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A B S T R A C T

In this paper, an asynchronous Markov regime switching generalized orthogonal GARCH (ARSGO) model for 

optimal futures hedging is proposed. The proposed ARSGO is a regime switching GO GARCH such that different 

financial variables are governed by different state variables with the dependence of switching captured by a synchro-

nization factor. Different from the conventional single-state-variable regime switching GO GARCH (RSGO), the 

multiple-state-variable ARSGO is more flexible in capturing the time-varying state-dependent correlation between 

spot and futures returns. ARSGO is applied to TAIEX futures to cross hedge the spot exposure of Taiwan stock 

sector indices. The empirical results reveal that the hedging effectiveness of ARSGO is superior to its nested models 

including the state-independent generalized orthogonal GARCH (GO) and the conventional single-state-variable 

RSGO models in terms of variance reductions and utility gains.
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Ⅰ. Introduction

Risk management on extreme price movement has 

received substantial attention in the literature. Derivative 

securities serve as an important instrument for dealing 

volatility risk (Hsu and Lee; Kim, 2017; Lien et al., 

2018; Lai et al., 2017; Thiyagarajan and Naresh, 2015). 

A considerable body of literature has investigated the 

futures hedging performance by applying a variety 

of GARCH models (Baillie & Myers, 1991; Carbonez 

et al., 2011; Chang et al., 2011; Choudhry, 2009; 

Cifarell & Paladino, 2015; Fernandez, 2008; Haigh 
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& Holt, 2000; Lee, 2009b; Lee & Yoder, 2007a; Lien 

et al., 2018; Lien & Yang, 2008; Moschini & Myers, 

2002; Pan et al., 2014; Park & Shi, 2017; Sephton, 

1993). The basic idea is to apply GARCH models 

to estimate the time-varying minimum variance hedge 

ratio (MVHR) by estimating the conditional second 

moments of spot and futures returns. Although GARCH 

models capture the time-varying properties of the joint 

distribution of spot and futures returns, it does not 

take account of the effect of changing market states.

In a series papers of Sarno and Valente (2000, 2005a, 

2005b), the relationship between spot and futures 

returns is found to be characterized by regime shifts. 

This means that the regime-switching property of 

the joint distribution of spot and futures returns must 

be considered in estimating the MVHR. A number 

of regime-switching GARCH models have been 
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applied to estimate the regime-switching time-varying 

MVHR (Alizadeh et al., 2008; Alizadeh et al., 2015; 

Dark, 2015; Hsu & Lee, 2018; Lai et al., 2017; Lee, 

2009a, 2009b, 2010; Lee & Yoder, 2007a, 2007b; Lien 

et al., 2018; Pan et al., 2014; Sheu & Lee, 2014). A 

general finding is that regime-switching GARCH 

models are superior to their state-independent counterparts 

in implementing futures hedging strategies.

Most of the regime-switching GARCH hedging 

models, however, apply a single-state-variable regime-

switching model for estimating the state-dependent 

time-varying covariance dynamics of spot and futures 

returns. Single-state-variable regime-switching models 

assume a common switching dynamic for both the 

spot and futures returns. This excludes a prior the 

possibility that the spot and futures returns might 

follow different switching dynamics governed by 

different state variables. Sheu and Lee (2014) release 

this assumption and suggest a multi-chain Markov 

regime switching GARCH (MCSG) model for estimating 

the state-dependent time-varying minimum variance 

hedge ratios. MCSG model, however, still assume 

a constant correlation within each regime. In this 

paper, we propose an asynchronous Markov regime 

switching generalized orthogonal GARCH (ARSGO) 

model for optimal futures hedging. ARSGO is a 

regime switching GO GARCH such that different 

financial variables are governed by different state 

variables with the dependence of switching captured 

by a synchronization factor. In additions, the correlation 

dynamic in each regime is time-varying in ARSGO 

which is more flexible than the correlation dynamic 

in MCSG. The proposed ARSGO is applied to TAIEX 

futures to cross hedge the spot exposure of Taiwan 

stock sector indices.

The contribution of this paper is twofold: first, 

an asynchronous Markov regime switching generalized 

orthogonal GARCH (ARSGO) model is proposed 

which incorporates the framework of asynchronous 

switching properties (Bengoechea et al., 2006; Camacho 

and Perez-Quiros, 2006) with generalized orthogonal 

GARCH (GO) model (van der Weide, 2002). ARSGO 

is an extension of the regime switching generalized 

orthogonal GARCH model proposed by Lee (2009a) 

such that different data series are governed by different 

state variables and the correlation dynamic in each 

regime is time-varying. Second, ARSGO is applied 

to TAIEX futures to cross hedge the spot exposure 

of Taiwan stock sector indices and the empirical 

results reveal that the hedging effectiveness of the 

more flexible ARSGO is superior to its nested models 

including the state-independent generalized orthogonal 

GARCH (GO) and the conventional single-state-variable 

RSGO.

