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Marco Rogna and Carla Vogt1

Coalition Formation with Optimal 
Transfers when Players are 
Heterogeneous and Inequality Averse

Abstract
Obtaining significant levels of cooperation in public good and environmental games, under the assumption 
of players being purely selfish, is usually prevented by the problem of freeriding. Coalitions, in fact, generally 
fail to be internally stable and this cause a serious underprovision of the public good together with a 
significant welfare loss. The assumption of relational preferences, capable of better explaining economic 
behaviors in laboratory experiments, helps to foster cooperation, but, without opportune transfers scheme, 
no substantial improvements are reached. The present paper proposes an optimal transfers scheme under 
the assumption of players having Fehr and Schmidt (1999) utility functions, whose objective is to guarantee 
internal stability and to maximize the sum of utilities of coalition members. The transfers scheme is tested on 
a public good contribution game parameterized on the data provided by the RICE model and benchmarked 
with other popular transfers scheme in environmental economics. The proposed scheme outperforms its 
benchmarking counterparts in stabilizing coalitions and sensibly increases cooperation compared to the 
absence of transfers. Furthermore, for high but not extreme values of the parameter governing the intensity 
of dis-utility from disadvantageous inequality, it manages to support very large coalitions including three 
quarters of all players.
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1 Introduction

In the long-lasting debate over the possibility to achieve significant levels of cooperation in in-
ternational environmental agreements (IEAs) and, more generally, in public good games, it is well
recognized that an important role is played by transfers (Carraro et al., 2006). In real-world environ-
mental treaties, such as the Kyoto protocol or the Paris agreement, different typologies of transfers
have been adopted with the aim of fostering the participation of developing countries. Strong, when
not total, deductions in the emissions reduction burden, technology transfers and different forms of
monetary incentives can all be enumerated as examples of transfers with the mentioned objective.
The academic literature has also acknowledged the importance of this instrument to partially limit
the detrimental effects of free-riding. Several authors, in fact, have proposed transfers schemes apt
at stabilizing relatively large coalitions and tested them with encouraging results, e.g. Chander and
Tulkens (1995), Botteon and Carraro (1997), Carraro et al. (2006) and Eyckmans and Tulkens (2006).

Despite some remarkable exceptions such as Chander and Tulkens (1995), Carraro et al. (2006)
and McGinty et al. (2012), the transfers schemes analyzed in the domain of IEAs have been rarely
derived by a game theoretical analysis of the game at hand. Several proposed transfers schemes are
simply solution concepts derived from cooperative game theory – see Rogna (2016) for a review –,
others, instead, are based on principles and fairness considerations originating outside the realm of
game theory: e.g. sovereignty principle, polluters pay rule, capability rule, etc. (Finus, 2008). Both
types of transfers schemes suffer the problem of being ill-suited for tackling the most prominent
obstacle to coalition formation in IEAs: free riding. Cooperative solution concepts, being based on
the cooperative paradigm, disregard by nature this aspect, and the other type of transfers schemes,
totally detached from game theory, is even more problematic on this regard.

The present paper proposes an endogenous transfers scheme – the Rogna-Vogt (RV) transfers scheme
– whose double objective is to maximize the global welfare of a coalition while incentivizing, as much
as possible, participation. The main assumption upon which the proposed transfers rests is that the
players involved in the public good game under consideration are endowed with Fehr and Schmidt
(1999)1 utility functions. This implies that players derive utility not solely from the material part
of their payoff, but also in consideration of the relative amount of such payoff in comparison with
that of the other players. This relational component of the utility function can be seen, therefore,
as a desire for fairness. Together with the work of Bolton and Ockenfels (2000), Fehr and Schmidt
(1999) preferences originated from the failure of standard economic theory to explain persistent phe-
nomena, such as rejection of offers in ultimatum games or positive offers in dictator games, arising
in economic experiments. Both works, by hypothesizing the presence of a relational component in
the utility function of economic actors, have offered plausible explanations to these phenomena that
have been confirmed in a series of subsequent experiments: e.g. Güth et al. (2003), Bolton and
Ockenfels (2005), Fehr and Schmidt (2006) and Fischbacher and Gachter (2010).

Despite F&S preferences having been envisaged with individuals in mind, the possibility to ex-
tend this type of utility function to actors such as countries is not theoretically unfeasible. By
hypothesizing the existence of a median voter endowed with F&S preferences, it follows that the
negotiators bargaining over an IEA on her behalf should take into consideration such preferences.
Furthermore, studies as Lange et al. (2007) and Dannenberg et al. (2010) have found empirical
confirmations for the importance of fairness considerations in international negotiations related to
environmental matters.

1Since now on simply F&S.
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Resting on the F&S preferences assumption, the paper considers a public good game with het-
erogeneous players, where heterogeneity stems from the marginal benefit of consuming the public
good and the marginal cost of producing it. The game is then solved for the optimal contribution of
public good of each player given each possible coalition. Considering then a coalition of players able
to attain a positive surplus necessary to prevent free-riding, given that the way in which this surplus
is divided impacts the final wealth of the same coalition, the transfers scheme here proposed aims at
maximizing this value. It is therefore collectively optimal and it constitutes a stationary equilibrium
in a hypothetical bargaining game for sharing the surplus. Furthermore, the maximization of the
coalition’s wealth is operated through F&S preferences, thus conciliating efficiency with fairness.
In addition to solving explicitly the maximization problem, that involves participation constraints
taking the form of inequalities, we offer a relatively simple algorithmic solution resting on analytic
expressions.

Finally, we test the performance of the transfers scheme through an emissions reduction game pa-
rameterized on data derived from the popular RICE model (Nordhaus and Yang, 1996). The test is
operated in a comparative fashion, benchmarking the proposed transfers scheme with others, already
present in the literature, derived from Finus (2008). The focus is placed on the ability to obtain
large stable coalitions and on the welfare improvement granted by their formation. The RV trans-
fers scheme outperforms the others, and the case of absence of transfers, and this holds in various
sensitivity analyses. Furthermore, compared to standard preferences, there is a clear improvement
in coalition size and welfare attainment.

An important aspect to be underlined is the non-monotonic relation between the degree of dis-
advantageous inequality aversion – represented by the parameter α – and the number and size of
stable coalitions allowed by the RV transfers scheme. An increase of this parameter, in fact, strongly
enlarges the number and size of stable coalitions, but, after a certain threshold, it reduces both of
them. For a particular value of α, the RV transfers scheme allows for stable coalitions of nine mem-
bers over twelve players.

Our results clearly show that, although a positive surplus is a necessary prerequisite for sustain-
ing cooperation, the way in which it is distributed is a key component to allow for stable coalitions.
In particular, its distribution must be perceived as fair. The proposed transfers scheme is gener-
ally strongly re-distributive, implying positive transfers from “strong” to “weak” players, but the
comparison with other transfers schemes that are also re-distributive in nature but less successful in
stabilizing coalitions implies the need to carefully balance transfers in order to foster cooperation.

Section 2 proposes a brief literature review, Section 3 presents the public good game and its so-
lution, while Section 4 describes the RV transfers scheme. Section 5 is dedicated to the simulation
and the comparison between transfers schemes and Section 6 concludes.

2 Literature Review

The present paper originates from two important strands in the economic literature. From one side,
the game theoretical analysis of public good games and, more specifically, of environmental games.
Particularly relevant for our purposes is the non-cooperative approach to coalition formation. On
the other side, the behavioral literature criticizing the standard theory of purely self-interest on the
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ground of its inability to explain several experimental results. The outcome of this critique, namely
the proposal to include a relational component into the utility function of economic agents, is central
to this paper, as mentioned in the introduction. Finally, this is not the first attempt that tries to
combine these approaches and it is therefore necessary to mention the previous works that have laid
down such path.

