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Do people choose what makes them happy
and how do they decide at all?

A theoretical inquiry

Niklas Scheuer(a),1
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We develop a theoretical model that jointly explains optimal choices and happiness.
We work with constant elasticity of substitution functions for utility and happiness.
Employing a choice framework, individuals are confronted with two options. When
there exists a trade-off, we determine parametric conditions for which individual
happiness and utility coincide as well as oppose each other. Comparing the empir-
ical evidence of Benjamin et al. (2012), our model can explain three out of four
possible happiness-utility combinations. Regarding how individuals actually decide,
our findings suggest that this is partly random. This explanation accounts for the
remaining 11.2 % of individuals.
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1 Introduction

Do people choose what makes them happy? Economists observe choices, infer preferences and
derive functions reflecting these. These are the well-known utility functions. General economic
knowledge tells us that per definition, utility maximization yields optimal behavior. In reality,
however, we observe many types of behavior. Hence, some economists follow a less traditional
approach. Among these are Benjamin et al. (2012). They examine both principles separately
and find that a divergence between optimal choices and choices yielding higher happiness occur.

Hence, how we can rationalize these empirical results using standard economic theory is an
open question. While there are many empirical papers on happiness, a theoretical framework
to analyze choice-inferred utility and happiness properly appears to be missing.

We develop a model that captures the empirical structure of Benjamin et al. (2012). In their
paper, they have different scenarios, each of which is described by a discrete choice set of two
options. Every possible option features certain payoffs. Individuals are then required to indicate
which option they would choose and with which they would be happier. They showed that, in
some cases, a divergence occurs. In order to show this theoretically, we use standard constant
elasticity of substitution (CES) functions for happiness and utility, treating both concepts as
different from one another. The former is nested in the latter, making the utility function a
nested CES function. We only consider economic goods. This entails using strictly positive

1Contact details: Niklas Scheuer, Johannes Gutenberg University, Jakob-Welder-Weg 4, 55131 Mainz, Ger-
many, phone +49.6131.39-24701, scheuer@uni-mainz.de. I would like to thank all participants of the Chair
Research Days in 2017 and 2019 and of the Brown Bag Seminar in 2019. Special thanks go to Klaus Wälde,
Marten Hillebrand, Steffen Altmann and Jean Roch Donsimoni for very specific comments and detailed discus-
sions.
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weights inside the happiness and utility function and assuming positive marginal utility. Based
on this setup, we determine parametric conditions to show when the evaluation of options in
terms of happiness and utility yields either exact matches, supporting the traditional approach,
or diverges between the two options, capturing a failure of the traditional approach.

Our contribution to the field of happiness economics is a theoretical framework based on
empirical evidence to jointly analyze happiness and utility. Moreover, our model represents a
general version, which allows us to analyze more scenarios than the empirical evidence suggests,
if model requirements are fulfilled. We further offer explicit conditions to explain the interaction
between happiness and utility for various types of bivariate decision problems.

When considering no trade-off scenarios, we find that happiness and utility go into unam-
biguous directions. Once trade-offs are present, we obtain two trade-off cases, including two
subcases each. For every potential case, four possible interactions between happiness and utility
emerge. For two of those, happiness and utility coincide, which our model can always explain
(even though trade-offs are present). However, when they do not match, a CES-framework can
only account for one out of two combinations. We provide an extension, where these assump-
tions are relaxed if we consider economic bads. However, therefrom we abstract as from an
empirical standpoint they appear to be irrelevant. A possible explanation for this contradiction
is the inability of individuals to correctly evaluate and compare alternatives for various reasons
(analysis paralysis, trembling hand, lack of awareness or the like), which leads to deciding ran-
domly. Empirical evidence suggests that this occurs with a share of 11.2 % overall, and ranges
from 4 to 32 % for scenarios fitting our assumptions.

We begin with related literature in section 2 and introduce a theoretical framework in section
3, where we also shed more light on the empirical paper. In section 4, we focus on trade-off
cases. This is of particular interest for us as it conveys meaningful implications. Section 5
clarifies how individuals actually decide given our framework in combination with empirical
findings introduced previously. Section 6 concludes.

2 Related literature

First and foremost, happiness and well-being have enjoyed increasing popularity in the field
of economics in recent years. Examples of articles published in top journals are Aghion et al.
(2016) on creative destruction and its impact on subjective well-being, Adhvaryu et al. (2019)
on early life issues and their impact on mental health, Deaton (2018) on the effects of well-being
on life-cycle theory and policy, Liberini et al. (2017) on the relationship between voting and
happiness, Campante et al. (2015) on religion and its effect on economic growth and happiness
or Oswald et al. (2015) on the relationship between happiness and productivity. Literature
on happiness and utility can essentially be divided into three categories. We begin with the
role of happiness in economics, continue with the historic connection between utility theory
and happiness, and, lastly, we consider state-of-the-art theoretical modeling of happiness and
decision utility. A brief look at the biological side, which justifies certain economic assumptions,
will come last.

Concerning happiness in economics, one of the most influential papers for happiness and
economics belongs to Richard Easterlin. He found that despite growing annual income during
the seventies in the US, average happiness did not change. This rather unexpected finding marks
the starting point of happiness research in economics and is referred to as the Easterlin Paradox
(Easterlin, 1974, 1995). Frey and Stutzer (2000, 2002) explicitly differentiate happiness and
individual utility. The latter, according to them, only depends on certain factors, derivable from
revealed actions and used to explain decisions, whereas happiness is viewed as a broader concept.
They also collect data from Germany and Switzerland to support their assumptions and find
important determinants of happiness. They identify unemployment and inflation as economic
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indicators and marital status as a private indicator to be the driving forces of happiness in
Germany and Switzerland. Further work on income and happiness comes from Erzo Luttmer
(2005), who found that absolute income does not matter for experiencing happiness but the
relative position towards your peers does. In other words, he showed that comparisons with
neighbors cause happiness if one’s own income exceeds that of the neighbor. Kahneman and
Deaton (2010) showed that increasing income is associated with higher levels of life evaluation
and happiness. However, although life evaluation, which is defined according to Kahneman and
Deaton as simply how individuals think about their life, rises steadily with income, happiness
does so only until an annual income of $75,000. This indicates that if an individual receives
a higher annual income, a further increase in income is not associated with higher levels of
happiness, although individuals evaluate their life higher than before.

Concerning happiness and utility theory, the beginning of happiness playing a role in utility
theory can be marked as the time utilitarianism was introduced. Back then, Jeremy Bentham,
a very prominent supporter, defined utility in various ways. A rather unique one states that
utility is the approval or disapproval of every action according to which effect this will have on an
individual’s happiness (Bentham, 1996). Bentham suggested governments should design policies
to promote happiness, such that everyone achieves their highest possible level of happiness. The
general consensus about utility and happiness, including supporters such as John Stuart Mill or
Daniel Bernoulli, was that utility could be seen as life satisfaction and would be determined by
actions causing pain or pleasure. A rather recent approach from Kahneman, Wakker and Sarin
(1997) includes the term ”experienced utility,” which refers closely to Bentham and the pain
or pleasure analogy. It features a comparison between the ’usual’ utility function that should
predict decisions, inducing the highest utility, and the one comprehending the individual’s
experiences in terms of utility.

Concerning steps towards harmonizing utility theory and happiness, Rayo and Becker (2007)
are among the first to analyze happiness in a theoretical framework. They specify an evolution-
ary approach in which they use a certain strategy x out of a set of foraging strategies X, given
a certain state of nature s, to obtain an output y ∈ R. This output is the food you gathered,
giving you a certain level of happiness V (y), which is defined according to an innate happiness
function V every individual inherits. The expected level of happiness is then defined as u(x, s)
and used as a decision criterion for all other strategies. In addition, Rayo und Becker wrote
a comment on Stevenson and Wolfers (2008), where they pick a different approach and model
utility as depending on happiness h and a commodity Z. They assume that both happiness
(∂u
∂h

> 0) and the commodity ( ∂u
∂Z

> 0) increase utility. They also argue that happiness and
utility are related, happiness being an argument of the utility function rather than a substitute.
Kimball and Willis (2006) defined happiness as consisting of two components, one long-term,
which they refer to as baseline mood, and one short-term covering instant effects on happiness,
which they refer to as elation. They view happiness as being part of lifetime utility. Benjamin
et al. (2010) follow an approach similar to Rayo and Becker. They differ, however, by assuming
that happiness is not a variable itself but depends on many other factors. These will impact
utility and happiness directly. Through the latter, they also influence utility indirectly. Hence,
they model utility as u(h(X), X). Reflecting the state of the art when it comes to happiness
and utility theory, we take a different perspective and think of happiness and utility as ulti-
mately two different layers that are inherent in an individual. One where an individual tries to
make themself happiest and one where the individual decides in a more rational manner. Every
time an individual faces a choice, both layers weigh into the decision, leading to an outcome
where happiness and utility either coincide or conflict with each other. This echoes similar
frameworks modeling dual selves, such as Fudenberg and Levine (2006) or O’Donoghue and
Rabin (1999). The former develop a dual-self model about a short-run and long-run self, that
whenever a decision is to be made, determines it as an outcome of both ’selfs’ together. The
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latter described individuals as naive or sophisticated depending on how well they can actually
resist temptation and whether they know about their resisting behavior or live in denial.

Concerning happiness and biological factors, only a few economists covered this connection
to justify their analysis. Firstly, Rayo and Becker (2007) elaborated on happiness being a
bounded measure, since neuro cells can only receive a certain amount of impulses from the
nervous system. Hence, it should be modeled accordingly in economics and considered to be
bounded. Fliessbach et al. (2007)2 looked at some brain scans in competition situations with
other individuals. They found that as soon as one individual outscores the other, the reward
center is activated in our brain. This fits the finding of Luttmer (2005). Weiss et al. (2008)
suggest a generic relationship between positive personality traits and happiness traits. Hence,
one could argue that genes might play a major role in the variation of people’s happiness.

3 The model

We begin with providing the single and aggregated evidence on which our model is based, before
setting up a framework and conditions for an optimal decision.

3.1 The evidence - One scenario

In their original paper, Benjamin et al. (2012) ask study participants (1066 adults composed
of 1000 adult Americans and 633 students) about certain hypothetical scenarios, each with
two possible outcomes with participants having to choose one of them. Respondents are then
asked about their life satisfaction and happiness, as a result of their answer, immediately after
they have made their hypothetical choice3. The authors then compare responses. One of their
main results is that the single best predictor of choice is predicted subjective well-being (as an
aggregate of happiness and life satisfaction), but there remain some discrepancies between choice
and subjective well-being. These appear to be systematic and meaningful. Put differently, their
paper shows empirically that happiness can also be seen as an argument of the utility function
instead of a substitute. They show this by comparing certain trade-off scenarios, looking at
descriptive statistics and explaining choice using ordinary least squares, probit and ordered
probit regressions.

