% to 1.9%. In experiment 3, the decline is even much more

pronounced and the growth rate even drops to 0.86%. Therefore, our model is also a

model of endogenous growth where, as in the ’Ak’-model of Romer (1986), the capital

income tax rate has significant negative growth effects.

5 Conclusion

We find that tax rates on both labor and capital income as well as population growth

have a significant effect on the wage share. For the US economy, we estimate the

effect to amount to approximately 3 percentage points over the period 1965-2015. We

demonstrate that this results holds both empirically and in a neoclassical growth model

with automation capital. Our growth model also predicts a continuing fall in the wage

share over the coming decades. However, we would like to interpret this latter finding in

a cautious way because 4we neglect other aggravating factors like artificial intelligence

(AI). In our model, the productivity of the automation capital does not increase over

time. In future research, we plan to endogenize the investment in AI and its effects on

the functional income distribution.
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6 Appendix

In the Appendix, we describe some methodological and mathematical details along

with summary statistics of time series and time series tests.

First, accompanying the empirical part of the paper, we provide detail on the used

nowcasting technique based on the procedure proposed Shumway and Stoffer (2008)

relying on the Kalman filter in combination with the expectation maximization (EM)

algorithm. It is used to generate a quarterly nowcast of the (bi-)annual, shortfall

plagued automation capital series based on robots per 1,000 workers figures by Tani

(1989), Acemoglu and Restrepo (2019), the IFR, and the CPS. Proceedingly, detailed

results of the Johansen testing procedure (adhering to the Pantula Principle) as a

necessary prerequisite for our VECM estimation and analysis is given.

Secondly, accompanying the theoretical part of the paper, we derive some properties

of the model with automation capital. In addition, we present some details on the

computation of the transition dynamics. In essence, we describe the solution of a

large-scale system of difference equations in four endogenous variables over a time

horizon of 120 periods.

A.1 Nowcasting (bi-)annual automation capital to obtain a quarterly series

A.1.1 Time series

To-be-nowcasted time series. The series we seek to nowcast –or to generate

(pseudo-)quarterly data for– is the use of industrial robots per 1,000 workers in the US

as provided in Acemoglu and Restrepo (2019). The original source is the IFR. This

series is of annual frequency and starts in 1993. It ends in 2014. However, due to data

limitations with regard to other series both of the nowcasting procedure and of our

VECM analysis (discussed in the empirical part of the paper) we end it in 2008. We

merge these data with observations that we construct in the following way. Tani (1989)

in his Tab. 1 (col. 3, p. 193) provides data for the industrial robot population in the

US for the years 1974, 1976, 1978, and in annual frequency from 1980 to 1985. As Tani

(1989) in his Tab. 3 standardizes these data to workers in the manufacturing sector

only, we refrain from using his standardized series, but divide the non-standardized

robots figures through the respective annual averages of the US full time employees,
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SA (in 1K), data that we obtain from the CPS. The result is a series of mixed bi-annual,

annual frequency with missing values for 1986 to 1992. Hence, covered years are 1974,

1976, 1978, 1980-1985, 1993-2008. Graphically this series is made of the dots shown

in Fig. 1.4. As this series represents a stock variable (robots per 1,000 employees) for

particular years, we might interpret it as end-of-year or q4-values.

General strategy and information set series. Given the (quasi-)q4-data of robots

per 1,000 workers, the procedure runs in two main steps. In the first step, the miss-

ing (quasi-)q4-, or annual, values are generated using information from other use of

automation capital related variables, for which we have data over the entire period

and, at best, at a quarterly observation frequency. In a second step, for the obtained

complete annual frequency series, running from 1974 to 2008, an analogue nowcasting

approach is followed to generate a (pseudo-)quarterly series. Our baseline information

set essentially uses variables from the Fernald (2014) database in contemporaneous

and first lag expression that recently have been shown by Graetz and Michaels (2018)

to be profoundly and significantly associated with robots input: hours worked, labor

productivity, different estimates of labor quality (i.e. labor composition), total factor

productivity (TFP), and utilitization-adjusted TFP. Additionally, we also consider the

US tax rate on labor income provided by Gomme et al. (2011) as firms adopt robots

mainly for saving on labor costs (besides ensuring uniform quality). Generally, labor

costs depend on labor productivity and taxation.