The analysis of IEAs started in the early nineties with the seminal papers of Carraro and Siniscalco
(1993), Barrett (1994) and Chander and Tulkens (1995). While the latter follows the cooperative
approach, thus partially circumventing the problem of free-riding, the former two papers initiate
the non-cooperative strand, whose results are rather pessimistic. Relying on the equilibrium con-
cept of stability derived from the literature on cartel formation (d’Aspremont et al., 1983), they
find that stable coalitions include only a very tiny fraction of all players. Furthermore, Barrett
(1994) underlines the cooperation paradox according to which the higher are the gains from it, the
higher the incentives to free ride, so that cooperation is easier to attain when it is less needed. In
the following three decades, are countless the proposed variants of these models. Several authors,
among which McGinty (2007), Pavlova and De Zeeuw (2013) and Bakalova and Eyckmans (2019),
take into consideration heterogeneous countries; Weikard et al. (2015) add the test of a minimum
participation constraint, while Diamantoudi and Sartzetakis (2015) and Breton and Garrab (2014)
examine the role of, respectively, farsightedness and evolutionary farsightedness. Despite significant
improvements in cooperation attainments reached by some of these variants, their theoretical and\or
empirical foundations are not always commonly accepted and rest on specific assumptions.

Note that the just mentioned literature on coalition formation is almost always based on standard
assumptions with regard to preferences, namely pure self-interest. As mentioned, this assumption
has been strongly criticized by the behavioralist school, that, on the base of vast experimental evi-
dence, has shown how self-interest often fails in explaining actual behavior. In particular, positive
contributions in the dictator game, e.g. Kahneman et al. (1986), as well as rejections of offers in the
ultimatum game, e.g. Güth et al. (1982), are at odd with rationality and self-interest. The attempts
to explain these results holding the assumption of rational behavior have lead to consider a relational
component into the utility function of agents: Fehr and Schmidt (1999) and Bolton and Ockenfels
(2000). In particular, both advantageous and disadvantageous inequality seem to be disliked, with
the aversion for the latter being stronger. Güth et al. (2003), Bolton and Ockenfels (2005), Fehr
and Schmidt (2006) and Fischbacher and Gachter (2010) have confirmed, through experiments, the
explanatory ability of this relational component in predicting actual behaviors.

An attempt to link these two literature strands has already been initiated. One way, undertaken
by van der Pol et al. (2012), considers players as having a degree of pure altruism, consequently
leading to higher levels of cooperation. The other way, to which we are more indebted, assumes
instead that the actors involved in a public good game are endowed with utility functions featuring
a relational component. Lange and Vogt (2003) consider identical players with F&S preferences
finding an improvement in cooperation compared to the case of standard preferences. A similar
result, although more multifaceted, is obtained by considering heterogeneous players (Lange, 2006).
Vogt (2016) not only considers heterogeneous players, whose characterizing parameters are derived
from the RICE model, as in the present paper, but she also notices the need for transfers schemes
in order to achieve substantial improvements in cooperation. The present paper draws heavily on
this last work substantially improving its results. In fact, it proposes an optimal transfers scheme
for players endowed with F&S preferences committed in a public good game entailing the formation
of coalitions.
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3 The Public Good Game

The game here considered is a rather standard coalitional public good contribution game. It fea-
tures two stages with the first describing the decision of players to join or not a coalition and the
second representing their choice of the contribution for the production of a public good. Coalition
members are assumed to act in the interest of the whole coalition, by maximizing the joint utility of
its members, whereas outsiders simply maximize their own utility. The game is solved backwards by
firstly considering the last step and finding the optimal contribution to the production of the public
good of each player. Following is a description of the game.

There is a set N = {1, 2, ..., n} of players, each of which having a strictly positive endowment
z: zi > 0, ∀i ∈ N . Assume, w.l.o.g, that players are ordered in decreasing2 order of endowment:
z1 > z2 > ... > zn. Player i can use her endowment zi, or part of it, for private consumption
(xi) or providing it as input (qi) for the production of the public good y. There is a simple linear
production function describing the process of generating the public good: y = γ

∑
j∈N qj , with γ

being an efficiency parameter assumed to be strictly positive. A generic player i derives her payoff
by the consumption of the private and of the public good: πi = pixi + aiy, where pi and ai, strictly
positive, are simply the values attributed by i to the consumption of the associated goods. Finally,
there is a non-linear transformation function linking the consumption of the private good with the
provision of the input q for producing the public good:

xi = zi − 1

zi
q2i , ∀i ∈ N. (1)

Note that equation (1) is concave – dxi

dqi
= − 2qi

zi
and d2xi

dqi
= − 2

zi
– and that it implies xi = 0 ⇐⇒

qi = zi and qi = 0 ⇐⇒ xi = zi. Once considering this transformation function, the payoff of player
i can be rewritten as a function of qi alone:

πi =

(
zi − 1

zi
q2i

)
pi + aiγ

∑
j∈N

qj , ∀i ∈ N. (2)

Given the concavity of the transformation function, the players’ payoff is very similar, in its behav-
ior, to the one used by Barrett (1994) for describing an abatement game, with the public good being
there represented by the decrease in pollution.

Players’ utility is modeled as in Fehr and Schmidt (1999):

Ui(πi, π−i) = πi − αi

n− 1

∑
j∈I+

(πj − πi)− βi

n− 1

∑
k∈I−

(πi − πk) , ∀i ∈ N. (3)

Beyond the material component (πi), given by the consumption of the private and of the public good
as in (2), the utility of player i is negatively affected by disadvantageous inequality, with αi repre-
senting its intensity, and by advantageous inequality, with βi having an analogous role as αi. I

+ and
I− indicate3 the sets of players with a payoff grater, the former, and lower, the latter, than the one of
player i: j ∈ I+ ⇐⇒ πj > πi and k ∈ I− ⇐⇒ πk < πi. In general, it is assumed, and it has been

2We use “decreasing” instead of “non-increasing” since, in our simulation, z is represented by countries’ per capita
GDP, making perfect coincidence extremely unlikely.

3Depending on the subscript used to identify a player, the identifiers of these sets will change accordingly: e.g. J+

and J− for the sets referring to player j.
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confirmed in several experiments (Fehr and Schmidt, 1999; Blanco et al., 2011), that αi > βi, ∀i ∈ N .