The following table shows the descriptive results for the first scenario that compares income
and sleep, which we want to focus on explicitly. There is Option 1 - $80,000 per year salary and
7.5 hours of sleep per day versus more income and less sleep, i.e. Option 2 - $140,000 per year
salary and 6 hours of sleep per day. The authors pooled all responses to questions regarding
subjective well-being, such as life satisfaction, own happiness or felt happiness together4, such
that the following table is obtained:

subjective well-being\choice Option 1 Option 2
Option 1 58 % 12 %
Option 2 1 % 29 %

Table 1 Data on subjective well-being and choice from Benjamin et al. (2012) for scenario 1
in the Denver group

2We thank Steffen Altmann for making us aware of this literature.
3Hence, the subjective well-being measures are only predictions as the choices are hypothetical. This means

at the point in time the survey takes place the respondents do not know how the decisions are going to impact
their feelings in the future. They can only assume.

4There are five subjective well-being questions overall, of which four aim directly at happiness and one targets
life satisfaction. For both their samples, subjective well-being is always a mix put together out of these five
questions.
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A total of 58 % of the survey respondents did not only choose Option 1 (henceforth charac-
terized as u1 > u2) but are also happier with it (henceforth characterized as h1 > h2). A total
of 29 % of the survey respondents chose Option 2 (henceforth characterized as u1 < u2) and are
also happier with it than with Option 1 (henceforth characterized as h1 < h2). On the other
hand, we can observe that 12 % of respondents would choose Option 2 despite being happier
with Option 1. Similarly, 1 % of respondents chose Option 1 despite stating they would be
happier with Option 2. Hence, we are looking at a discrete decision problem, where one can
select Option 1 or Option 2. This survey evidence for a mismatch between happiness and (as-
sumed ’optimal’) choices between income and sleep is further supported by additional scenarios
pitting other similar trade-offs against each other. As of now, when we mention ’choices,’ we
refer to ’optimal choices.’

3.2 The evidence - An aggregated view

Benjamin et al. (2012) use two samples in their paper, one is the Cornell National Social Survey
and the other comes from patients at a waiting room in Denver. Looking at descriptive results
from the Denver study, we can obtain the following:

subjective well-being\choice u1 > u2 u1 < u2
h1 > h2 41.3 % 9.3 %
h1 < h2 5.7 % 44.7 %

Table 2 Data on subjective well-being and choice from Benjamin et al. (2012) for all scenarios
in the Denver study

Looking at descriptive results from the Cornell study, we observe a similar pattern of more
mass along the main diagonal, as opposed to happiness-choice combinations that do not match:

subjective well-being\choice u1 > u2 u1 < u2
h1 > h2 44.2 % 12.1 %
h1 < h2 9.3 % 34.3 %

Table 3 Data on subjective well-being and choice from Benjamin et al. (2012) for all scenarios
in the Cornell study

We see that, most of the time, people’s subjective well-being and choices are consistent, as
has already been mentioned above. This indicates that our representative scenario captures
the relationship between happiness and choice quite well from the beginning, as we see a very
similar pattern overall.

We can summarize this in the following table, which provides us with a frame of reference
and shows the pattern we wish to explain explicitly. When choice-inferred utility and happiness
agree with each other, we use the term ’coincide,’ as of now. If they diverge from each other,
henceforth, we use the term ’contradict.’

h\u u1 > u2 u1 < u2
h1 > h2 coincide I contradict II
h1 < h2 contradict III coincide IV

Table 4 Possible combinations of utility and happiness
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This will serve as the foundation to derive our theoretical model5.

3.3 The framework

In this section, we present the case, where utility and happiness are now modeled explicitly.
We remain close to the empirical evidence and consider scenarios with two possible options an
individual has to choose between and state which he/she prefers in terms of happiness. We
later analyze the comparative statics of our framework. This allows us to determine general
criteria which characterize an optimal decision for an individual facing two options.

3.3.1 Preferences

Considering one scenario, we obtain utility and happiness induced through payoffs from Option
1 (x1, y1) and Option 2 (x2, y2). We obtain the following general utility function

u(h, x, y) = βhδ + (1− β) (γxδ + (1− γ) yδ) with 0 < γ, β, δ < 1, (3.1)

where happiness is described by

h ≡ h(x, y) = αxθ + (1− α) yθ with 0 < α, θ < 1. (3.2)

We use a standard CES function for happiness with a degree of θ and a nested CES function
for utility. δ and θ are constants and inside the unit interval. Furthermore, we identify the
following share parameters α, β and γ. They are relative weights within the happiness and
utility function attached to the option-specific payoffs (x1, x2, y1 and y2). At the outset, we
think of x and y as ’economic goods’6, which is why we exclude negative weights, meaning
neither α, β and γ nor (1− α), (1− β) and (1− γ) can be negative.

Looking at the happiness function, we can see that the larger α is, the more x is emphasized
as a driver of happiness. Conversely, for a lower α, y affects happiness more strongly. Regarding
utility, the larger β is, the more happiness is underlined as the key driver of utility, which will
lead to a match between happiness and utility. Whereas, if β is low, the direct effect of x and y
onto utility matters more, relative to happiness from x and y. This direct effect can be divided
into either x or y being the driver, depending on γ. From looking at the utility function (3.1),
this parameter will influence the direct effect of x and y onto utility. Firstly, if γ is large, x
is more emphasized, whereas if it is small, y is more strongly emphasized. This is why we are
going to analyze several parameter combinations to show under which conditions utility and
happiness coincide and when they do not. Given the empirical evidence from above, β cannot
be equal to 1, as there are individuals who do not choose what makes them happy, i.e. u 6= h.

Knowing preferences from above, we are already able to describe happiness and utility where
options and their payoffs are without a trade-off. By this, we mean three possible combinations

5One might argue that happiness is rather an instant measure, whereas for choice an individual might think
more about the long-term consequences, which might lead to the difference that we actually see. This would
indicate that you cannot really compare the two due to the different time frames. In order to make this
connection clear, one could modify the survey questions and distinguish between a short run and a long run
outcome for choice and happiness to assert the importance of the time component which Benjamin et al. did.
Unfortunately, due to their pooling together of subjective well-being measures, we cannot clearly identify which
measure drives the results we observe. The precise intertemporal relationship between happiness and utility is
beyond the scope of this paper, as we choose to focus on static trade-offs that more closely match the evidence
available. This approach is in the same spirit as previous work on (behavioral) utility theory, such as Regret
Theory (Loomes and Sugden 1982, 1986) or Disappointment Theory (Gul 1991).

6At this point, one could think about the elasticity of substitution for utility and happiness. It cannot
be determined for utility, as utility is described by a nested CES function. For happiness, the elasticity of
substitution reads 1

1−θ .
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of option-specific payoffs, which will always leave an individual with higher happiness and utility
for one particular option. This can be summarized as

Corollary 1 There are three cases that do not imply trade-off situations, where strictly positive
parameters will always lead to a match between happiness and utility.
(i-a) Assuming x1 equals x2, and y1 is larger, respectively, smaller than y2, a strictly positive
preference parameter α from (3.2) and β from (3.1) imply happiness and utility for Option 1
being larger, respectively, smaller than happiness and utility for Option 2

h1 > h2 ∧ u1 > u2 ⇔ 0 < α, β < 1∨
h1 < h2 ∧ u1 < u2 ⇔ 0 < α, β < 1.

(i-b) Assuming y1 equals y2, and x1 is larger, respectively, smaller than x2, a strictly positive
preference parameter α from (3.2) and β from (3.1) imply happiness and utility for Option 1
being larger, respectively, smaller than happiness and utility for Option 2

h1 > h2 ∧ u1 > u2 ⇔ 0 < α, β < 1∨
h1 < h2 ∧ u1 < u2 ⇔ 0 < α, β < 1.

(ii) If both option-specific payoffs go into the same direction, i.e. x1 is larger, respectively
smaller than x2 and y1 is larger, respectively smaller than y2, then

h1 > h2 ∧ u1 > u2 ⇔ 0 < α, β < 1∨
h1 < h2 ∧ u1 < u2 ⇔ 0 < α, β < 1

i.e. the happiness and utility of Option 1 are larger, respectively, smaller than happiness and
utility of Option 2.

Later, we also describe what happens if we relax previously made assumptions regarding
the weighting parameters, showing the plurality of our results.

3.3.2 Optimal decision

This section discusses the optimal decision regarding happiness and utility. Both are considered
to be ordinal measures7.

At first, we determine the general condition under which an individual is happier with
Option 1 compared to 2. This reads

h1 > h2. (3.3)

If we insert the respective functions, rearrange regarding α and consider implications from
different values of x and y for different options and scenarios, using the condition above in
conjunction with the happiness function in (3.2), we obtain,

h1 > h2 ⇔ α >
Θy

Θy −Θx

∧Θy −Θx > 0 ∨ (3.4a)

⇔ α <
Θy

Θy −Θx

∧Θy −Θx < 0, (3.4b)

7We evaluate happiness and utility for both options and determine which option yields more happiness and
which yields more utility. Hence, a cardinal measure is irrelevant as the comparison matters. This is why
happiness and utility are both ordinal measures.
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where the last line employed

Θy ≡ yθ2 − yθ1 ∧Θx ≡ xθ2 − xθ1. (3.5)

This condition is a general result, as it depends on the relationship between x and y payoffs.
We next consider the analogous parameter condition for the utility function, in order to

observe utility from 1 being larger than that from 2. Thus, we observe conditions under which
an individual chooses Option 1 over 2. This condition is given by

u1 > u2. (3.6)

If we replace the utility expressions with the corresponding equations and assumptions made
above, rearrange regarding β and consider different value combinations of x and y for each
scenario, we can write

u1 > u2 ⇔ β >
γ∆x + (1− γ) ∆y

∆h (α) + γ∆x + (1− γ) ∆y

∧∆h (α) > − [γ∆x + (1− γ) ∆y] ∨ (3.7a)

⇔ β <
γ∆x + (1− γ) ∆y

∆h (α) + γ∆x + (1− γ) ∆y

∧∆h (α) < − [γ∆x + (1− γ) ∆y] , (3.7b)

where the last line employed

∆y ≡ yδ2 − yδ1,∆x ≡ xδ2 − xδ1 ∧∆h (α) ≡ h1 (α)δ − h2 (α)δ . (3.8)

Now, (3.7a) and (3.7b) are general parameter restrictions. However, at this stage, we have
not yet considered explicit parameter values which would fix the sign of the denominator.
This is why we will make distinctions leading to various cases and circumstances under which
individuals choose Option 1 over 2 or vice versa.

Concerning the numerator, we can also derive parameter restrictions for γ, which will help
us in our analysis. For certain values of γ, the difference between differences ∆x and ∆y will be
positive, and for some values of γ, it will be negative. Hence, depending on γ, the numerator
of the fraction in (3.7a) and (3.7b) is positive or negative leading to two distinct cases. This
also becomes essential concerning the ability to explain scenarios using this framework. We
establish from the numerator of (3.7a) and (3.7b)

γ∆x + (1− γ) ∆y ≷ 0⇔ γ ≷
−∆y

∆x −∆y

. (3.9)

This allows us to show for which γ the comparison of direct effect differences (∆x and ∆y) is
positive or negative. Whether it matters or not depends on β and its value.