A.1.2 Method

Starting point of the procedure is the notion of a general state space model for an

n-dimensional time series yt consisting of a measurement equation that relates the

observed data to an m-dimensional state vector αt. The generation of the state vector

αt from the past state αt−1, for t = 1, ..., T , is determined by the state equation. The

measurement equation has the form

yt = Ztαt + dt + ut, t = 1, ..., T. (A.1.1)

In (A.1.1), Zt is an n×m matrix called measurement or observation matrix, dt is an

n× 1 vector and ut ∼ iid N(0,Ht) is an error vector. The state equation is given by

αt = Ttαt−1 + ct +Rtνt, t = 1, ..., T. (A.1.2)
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In (A.1.2), Tt is an m ×m matrix called transition matrix, ct is an m × 1 vector, Rt

is an m× g matrix and νt ∼ iid N(0,Qt) is a g × 1 error vector. The matrices Zt, dt,

Ht, Tt, ct, Rt and Qt are referred to as system matrices. Usually, it is assumed that

the errors of the measurement and the transition equation are uncorrelated, i.e.

E[utν
′
t] = 0 ∀s, t = 1, ..., T.

Furthermore, it is assumed that the initial state is given by a normal vector

α0 ∼ N(a0,P0); E[uta
′
0] = 0, E[νta

′
0] = 0, t = 1, ..., T.

In our application of a state-space model, as defined by (A.1.1) and (A.1.2), we seek

to generate estimators for the underlying unobserved signal αt given the data ys,

for s = 1, ..., S. Whenever s = t this problem is called filtering, while we speak

of smoothing if s > t and forecasting in case s < t. The problem of finding such

estimators is solved by the Kalman Filter (KF), Kalman Smoother (KS) and forecasting

recursions, respectively. The KF is a set of recursion equations (prediction equations

and updating equations) that determine the optimal estimates for the state vector αt

given the information available at t (henceforth, It). The following definitions are used

at := E[αt|It] (A.1.3)

and

Pt := E[(αt − at)(αt − at)′|It]. (A.1.4)

That is, at is the optimal estimator of αt based on It and Pt is the mean square error

(MSE) matrix of at.

Prediction equations. Given at−1 and Pt−1,

at|t−1 = E[αt|It−1]

= Ttat−1 + ct (A.1.5)

Pt|t−1 = E[(αt − at−1)(αt − at−1)′|It−1]

= TtPt−1T
′
t +RtQtRt. (A.1.6)

And the optimal predictor of yt is obtained from

yt|t−1 = Ztat|t−1 + dt

= ZtTtat−1 +Ztct + dt

= Zt(Ttat−1 + ct) + dt. (A.1.7)
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The corresponding prediction error and its MSE matrix are

et = yt − yt|t−1
= yt −Ztat|t−1 − dt
= Ztαt + dt + ut −Ztat|t−1 − dt
= Zt(αt − at|t−1) + ut (A.1.8)

and

E[ete
′
t] := Ft = ZtPt|t−1Z

′
t +Ht. (A.1.9)

Updating equations. The moment yt is observed the optimal predictor and its

MSE matrix are updated according to

at = at|t−1 + Pt|t−1Z
′
tF
−1
t (yt − yt|t−1)

= at|t−1 + Pt|t−1Z
′
tF
−1
t (yt −Ztαt|t−1 − dt)

= at|t−1 + Pt|t−1Z
′
tF
−1
t et (A.1.10)

Pt = Pt|t−1 − Pt|t−1ZtF
−1
t︸ ︷︷ ︸

Kalman Gain

ZtPt|t−1. (A.1.11)