By substituting the payoffs (π) in (3) with the expressions obtained in (2) and solving the maximiza-
tion problem of each player, having only q has variable, we can find the analytic solution for the op-
timal level of q for both the members of a coalition and for the outsiders. The difference simply stays
in the maximization problem to be solved, with an outsider, say i, solving maxqi Ui, for i ∈ N \ C,
whereas a member of a coalition C, say j, solving maxqj

∑
k∈C Uk, for j ∈ C. Once solved the

resulting system of equations – we have a system of equations since the derivative of the utility
function of a player for her own level of q will necessary have the level of q of the other players in it
– we get the analytic solutions for all qs. Since the game is the same as the one in Vogt (2016), we
report the solutions without proofs, reminding the interested reader to the mentioned paper.

q∗i =
ziaiγ

2pi
− zi

2pi

αi

∑
j∈I+ ajγ − βi

∑
k∈I− akγ

n− 1 + |I+|αi − |I−|βi
, ∀i /∈ C. (4A)

q∗i =
MBi

MC′
i

− 1

MC′
i

αi

∑
j∈I+ MBj − βi

∑
k∈J− MBk

n− 1 + |I+|αi − |I−|βi
, ∀i /∈ C. (4B)

Note that equation (4B) is just the same as (4A) with MBi = aiγ representing the marginal benefit
of an additional unit of qi and MCi =

2piqi
zi

its marginal cost. Finally, |I+| and |I−| represent the
cardinality of, respectively, set I+ and I−. This being the optimal level of q for an outsider, let us
see the one of a coalition member:

q∗i = zi
2pi

(n−1)
∑
j∈C

ajγ−
∑
j∈C

αj

( ∑
k∈J+

akγ−|J+|ajγ

)
−∑

j∈C

βj

(
|J−|ajγ−

∑
k∈J−

akγ

)

n−1+αi(|I+|−|C−
i |)−βj(|I−|−|C+

i |) , ∀i ∈ C. (5A)

q∗i = 1
MC′

i

(n−1)
∑
j∈C

MBj−
∑
j∈C

αj

( ∑
k∈J+

MBk−|J+|MBj

)
−∑

j∈C

βj

(
|J−|MBj−

∑
k∈J−

MBk

)

n−1+αi(|I+|−|C−
i |)−βj(|I−|−|C+

i |) , ∀i ∈ C. (5B)

Here, C+
i and C−

i represent the sets of players belonging to coalition C and having a payoff, re-
spectively, higher and lower than player i4. Once having determined the optimal level of q for all
players in each possible coalition, it is then possible to compute their payoffs and, consequently,
their utilities. Payoffs, however, can be transfered among coalition members in order to increase the
possibility of cooperation. The next section is dedicated to describe our proposed transfer scheme
to achieve this objective.

4 The Transfer Scheme

In order to understand the proposed transfer scheme, it is firstly necessary to have a clear idea of
the equilibrium concept used in the game: coalition stability. Derived from the literature on cartel
stability and formally defined in d’Aspremont et al. (1983), stability can be seen as a translation
of the Nash equilibrium to a coalitional setting. It requires two conditions to hold simultaneously:
internal and external stability. Following is a formal definition.

Definition 4.1. (Coalition Stability) Given a coalition C ⊆ N , such coalition is said to be stable if
it is both internally and externally stable, with internal stability requiring

Ui(C) ≥ Ui(C \ i), ∀i ∈ C;

4Alternatively, C+
i = I+ ∩ C. Analogously, we can define set C−

i .
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and external stability requiring

Uj(C) ≥ Uj(C ∪ j), ∀j ∈ N \ C.

In simple words, a coalition is said to be stable if each one of its members has no incentive to leave
it and no one of the outsiders can gain by joining it. In public good and in environmental games,
the formation of a coalition generally entails an increase of the global welfare since the coalition
members, maximizing their joint utility, will provide a higher level of public good or will reduce the
production of a public bad (e.g. polluting emissions). Therefore, the larger a coalition, the larger is
the total welfare, given a greater amount of public good, but also the higher is the incentive to be
an outsiders, since this allows to reap the cooperative benefits without paying its costs (increasing
own contribution of q). This further implies that, while lack of external stability may be a problem
for low levels of cooperation, the lack of internal stability is the key concern that generally prevents
cooperation in public good games. This is well documented in Barrett (1994) and in most of the
game theoretical literature dealing with environmental games: e.g. Carraro and Siniscalco (1993),
Diamantoudi and Sartzetakis (2006) and Finus et al. (2017), just to name a few.

Ideally, therefore, a transfer scheme should solve the internal stability problem: Ui(C) ≥ Ui(C \
i), ∀i ∈ C. There are, however, two limitations to take into consideration. The first relates to the
object of the transfer. From a theoretical point of view, it seems safer to allow for transfers in
terms of payoffs rather than in terms of utils. The formers, in fact, either are expressed in mone-
tary amounts, as in our simulation, or they can be easily converted into them, whereas the latter,
particularly in the case of F&S preferences, would require a potentially complex mapping function
to translate utils into monetary amounts. Our choice, therefore, is to allow only for transfers in
terms of payoffs. The second limitation is that internal stability cannot be always guaranteed, even
by making use of transfers. This can be easily seen if we consider the implementation of a transfer
scheme as a “cake division problem”. Borrowing notation from cooperative game theory, let us
define the worth of a coalition as v(C) =

∑
i∈C πi(C). Then, the post-transfer payoff of player i

will be π̄i = θiv(C), ∀i ∈ C, with
∑

i∈C θi = 1 and θi ≥ 0, ∀i ∈ C.5 We can then formally state the
mentioned limitation of a transfer scheme.

Proposition 4.1. If the worth of a coalition is lower than the sum of the payoffs coalition members
could get by abandoning, one per time, the coalition, there is no feasible transfers scheme able to solve
the problem of internal stability: v(C)−∑i∈C πi(C \ i) < 0 ⇒ �θ : π̄i = θiv(C) ≥ πi(C \ i), ∀i ∈ C.

Proof. Let us suppose to have v(C)−∑k∈C πk(C\k) < 0 and to have implemented a transfers scheme
such that π̄j = πj(C \j), ∀j ∈ C \i. This means that we have implemented a transfers scheme able to
solve the internal stability problem for all players in C except that for player i and that this has been
done by granting to each of them the minimum possible payoff. Since π̄j = θjv(C), ∀j ∈ C \ i, we
then have θiv(C) = (1−∑j∈C\i θj)v(C) ⇒ θi = 1−∑j∈C\i θj . If

∑
j∈C\i θj ≥ 1, then θi ≤ 0, but

this would necessary fail to guarantee internal stability since π̄i ≤ 0 < πi(C \ i). Assume, instead,∑
j∈C\i θj < 1 and that θiv(C) ≥ πi(C \ i). But then,

∑
k∈C θkv(C) ≥ ∑k∈C πk(C \ k) and, since∑

k∈C θk = 1, we have v(C)−∑k∈C πk(C \ k) ≥ 0, contradicting our starting assumption. �

Once having established that payoffs and not utils can be transferred and that transfers are helpful in
solving the internal stability problem only if there is enough to distribute, we can write a preliminary

5This way of expressing a transfer may appear odd. A more canonical way would in fact be: π̄i = πi+ τiv(C), ∀i ∈
C,

∑
i∈C τi = 0. However, the two ways are perfectly equivalent, with the following equation relating θ and τ :

θi =
πi∑
i∈πi

+ τi, ∀i ∈ C.
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version of our transfers scheme:

π̄i =

⎧⎪⎨
⎪⎩
πi(C \ i) + θi

(
v(C)− ∑

j∈C

πj(C \ j)
)
, if v(C)− ∑

j∈C

πj(C \ j) > 0;

πi(C), otherwise;

(6)

with θi ≥ 0, ∀i ∈ C and
∑

i∈C θi = 1. From (6), it is clear that internal stability, at least at payoff
level, is always respected whenever it is possible. Each player, in fact, receives her outsider payoff
plus a non-negative share of the remaining, positive, surplus. However, the transfers scheme is not
yet fully determined since the vector θ has not been defined.