As we know the preferences and the general conditions for an optimal decision, we can look
at happiness and utility in greater detail. Firstly, we cover cases where the options and their
payoffs impose a trade-off. By this, we mean one payoff in an option will be larger than its
counterpart. Thus, one payoff will be larger in Option 1 than in Option 2 and one payoff will
be larger in Option 2 than in Option 1. We then observe happiness and utility, allowing us to
describe individuals who choose an option they are also happiest with and those who do not.

4 Trade-off

Individuals now face payoffs in such a way that one payoff in Option 1 is larger than its
counterpart in Option 2 and one payoff in Option 2 is larger than its counterpart in Option 1.
We generally have two possible trade-off cases, namely

trade-off case 1: x1 < x2 ∧ y1 > y2 or (4.1)

trade-off case 2: x1 > x2 ∧ y1 < y2. (4.2)
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Given this structure, many subcases emerge. We begin by analyzing happiness before we
continue with utility. The analysis for utility is very comprehensive, which is why, we focus
there on trade-off case 1 explicitly, as the second trade-off case can be analyzed analogously.
We then illustrate how individuals actually decide and show the explanatory power of our
framework in the next section.

4.1 Happiness

In the presence of a trade-off between options, we can obtain a threshold value for α, denoted
α∗, which will determine under which conditions the individual is happier. This condition is
summarized in lemma 1 below.

Lemma 1 When there is a trade-off between Option 1 and Option 2, a unique value α∗ exists
for which the individual is indifferent between two options in terms of happiness. That value
follows from equation (3.4a) and (3.4b), and reads

α∗ ≡ Θy

Θy −Θx

, where Θy ≡ yθ2 − yθ1 ∧Θx ≡ xθ2 − xθ1, (4.3)

and will always be between 0 and 1.

Proof. See appendix.
This allows us to draw the following proposition:

Proposition 1 Cases including trade-off situations are described by option-related payoffs go-
ing in opposite directions.
(i) We get

h1 > h2 ⇔ α < α∗,

for the trade-off (4.1) mentioned above, i.e. the happiness of Option 1 will be larger, respec-
tively, smaller than the happiness of Option 2 if and only if the preference parameter α is
smaller, respectively, larger than the cutoff value α∗.
(ii) We get

h1 > h2 ⇔ α > α∗

for the trade-off (4.2) mentioned above. The happiness of Option 1 will be larger, respectively,
smaller than the happiness of Option 2 if and only if the preference parameter α is larger,
respectively smaller than the cutoff value α∗.

Proof. See appendix.
For trade-off case (4.1), we know that the value of y for Option 1 promises a higher payoff

than Option 2, whereas for the value of x, it is just the opposite. In order to be happier with
Option 1, we need to emphasize the value of y sufficiently.8 Thus, Option 1 leads to a higher
level of happiness in case α is smaller than α∗ such that x2, which exceeds x1, does not impact
the happiness function as much as y1, which exceeds y2.

On the other hand, if we are considering trade-off case (4.2), x1 exceeds x2 and y2 is larger
than y1. Hence, α needs to be larger than α∗ in order for x1 to be emphasized more strongly
than y2 such that Option 1 creates a higher level of happiness.

8For a better understanding keep in mind that our happiness equation reads

h = αxθ + (1− α) yθ.
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4.2 Utility

Concerning our utility function, we determine β for which an individual either prefers Option 1
or Option 2. As we consider cases that include a trade-off, it is important to discuss the cutoff
value for utility beforehand, i.e. β∗ and the influence of γ. Later, we explore two subcases of
the first trade-off case.

4.2.1 Properties of the cutoff value

This section deals with β∗ and its derivation and impacts. It analyzes β where individuals are
indifferent, shows the importance of the numerator and denominator of (3.7a) or (3.7b) and
covers the impact α has in that regard.

Concerning choice indifference, we can draw the following lemma:

Lemma 2 In the case where trade-offs are present between Option 1 and Option 2, a value β∗

exists for which the individual is indifferent between two options in terms of utility. That value
follows from (3.7a), respectively (3.7b), and results from

u1 = u2 ⇔ β = β∗ (α) with

β∗ (α) ≡ γ∆x + (1− γ) ∆y

∆h (α) + γ∆x + (1− γ) ∆y

≡ γ∆x + (1− γ) ∆y

f (α)
. (4.4)

Proof. See appendix.
Apart from depending on the respective differences and γ, it varies with α as this will have

implications on ∆h (α) and, eventually, on β∗. In order to get a feeling for the cutoff value and
its dependence on α, we depict β∗ (α) for the first subcase of trade-off case (4.1) with reasonable
values9 of x and y. For the latter, we took the option-specific payoffs of Benjamin et al. (2012)
above and monotonically transformed them appropriately regarding their time horizon. We get
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9From this point on, if we refer to reasonable scaling or reasonable values, both values x and y are taken
from a scenario of Benjamin et al. (2012) and modified such that the measurement of the original option-
specific payoffs is more realistic in terms of units of measurement. Consider, for instance, a scenario with two
options in which each contain a monetary payoff measured in monetary units per year, and a ’time’ payoff
measured in hours. It would be more appropriate to compare over the same time horizon, i.e. to break down
the monetary payoff into units per hour for both options. In this way, we ensure that a comparison is even more
meaningful than before and we do not lose any information or frame any outcome, as it is a simple monotonic
transformation. One could also use the raw values from their paper, as they are reasonable but do not imply a
good foundation on which an individual can compare options reasonably with each other. This unfortunately
holds for almost every scenario suggested by Benjamin et al. (2012), which is why monotonic transformations
appear helpful.
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Figure 1 β∗ given a subcase of (4.1) and reasonable levels of x and y

The value of α where a pole occurs, i.e. ᾱ, will be explained in detail below.
Focusing on the numerator of β∗ (α) first, all differences within indicated by ∆ emerge as

either positive or negative. Given, for instance, trade-off (4.1) and using (3.8), we see that ∆y,
which was defined as the difference between yδ2 and yδ1, will turn out negative. ∆x, i.e. the
difference between xδ2 and xδ1, will turn out positive. If we just compare these, ∆y is always
smaller than ∆x, as the former is negative and the latter is positive. So in order to decide
whether the numerator of β∗ (α) will be positive or negative, which influences our analysis
greatly, we can compare absolute values to show which difference dominates.

This is where γ becomes meaningful, as a different weight is attached to ∆x and ∆y for
different values of γ. Hence, we distinguish two subcases, which are characterized by the
numerator being larger (subcase a) or smaller (subcase b) than 0. This goes back to (3.9) and
illustrates a γ between 0 and 1 for a trade-off case. Considering our assumptions and conditions
for γ, we can say that for a positive numerator, we need

γ∆x + (1− γ) ∆y > 0

γ >
−∆y

∆x −∆y

,

leading to an overall positive direct effect of the differences of x and y. Subsequently, the
numerator is negative when

γ∆x + (1− γ) ∆y < 0

γ <
−∆y

∆x −∆y

.

This is necessary because x and y are not going to change throughout the analysis once an
individual faces a specific trade-off, but preference parameters such as α and γ take on different
values if we consider different individuals. Hence, this changes β∗ strongly across individuals,
implying that our analysis can be viewed, to some extent, as an analysis of the distribution of
parameters.

Concerning the denominator of β∗ (α), it is inevitable α and its impact are described in
greater detail as it plays a crucial role. Differences within trade-off cases oppose each other,
which not only affects the numerator (as mentioned above). The denominator of β∗ (α) was
introduced in (4.4), which is a function of α for given values of x and y and reads

f (α) ≡ ∆h (α) + γ∆x + (1− γ) ∆y, (4.5)

where the differences are again taken from (3.8). The denominator is positive for a given α such
that the happiness difference exceeds or complements the direct effect of x and y depending on
its sign. This direct effect depends on given differences and assumptions regarding γ. However,
for now, we concentrate on α, as γ, once chosen, remains constant and will only be used for
making distinctions between subcases. We can generally write

f (α) ≷ 0⇔ ∆h (α) ≷ − [γ∆x + (1− γ) ∆y] . (4.6)

Given the structure of the denominator, an α also exists for which the denominator equals 0.
Hence, we obtain an ᾱ, for which ∆h (ᾱ) will exactly offset the other two differences leading
the denominator of β∗ (α) to be 0.

Concerning ᾱ, that has already appeared in the figure for β∗ (α) above, we look at (4.5)
first. The only factor left impacting the denominator for given differences of x and y is ∆h (α).
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If that varies, the denominator will equal 0 at some point, leading β∗ to tend towards ±∞.
This depends strongly on the sign of the numerator and describes the pole mentioned above.
However, ᾱ does not necessarily appear between 0 and 1, as it obviously depends on the values of
the differences ∆x and ∆y. Quantitatively speaking, if we assume values for a more reasonable
comparison, ᾱ often occurs within 0 and 1 for various scenarios. If we do not, ᾱ lies outside of
the unit interval. Attempting to determine exactly ᾱ, we write

f (ᾱ) = 0⇔ ∆h (α) + γ∆x + (1− γ) ∆y = 0. (4.7)

Inserting the happiness difference defined above yields

f (ᾱ) = 0⇔
(
ᾱxθ1 + (1− ᾱ) yθ1

)δ − (ᾱxθ2 + (1− ᾱ) yθ2
)δ

+ γ∆x + (1− γ) ∆y = 0.

Given our structure solving analytically is not possible, but can only be done numerically from
this point on. Unfortunately, this is not trivial. If we determine the numerical solution for a
given combination of x and y reflecting a certain trade-off case, we obtain results which not
only alter with a varying α, but are highly dependent on x and y. This becomes evident as
we calculate the numerical solution with payoffs suggested by Benjamin et al. (2012) for their
income and sleep example. Thereby we vary income by breaking down yearly into monthly,
daily and hourly income. Using these variations on the time scale used for measuring income,
it remains difficult to obtain meaningful solutions. Regarding daily, monthly or yearly income,
complex numbers arise for certain values of α, which are generally unwanted. This is because
a larger value of x or y can lead to a negative h for which no real root can be extracted leading
to imaginary numbers.

In order to get an impression of the direction the denominator takes with a varying α, we
consider the derivative of f (α). Based on previous analysis we expect a negative derivative for
trade-off case 1. We know f (α) reads:

f (α) =
(
αxθ1 + (1− α) yθ1

)δ − (αxθ2 + (1− α) yθ2
)δ

+ γ∆x + (1− γ) ∆y.

Given that we derive regarding α, the change of the denominator is entirely described through
the change of the happiness difference. We obtain

d

dα
f (α) = f ′ (α) = δ

(
xθ1 − yθ1

) (
αxθ1 + (1− α) yθ1

)δ−1 − δ (xθ2 − yθ2) (αxθ2 + (1− α) yθ2
)δ−1

= δ

[(
xθ1 − yθ1

) 1

h1 (α)1−δ
−
(
xθ2 − yθ2

) 1

h2 (α)1−δ

]
. (4.8)

As before, we cannot tell the sign of the derivative by just looking at the expression. This is
because we know the general relationship between x1 (y1) and x2 (y2) for every trade-off but
not between x1 (x2) and y1 (y2), which would be necessary to determine whether (xθ1 − yθ1) or
(xθ2 − yθ2) are positive or negative. If we consider our sleep and income example, this makes
sense as an exact comparison between daily income and the hours of sleep per day appears
slightly abstract.