Filter derivation. The KF-derivation makes use of the following properties of a

bivariate normal distribution. Given y, the distribution of x is normal with

E[x|y] = µx|y = µx + ΣxyΣ
−1
yy (y − µy) (A.1.12)

V ar(x|y) = Σxx −ΣxyΣ
−1
yy Σyx. (A.1.13)

For the state vector at t = 1,

α1 = T1α0 + c1 +R1ν1,

with α0 ∼ N(a0,P0), ν1 ∼ N(0,Q1) and E[α0ν
′
1] = 0. In a linear Gaussian state-

space model the initial state vector is normally distributed with

a1|0 := E[α1] = T1a0 + c1 (A.1.14)

P1|0 := V ar(α1) = T1P1|0T
′
1 +R1Q1R

′
1.

From the measurement equation, it follows that

y1 = Z1α1 + d1 + u1,
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with u1 ∼ N(0,H1) s.t.

y1|0 := E[y1] = Z1a1|0 + d1 (A.1.15)

V ar(y1) = E[(y1 − y1|0)(y1 − y1|0)′]

= E[(Z1{α1 − a1|0}+ u1)(Z1{α1 − a1|0}+ u1)
′]

= Z1P1|0Z
′
1 +H1.

Equations (A.1.14) and (A.1.15) are the predictions equations for α1 and y1 at t = 0.

In a next crucial step one has to find the distribution of α1 conditional on y1 being

observed (updating). For this purpose the joint normal distribution of (α′1,y
′
1) must

be determined. In finding the joint normal distribution we use

α1 = a1|0 + (α1 − a1|0)

y1 = y1|0 + y1 − y1|0
= Z1a1|0 + d1 +Z1(α1 − a1|0) + u1.

Note that as

Cov(α1,y1) = E[(α1 − a1|0)(y1 − y1|0)′]

= E[(α1 − a1|0)(Z1{α1 − a1|0}+ u1)
′]

= E[(α1 − a1|0)({α1 − a1|0}Z ′1 + u′1)]

= E[(α1 − a1|0)(α1 − a1|0)Z
′
1] + E[(α1 − a1|0)u

′
1]

= P1|0Z
′
1,(

α1

y1

)
∼ N

((
a1|0

Z1a1|0 + d1

)
,

(
P1|0 P1|0Z

′
1

Z1P1|0 Z1P1|0Z
′
1 +H1

))
.

In combination with (A.1.12) and (A.1.13), (α1|y1) ∼ N(a1,P1) follows with

a1 = a1|0 + P1|0Z
′
1(Z1P1|0Z

′
1 +H1)

−1(y1 −Z1a1|0 − d1)

= a1|0 + P1|0Z
′
1F
−1
1 e1 (A.1.16)

P1 = P1|0 − P1|0Z
′
1(Z1P1|0Z

′
1 +H1)

−1Z1P1|0

= P1|0 − P1|0Z
′
1F
−1
1 Z1P1|0. (A.1.17)

Note (A.1.16) and (A.1.17) are the Kalman Filter updating equations for t = 1.
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ML-estimation and EM algorithm. Let θ denote the parameters of the state-

space model. These parameters are embodied in the system matrices. The likelihood

of the state-space model is calculated based on the prediction errors et with t = 1, ..., T .

The prediction error decomposition of the (negative) log-likelihood looks as follows

−2 ln L(θ|y) = nT ln(2π) +
T∑
t=1

ln |Ft(θ)|+
T∑
t=1

e′t(θ)F−1t (θ)et(θ). (A.1.18)

Shumway and Stoffer (2008) proposed a procedure based on the EM algorithm that is

conceptually simpler and more efficient than alternative procedures such as the New-

Raphson algorithm. The basic idea is that if all the states αT = {αt}Tt=0 together with

the observations yT = {yt}Tt=1 could be observed, one could consider the entire data

space {αT ,yT}. The complete data likelihood might, thus, be written as

−2 ln L(θ|α,y) = ln |F0|+ (α0 − a0)
′F−10 (α0 − a0)

+ n ln |Qt|+
T∑
t=1

(αt − Ttαt−1)′Q−1t (αt − Ttαt−1)

+ n ln |Ht|+
T∑
t=1

(yt −Ztαt)
′H−1t (yt −Ztαt).