Although there are infinite possibilities to share the surplus v(C) − ∑
j∈C

πj(C \ j), the fact that

the way in which it is distributed affects not only the utility of single players but also their joint
utility helps us in establishing a valid criterion for characterizing θ. Given that coalition members
act for maximizing their joint utility, it seems natural that the selected transfers scheme serves this
purpose as well. For simplifying reasons, let us define the surplus as s(C) = v(C) − ∑

j∈C

πj(C \ j)

and assume s(C) > 0. The utility of a player, member of the coalition C, once implemented the
transfers will then be:

Ui = πi + θis(C)− αi

n− 1

∑
j∈C+

i

(
πj + θjs(C)− πi − θis(C)

)
+

− βi

n− 1

∑
k∈C−

i

(
πi + θis(C)− πk − θks(C)

)
+ (7)

− αi

n−1

∑
r∈I+\C+

i

(
πr − πi − θis(C)

)
− βi

n−1

∑
l∈I−\C−

i

(
πi + θis(C)− πl

)
.

As mentioned, the objective is to maximize the joint utility of coalition members. Therefore, we
define the vector θ by solving the following optimization problem: max

θ

∑
i∈C Ui.

Before analyzing this maximization problem and adding the necessary constraints, it is opportune
to reformulate equation (7) in order to have a more concise form. In the third row of (7) we have the
dis-utility of player i for the disadvantageous and advantageous inequality suffered with respect to
outsiders. In fact, the two summations are made over the sets I+ \C+

i and I− \C−
i . Being outsiders,

the members of these sets clearly do not receive any surplus transfer. However, just for simplifying
purposes, we can enlarge the vector θ from being |C|-dimensional to be n-dimensional and set the
value of its elements corresponding to outsiders equal to zero: θi = 0, ∀i ∈ N \ C. Clearly, nothing
has changed in practical terms, since outsiders will still have their base payoff without any addiction,
but this modification allows to rewrite equation (7) as follows:

Ui = πi + θis(C)− αi

n− 1

∑
j∈I+

(
πj + θjs(C)− πi − θis(C)

)
+

− βi

n− 1

∑
k∈I−

(
πi + θis(C)− πk − θks(C)

)
. (8)
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Once having defined a more compact form for the post-transfer utility of a coalition member, it
is time to discuss the constraints of the optimization problem to be solved. The non-negativity of
each element of vector θ has already been mentioned. Each coalition member should have, at least,
the payoff she would get by leaving the coalition: θi ≥ 0, ∀i ∈ C. Furthermore, the sum of the
elements of θ cannot be greater than one, since this would imply to distribute more than what is
available. However, given that efficiency is a reasonable and obvious objective and given that the
maximization program would necessarily lead to efficiency, we can turn this inequality constraint
into an equality:

∑
i∈N θi = 1. Finally, we need to add a last constraint. A transfer scheme must be

unanimously accepted by all coalition members to be implemented. This implies that, in order to
be accepted, each member must have a post-transfer utility that is at least equal to the utility that
she will obtain if no transfers scheme was implemented. Therefore, if we name Upt

i the post-transfer
utility of player i as defined by equation (8) and Unt

i as the utility that i would get as coalition
member in absence of any transfer, defined in equation (3), we then have the condition Upt

i ≥ Unt
i .

By some manipulation, it is possible to restate this constraint into the following form:

θi ≥
αi

∑
j∈I+ θj − βi

∑
k∈I− θk

n− 1 + αi|I−| − βi|I+| , ∀i ∈ C. (9)

Finally, we can write the optimization problem with all constraints:

max
θi,∀i∈C

Upt
i (10)

s.t.∑
i∈N

θi = 1,

θi ≥
αi

∑
j∈I+ θj − βi

∑
k∈I− θk

n− 1 + αi|I−| − βi|I+| , ∀i ∈ C,

θi ≥ 0, ∀i ∈ C,

θi = 0, ∀i ∈ N \ C.

By solving this optimization problem we obtain a transfers scheme vector that, once inserted into
(6), guarantees to each coalition member a payoff at least as great as the one obtained by leaving the
coalition and that maximizes the worth of the same coalition. Furthermore, it also guarantees that
no coalition member suffers a loss by accepting the transfers scheme rather than simply participating
to the coalition without any transfer being implemented.

4.1 An algorithm to find the optimal transfers vector

It is immediate to see that the constraints of the optimization problem (10) form a convex and
compact polytope and, therefore, the set of solutions is always non-empty. The problem is not
particularly complex, being a linear optimization problem, and, numerically, it can be solved by
using either the simplex algorithm or an interior-point method. Solving the Lagrangean is another
possibility, but it is tedious and quite cumbersome. However, we are going to show a method to
solve the problem that relies entirely on analytic solutions whose derivation will be here displayed.
Let us exclude, for mere convenience, the last set of equality constraints (θi = 0, ∀i ∈ N \C), being it
inconsequential since we can treat the θs related to outsiders as simple parameters. The Lagrangean
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will then be:

L =
∑
i∈N

⎧⎨
⎩πi + θis(C)− αi

n− 1

∑
j∈I+

(
πj + θjs(C)− πi − θis(C)

)
+

− βi

n− 1

∑
k∈I−

(
πi + θis(C)− πk − θks(C)

)}
− λ1

(∑
i∈N

θi − 1

)
+

∑
i∈N

λ1+i

(
θi −

αi

∑
j∈I+ θj − βi

∑
k∈I− θk

n− 1− βi|I−|+ αi|I+|
)
+
∑
i∈N

λn+1+iθi.

By taking the derivative of L for θ1, assuming 1 being the first player in C, we have:

∂L
∂θ1

= 1− β1 −
∑

j∈C\1

α1

n− 1
−
∑

j∈C\1

λj+1αj

n− 1 + |J+|αj − |J−|βj
+ λn+2.

By equating this derivative to zero, it is immediately clear that λn+2 must necessarily be positive
for the equality to hold, being all other therms strictly non-positive. Since λn+2 is the multiplier
associated with the constraint θ1 ≥ 0, this necessarily implies that θ1 = 0. Remembering that
players are ordered in decreasing level of endowment and assuming this mirrors the payoff ordering,
we have that the strongest coalition member – the one with the highest payoff – will not get any
share of the surplus. We have a first optimal element of vector θ.

From simplex theory, we know that an optimal vector must lie at the intersection of n hyper-
planes, with these lasts being defined by the constraints of the optimization problem. As mentioned,
the |N \ C| equality constraints relative to the outsiders are necessary binding. Then we have the
upper bound defined by the other equality constraint, the sum of the elements of θ must be equal
to one, implying that there is one θ element such that θi = 1−∑j∈C\i θj and θi > 0. As seen, this
element cannot be the one associated to the first player in C. Therefore, we can say that there is
always a coalition member whose associated θ element is positive, whereas the θ elements of the
players preceding her are all equal to zero: θi = 1 −∑j∈I− θj , θi > 0 and

∑
k∈I+ θk = 0. Let us

call i the pivot player. For all the coalition members following i, one of the other two lower bound
constraints must be binding: θj ≥ 0 or constraint (9). Note that the two constraints, except for the
case in which the RHS of (9) is equal to zero, are mutually exclusive. Therefore, for all j players in

C−
i or θj = 0 or θj =

αj
∑

q∈J+ θq−βj
∑

k∈J− θk

n−1+αj |J−|−βj |J+| .

Let us assume the pivot player is the last one in C. By the definition we have given of the pivot
player, since C−

i = ∅, we have θi = 1 and θj = 0, ∀j ∈ N \ i. It is easy to check that this vector
represents a feasible solution since it satisfies all constraints. Assume now that the pivot player i is
the one before the last. Consider than the inequality constraint (9) of player j, the only coalition
member following i. It will look as follows:

θj ≥ αj(1− θj)

(n− 1)(1− αj)
.