Before analyzing cases, we have to determine the order in which α∗ and ᾱ occur. This will
change ∆h (α), f (α) and β∗ (α) accordingly. We obtain the following lemma:

Lemma 3 Given trade-off cases (4.1) or (4.2) we can distinguish between subcase a) and b)
as the difference between both is γ∆x + (1− γ) ∆y larger, respectively smaller than 0. If γ∆x +
(1− γ) ∆y > 0, we can identify the following relationship α∗ < ᾱ (for (4.2) subcase a): ᾱ < α∗).
If γ∆x + (1− γ) ∆y < 0 we obtain ᾱ < α∗ (for (4.2) subcase b): α∗ < ᾱ).

Proof. See appendix.
Now we can specifically differentiate between the two subcases mentioned earlier.
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4.2.2 Trade-off (4.1) - Subcase a)

The first subcase, denoted a) from (4.1), characterized by the following conditions, is

x1 < x2 ∧ y1 > y2 ∧ γ >
−∆y

∆x −∆y

. (4.9)

This is exactly what we assumed for trade-off (4.1) combined with γ taking on a value such
that γ is above its threshold value. We, furthermore, want to show when ∆h (α), then f (α)
and, ultimately, β∗ (α) change signs. Applying the conditions set in (4.9) to proposition 2 and
lemma 3, we are able to determine conditions for the values of α introduced earlier, i.e. α∗ and
ᾱ:

∆h (α) > 0⇔ α < α∗ ; f (α) ∧ β∗ (α) > 0⇔ α < ᾱ

∆h (α) < 0⇔ α > α∗ ; f (α) ∧ β∗ (α) < 0⇔ α > ᾱ
(4.10)

The left-hand side of (4.10) is known from the happiness section of trade-off (4.1). It depicts
h1 > h2 for the upper and h1 < h2 for the lower line. The right-hand side of (4.10) shows the
sign of the denominator, i.e. f (α), and the cutoff, i.e. β∗ (α), for a given α. The impact α has
on the denominator can also be depicted as:
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Figure 2 f (α) given conditions in (4.9)

As α passes α∗, this has an influence on the value of f (α) and β∗ (α) but will not change the
algebraic sign of the denominator nor of the cutoff. This happens at ᾱ which can be identified
according to the figure as 0.91 for representative values.

We know from lemma 3 that for trade-off (4.1) subcase a) the relationship α∗ < ᾱ has to
hold. If we let α increase from 0 upwards, we can distinguish three sets of α-values having
different impacts on ∆h, β

∗ (α) and, ultimately, on the utility level between options u1 ≷ u2.
If we were not adapting the values, we would only face two sets of α-values, as ᾱ would be
outside of 0 and 1, which does not change the analysis per se but only the number of α-sets
we consider. The rationale is that for every area and its corresponding boundaries we choose
a value of α within, enabling us to analyze its implications. Hence, we define the following
relationships:

Definition 1 Under the assumptions of (4.9), proposition 1, lemmata 1,2 and 3, areas con-
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taining strictly positive values of α and β are defined as follows

α-interval β-interval Area
α ∈ (0, α∗) β ∈ (0, β∗) A

β ∈ (β∗, 1) B
α ∈ (α∗, ᾱ) β ∈ (0, 1) C1

α ∈ (ᾱ, 1) C2

If ᾱ were not to appear between 0 and 1, then C = C1 ∪ C2 holds for the interval where
α ∈ (α∗, 1). Now, we can find a different ∆h, f (α) and β∗ (α) for every area. This is why the
conditions for choice change within every area and, therefore, have to be considered accordingly.
If we put this all together, we obtain

Option 1 chosen (u1 > u2) Option 2 chosen (u1 < u2) Value of β∗ (α)
β > β∗ (α) ; A β < β∗ (α) ; B 0 < β∗ (α) < 1
β > β∗ (α) β < β∗ (α) ; C1 ∨ C 1 < β∗ (α)
β < β∗ (α) β > β∗ (α) ; C2 β∗ (α) < 0

Table 5 Overview of areas, choices and values of β∗ (α) for conditions from (4.9)

Visualizing the last table, we obtain

Figure 3 Sketch of β∗ for case (4.1) subcase a) with ᾱ ∈ (0, 1) (left-hand side) and with
ᾱ /∈ (0, 1) (right-hand side)

If α is smaller than α∗ and ᾱ, we obtain a β∗ (α) which is between 0 and 1. This allows us to
differentiate clearly between β > β∗ (α), i.e. A, for which Option 1 is chosen, and β < β∗ (α),
i.e. B, for which Option 2 is chosen. Put differently, if α is reasonably small such that Option
1 is preferred in terms of happiness, β needs to be sufficiently high to put enough weight on
happiness such that its influence will cause individuals to choose Option 1. If β is not high
enough, i.e. β < β∗ (α), the weight of x and y inside u is larger than for happiness. This will
lead to preferring Option 2 over 1, although individuals would be happier with Option 1.

On the other hand, if an individual is happier with Option 2, i.e. α > α∗, there is no β
between 0 and 1 such that an individual would choose Option 1 over Option 2. In other words,
if α passes α∗ we enter area C1 and β∗ (α) is above 1. This indicates that a β larger than
β∗ (α) is a possibility for which we do not allow. Hence, for our conditions above and a strictly
positive β, Option 2 will always be preferred. Similarly for area C2, β cannot be smaller than a
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negative β∗ (α), assuming strictly positive parameters. Thus, Option 2 will always be preferred
for a β between 0 and 1.

In a case where ᾱ is not inside the unit interval, the differences ∆x and ∆y are usually rather
’far’ apart. There are then three areas of α and β values, i.e. A and B or C. If α is smaller
than α∗, β is either in A or B. If α is larger than α∗, β is part of area C (see right-hand side
of Figure 3).

Proposition 2 Given definition 1 and that conditions (4.9) for trade-off (4.1) subcase a) hold,
if weights α and β take on values such that we are in area A,

B,
C ∨ C1 ∧ C2,

 utility from Option 1 is always

 larger
smaller
smaller

 than utility from Option 2.

Proof. See appendix.

4.2.3 Trade-off (4.1) - Subcase b)

Everything referring to utility analysis is going to change for the case where x1 < x2 and y1 > y2
with the numerator being negative, as only the interpretation regarding α and α∗ stays as the
trade-off itself is the same. The comparison of differences regarding the direct effect of x and
y is now negative, i.e. γ changed. This can be identified by the rightmost expression of

x1 < x2 ∧ y1 > y2 ∧ γ <
−∆y

∆x −∆y

. (4.11)

Applying proposition 2 and lemma 3, we describe when ∆h (α), f (α) and β∗ (α) change signs
for α∗ and ᾱ:

∆h (α) > 0⇔ α < α∗ ; f (α) > 0 ∧ β∗ (α) < 0⇔ α < ᾱ
∆h (α) < 0⇔ α > α∗ ; f (α) < 0 ∧ β∗ (α) > 0⇔ α > ᾱ

The left-hand side is known from the happiness section of this particular case. It depicts h1 > h2
for the upper and h1 < h2 for the lower line. The right-hand side shows the sign of the
denominator, i.e. f (α), and the cutoff, i.e. β∗ (α), for a certain α. The impact α has on the
denominator can also be depicted as
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Figure 4 f (α) given conditions in (4.11)
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As α passes ᾱ, it affects f (α) and β∗ (α) and will change their sign. Given the picture from
above, ᾱ = 0.14 assuming representative values.

For case (4.1) subcase b) and reasonable scaling we can identify the following relationship
0 < ᾱ < α∗ < 1. If we let α increase from 0, we can distinguish three sets of α values that
impact ∆h, β

∗ and, ultimately, the utility level between options u1 ≷ u2 differently. For every
set we choose a value of α within the corresponding boundaries to analyze implications on the
other variables. We define the following relationships:

Definition 2 Under the assumptions of (4.11), proposition 1, lemmata 1, 2 and 3, areas con-
taining strictly positive values of α and β are defined as follows

α-interval β-interval Area
α ∈ (0, ᾱ) β ∈ (0, 1) A1

α ∈ (ᾱ, α∗) A2

α ∈ (α∗, 1) β ∈ (0, β∗) B
β ∈ (β∗, 1) C

If ᾱ were not to appear between 0 and 1, then A = A1 ∪ A2 holds for the α-interval of
α ∈ (0, α∗). We can find a different ∆h, f (α) and β∗ (α) for every area now. This is why
the conditions for a change in choice within every area have to be considered accordingly. We
obtain

Option 1 chosen (u1 > u2) Option 2 chosen (u1 < u2) Value of β∗ (α)
β > β∗ (α) ; A1 β < β∗ (α) β∗ (α) < 0
β < β∗ (α) ; A2∨ A β > β∗ (α) 1 < β∗ (α)
β < β∗ (α) ; B β > β∗ (α) ; C 0 < β∗ (α) < 1

Table 6 Overview about the areas, choices and values of β∗ (α) for conditions from (4.11)

In order to visualize the last table, we get

Figure 5 Sketch of β∗ for case (4.2) subcase b) with ᾱ ∈ (0, 1) (left-hand side) and with
ᾱ /∈ (0, 1) (right-hand side)

Since we are still in trade-off case 1, we know that individuals are happier with Option 1
for an α < α∗. Thus, in the beginning, we are located in area A1, where we obtain a β∗ (α)
which is below 0. We know from the conditions above that β needs to be larger than β∗ (α)
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for Option 1 to be preferred in terms of choice, which is always the case as we only allow for
strictly positive parameters. Put differently, if individuals are happier with Option 1, there is
no β we allow for that would make individuals choose Option 2. With an increasing α we enter
area A2, where we face a β∗ (α) that is above 1. This indicates that a β larger than β∗ (α)
is a possibility we do not allow for. Hence, for a strictly positive β, Option 1 will always be
preferred.

As we pass α∗ individuals feel happier with Option 2. For areas B and C, we can make
clear distinctions for which β Option 1 is preferred as β∗ (α) is between 0 and 1. Given the
conditions above, if β is smaller than β∗ (α), Option 1 will be chosen (B), as the weight on
happiness within the utility function is sufficiently low such that the direct effect of x and y,
which is larger for Option 1 here, is emphasized more strongly than the happiness effect from
Option 2. Otherwise, Option 2 yields a higher utility (C), as a β above the cutoff puts enough
weight on happiness within the utility function such that individuals are not only happier but
also choose Option 2.

It might also be the case that ᾱ is not in the unit interval. This is especially the case when
the differences ∆x and ∆y are rather ’far’ apart. We then only consider two sets of α-values
and three areas, i.e. A and B or C. Eventually, we can draw the following proposition:

Proposition 3 Given definition 2 and that conditions (4.11) for trade-off (4.1) subcase b)
hold, if weights α and β take on values such that we are in area A ∨ A1 ∧ A2,

B,
C,

 utility from Option 1 is always

 larger
larger
smaller

 than utility from Option 2.

Proof. See appendix.
Ultimately, the difference between cases (4.1) subcase a) and b) is determined by the nu-

merator of β∗ (α). It is either positive describing the former case or it is negative describing
the latter.