(A.1.19)

Given the complete data without any missing values and mostly in the desired (quar-

terly) frequency, one could easily obtain the ML-estimates of θ. However, as this is not

the case, we may find the ML-estimates based on the incomplete data with short-fall by

successively maximizing the conditional expectation of the complete data likelihood.

This is done in the following steps:

1. Find some initial values for parameters θ(0),

2. Calculate the incomplete data likelihood − ln L(θ(j−1)|y); see equation (A.1.18),

3. At iteration j = 1, 2, ... use the KF and KS to obtain smoothed values for α
(S)
t ,

P
(S)
t and P

(S)
t|t−1 for t = 1, ..., T based on the parameters θ(j−1). Use the smoothed
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values to calculate the conditional expectation of the complete data likelihood

Q(θ|θ(j−1)) =E
{
−2 ln L(θ|α,y)|yn,θ(j−1)

}
= ln |F0|+ tr

{
F−10

[
P

(S)
0 +

(
α

(S)
0 − a0

)(
α

(S)
0 − a0

)′]}
+ n ln |Qt|+ tr

{
Q−1 [S11 − S10Z

′
t −ZtS10 +ZtS00Z

′
t]
}

+ n ln H

+ tr

{
H−1

T∑
t=1

[(
yt −Ztα

(S)
t

)(
yt −Ztα

(S)
t

)′
+ZtP

(S)
t Z ′t

]}
,

where

S11 =
T∑
t=1

(
α

(S)
t α

(S)′

t + P
(S)
t

)
,

S10 =
T∑
t=1

(
α

(S)
t α

(S)′

t|t−1 + P
(S)
t|t−1

)
and

S00 =
T∑
t=1

(
α

(S)
t|t−1α

(S)′

t|t−1 + P
(S)
t|t−1

)
.

4. Update θ0 according to

T
(j)
t = S10S

−1
00 ,

Q
(j)
t = n−1

(
S11 − S10S

−1
00 S

′
10

)
and

H
(j)
t = n−1

T∑
t=1

[(
yt −Ztα

(S)
t

)(
yt −Ztα

(S)
t

)′
+ZtP

(S)
t Z ′t

]
to obtain θ(j).

5. Repeat steps 2 to 4 until convergence is achieved (i.e.until parameters or like-

lihood values stabilize in the sense of differing from their predecessor values by

some predetermined small amount κ only).

A.1.3 Application

Annual series nowcast. Having sketched the nowcasting procedure and indicators

set, referred to as information set It above, we run the annual series (or q4-value) now-

cast for four differently sized set of indicators: I1 (index t dropped for notational ease)

considers 16 series, i.e. in contemporaneous and first lag expression: hours worked,

32



labor productivity, actually used labor composition/quality, labor composition/quality

as reported by the Bureau of Labor Statistics (BLS), TFP, utilitization-adjusted TFP,

and the tax rate on labor income. The nex two considered sets, I2 and I3, are similar

in size and nowcasting performance: Set I3 comprises ten series by dropping the two

labor composition/quality indicator series and the utilization-adjusted TFP series. Us-

ing just one (irrespectively which one) or both TFP series does not alter the nowcasted

values. It merely changes fourth or higher decimal places. The same applies to the two

different labor quality indicators. I2 is of same size as I3 but considers the actually used

labor composition/quality indicator and leaves out the labor tax series. Information

set I4 compared to I3 includes the labor tax indicator and drops labor productivity.