Since 0 ≤ θj < 1, the RHS is necessarily positive, implying that constraint (9) is binding since

θi �= 0. We then get θj =
αj

n−1+nαj
, θi =

(n−1)(1+αj)
n−1+nαj

and all other θ’s elements equal to zero. This

is another feasible solution. We can continue supposing the pivot player is the third last member
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of coalition C. The constraint (9) for the last player remains identical. However, a more general
formulation of constraint (9) for all coalition members following i is the following:

θj ≥
αj(1− θj)− (αj + βj)

∑
k∈J− θk

n− 1 + |J+|αj − |J−|βj
.

Once moving θj to the LHS, we have that the condition for the positiveness of the RHS is the
following:

αj

αj+βj
>
∑

k∈J− θk. Whenever this condition holds, constraint (9) is binding, and then

we can use this expression to find the value of θj . Otherwise, this last will be equal to zero. By
starting from the last player, all the values of the θ elements can be determined once having defined
a pivot player. In particular, if we define the set Pj as the set of coalition members following member
j for which the just mentioned condition holds, we have the following analytic solution for all θs
relative to coalition members coming after the pivot player.

θj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if
αj

αj+βj
≤ ∑

k∈Pj

θk,

αj
∏

k∈Pj

(n−1+(|K+|+1)αk−|K−|βk)−(αj+βj)

⎛
⎝ ∑

k∈Pj

αk

∏
q∈Pj\k

(n−1+|Q+|αq−|Q−|βq)

⎞
⎠

∏
k∈Pj

(n−1+(|K+|+1)αk−|K−|βk)(n−1+(|J+|+1)αj−|J−|βj)
, oth.

We finally have all analytic expressions for finding the value of each θ element once having selected
a pivot player. Since the first coalition member cannot be a pivot player due to the fact that her
associated θ value must be equal to zero, as seen before, we have |C|−1 feasible transfers vectors. At
this point we simply need to compute the utilities of all players for each one of the feasible transfers
using (6) and see which one gives the highest sum of coalition members’ utilities. This one will be
the optimal transfer vector.

5 Simulation and Benchmarking of Transfer
Schemes

The objective of this section is to evaluate the performances of the proposed transfers scheme in
terms of stability outcomes and welfare gains. In order to do so, it is required to formulate a proper
game and to have a touchstone for benchmarking the RV scheme. Given the extreme difficult of doing
so through analytic results, due to the complexity of the task, a numerical simulation is a second
best. With regard to the game, our choice is to propose the same setting as in Vogt (2016). Since
the present paper proposes an optimal transfers scheme for the model presented in Vogt (2016),
it is naturally interesting to compare the results with the ones reached in the mentioned paper.
Furthermore, the game in Vogt (2016) is parameterized on the popular RICE model of Nordhaus
and Yang (1996), one of the most widespread models evaluating the impact of global warming. More
specifically, the RICE model aggregates the world into 12 macro-regions, some of which coinciding
with countries, and predicts the trajectories of several key variables, among which GDP, pollution
and environmental damages for future time periods. By using the same 12 regions as the players for
our game, we can retrieve from the RICE model all the elements to fill equations (2) and for deriving
the optimal levels of public good contribution: equations (4B) and (5B). The level of endowment z is
represented by the per-capita GDP of each region and the contribution to the public good, q, is the
fraction of per-capita GDP used to abate CO2 emissions. The marginal benefit (MB) of abatement
are derived from Nordhaus (2011), whereas the procedure to compute the marginal cost (MC) is
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identical to the one described in Vogt (2016). One difference is that this last work considers only
the data of 2015 to perform the simulation, whereas we will additionally take into consideration
years 2025 and 2035 as a sensitivity analysis. In Table 1, all the relevant parameters used in the
simulation, except the values of α and β, are reported.

Table 1: Countries with Relevant Parameters

2015 2025 2035
Countries z MC MB z MC MB z MC MB
USA
(US)

49018 330.75 3.6 58846 330.71 4.38 68690 271.56 5.28

Japan
(JPN)

36671 514.45 0.78 43106 511.02 0.95 51364 430.48 1.11

OHI
(OHI)

35093 404.23 1.37 44885 408.34 1.77 53307 339.21 2.06

EU
(EU)

32003 514.45 4.11 39724 522.21 5.2 47777 431.96 6.29

Russia
(RUS)

16287 220.52 0.51 20834 222.70 0.79 25749 185.37 0.95

Mid. East
(MEA)

11550 367.49 3.36 15046 368.23 5.04 18900 304.18 6.48

Latin Am.
(LAT)

11531 251.29 2.6 15497 306.12 3.97 20025 285.78 5.41

Eurasia
(EUA)

8604 220.52 0.48 9646 219.11 0.87 12863 183.46 1.24

China
(CHN)

6931 257.27 10.4 11692 257.35 23.92 15256 214.66 31.7

Others
(OTH)

3866 233.54 6.29 5703 289.85 11.62 8013 281.03 19.97

India
(IND)

3672 404.23 7.98 5345 404.32 16.91 7419 336.24 26.03

Africa
(AFR)

2596 203.74 7.83 3831 264.53 13.87 5383 254.51 24.75

Once having determined all the required elements for computing the payoffs, we need to establish
the values of α and β in order to compute the utilities and to describe the alternative transfers
scheme that will be used as a benchmark. We start by this last task, postponing the discussion
about the inequality aversion parameters. First of all, note that equation (6) is still used as the base
for computing the alternative transfers. What varies, therefore, is the definition of the vector θ. As
mentioned in the introduction, different transfers schemes, often inspired by antithetical principles,
have been proposed in the literature. Finus (2008) collects an exhaustive sample whose merit is to
feature transfers whose implementation is already translated into mathematical terms. Furthermore,
several of these transfers schemes have been largely debated during the negotiations of real-world
IEAs (Finus, 2008). They seem therefore well suited for our purposes. Table 2 shows the selected
alternative transfers scheme together with a description of their inspiring principles. Note that, for
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the computation of some of these transfers, additional parameters not included in Table 1, such as
the level of CO2 emissions or the population, are required. Such data have been retrieved from the
RICE model as well.

Table 2: Definition of Alternative Transfers Schemes

Sovereignty principle
Current GDP (C GDP) θi =

GDPi∑
j∈C GDPj

Current Emissions (C EM) θi =
ei∑

j∈C ej

Ability to pay

Inverse of per capita GDP (I GDP) θi =

(
GDPi
POPi

)−1

∑
j∈C

(
GDPj
POPj

)−1

Polluters pay

Inverse of emissions (I EM) θi =
e−1
i∑

j∈C e−1
j

Egalitarian
Equal sharing (EQ SH) θi =

1
|C|

Equal per capita sharing (EQ pcSH) θi =
POPi∑

j∈C POPj

e = CO2 emissions, POP = Population

Once defined six benchmarking transfers schemes, the last elements still missing are the values for
α and β. Lacking studies providing their estimates for subjects other than single persons, and
remembering the median voters argument previously proposed, we rely on the data provided by the
same Fehr and Schmidt (1999)6 and used also in Vogt (2016): α = 0.833 and β = 0.288. As a
sensitivity analysis, we also double and halve the two parameters in order to investigate the effect
on stability. Note that, since we lack any evidence for regional differences in the degree of inequality
aversion, both parameters are always kept identical for all players.