Applying the same intuition as before to trade-off case 2, we can distinguish (4.2) subcase
a) (1− γ) ∆y − γ∆x > 0, and (4.2) subcase b), i.e. (1− γ) ∆y − γ∆x < 0. We obtain similar
results compared to (4.1) subcases a) and b). This originates in the signs of the numerator,
which in the case of (4.1) and (4.2) for subcase a), respectively, subcase b) are the same.

5 How do people make decisions?

5.1 Do people choose what makes them happy?

Finally, do people choose what makes them happy? We consider again:

h\u u1 > u2 u1 < u2
h1 > h2 coincide I contradict II
h1 < h2 contradict III coincide IV

Table 7 Utility and Happiness

When do people behave in a consistent way? If we bring the propositions for happiness and
utility together, we can set up the following theorems indicating when happiness and choice
coincide. As we consider two different trade-offs with each trade-off featuring two subcases, we
can draw two theorems.

We begin with:
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Theorem 1 If α > α∗ and 0 < β(α) < 1 or if α < α∗ and β > β∗(α), then happiness and
choice will coincide
(i) in trade-off 1 if and only if (1− γ) ∆y + γ∆x > 0,
(ii) in trade-off 2 if and only if (1− γ) ∆y + γ∆x < 0.

Proof. See appendix.
We express the second theorem:

Theorem 2 If α > α∗ and β > β∗(α) or if α < α∗ and 0 < β(α) < 1, then happiness and
choice will coincide
(i) in trade-off 1 if and only if (1− γ) ∆y + γ∆x < 0,
(ii) in trade-off 2 if and only if (1− γ) ∆y + γ∆x > 0.

Proof. See appendix.
So ultimately, we can determine parameter line-ups for which happiness and choice coincide

given our framework. But can we explain every decision an individual makes?

5.2 Can our model explain an individual’s decision?

Starting with trade-off (4.1) subcase a), we can show that the combination h1 < h2 and u1 > u2
(i.e. combination III in Table 7) cannot be explained using strictly positive parameters as we
cannot capture III with an appropriate area. The same holds for trade-off (4.2) subcase a).
Thus, we observe that for subcases where the inequality between the payoff differences ∆x

and ∆y in connection with γ is in favor of the positive difference, which both subcases share,
the numerator of β∗ (α) emerges positive, causing combination III to be inexplicable. The
difference between cases (4.1) subcase a) and (4.2) subcase a) arises from the different trade-
offs10. Furthermore, we use the areas introduced and described above in section 4.2.2 to clarify
intuitively what the model can explain. We get

h\u u1 > u2 u1 < u2
h1 > h2 α < α∗; β > β∗ (α) ; Area A α < α∗; β < β∗ (α) ; Area B
h1 < h2 α > α∗; β > β∗ (α) > 1 ∨ β < β∗ (α) < 0 α > α∗; 0 < β < 1; Area C or C1 ∧ C2

Table 8 Parameter properties for case (4.1) subcase a)

Regarding case (4.1) subcase b), we cannot explain combination h1 > h2 and u1 < u2 (i.e.
combination II from Table 7). This also holds for (4.2) subcase b), except the relationship
between α and α∗ is different. For these two cases, we detect the inequality of payoff differ-
ences to be in favor of the negative difference, turning the numerator of β∗ (α) negative. This
leads β∗ (α) to tend to a negative infinity for α = ᾱ. If this occurs, combination II becomes
inexplicable using standard economic theory. This is visualized in the following table. We get:

h\u u1 > u2 u1 < u2
h1 > h2 α < α∗; 0 < β < 1; Area A or A1 ∧ A2 α < α∗; β > β∗ (α) > 1 ∨ β < β∗ (α) < 0
h1 < h2 α > α∗; β < β∗ (α) ; Area B α > α∗; β > β∗ (α) ; Area C

Table 9 Parameter properties for case (4.1) subcase b)

Proposition 4 From the previous three Tables 7, 8 and 9, we know for strictly positive weights
on happiness and utility (i.e. 0 < α < 1, 0 < β < 1 and 0 < γ < 1), that the model can always
explain two combinations where happiness and utility coincide and one out of the two where
they contradict each other, regardless which trade-off an individual faces.

10The role α plays is for (4.2) subcase a) the exact opposite as for (4.1) subcase a).
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Answering the question from the beginning of this section, our model extension can explain
even more than standard utility theory suggests. If we set β equal to zero, a parsimonious
model emerges, such that utility is represented by a standard CES function. For this case,
we can show when happiness and utility coincide. Using standard utility theory, we explain
an average of 81 % of choices and preferences observed in terms of happiness for scenarios in
Benjamin et al. (2012) representing trade-off case (4.1). This characterizes combinations which
do not imply a difference between both concepts, i.e. they coincide.

Our model interprets happiness and utility as two equal concepts for β being equal to
one. In that case, our utility function could be characterized as ’hedonic utility.’ Under the
assumption of β being in the unit interval, our model explains an average of 16 % points more of
the beforehand mentioned empirical evidence, by also covering a combination where happiness
and utility diverge. Ultimately, the question remaining is: What is a possible explanation for
combination III for subcase a) and combination II of subcase b) which limits our model?

5.3 Model implications

Looking at the last two tables, we can describe three possible combinations. The trade-off
case representing the sleep and income scenario is (4.1) subcase a). The combination we can-
not explain is individuals being happier with Option 2, but actually choosing Option 1 (i.e.
combination III). Apart from that, our model can rationalize 97 % of the empirical evidence.

Relaxing assumptions, we might be able to display every combination. There are two
possible ways to achieve this.

5.3.1 Considering economic bads

It might generally be that certain scenarios feature payoffs which are usually considered eco-
nomic goods, but which some people may perceive as economic bads. Therefore, the assumption
that parameters must be strictly positive could be relaxed, for which we could describe all cases
depending on which payoff is viewed as the economic bad, either one or both. Thus, going back
to case (4.1) subcase a) without an ᾱ between 0 and 1 (this can be done for every case possible),
we would need to allow for values of β larger than 1 to describe combination III (which can also
be seen in Table 8). In terms of the model, nothing changes, except for when α is larger than
α∗. In particular, combination III and IV change due to allowing economic bads. Given the
former, individuals who are happier with Option 2, i.e. more income and less sleep, decide for
less income and more sleep, i.e. Option 1, and need a β that is larger than β∗ (α), which itself
is larger than 1. This indicates that the direct effect of x and y is negative as (1− β) becomes
smaller than 0, indicating that the individual only cares about being happy and evaluates the
rest, i.e. income and sleep, as essentially bad or not beneficial in terms of utility. However, as
one might be able to make the case for sleep being an economic bad, it is unrealistic to describe
income as something individuals prefer less of, i.e. view income as an economic bad.

5.3.2 Random decision-making

One could think of random decision-making as being a reason for the inexplicable combination
II for cases (4.1) subcase b) and (4.2) subcase b) and III for cases (4.1) subcase a) and (4.2)
subcase a). Evidence that individuals are conflicted between two different choices and, thus,
decide randomly can be found in everyday life. Considering random decision aids, such as the
coin flip or random decision-makers on the Internet, there are individuals who cannot make a
decision for reasons that are manifold (e.g. analysis paralysis or lack of awareness).

This leads to the result that represents the least share of individuals (i.e. the 1 % from
scenario 1) to be an outcome of random decision-making. Assuming a uniform distribution of
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individuals who are characterized by deciding randomly upon emotions (i.e. happiness) and
rationales (i.e. utility), we find individuals within every combination making random decisions.

Knowing that the sleep vs. income scenario’s inexplicable combination is III, the share of
individuals maximizing their utility with Option 1, but not their happiness (i.e. they maximize
happiness with Option 2) is 4 %. This stems from four possible combinations and 1 % of
individuals representing this combination. If we want to compute and then compare this across
all scenarios which fulfill the necessary conditions to reflect trade-off case (4.1) and subcase a),
we have to make certain assumptions. Firstly, we need to identify the option-specific payoffs x
and y for every scenario, quantify them carefully, such that we can classify every scenario, and
compare it with the categorization of the trade-off cases from above. After identifying which
scenario fits trade-off case (4.1), we can calculate the average of individuals whose decision can
be traced back to be entirely random. Based on our calculations, an average of 2.8 % of people
decide on combination III and 97 % on the other three11. Accordingly the share of individuals
across all fitting scenarios deciding randomly is 11.2 %12.

6 Conclusion

Subsequently, do people choose what will make them happy? There are cases where choice and
happiness clearly differ. For these cases, we presented robust evidence from Benjamin et al.
(2012), which we focused on explicitly to build our theoretical framework.

We showed a general model that explains choice-inferred utility and happiness for no trade-
off and trade-off cases. Given the latter happiness and utility coincide if the parameters satisfy
certain properties. The analysis of the values describing the option indifference regarding
happiness, i.e. α∗, and utility, i.e. β∗ (α), is essential. As for the latter, an altering of α will
change the value of utility indifference accordingly, which is why its properties were described
extensively.

Ultimately, given the empirical evidence observed for scenarios fitting trade-off (4.1), stan-
dard utility theory explains an average of 81 %. Our model adds 16 % points, making us able
to describe an average of 97 % of empirical evidence. We suggest the remaining percentage
to be an outcome entirely originating from random decision-making. Assuming a uniform dis-
tribution, a share of 11.2 % of individuals is characterized by deciding randomly, whereas our
model covers the share left, i.e. 88.8 % of individuals.

11This does not add up to an even 100 % as descriptive percentages from Benjamin et al. (2012) of one
scenario do not add up to 100 %.

12Scenarios reflecting our trade-off case 1 are scenarios 1, 4, 9 and 10 from the Cornell study and 1, 4, 11
and 13 from the Denver study. Since scenarios 9, 10 and 11 do not include any payoffs, they are omitted from
further calculations. The combination we cannot explain using our model is III. Thus, calculating the average
and assuming a uniform distribution leads to presented 11.20 %. The calculation itself begins with adding
up the percentages from combination III of the scenarios above, is then multiplied by four due to assuming a
uniform distribution and, subsequently, divided by the number of scenarios we are considering, i.e. five.
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A.1 Appendix on optimal decision-deriving equations (3.4a), (3.4b),
(3.7a) and (3.7b)

This appendix refers to section 3.3.2. It shows the steps in between deriving (3.4a), (3.4b),
(3.7a) and (3.7b). In the fashion of the corresponding section in the main part, we begin with
happiness and continue with utility.

• Happiness

The general condition reads

h1 > h2. (A.1)

If we plug in the respective functions, we obtain

h1 > h2 ⇔ αxθ1 + (1− α) yθ1 > αxθ2 + (1− α) yθ2.

Simple rewriting and reallocating leads to

h1 > h2 ⇔ αxθ1 + (1− α) yθ1 > αxθ2 + (1− α) yθ2

⇔ α
[
xθ1 − xθ2 + yθ2 − yθ1

]
> yθ2 − yθ1.