Figure A.1: Annual nowcast of robots per 1K workers for different information sets
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Note: Underlying indicator sets, first row: I1, I2, second row: I3, I4 (from left to right); black line

and dots: empirical values, red dots: smoother values, blue dashed lines: 95 % C.I. of prediction errors

In line with our intuition that –both and primarily– productivity and costs matter with
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regard to automization, information set I3 (lower left schedule in Fig. A.1) generates

the most accurate and reasonable annual series nowast.

Figure A.2: Observation-equation-variance sensitivity of I3-based nowcast
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Note: Variances in observation equation matrix (Ht) doubled from 1 (left) to 2 (right schedule);

black circles: empirical values, red dots: smoother values, blue dashed lines: 95 % C.I. of prediction errors

Figure A.3: Observation/state-equation-variance sensitivity of quarterly nowcast

● ● ● ● ● ● ●
●

●

●

●

● ●
●

● ● ●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

Time

ro
bo

t d
en

sit
y

1975 1980 1985 1990 1995 2000 2005 2010

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

● ● ● ● ● ● ●
●

●

●

●

● ●
●

● ● ●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

Time

ro
bo

t d
en

sit
y

1975 1980 1985 1990 1995 2000 2005 2010

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Note: Quarterly I3-based (filling up I3-based annual nowcast); variances in observation (state) equa-

tion matrix Ht (Qt) are set to 0.01 (1) for left schedule and 0.01 (0.01) for right schedule, respectively; black

circles: empirical and nowcasted (q4-/fourth quarter) annual values; remaining legend as for Fig. A.2

As can be seen from Fig. A.2 our nowcasts are slightly sensitive with regard to ob-

servation equation variances and produce more accurate predictions of the empirical

observations for lower values. Thus, we proceed with the I3-based annual nowcast with

the lower observation equation variance values.
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Quarterly series nowcast. For our quarterly series nowcast, we fill up the I3-based

annual projections and empirical values but now rely on an I3 analogue using all quar-

terly (instead of just q4 or fourth quarter) information. The result is shown for dif-

ferent observation and state equation variance values, Ht and Qt, in Fig. A.3. The

right schedule circle and red dot values correspond to our nowcasted quarterly series

of choice and corresponds to the time series (solid blue line) displayed in Fig. 1.4.

A.2 VEC model analysis

A.2.1 Johansen procedure

Table A.1: Unit root (UR) and stationarity test statistics

ADF I ADF II PP KPSS

Log levels:

Population growth –1.732 –1.679 –1.840 0.399∗∗∗

Factor tax policy mix (LCTR) –1.717 –2.003 –5.379 0.988∗∗∗

Robots per 1K workers –2.841∗ –2.792 –0.481 0.504∗∗∗

Wage share –1.253 –2.861 –2.338 0.290∗∗∗

Capital share –1.377 –1.937 –1.876 0.361∗∗∗

Log first differences:

Population growth –11.36∗∗∗ –11.39∗∗∗ –11.36∗∗∗ 0.0631

Factor tax policy mix (LCTR) –7.887∗∗∗ –17.13∗∗∗ –14.08∗∗∗ 0.0359

Robots per 1K workers –5.086∗∗∗ –5.468∗∗∗ –10.61∗∗∗ 0.1030

Wage share –15.81∗∗∗ –9.181∗∗∗ –12.52∗∗∗ 0.0415

Capital share –6.547∗∗∗ –6.618∗∗∗ –4.111∗∗∗ 0.0381

Note: ADF – Augmented Dickey-Fuller (UR under null; I/II = without/with linear trend component);

PP – Phillips-Perron (UR under null); KPSS – Kwiatkowski-Phillips-Schmidt-Shin (stationarity under

null; with automatic bandwidth selection and autocovariances weighted by quadratic spectral kernel);
∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01.
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Table A.2: Johansen test procedure and test statistics for cointegrating equations