5.1 Results

Table 3 reports the results obtained for the years 2015, 2025 and 2035, with α = 0.833 and β = 0.288.
It is immediately visible how the RV transfers scheme outperforms the others in terms of fully stable
coalitions. In fact, both the number and the dimension of the supported coalitions are larger. The
other transfers schemes may even be worst than the case of absence of transfers, with this being
particularly true for the year 2035, when the benefits of pollution abatement are greater and, ac-
cording to Barrett’s paradox, cooperation is more difficult to achieve. Another important element
to notice is that, among the alternative transfers schemes, the ones that are more re-distributive
performs generally better, with re-distribution here implying positive transfers from players with
high levels of z to players with lower levels. The Inverse per-capita GDP transfers scheme – remem-
bering that z is per-capita GDP – is, in fact, the most successful way of distributing the surplus after
the RV scheme in guaranteeing stability. An exception is the Inverse per-capita emissions scheme
that, despite the positive correlation between per-capita GDP and emissions, rendering it a rather
re-distributive scheme, performs very poorly. Although we have not underlined it before, the RV
scheme is also very re-distributive. In fact, given the intrinsic nature of the F&S utility function,
the maximization of the joint utility of coalition members requires to reduce as much as possible

6Fehr and Schmidt (1999) actually propose an interval for both parameters retrieved from experimental results.
The values here adopted are the median values of such intervals.
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inequality, thus favoring weak players.

Table 3: Stable Coalitions under Different Transfers Schemes (α = 0.833, β = 0.288)

RV C GDP C EM I GDP I EM EQ SH EQ pcSH No Transfer

2
0
1
5

Fully Stable Coalitions
US, CHN, IND, AFR CHN, IND – EUA, OTH, IND – EUA, OTH, IND CHN, IND CHN, IND
OHI, CHN, IND, AFR IND, AFR
JPN, CHN, IND, AFR
EU, CHN, IND, AFR
RUS, CHN, IND, AFR
LAT, CHN, IND, AFR
LAT, OTH, IND, AFR
MEA, CHN, IND, AFR
MEA, OTH, IND, AFR
CHN, EUA, IND, AFR
CHN, OTH, IND, AFR

Number of Internally Stable Coalitions
137 35 36 100 55 66 48 11

Number of Externally Stable Coalitions
315 224 224 224 224 224 224 225

2
0
2
5

Fully Stable Coalitions
US, CHN, IND, AFR – – CHN, IND, AFR – CHN, OTH, IND CHN, OTH, IND CHN, IND
OHI, CHN, IND, AFR IND, AFR
JPN, CHN, IND, AFR
EU, CHN, IND, AFR
RUS, CHN, IND, AFR
LAT, CHN, IND, AFR
MEA, CHN, IND, AFR
MEA, OTH, IND, AFR
CHN, EUA, IND, AFR
CHN, OTH, IND, AFR

Number of Internally Stable Coalitions
140 34 39 93 47 65 48 9

Number of Externally Stable Coalitions
313 213 213 213 213 213 213 215

2
0
3
5

Fully Stable Coalitions
EU, IND, AFR – – – – – – IND, AFR

OHI, CHN, IND, AFR
OHI, EUA, IND, AFR
JPN, CHN, IND, AFR
RUS, CHN, IND, AFR
RUS, OTH, IND, AFR
LAT, CHN, IND, AFR
MEA, CHN, IND, AFR
MEA, OTH, IND, AFR
CHN, EUA, IND, AFR
CHN, OTH, IND, AFR
EUA, OTH, IND, AFR

Number of Internally Stable Coalitions
145 38 38 72 55 56 42 11

Number of Externally Stable Coalitions
301 202 202 202 202 202 202 204

Table 3 further shows the number of internally and externally stable coalitions. From this it is
possible to have a confirmation that the problem of internal stability is much more serious and
detrimental to cooperation than the one of external stability, given that the numbers of internally
stable coalitions are far lower. Despite not having being envisaged to tackle the problem of ex-
ternal stability, the RV scheme outperforms the others in this field too. A possible reason is its
re-distributive nature that improves the payoffs of the outsiders as well. However, its real strength

13



is in fostering internal stability, generally allowing a number of stable coalitions that is more than
double the one allowed by the other transfers schemes. Another interesting fact to note is that the
results are quite similar in all the considered time periods. This implies that the game and the RV
transfers schemes are quite robust to significant perturbations in the values of the payoffs parameters.

Despite the several mentioned desirable features shown by the RV transfers scheme in this com-
parative analysis, that render this scheme ideal for an eventual IEA, there is also a major drawback.
The number, and particularly the size, of fully stable coalitions is not so impressive. Even the
number of internally stable coalitions, considering that, given 12 players, there are 4095 possible
non-empty coalitions, is far from being astonishing. The main problem rests on the possibility to
have a positive surplus in terms of payoffs. Without having it, no transfers scheme can solve the
cooperative dilemma. Although the RV transfers scheme does not allow for stable coalitions with
more than one third of the total players, still this result should not be underestimated. A coalition
among USA, China, India and Africa, for example, that under the RV transfers scheme is stable
both in 2015 and in 2025, brings together the two most polluting countries in the world, along with
a fast rising polluter as India and the most damaged region in the world. When compared with the
highest attainable level of public good provision, this coalition can still provide the 35% of it.

Table 4: Transfers Payments and θ Vector Elements for coalition {EU, CHN, IND, AFR}

Countries C GDP C EM I GDP I EM EQ SH EQ pcSH RV

Transfers of Money (billions of $)}
EU -1.545 -1.906 -2.121 -1.890 -1.834 -2.004 -2.174

CHN 0.548 0.855 0.286 0.189 0.429 0.550 0.090

IND 0.663 0.681 0.946 0.877 0.826 0.901 0.486

AFR 0.334 0.370 0.889 0.823 0.579 0.553 1.597

Elements of the θ vector

EU 0.463 0.197 0.039 0.209 0.250 0.125 0

CHN 0.338 0.564 0.144 0.073 0.250 0.339 0

IND 0.130 0.143 0.338 0.288 0.250 0.306 0

AFR 0.069 0.096 0.478 0.430 0.250 0.231 1

α = 0.833, β = 0.233, year=2025

Table 4 shows, for exemplifying purposes, the transfers among the coalition members and the ele-
ments of the transfers vector related to coalition {EU,CHN, IND,AFR}. This is a stable coalition
under the RV scheme but not under the other transfers schemes. The transfer is here defined as
the difference with the payoff a player would obtain in absence of any transfer, and, therefore, it
includes both the distribution of the surplus and the difference between the cooperative and the
outsider payoff. Note that the RV scheme is clearly the most re-distributive, granting all the surplus
to Africa. This happens for several other coalitions of Table 3. Furthermore, under the RV scheme,
EU is obliged to pay the most, whereas Chine remains an an almost neutral condition. We further
have the confirmation that the second most re-distributive scheme is the inverse per-capita GDP.