If we now divide by
[
xθ1 − xθ2 + yθ2 − yθ1

]
, we can show what α needs to fulfill such that individuals

are happier with Option 1. This is

h1 > h2 ⇔ α >
yθ2 − yθ1

xθ1 − xθ2 + yθ2 − yθ1
∧ xθ1 − xθ2 + yθ2 − yθ1 > 0 ∨ (A.2a)

⇔ α <
yθ2 − yθ1

xθ1 − xθ2 + yθ2 − yθ1
∧ xθ1 − xθ2 + yθ2 − yθ1 < 0. (A.2b)

Defining

Θy ≡ yθ2 − yθ1 ∧Θx ≡ xθ2 − xθ1, (A.3)

we obtain

h1 > h2 ⇔ α >
Θy

Θy −Θx

∧Θy −Θx > 0 ∨ (A.4a)

⇔ α <
Θy

Θy −Θx

∧Θy −Θx < 0. (A.4b)

• Utility
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The general condition reads
u1 > u2. (A.5)

If we replace the utility expressions with the corresponding equations and assumptions made
above, we can write

u1 > u2 ⇔ βhδ1 + (1− β)
[
γxδ1 + (1− γ) yδ1

]
> βhδ2 + (1− β)

[
γxδ2 + (1− γ) yδ2

]
.

Rewriting both sides such that β only occurs on the left-hand side, will lead to

u1 > u2 ⇔ β
[
hδ1 − hδ2 − γxδ1 − (1− γ) yδ1 + γxδ2 + (1− γ) yδ2

]
> γ

[
xδ2 − xδ1

]
+ (1− γ)

[
yδ2 − yδ1

]
.

Bringing expressions together yields

u1 > u2 ⇔ β
[
hδ1 − hδ2 + γ

[
xδ2 − xδ1

]
+ (1− γ)

[
yδ2 − yδ1

]]
> γ

[
xδ2 − xδ1

]
+ (1− γ)

[
yδ2 − yδ1

]
⇔ β [∆h (α) + γ∆x + (1− γ) ∆y] > γ∆x + (1− γ) ∆y,

where the last line employed

∆y ≡ yδ2 − yδ1,∆x ≡ xδ2 − xδ1 ∧∆h (α) ≡ h1 (α)δ − h2 (α)δ . (A.6)

If we reallocate such that β remains alone on the left-hand side, we get

u1 > u2 ⇔ β >
γ∆x + (1− γ) ∆y

∆h (α) + γ∆x + (1− γ) ∆y

∧∆h (α) > − [γ∆x + (1− γ) ∆y] ∨ (A.7a)

⇔ β <
γ∆x + (1− γ) ∆y

∆h (α) + γ∆x + (1− γ) ∆y

∧∆h (α) < − [γ∆x + (1− γ) ∆y] . (A.7b)

A.2 Appendix on happiness

The goal is to determine theoretical conditions for which

h1 ≡ h(x1, y1) > h2 ≡ h(x2, y2). (A.8)

If we plug in the respective functions, we obtain

h1 > h2 ⇔ αxθ1 + (1− α) yθ1 > αxθ2 + (1− α) yθ2.

The following steps involve simple rewriting and reallocating, such that

h1 > h2 ⇔ αxθ1 + (1− α) yθ1 > αxθ2 + (1− α) yθ2

⇔ α

1− α
xθ1 + yθ1 >

α

1− α
xθ2 + yθ2

⇔ α

1− α
(
xθ1 − xθ2

)
> yθ2 − yθ1

⇔ α
[
xθ1 − xθ2 + yθ2 − yθ1

]
> yθ2 − yθ1. (A.9)

This is our first result, which is generally implied by the appendix section before. Depending
on the different option-specific values, we can distinguish the following cases for a no trade-off
situation

1) x1 = x2 ∧ y1 ≷ y2 and (A.10a)

2) x1 ≷ x2 ∧ y1 = y2 and (A.10b)

3) x1 ≶ x2 ∧ y1 ≶ y2. (A.10c)
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For the situation where a trade-off occurs, we get

(4.1) x1 < x2 ∧ y1 > y2 and (A.11a)

(4.2) x1 > x2 ∧ y1 < y2. (A.11b)

The bold numbers will help guiding the reader through various cases for corollary 1, where
no trade-off is present.

A.2.1 Proof of corollary 1 (Part 1)

This proof deals with happiness only, which is why it reflects Part 1. Correspondingly the
second part will follow in the appendix on utility. We do not apply the definitions from (A.3)
in here as the corollary is a rather minor, intuitive and trivial one, which will not be of any
further purpose.

Proof. We begin this section with the first three cases which do not contain a trade-off,
i.e. (A.10a), (A.10b) and (A.10c).
1a) For x1 = x2 ∧ y1 > y2, we get

h1 > h2 ⇔ α
[
yθ2 − yθ1

]
> yθ2 − yθ1

⇔ α < 1 =⇒ always possible. (A.12)

1b) For x1 = x2 ∧ y1 < y2, we get

h1 > h2 ⇔ α
[
yθ2 − yθ1

]
> yθ2 − yθ1

⇔ α > 1 =⇒ never possible. (A.13)

As we assume strict positivity, an α > 1 will not be considered.
2a) For x1 > x2 ∧ y1 = y2, we obtain

h1 > h2 ⇔ α
[
xθ1 − xθ2

]
> 0

⇔ α > 0 =⇒ always possible. (A.14)

2b) For x1 < x2 ∧ y1 = y2, we obtain

h1 > h2 ⇔ α
[
xθ1 − xθ2

]
> 0

⇔ α < 0 =⇒ never possible. (A.15)

A negative α would violate the strict positivity assumption and is therefore excluded.
3a) For x1 < x2 ∧ y1 < y2, we get

h1 > h2 ⇔ α
[
xθ1 − xθ2 + yθ2 − yθ1

]
> yθ2 − yθ1

⇔ α ≷ α∗, (A.16)

where

α∗ ≡ yθ2 − yθ1
xθ1 − xθ2 + yθ2 − yθ1

. (A.17)

We now need to compare xθ1 − xθ2 and yθ2 − yθ1, which represents the denominator, to establish
whether α needs to be smaller or larger than α∗. As we cover things in general at first, we

25



consider both possibilities.
For xθ1 − xθ2 + yθ2 − yθ1 < 0, we have

h1 > h2 ⇔ α < α∗ < 0 =⇒ never possible. (A.18)

For xθ1 − xθ2 + yθ2 − yθ1 > 0, we have

h1 > h2 ⇔ α > α∗ > 1 =⇒ never possible. (A.19)

Given this case, no possibility exists, where α can be between 0 and 1 and happiness of Option
1 is larger than of Option 2. Option 2 will always be preferred in terms of happiness.
3b) For x1 > x2 ∧ y1 > y2, we get

h1 > h2 ⇔ α
[
xθ1 − xθ2 + yθ2 − yθ1

]
> yθ2 − yθ1

⇔ α ≷ α∗, (A.20)

depending on xθ1 − xθ2 + yθ2 − yθ1 ≷ 0, which represents the denominator.
For xθ1 − xθ2 + yθ2 − yθ1 > 0, we have

h1 > h2 ⇔ α∗ < 0 < α < 1 =⇒ always possible. (A.21)

For xθ1 − xθ2 + yθ2 − yθ1 < 0, we have

h1 > h2 ⇔ 0 < α < 1 < α∗ =⇒ always possible. (A.22)

This illustrates that when both payoffs of Option 1 are larger than of Option 2, there is no
strictly positive α that would lead to people favoring Option 2 in terms of happiness.

A.2.2 Proof of lemma 1

Proof. If we look at (3.4a), the steps leading towards this expression and the conditions for
which h1 equals h2, one will come up with

α =
Θy

Θy −Θx

where Θy ≡ yθ2 − yθ1 ∧Θx ≡ xθ2 − xθ1.

If we define the latter expression, which essentially describes the individuals being indifferent
between Option 1 and Option 2 in terms of happiness, as α∗, we have confirmed the stated
lemma. Subsequently, if α is smaller (larger) than α∗ we can identify different decisions regard-
ing Option 1 and 2 in terms of what makes individuals happier. This additionally proves a∗ to
be the cutoff value after which happiness changes.

A.2.3 Proof of proposition 1

Proof. This section features the trade-off cases, namely (A.11a) and (A.11b) in the appendix
or (4.1) and (4.2) in the paper. We obtain
(4.1) For x1 < x2 ∧ y1 > y2, we get

Θy −Θx < 0. (A.23)

The condition for h1 > h2 reads

h1 > h2 ⇔ 0 < α <
Θy

Θy −Θx

< 1. (A.24)

Simplifying (A.24) yields
h1 > h2 ⇔ 0 < α < α∗ < 1.
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This α∗ describes the point where individuals are indifferent regarding happiness of both op-
tions. Note that for trade-off (4.1) α∗ is larger than zero, since both numerator and denominator
are negative and, moreover, that 0 < α∗ < 1.
Case (4.2) is similar to (4.1), as Θy −Θx > 0. We obtain

h1 > h2 ⇔ α > α∗, (A.25)

with 0 < α∗ < α < 1.

A.3 Appendix on utility

This appendix section deals with deriving conditions such that

u1 ≡ u (h1, x1, y1) > u2 ≡ u (h2, x2, y2) . (A.26)

If we plug in the assumptions made above regarding the utility function, we can write

u1 > u2 ⇔ βhδ1 + (1− β)
[
γxδ1 + (1− γ) yδ1

]
> βhδ2 + (1− β)

[
γxδ2 + (1− γ) yδ2

]
.

Rewriting both sides such that only one β occurs on the left-hand side, will lead to

u1 > u2 ⇔ β
[
hδ1 − hδ2 − γxδ1 − (1− γ) yδ1 + γxδ2 + (1− γ) yδ2

]
> γ

[
xδ2 − xδ1

]
+ (1− γ)

[
yδ2 − yδ1

]
⇔ β

[
hδ1 − hδ2 + γ

[
xδ2 − xδ1

]
+ (1− γ)

[
yδ2 − yδ1

]]
> γ

[
xδ2 − xδ1

]
+ (1− γ)

[
yδ2 − yδ1

]
⇔ β [∆h (α) + γ [∆x] + (1− γ) [∆y]] > γ [∆x] + (1− γ) [∆y] , (A.27)

where the last line employed

∆y ≡ yδ2 − yδ1,∆x ≡ xδ2 − xδ1 ∧∆h (α) ≡ hδ1 − hδ2. (A.28)

As in the previous appendix section, we obtain three different cases without a trade-off present,
namely

1) x1 = x2 ∧ y1 ≷ y2and (A.29a)

2) x1 ≷ x2 ∧ y1 = y2and (A.29b)

3) x1 ≶ x2 ∧ y1 ≶ y2. (A.29c)

Naturally, this holds for the trade-off case as well. We obtain

(4.1) x1 < x2 ∧ y1 > y2 and (A.30a)

(4.2) x1 > x2 ∧ y1 < y2 (A.30b)

Additionally, we distinguish two circumstances for each of these cases, namely

I) h1 > h2 and

II) h1 < h2.