Trace Max EV Info Criterion

Model Max Rank Stats 5% c.v. Stats 5% c.v. HQIC

(v1) 0 101.04 59.46 43.72 30.04 –35.52362

1 57.31 39.89 30.31 23.8 –35.64426

2 27.00 24.31 17.77 17.89 –35.70900

3 9.23* 12.53 9.21 11.44 –35.72472*

4 0.01 3.84 0.01 3.84 –35.72275

(v2) 0 145.46 76.07 68.08 34.4 –35.52362

1 77.38 53.12 30.36 28.14 –35.81121

2 47.02 34.91 23.44 22.00 –35.85150

3 23.58 19.96 17.56 15.67 –35.88699

4 6.01* 9.42 6.01 9.24 –35.92591*

(v3) 0 133.92 68.52 68.07 33.46 –35.49021

1 65.85 47.21 30.23 27.07 –35.80259

2 35.62 29.68 21.39 20.97 –35.86672

3 14.22* 15.41 12.56 14.07 –35.91094

4 1.66 3.76 1.66 3.76 –35.93535*

(v4) 0 207.72 87.31 116.61 37.52 –35.49021

1 91.10 62.99 36.70 31.46 –36.15999

2 54.39 42.44 25.86 25.54 –36.25025

3 28.53 25.32 17.42 18.96 –36.30482

4 11.11* 12.25 11.11 12.52 –36.3426*

(v5) 0 188.16 77.74 111.36 36.41 –35.51998

1 76.79 54.64 36.56 30.33 –36.17327

2 40.23 34.55 25.80 23.78 –36.28723

3 14.43* 18.17 13.46 16.87 –36.36616

4 0.97 3.74 0.97 3.74 –36.39762*

Note: Trace – trace test; Max EV – maximum eigenvalue test; Info Criterion – information criterion

(IC) with IC of choice: HQIC – Hannan-Quinn information criterion; procedure starts with test for

zero cointegrating equations (CE), i.e. a maximum rank of zero, and then accepts the first null that

is not rejected (indicated by ‘∗’); the Pantula Principle sequence is: (v1) no intercept or trend in CE

or in VAR part; (v2) intercept and no trend in CE part and neither intercept nor trend in VAR part;

(v3) intercept in CE part and VAR part, but no trends; (v4) intercept in CE part and in VAR part

paralleled by linear trend in CE part or in VAR part.
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As can be seen from Table A.1 and Table A.2 , all series in log levels used in the fitted

VECM, as described in the empirical part of the paper, are I(1) and the result of the

Johansen test procedure is that there are, at least, three cointegrating relationships.

The latter particularly concern population growth and the wage share, the factor tax

policy mix (LCTR) and the capital share, and robots density and capital share, re-

spectively. However, the last of these CE relationships is statistically significant at a

68% level of significance only according to the z-statistics of the Johansen normalized

restriction test.

A post-estimation stability check confirms three (two) imposed unit moduli of eigenval-

ues of the companion matrix of our fitted VECM with two excact unit eigenvalues and

one very close to one, i.e. with a value of .97. All remaining moduli of eigenvalues of

the companion matrix are strictly less than one indicating stability. Serial correlation

of residuals is clearly rejected by appropriate lagrange multiplier (LM) tests.

Against the backdrop of the performed tests (with further detail available on request)

we assess our VECM specification as being, all in all, acceptable.

A.3 Construction of adjusted labor income share

Our adjusted labor income share is based on BEA time series for GDP and GDI, that

is, compensation of employees, paid wages and salaries. The share has been adjusted

assuming that a one third add-on to GDI is attributable to the self-employed. Just

like any adjustment of the empirical labor’s share, it represents a crude approximation.

Contrary to alternative approaches, it precludes double counting.

A mean difference test for the two factor shares, capital income share and labor income

share, summing to one (with mean rounded based on the digit at fourth decimal place)

fails to reject the null of unity at any conventional level of significance.