As a further sensitivity analysis, also the values of α and β have been varied, using the data related
to year 2025 for determining the payoffs parameters. Table A1, in Appendix, reports the results,
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from which it is possible to observe a substantial similarity with the results of Table 3. In the first
simulation, the value of α has been kept constant and 0.833, whereas the one of β has been doubled
to 0.567. This has reduced the number of internally stable coalitions for all transfers schemes and the
number of fully stable coalitions for the RV scheme. Notice, instead, how the number of externally
stable coalitions is increased. Another interesting fact to note is that a higher level of dis-utility
towards advantageous inequality seems to favor that transfers schemes that are less re-distributive
such as Current GDP and Current emissions. The opposite occurs in the next simulation, where
β is kept equal to 0.288 and the value of α is halved. The number of internally stable coalitions
is slightly increased and the re-distributive transfers schemes gain in ability to stabilize coalitions.
The RV transfers scheme, instead, is scarcely sensitive to these modifications. In the last simula-
tion, the value of α is slightly increased to 0.95 and the one of β is halved to 0.144. Again, the
re-distributive transfers schemes improve their performance whereas there is a general drop in the
number of externally stable coalitions. From this short analysis emerges that, for increasing values of
the aversion towards advantageous inequality, less re-distributive transfers schemes perform better
than the more re-distributive ones, while the opposite holds for increasing values of α. The RV
transfers scheme, despite surely belonging to the set of re-distributive schemes, appears to be quite
insensitive to changes in these two parameters.

In the set of simulations described in the previous paragraph, taking as reference the median values
of α and β, we have varied them significantly in order to test the sensitivity of the various transfers
schemes. By halving and doubling the value of β, we have covered almost the whole spectrum of
possible values as provided in Fehr and Schmidt (1999), that, in fact, ranges from 0 to 0.6. The
domain of values provided by the same authors for α, instead, is much wider, being included be-
tween 0 and 4. Whereas β can be considered as the real “altruistic” parameter, since it governs
the intensity of dis-utility for advantageous inequality, α is more “selfish” since it causes dis-utility
when a player is in an inferior position towards the others. It is significant, and quite plausible,
therefore, that the latter may be greater than the former. In our previous analysis we have missed
the investigation of more extreme values of α. Filling this gap is the objective of this last set of
simulations, in which the value of β is kept constant at 0.233 and the one of α varies: 1.5, 2, 3
and 4. Table 4 reports the results of the analysis, with only the fully stable coalitions under the
RV transfers scheme being shown7 and using the data related to year 2015 for the other parame-
ters. The other transfers schemes, in fact, are not very sensitive to large increases in the values of
α, and the number and composition of the fully stable coalitions they allow are not dramatically
different from the ones portrayed in Table 3 and A18. The changes for the RV transfers scheme,
instead, are very significant and interesting. Table 5 shows the fully stable coalitions, or a sample
of them when their number is too large, along with the percentage of the public good contribution
over the best attainable level reached by their formation. The ranking value of each coalition – in
ascending order – in terms of public good contribution and in terms of total utility are further shown.

The most immediate and surprising result that emerges from Table 5 is that the RV transfers
scheme, for certain values of α, is able to stabilize several coalitions comprising a very high number
of players, namely 9. This happens for a value of α equal to three, that, among the considered values,
is the one that maximizes both the number of stable coalitions (104) and their maximal size9. From

7Results related to the other transfers schemes are available from the authors upon request.
8Under α = 3, when the RV scheme allows for 104 fully stable coalitions, the best of the other schemes, namely,

the Inverse per-capita GDP, allows for 7 stable coalitions with maximal size of 3 players.
9There are 32 fully stable coalitions with 9 players for α = 3, of which only half are reported in Table 5 due to

reasons of space.
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Table 5: Stable Coalitions under the RV Transfers Scheme for Varying Levels of α

Fully stable coalitions
Percentage of
public good

production (%)

Ranking in
public good
production

Ranking in
total utility

Year = 2015; β = 0.233;α = 1.5
RUS, EUA 35.6 738 227
JPN, CHN, IND, AFR 38.6 1553 672
EU, CHN, IND, AFR 38.5 1545 563
RUS, CHN, IND, AFR 39.2 1760 740
MEA, CHN, IND, AFR 38.5 1528 487
MEA, OTH, IND, AFR 38.0 1382 432
LAT, CHN, IND, AFR 38.7 1594 531
LAT, OTH, IND, AFR 38.2 1438 466
CHN, OTH, IND, AFR 38.8 1629 442
US, JPN, EU, RUS, LAT, EUA 47.7 3154 3117
US, JPN, RUS, MEA, LAT, EUA 47.2 3126 3071

Year = 2015; β = 0.233;α = 2
45 fully stable coalitions (only the largest, with 6 players, are here reported)

OHI, JPN, EU, RUS, LAT, EUA 50.8 3436 3252
OHI, JPN, RUS, MEA, LAT, EUA 50.4 3400 3222
OHI, EU, RUS, MEA, LAT, EUA 53.8 3651 3398
OHI, RUS, MEA, LAT, EUA, OTH 58.8 3840 3572

Year = 2015; β = 0.233;α = 3
104 fully stable coalitions (only half of the largest, with 9 players, are here reported)

US, JPN, EU, RUS, MEA, LAT, CHN, EUA, OTH 95.4 4006 3612
US, JPN, EU, RUS, MEA, LAT, EUA, OTH, IND 95.3 4000 3566
US, JPN, EU, RUS, MEA, LAT, EUA, OTH, AFR 95.3 3998 3562
US, JPN, EU, RUS, MEA, LAT, EUA, IND, AFR 95.4 4007 3618
US, JPN, EU, RUS, MEA, EUA, OTH, IND, AFR 95.8 4021 3704
US, JPN, EU, RUS, LAT, EUA, OTH, IND, AFR 95.7 4018 3692
US, JPN, EU, MEA, LAT, CHN, EUA, OTH, IND 96.0 4043 3770
US, JPN, EU, MEA, LAT, CHN, EUA, OTH, AFR 96.0 4041 3765
US, JPN, EU, MEA, LAT, CHN, EUA, OTH, AFR 96.1 4056 3807
US, JPN, EU, MEA, LAT, CHN, EUA, IND, AFR 96.7 4081 3875
US, JPN, EU, MEA, LAT, CHN, OTH, IND, AFR 95.8 4022 3733
US, JPN, EU, MEA, LAT, EUA, OTH, IND, AFR 96.4 4074 3854
US, JPN, EU, MEA, CHN, EUA, OTH, IND, AFR 96.4 4070 3844
US, JPN, EU, LAT, CHN, EUA, OTH, IND, AFR 95.4 4003 3592
OHI, JPN, EU, RUS, MEA, LAT, CHN, EUA, OTH 95.5 4011 3647
OHI, JPN, EU, RUS, MEA, LAT, CHN, EUA, IND 95.5 4010 3643
OHI, JPN, EU, RUS, MEA, LAT, CHN, EUA, AFR 95.2 3996 3544

Year = 2015; β = 0.233;α = 4
US, MEA 46.8 2204 490
US, LAT 46.8 2054 467
US, CHN 47.2 3369 1019
US, OTH 47.0 2833 639
US, IND 47.1 3204 835
US, AFR 47.1 3183 819
IND, AFR 46.8 1851 119

The ranking is in ascending order, with the maximum being 4095
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the statistics reported in Table 5, it is also possible to observe that these 9 players stable coalitions
allows for substantial achievements in terms of public good production and total utility (this last
defined as the sum of the utilities of all players in the game). It is also possible to observe that
the number and the size of stable coalitions supported by the RV transfers scheme appear to be a
growing function of the α parameter. For α = 1.5, in fact, we have a number of stable coalitions
equal to the case of α = 0.833, but their maximal size is increased of two players. When switching to
α = 2, the maximal size remains the same as when α = 1.5, but it is the number of stable coalitions
to increase significantly till 45. The passage to α = 3 entails a substantial growth on both sides. The
mentioned relation, however, is not linear, since the extreme value of α = 4 significantly reduces
both the number (7 coalitions) and the size (2 players) of stable coalitions supported by the RV
scheme.