This will reveal plenty of possible combinations, but will also lead to some which will practically
have no relevance given the strict parameter positivity. The bold numbers will help maneuvering
the reader through various cases for corollary 1, where no trade-off is present.
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A.3.1 Proof of corollary 1 (Part 2)

As in the spirit of the happiness appendix, we proceed similarly within this section. However,
even though this is still a minor corollary and contrary to what we did in part 1 for happiness,
we will use previously made definitions for the differences.

Proof. We begin with corollary 1 which contains the three cases, where no trade-off occurs,
i.e. (A.29a), (A.29b) and (A.29c). Given (A.29a), we obtain:
1a) For x1 = x2 ∧ y1 > y2, we get

u1 > u2 ⇔ β [∆h (α) + (1− γ) ∆y] > (1− γ) ∆y.

I) In case 0 < α < 1 and, therefore, h1 > h2, the conditions on u1 > u2 read

u1 > u2 ⇔ β >
(1− γ) ∆y

∆h (α) + (1− γ) ∆y

for ∆h (α) + (1− γ) ∆y > 0 =⇒ always possible. (A.31)

or

u1 > u2 ⇔ β <
(1− γ) ∆y

∆h (α) + (1− γ) ∆y

for ∆h (α) + (1− γ) ∆y < 0 =⇒ always possible. (A.32)

(A.31) is possible if β is larger than some negative expression. (A.32) is possible if β is smaller
than some strictly positive expression which both is possible. This implies that for a strictly
positive β, u1 will always be larger than u2, given this case and h1 > h2.
II) If α > 1 holds, then h1 < h2. That yields

u1 > u2 ⇔ 0 < β <
(1− γ) ∆y

∆h (α) + (1− γ) ∆y

< 1 =⇒ never possible. (A.33)

1b) For x1 = x2 ∧ y1 < y2, we obtain

u1 > u2 ⇔ β [∆h (α) + (1− γ) ∆y] > (1− γ) ∆y.

I) Assuming α > 1, i.e. h1 > h2, we get

u1 > u2 ⇔ 0 <
(1− γ) ∆y

∆h (α) + (1− γ) ∆y

< β < 1 =⇒ never possible. (A.34)

At first glance this case looks fine regarding β, but it will never occur generally as α would
have to be larger than its upper boundary.
II) Assuming 0 < α < 1, i.e. h1 < h2, we get

u1 > u2 ⇔ β >
(1− γ) ∆y

∆h (α) + (1− γ) ∆y

for ∆h (α)+(1− γ) ∆y > 0 =⇒ always possible, (A.35)

or

u1 > u2 ⇔ β <
(1− γ) ∆y

∆h (α) + (1− γ) ∆y

for ∆h (α) + (1− γ) ∆y < 0 =⇒ always possible. (A.36)

This illustrates that for a valid α and β, happiness and utility for Option 2 exceed those of
Option 1.
2a) For (A.29b), i.e. x1 > x2 ∧ y1 = y2, we obtain

u1 > u2 ⇔ β [∆h (α) + γ∆x] > γ∆x.
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I) Assuming 0 < α < 1 and, hence, h1 > h2, we see that

u1 > u2 ⇔ β >
γ∆x

∆h (α) + γ∆x

for ∆h (α) + γ∆x > 0 =⇒ always possible, (A.37)

or

u1 > u2 ⇔ β <
γ∆x

∆h (α) + γ∆x

for ∆h (α) + γ∆x < 0 =⇒ always possible. (A.38)

This is again an example where choice and happiness coincide.
II) Assuming α < 0 yields h1 < h2. Thus, we obtain

u1 > u2 ⇔ 0 < β <
γ∆x

∆h (α) + γ∆x

< 1 =⇒ never possible. (A.39)

Even though we achieve nice properties for β, this case is excluded, as α would need to violate
the strict positivity assumption.
2b) For x1 < x2 ∧ y1 = y2, we obtain again

u1 > u2 ⇔ β [∆h (α) + γ∆x] > γ∆x.

I) With α < 0 we know that h1 > h2. This yields

u1 > u2 ⇔ 0 <
γ∆x

∆h + γ∆x

< β < 1 =⇒ never possible. (A.40)

Aside from the strictly positive β here, α cannot be smaller than 0. Thus, we can exclude this
combination as well.
II) For a meaningful α, we get h1 < h2, which translates into following utility conditions:

u1 > u2 ⇔
γ∆x

∆h (α) + γ∆x

< 0 < β for ∆h (α) + γ∆x > 0 =⇒ always possible, (A.41)

or

u1 > u2 ⇔ β < 1 <
γ∆x

∆h (α) + γ∆x

for ∆h (α) + γ∆x < 0 =⇒ always possible. (A.42)

This will again lead to the proper case which involves both parameters as being strictly positive.
3a) Given (A.29c), we get for x1 < x2 ∧ y1 < y2

u1 > u2 ⇔ β [∆h (α) + γ∆x + (1− γ) ∆y] > γ∆x + (1− γ) ∆y.

I) Depending on xθ1 − xθ2 + yθ2 − yθ1 ≶ 0, h1 is larger than h2 for α ≶ α∗ for which we obtain

u1 > u2 ⇔ 0 <
γ∆x + (1− γ) ∆y

∆h (α) + γ∆x + (1− γ) ∆y

< β < 1 =⇒ never possible. (A.43)

This result can never occur with a strictly positive α, although it looks decent from the per-
spective of β. Nonetheless, we retain for future analysis the cutoff value β∗ at which individuals
are indifferent. We get

β∗ (α) ≡ γ∆x + (1− γ) ∆y

∆h (α) + γ∆x + (1− γ) ∆y

. (A.44)

II) Depending on xθ1 − xθ2 + yθ2 − yθ1 ≶ 0, h2 is larger than h1 for α ≷ α∗ for which we obtain

u1 > u2 ⇔ 1 < β∗ < β forγ∆x + (1− γ) ∆y + ∆h (α) > 0 =⇒ never possible. (A.45)
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If we assume γ∆x + (1− γ) ∆y + ∆h (α) < 0,

u1 > u2 ⇔ β < β∗ (α) < 0 =⇒ never possible. (A.46)

Hence, for a β between 0 and 1, u2 will always be preferred, as there is no β for which it could
be the other way around.
3b) For x1 > x2 ∧ y1 > y2, we get

u1 > u2 ⇔ β [∆h (α) + γ∆x + (1− γ) ∆y] > γ∆x + (1− γ) ∆y.

I) Depending on xθ1 − xθ2 + yθ2 − yθ1 ≷ 0, h1 is larger than h2 for α ≷ α∗ for which we obtain

u1 > u2 ⇔ 0 < β∗ (α) < β < 1for γ∆x + (1− γ) ∆y + ∆h (α) > 0 < =⇒ always possible.
(A.47)

Or, given γ∆x + (1− γ) ∆y + ∆h (α) < 0, we get

u1 > u2 ⇔ 0 < β < 1 < β∗ (α) =⇒ always possible. (A.48)

Hence, for a β between 0 and 1, u1 will always be preferred.
II) For xθ1 − xθ2 + yθ2 − yθ1 ≷ 0, h2 is larger than h1. This indicates α ≶ α∗ for which we would
obtain

u1 > u2 ⇔ 0 < β < β∗ (α) < 1 =⇒ never possible. (A.49)

This case never occurs as α would need to cross the boundaries, which we ignore for the moment.

A.3.2 Proof of lemmata 2 and 3

Proof of lemma 2
Proof. If we look at (3.7a) and the conditions for which u1 equals u2, one will come up with

β =
γ∆x + (1− γ) ∆y

∆h (α) + γ∆x + (1− γ) ∆y

.

If we define the latter expression, which essentially describes individuals being indifferent be-
tween Option 1 and Option 2 in terms of utility, as β∗ (α), we have confirmed the stated lemma.
This fits to the aforementioned equation (A.44). Subsequently, if β is smaller (larger) than β∗

we can identify different choices regarding Option 1 and Option 2.

Proof of lemma 3
Proof. Given we are in trade-off case (4.1), we can distinguish two different subcases a)/b)

which are identified by γ∆x + (1− γ) ∆y ≷ 0.
-Trade-off case (4.1) subcase a)
Given we are in case (4.1) subcase a), we know that

γ∆x + (1− γ) ∆y > 0. (A.50)

This shows that the positive difference exceeds the negative one. For this particular case we
know from before that α ≶ α∗ leads to ∆h ≷ 0. If we look at the denominator for individuals
with α = α∗, which indicates perfect indifference regarding happiness between both options,
i.e. ∆h (α) = 0, it reads

f (α∗) = γ∆x + (1− γ) ∆y > 0. (A.51)
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If we look at the value where the denominator becomes 0, we get

f (ᾱ) = ∆h (ᾱ) + γ∆x + (1− γ) ∆y = 0 (A.52)

Rewriting yields
f (ᾱ) = 0⇔ ∆h (ᾱ) = − [γ∆x + (1− γ) ∆y] (A.53)

This indicates that in order for the denominator to be 0, ∆h has to be a negative expression,
otherwise the equation is not fulfilled. Thus, the question remains, when does ∆h become
negative. This happens at α > α∗ which indicates that ᾱ has to be an α that is larger than α∗.
This is why 0 < α∗ < ᾱ < 1 can be identified.
-Trade-off case (4.1) subcase b)
Given the case-related assumptions for x and y we know that

γ∆x + (1− γ) ∆y < 0. (A.54)

This shows that the negative difference exceeds the positive one. The denominator at α = α∗

reads
f (α∗) = γ∆x + (1− γ) ∆y < 0. (A.55)

Now we consider ᾱ, where knowingly the denominator equals 0. We are allowed to write

f (ā) = 0⇔ ∆h = − [γ∆x + (1− γ) ∆y] . (A.56)

This indicates that the denominator is 0 if and only if the happiness difference equals the other
two payoff differences. As the right-hand side becomes positive, i.e. − [γ∆x + (1− γ) ∆y] > 0,
the left-hand side has to be as well. This is only the case if α < α∗. Hence, ᾱ has to occur
before α∗, i.e. ᾱ is lower than α∗.
If we are looking at trade-off case (4.2), we can again differentiate between two subcases char-
acterized by the numerator being positive or negative. Thus, we begin with (4.2) subcase a).
-Trade-off case (4.2) subcase a)
Given we are in case (4.2) subcase a), we know the following relationship

γ∆x + (1− γ) ∆y > 0. (A.57)

This shows that the positive difference exceeds the negative one. For this particular case we
also know that α ≷ α∗ leads to ∆h ≷ 0. If we look at the denominator for individuals with
α = α∗, which indicates ∆h = 0, the denominator reads

f (α∗) = γ∆x + (1− γ) ∆y > 0. (A.58)

If we look at the value where the denominator becomes 0, we get

f (ᾱ) = ∆h (ᾱ) + γ∆x + (1− γ) ∆y = 0. (A.59)

Rewriting yields
f (ᾱ) = 0⇔ ∆h (ᾱ) = − [γ∆x + (1− γ) ∆y] . (A.60)

Thus, the denominator is only 0 if ∆h equals the negative expression on the right. This is only
possible for an α smaller than α∗, as then, ∆h is smaller than 0. From that, we know that ᾱ
has to occur before α∗.
-Trade-off case (4.2) subcase b)
Given we are in case (4.2) subcase b), we know the following relationship

γ∆x + (1− γ) ∆y < 0. (A.61)
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This shows that the negative difference exceeds the positive one. We also know for trade-off
case 2 that α ≷ α∗ leads to ∆h ≷ 0. If we look at the denominator for individuals with α = α∗,
we see

f (α∗) = γ∆x + (1− γ) ∆y < 0. (A.62)

If we look at the value when the denominator becomes 0, we get

f (ᾱ) = ∆h (ᾱ) + γ∆x + (1− γ) ∆y = 0. (A.63)

Rewriting leads to
f (ᾱ) = 0⇔ ∆h (ᾱ) = − [γ∆x + (1− γ) ∆y] . (A.64)

Thus, the denominator is only 0 if ∆h equals the positive expression on the right. This is the
case for an α larger than α∗ as then ∆h is larger than 0. From that we know that ᾱ has to
occur after α∗.