An implied aggregate elasticity of substitution between capital and labor σ that is

close to but slightly less than a unitary elasticity, σ ≤ 1, is in line with recent evidence

based on longitudinal data and consistent estimates by Glover and Short (2020). A

σ . 1 (see the sum of the red and blue area in the following figure), as used in the

empirical part of our paper, excludes the simple capital deepening explanation of the

global decline in the labor’s share. For σ . 1, the fall in the labor’s share cannot be

rationalized by “rising effective capital ratios through physical investment in response

to the fall in investment prices” (Glover and Short, 2020, p. 35).
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Figure A.4: Capital income share, labor income share, and elasticity of substitution
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A.4 Summary statistics of series used in VECM

Table A.3: Summary statistics of series used (as log levels) in VECM

Series Mean Std. dev. Min Max Skewness Kurtosis

Population growth 0.0026 0.0004 0.0021 0.0035 0.7574 2.0393

Factor tax policy mix (LCTR) 0.7417 0.0985 0.4733 0.8891 –1.0011 3.0182

Robots per 1K workers 0.3936 0.3695 0.0149 1.0278 0.9128 2.0670

Wage share 0.6341 0.0299 0.5827 0.6914 0.0355 2.0890

Capital share 0.3247 0.0164 0.2953 0.3717 0.9221 3.0684

Note: Summarized series were transformed to log levels before using them in the VECM as outlined

in the empirical part of the paper; robots per 1K workers is the pseudo-quarterly series nowcasted as

described above; throughout the observation period ranges from 1974:q1 to 2008:q4 (N obs = 140).

All sources of data are given in the text (empirical part of the paper).
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A.5 Model with Automation Capital and Quadratic Capital Adjustment

Costs

A.5.1 Household Optimization Problem

The Lagrangean of the household optimization problem is presented by

L =
∞∑
t=0

βt

{(
cθt (1− lt)1−θ

)1−η
1− η

+ λt

[
(1− τ lt )wtlt + (1− τ kt )rkt kt + (1− τ kt )rpt pt + trt − (1 + τ c)ct

− Φk(ikt , kt)− Φp(ipt , pt)
]

+ qkt
[
ikt + (1− δ)kt − (1 + nt)kt+1

]
+ qpt [ipt + (1− δ)pt − (1 + nt)pt+1]

}
.

The first-order conditions of the household are presented by:

λt(1 + τ c) = θc
θ(1−η)−1
t (1− lt)(1−θ)(1−η), (A.5.1a)

λt(1− τ lt )wt = (1− θ)cθ(1−η)t (1− lt)(1−θ)(1−η)−1, (A.5.1b)

qkt = λtΦ
k
i (i

k
t , kt), (A.5.1c)

qpt = λtΦ
p
i (i

p
t , pt), (A.5.1d)

(1 + nt)q
k
t = β

{
λt+1

[
(1− τ kt+1)r

k
t+1 − Φk

k(i
k
t , kt)

]
+ qkt+1(1− δ)

}
, (A.5.1e)

(1 + nt)q
p
t = β

{
λt+1

[
(1− τ pt+1)r

p
t+1 − Φk

p(i
p
t , pt)

]
+ qpt+1(1− δ)

}
, (A.5.1f)

where Φx
i (i

x, x), x ∈ {k, p}, denotes the first derivative of the adjustment cost function

Φx(ix, x) with respect to investment ix. Similarly, Φx
x denotes the first derivative of this

function with respect to the second argument x ∈ {k, p}. For the specification of the

adjustment cost function Φ in (3.5), the first-order conditions are equivalent to those

in (3.7).

A.5.2 Asymptotic steady state

If κ is sufficiently large, the households have incentives to invest in automation capital

as well so that the economy displays economic growth γ > 0 in the long run with

pt > 0. Eventually, the economy converges to an ’Ak’-economy as in Romer (1986).