It is not an easy task to understand the reasons behind the non-monotonic relation between the
value of α and the number and size of stable coalitions allowed by the RV scheme. The disadvanta-
geous inequality parameter, in fact, is present on the analytic solution from which the RV transfers
is derived, on the analytic solution for determining the optimal q and on the final utility of players
that is used to determine stability. The result of their interaction, therefore, is quite complicated
to disentangle. At first sight, the result is rather counterintuitive, particularly if compared with
observation 1 in Vogt (2016), according to which increasing values of α are detrimental for coop-
eration, in opposition to increasing values of β (observation 2). However, also in Vogt (2016) it is
recognized that the relation is rather complex with some coalitions being internally stable for high
values of α but not for lowers, everything else being equal. The condition for a non-zero transfer,
namely

αj

αj+βj
>
∑

k∈Pj
θk, is likely to play a major role. Given a constant β, in fact, it is more

likely to have non-zero transfers. This allows for more balanced transfers rather than having just
the weakest player to get all the surplus, but still leaving the RV scheme as the most re-distributive.
This allows to sustain large coalitions, but, for very high levels of α, its detrimental effect described
in observation 1 of Vogt (2016) prevails.

In conclusion, the RV transfers scheme is quite robust to perturbations of the parameters shap-
ing players’ payoffs and to variations of β. It is also robust to mild modifications to α, allowing to
obtain significant, but not astonishing improvements in cooperation. It is, instead, rather sensitive
to large variations of α, differently from the other transfers schemes. In particular, the number and
the maximal size of stable coalitions is, till certain levels, a growing function of α. Only at very
extreme levels its role becomes deleterious, sensibly reducing both the number and the size of stable
coalitions. Despite values of α above 2 may be unlikely, there is still the possibility to obtain sub-
stantial levels of cooperation provided an opportune transfers scheme such as the one here proposed
is implemented.

6 Conclusions

Obtaining significant levels of cooperation in public good and environmental games is a fascinating
but often frustrating task. Under-provision of the public good due to free-riding incentives and, con-
sequently, instability of large coalitions, is the most common result of this typology of games. This
is particularly true when standard assumptions about players’ behavior, namely perfect rationality
and selfishness, are adopted. The latter assumption, however, has found several critiques by the
behavioralist school on the base of a vast amount of experimental results, leading to the formulation
of alternative utility functions that incorporate fairness and relational considerations. The use of the
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behavioral insights and, specifically, of F&S utility functions into public good and environmental
games has contributed to improve the results by increasing the number of stable coalitions, but
without causing a great leap forward.

A possibility for further improving the level of cooperation in the mentioned games has been seen in
adopting opportune transfers schemes, in order to minimize the detrimental effects of free riding and,
thus, fostering internal stability. The present paper has proposed the RV transfers scheme and it has
analyzed its performance by benchmarking it with other transfers schemes popular in the domain
of IEAs, through an environmental game parameterized on the RICE model. The scheme is based
on payoffs transfers and is envisaged under the assumption that players have F&S utility functions.
From one side it tries to guarantee internal stability by granting to each coalition member, whenever
it is possible, the payoff she would obtain by being the only one to leave the coalition. On the other
side, it distributes the eventual remaining surplus among the coalition members in such a way that
the sum of their utilities is maximized.

The simulation exercise has confirmed the usefulness ot the RV transfers scheme in improving the
possibility of cooperation by stabilizing coalitions, compared to the absence of transfers. It has also
shown the superiority of the proposed scheme compared to the other candidates used as touchstone,
that rarely provide significant improvements in cooperation. As a sensitivity analysis, payoffs have
been computed using parameters relative to different time periods, namely 2015, 2025 and 2035.
Furthermore, the key parameters of the F&S utility function regulating the intensity of suffered dis-
utility due to disadvantageous and advantageous inequality have been varied. For mild variations
in both of them around their median values, the RV scheme has confirmed a substantial lack of
variation, offering improvement in cooperation that are significant but far from astonishing. How-
ever, for larger values of the disadvantageous inequality parameter, coalitions including even three
quarters of all players have resulted as stable, providing significant improvements in total welfare.
The performances of the RV transfers scheme seems to increase for growing values of the disadvan-
tageous inequality parameter, but this is true only till a certain point over which the performances
are drastically reduced. There appears to be, therefore, a non linear relation between the two. Once
accepted the assumption that players have F&S preferences, the paper has shown how the RV trans-
fers scheme is a valid instrument to foster cooperation. This may be an important result, especially
for the current debate about climate change and emissions reduction.

Apart from the possibility of adopting the proposed transfers scheme in negotiations that, how-
ever, would require an estimation of the inequality aversion parameters for all participant countries,
a more general and easy to use lesson that can be learned from the present paper is the better
capability of re-distributive transfers scheme to foster stability. This resulted in almost all our sim-
ulations where, after the RV scheme, the second best performing transfers have been guaranteed
by the inverse per-capita GDP. The only exception is, counter-intuitively, for a high value of the
parameter representing the dis-utility for advantageous inequality. Besides calling for the need of
empirical estimations of the parameters describing the intensity of dis-utility due to inequality in
international negotiations, the paper suggests a preference for re-distributive transfers schemes in
order to foster stability.
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Appendix

Table A1: Stable Coalitions under Varying levels of α and β

RV C GDP C EM I GDP I EM EQ SH EQ pcSH No Transfer

2
0
2
5
,
α
=

0
.8
3
3
,
β
=

0
.5
7
6

Fully Stable Coalitions
JPN, CHN, IND, AFR CHN, IND CHN, IND – – – CHN, IND CHN, IND
EU, CHN, IND, AFR IND, AFR
RUS, CHN, IND, AFR
LAT, CHN, IND, AFR
CHN, EUA, IND, AFR
CHN, OTH, IND, AFR
EUA, OTH, IND, AFR

Number of Internally Stable Coalitions
120 22 21 32 26 28 23 8

Number of Externally Stable Coalitions
923 665 665 668 663 663 665 672

2
0
2
5
,
α
=

0
.4
1
6
5
,
β
=

0
.2
3
3

Fully Stable Coalitions
EU, CHN, IND – – CHN, OTH, IND CHN, OTH, IND CHN, OTH, IND CHN, OTH, IND CHN, IND

US, CHN, IND, AFR CHN, IND, AFR CHN, IND, AFR
OHI, CHN, IND, AFR
JPN, CHN, IND, AFR
RUS, CHN, IND, AFR
LAT, CHN, IND, AFR
MEA, CHN, IND, AFR
MEA, OTH, IND, AFR
CHN, OTH, IND, AFR
CHN, EUA, IND, AFR

Number of Internally Stable Coalitions
189 66 70 98 76 82 77 10

Number of Externally Stable Coalitions
480 439 439 439 439 439 439 440

2
0
2
5
,
α
=

0
.9
5
,
β
=

0
.1
4
4

Fully Stable Coalitions
RUS, EUA – – CHN, EUA, IND – CHN, OTH, IND CHN, OTH, IND CHN, IND

US, CHN, IND, AFR MEA, CHN, IND
OHI, CHN, IND, AFR
JPN, CHN, IND, AFR
RUS, CHN, IND, AFR
LAT, CHN, IND, AFR
MEA, CHN, IND, AFR
EU, CHN, IND, AFR
CHN, OTH, IND, AFR

Number of Internally Stable Coalitions
173 58 66 155 74 123 80 12

Number of Externally Stable Coalitions
335 191 191 192 191 191 191 192
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