A.3.3 Proof of proposition 2 - Case (4.1) subcase a)

Proof. Given that we described β∗ and its determinants entirely, we can name conditions
for case (4.1) subcase a) with help of the area definitions made earlier. For x1 < x2 ∧ y1 >
y2 ∧ γ∆x + (1− γ) ∆y > 0, we get

u1 > u2 ⇔ β [∆h (α) + γ∆x + (1− γ) ∆y] > γ∆x + (1− γ) ∆y.

Assuming α < α∗ indicating that h1 > h2, we obtain

u1 > u2 ⇔ β > β∗ (α) with0 < β∗ (α) < 1 for ∆h (α) + γ∆x + (1− γ) ∆y > 0. (A.65)

This marks area A of α and β values. If β was smaller than β∗ (α), we would find ourselves
in area B. As α passes α∗, ∆h (α) becomes negative and we have an α smaller than the value
of ᾱ for which the pole occurs, i.e. α < ᾱ, and we obtain α > ᾱ after that, if ᾱ is indeed
between 0 and 1. If the latter were not true, then ᾱ does not matter and for (4.1) subcase a)
we would accordingly always be looking at α < α∗ for a strictly positive α. This leads to the
corresponding properties

u1 > u2 ⇔ β > β∗ (α) with β∗ (α) > 1 for ∆h (α) + (1− γ) ∆y + γ∆x > 0, (A.66)

and

u1 > u2 ⇔ β < β∗ (α) with β∗ (α) < 0 for ∆h (α) + (1− γ) ∆y + γ∆x < 0. (A.67)

The latter two equations reflect only theoretical conditions as a β outside of (0, 1) is not
considered which is why we focus on area C here, respectively C1 and C2, where β ∈ (0, 1).

A.3.4 The value of β∗ (α) - Case (4.1) subcase a)

This section deals with the path β∗ (α) takes, given the trade-off case (4.1) subcase a) explained
above. As β∗ (α) depends on α, it becomes obvious that a different path occurs for every
case. However, as (4.1) subcase a) and (4.2) subcase a), respectively (4.1) subcase b) and
(4.2) subcase b), have only one difference namely the way α is treated in these cases, the
corresponding paths are essentially the same except they are mirror-inverted due to difference
in α. Hence, this section also relies on the analysis regarding α, ∆h and f (α) from earlier.

Given case (4.1) subcase a), i.e. x1 < x2 ∧ y1 > y2 ∧ γ∆x + (1− γ) ∆y > 0, there a value ᾱ
exists for which β∗ (α) goes towards ∞, which can only be determined numerically and stems
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from the denominator going to 0. The question remains: Why and when does β∗ (α) moves
asymptotically to ∞? The expression for β∗ (α) reads

β∗ (α) =
γ∆x + (1− γ) ∆y

∆h (α) + γ∆x + (1− γ) ∆y

.

The numerator is positive, which means that the whole expression tends towards +∞ in case
the denominator goes towards 0. The latter is already known and extensively discussed above
in the respective lemma. Put differently,

β∗ (α) ≈ ∞⇔ ∆h (α) + γ∆x + (1− γ) ∆y ≈ 0. (A.68)

We obtain the following qualitative graph illustrating the path of β∗ (α) given the initial
conditions from above.

Figure 6 Sketch of path (4.1) subcase a) of β∗ (α), according to the laws of motion determined
above given reasonable values for x and y

If we look at the graph created according to reasonable values, we see the following image,
which justifies our theorem.

Figure 7 Path of β∗(α) for trade-off case (4.1) subcase a) created with MATLAB for reasonable
values
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A.3.5 Proof of proposition 3 - Case (4.1) subcase b)

Proof. For x1 < x2 ∧ y1 > y2 ∧ γ∆x + (1− γ) ∆y > 0, we get

u1 > u2 ⇔ β [∆h (α) + γ∆x + (1− γ) ∆y] > γ∆x + (1− γ) ∆y.

Assuming α < α∗ indicating that h1 > h2, we obtain

u1 > u2 ⇔ β > β∗ (α) with β∗ (α) < 0 for ∆h (α) + γ∆x + (1− γ) ∆y > 0. (A.69)

This is described by area A1. If α increases, it passes ᾱ, the value for which a pole for β∗ (α)
arises. We obtain

u1 > u2 ⇔ β < β∗ (α) with β∗ (α) > 1 for ∆h (α) + γ∆x + (1− γ) ∆y < 0. (A.70)

This reflects area A2, respectively area A if ᾱ lies outside (0, 1). As α increases further, it
surpasses α∗, such that

u1 > u2 ⇔ β < β∗ (α) with 0 < β∗ (α) < 1 for γ∆x + (1− γ) ∆y + ∆h (α) < 0. (A.71)

These properties are then captured by B, where if β is larger than β∗ (α), Option 2 provides
more utility, which is described by C.

A.3.6 The value of β∗ (α) - Case (4.1) subcase b)

Again we also look at the path for 4.1 subcase b). The following situation x1 < x2∧y1 > y2 and
γ∆x + (1− γ) ∆y < 0 is given. The last inequality characterizing the difference between case
(4.1) subcase a) and b) is important, since the rest is exactly the same. Given x1 < x2 ∧ y1 >
y2∧ γ∆x + (1− γ) ∆y < 0, there a value ᾱ exists for which β∗ (α) goes towards −∞, which can
only be determined numerically. Put differently,

β∗ (α) ≈ −∞⇔ ∆h (α) + γ∆x + (1− γ) ∆y ≈ 0.

The directions of β∗ (α) for various values of α have changed compared to path (4.1) subcase
a), as the numerator is no longer positive. Thus with an increase of α, β∗ (α) becomes smaller
and smaller. Given conditions we explored in the appendix before, we can depict β∗ (α) as
follows

Figure 8 Sketch of path (4.1) subcase b) of β∗ (α), according to the laws of motion determined
above, given reasonable values for x and y
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Whereas the following image reflects the numerical solution which fits the previous figure.

Figure 9 Path of β∗(α) for trade-off case (4.1) subcase b) created with MATLAB for reasonable
values

A.3.7 Proof of proposition 4 - Case (4.2) subcase a) and b)

Proof. This section looks specifically at proposition 4. After looking at trade-off cases (4.1)
subcase a) and (4.1) subcase b), we can do the same for (4.2) subcase a) and (4.2) subcase b).
Case (4.2) is generally characterized by

x1 > x2 ∧ y1 < y2.

As for the previous case we can distinguish two subcases based on the comparison of the direct
effect differences, i.e. the sign of the numerator of β∗. We obtain
-Trade-off case (4.2) subcase a)
Given this trade-off, i.e. x1 > x2 ∧ y1 < y2, with γ∆x + (1− γ) ∆y > 0, we get

u1 > u2 ⇔ β [∆h (α) + γ∆x + (1− γ) ∆y] > γ∆x + (1− γ) ∆y.

Assuming α < α∗ indicating that h1 < h2, we obtain

u1 > u2 ⇔ β < β∗ (α) with β∗ (α) < 0 for ∆h (α) + γ∆x + (1− γ) ∆y < 0. (A.72)

If α increases, it passes ᾱ, we obtain

u1 > u2 ⇔ β > β∗ (α) with β∗ (α) > 1 for ∆h (α) + γ∆x + (1− γ) ∆y > 0. (A.73)

As α increases further it surpasses α∗, such that h1 > h2 and

u1 > u2 ⇔ β > β∗ (α) with 0 < β∗ (α) < 1 for γ∆x + (1− γ) ∆y + ∆h (α) > 0. (A.74)

-Trade-off case (4.2) subcase b)
For x1 > x2 ∧ y1 < y2 ∧ γ∆x + (1− γ) ∆y < 0, we get

u1 > u2 ⇔ β [∆h (α) + γ∆x + (1− γ) ∆y] > γ∆x + (1− γ) ∆y.

Assuming α < α∗ indicating that h1 < h2, we obtain

u1 > u2 ⇔ β < β∗ (α) with 0 < β∗ (α) < 1 for γ∆x + ∆h (α) + (1− γ) ∆y < 0. (A.75)
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As α passes α∗, we have an α before the value of ᾱ and after. This leads us to the following
properties

u1 > u2 ⇔ β < β∗ (α) with β∗ (α) > 1 for ∆h (α) + (1− γ) ∆y + γ∆x > 0 (A.76)

and

u1 > u2 ⇔ β > β∗ (α) with β∗ (α) < 0 for ∆h (α) + (1− γ) ∆y + γ∆x > 0. (A.77)

A.3.8 Value of β∗ (α) - Case (4.2) subcase a) and b)

Similar to case (4.1) subcase a) and b), (4.2) subcase a) only differs regarding subcase b)
concerning the inequality representing the sign of the direct effect, which for (4.2) subcase a)
reads γ∆x + (1− γ) ∆y > 0. Additionally, the different values of β∗ (α) for path (4.2) subcase
a) are fairly similar to (4.1) subcase a).

Given x1 > x2 ∧ y1 < y2 ∧ γ∆x + (1− γ) ∆y > 0, i.e. (4.2) subcase a), a value ᾱ exists
for which β∗ (α) goes towards +∞, which can only be determined numerically. This happens
because the numerator of β∗ (α) is positive and if α approaches ᾱ, the denominator turns to
0 and, thus, β∗ (α) would go towards ∞. However, due to the different trade-off case we will
achieve a different ᾱ numerically than in (4.1) subcase a). Put differently,

β∗ (α) ≈ ∞⇔ ∆h (α) + γ∆x + (1− γ) ∆y ≈ 0.

Additionally, the directions of β∗ (α) for various α do not change compared to case (4.1) subcase
a), thus, an appropriate figure can be seen if one looks at case (4.1) subcase a).

For (4.2) subcase b) we know x1 > x2 ∧ y1 < y2 ∧ γ∆x + (1− γ) ∆y < 0, a value ᾱ exists
for which β∗ (α) goes towards −∞, which can only be determined numerically. This happens
because the numerator of β∗ (α) is negative and if α approaches ᾱ, the denominator turns to 0
and, thus, β∗ (α) would go towards −∞. Put differently,

β∗ (α) ≈ −∞⇔ ∆h (α) + γ∆x + (1− γ) ∆y ≈ 0.

Additionally, the directions of β∗ (α) for various values of α are the same as for (4.1) subcase
b).
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