Let γ define the growth rate of the capital stock in the economy with kt+1/kt = 1 + γ.
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Furthermore, from the dynamic equations of the capital stocks kt in (3.4a), ikt /kt =

ik/k = (1 + γ)(1 + n) − 1 + δ must be constant asymptotically, too, and therefore,

from (3.7c), qkt /λ = qk/λ. Asymptotically, the labor supply converges to zero.8 This

observation follows from the inspection of (3.7a) and (3.7b). For ever-increasing k and

p, y and c are increasing as well, while the replacement of l by p and the build-up

of augmented labor, l + κpt, implies that the wage rate grows at a lower rate (which

will converge to zero in the long run). Therefore, the first-order conditions of the

households with respect to his labor supply imply an ever-decreasing labor supply due

to the income effect until the lower bound of zero starts binding.

When labor supply is zero in the asymptotic steady state, the marginal utility grows

at the factor (1 + γ)θ(1−η)−1 as implied by (3.7a). Therefore, (3.7e) implies that rk

converges to a constant. A constant asymptotic real interest rate rk in turn implies

a constant ratio kt/pt = k/p so that kt and pt must grow at the same rate. From

the dynamics of the automation capital stock pt, (3.4b), this implies that ip/p = ik/k.

Therefore, qpt is equal to qkt asymptotically (which follows from (3.7d)) and the two

interest rates on both forms of capital must be equal, rkt = rpt . From this observation,

(3.16) follows.

A.6 Computation of the transition dynamics

To compute the transition dynamics, we need to solve a difference equation system in

the state variable {kt, pt}2085t=1965. We choose a time horizon of 120 years (=periods) so

that the growth rates of the variables have stabilized and are numerically close to the

asymptotic ones. By this choice of transition periods, we also observe that the wage

share in 2015 has stabilized.

As endogenous variables, we use consumption ct, investment in both capital stocks,

ikt and ipt , and labor lt. The endogenous equation consists of the household first-order

conditions (3.7e), (3.7f), (3.7c), and the resource constraint (3.12). With the help of

the endogenous variables, it is straightforward to compute the dynamics of the two

capital stock, kt and pt, from (3.4) for given initial capital stock k1965 and p1965 = 0 as

computed from the initial steady state without automation capital.

With the help of kt, pt, and lt, we can compute the factor prices wt, r
k
t , and pt. From

the first-order conditions (3.7a), (3.7c) and (3.7d) we can compute λt, q
k
t , and qpt .

8As noted above, this occurs in the year 2069 in our benchmark economy.
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Therefore, we have specified the values of all variables that show up in the endogenous

equations. For the endogenous variables in the year 2086 which we also need for the

computation of the endogenous variables, we assume that ct, i
k
t , and ipt grow at the

asymptotic growth rate, while lt falls at the asymptotic growth rate. We find the effect

of this assumption to be negligible for the transition during 1965-2030 which is the

focus of the analysis.

In essence, we have to solve a non-linear equations problem in 4× 120 = 480 variables.

This is a non-trivial task and the problem is to find a good initial value. We, therefore,

proceed as following:9

Algorithm: Computation of the transition in the benchmark model with

automation capital

Step 1: Compute the initial steady state of the neoclassical growth model.

Step 2: Compute the final steady state of the neoclassical growth model (with κ = 0)

for the tax rates and the population growth rate prevailing in 2015.

Step 3: Project a transition path for the neoclassical growth model (with κ = 0) for

{ikt , ct, lt}2015t=1965 in the form of a linear adjustment.

Step 4: Solve the simple neoclassical growth model (with κ = 0).

Step 5: Use the transition path from the standard neoclassical growth model with pt ≡
0 for t = 1965, . . . , 2015 as initial guess for the computation of the transition

in the model with automation capital.

Step 6: Iterate over the time horizon of the transition T by incremental steps of one

year. Use the transition path of the previous iteration as an initial guess

assuming that in the period T + 1, the variables {ikt , i
p
t , ct}1965+Tt=1965 grow at the

rate γ, while lt falls at the rate γ.

Step 7: Stop when the dynamics of the model during the period 1965-2030 do not

change any more.

9The Gauss computer code is available from the authors upon request.
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