The remainder of the paper is organized as follows: 

The specification of the asynchronous Markov regime 

switching generalized orthogonal GARCH (ARSGO) 

is presented in Section II. Section III provides the 

recombining procedure and regime-switching filtering 

algorithm for ARSGO. This is followed by measuring 

hedging performance, data description, and empirical 

results in Section IV. The paper concludes with a 

summarization of the findings in Section V.

Ⅱ. Asynchronous Markov 
Regime-switching Generalized 
Orthogonal GARCH (ARSGO)

The proposed asynchronous Markov regime switching 

generalized orthogonal GARCH (ARSGO) model 

which incorporates the framework of asynchronous 

switching properties with GO GARCH such that 

different data series are governed by different state 

variables and the dependence of switching is captured 

by a synchronization factor.1) The specifications of 

1) ARSGO is different from Otranto’s (2005) multi-chain Markov 

switching (MCMS) model and Sheu and Lee’s (2014) multi-chain 

Markov regime switching GARCH (MCSG) model in two aspects: 

First, MCMS and MCSG capture the switching dependence with 

lagged transition variables entering into the transition probability. 

ARSGO, however, captures the dependence of switching with 

a synchronization factor which measures explicitly the weight 

of synchronous regimes. Second, ARSGO embedded van der 

Weide’s GO GARCH (2002) with an asynchronous switching 

framework and capture the state-dependent time-varying correlation 

dynamic with a state-dependent mapping matrix. MCMS and 

MCSG, however, estimate models with a constant correlation 
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the ARSGO are as follows:

Let 










tf

tc

t
r

r

,

,

R

 denotes a 2×1 vector of returns 

with tc
r

,  and tfr ,  being the stock sector index returns 

and stock index futures returns, respectively with the 

conditional mean equations given by

tctc
scsctc

er
,,

,,,

  , (1)

tftf sfsftf er
,,

,,,

  , (2)

where tcs ,  and tfs ,  are respectively the state variables 

governing the regime-shifting dynamics of stock 

sector index returns and stock index futures returns.

To complete the dynamic specification of the process, 

a new state variable t
S  is defined and is given by












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
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224
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111

,,
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,,
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tftc

tftc

tftc

tftc

t

sandsif

sandsif

sandsif

sandsif
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. (3)

The four-state matrix of transition probability is 

defined as





















44,34,24,14,

43,33,23,13,

42,32,22,12,

41,31,21,11,

SSSS

SSSS

SSSS

SSSS

PPPP

PPPP

PPPP

PPPP

S
P

, (4)

whose columns sum to unity and  ijPP ttijS 
1,

|SS  stands 

for transition probability of being in state i  at time 1t  

and in state j  at time t . With the definition above, the 

matrix form of the mean equation is given by

tt
tt SS
eμR

,

 , (5)

where   Tsfsc tftct ,,

,,


S

μ  is a 2×1 vector of state-

dependent conditional means and

   
tttftct stssfsct ee

,S
εZe 




,,

,,, (6)

within each regime.

is a state-dependent residual vector. The state-dependent 

linear mapping matrix  
t

S
Z   is given by

  











tt

t

SS

S
Z




sincos

01

, (7)

where t
S

  is a state-dependent rotation angle capturing 

the correlation dynamic of stock sector index returns 

and stock index futures returns and is governed by 

both state variables of tcs ,  and tfs , .

The state-dependent residual vector t
t S
ε

,  is assumed 

to be normally distributed

 
tt

ttt
BN

SS
H0ε

,1,
,~|



 , (8)

where BN stands for bivariate normal, 1t
  is information 

set available at time 1t  and the time-varying state-

dependent covariance matrix t
t S

H
,  is specified as

),(
,,

,,,,, tftct stfstct hhdiag
S

H . (9)

The volatility dynamics of spot and futures returns 

are assumed to follow a regime switching GARCH 

process given by

1,,

2

1,,,,,
,,,,




tcsctcscscstc

heh
tctctctc

 , (10)

tftftftftf stfsftfsfsfstf heh
,,,,,

,1,,

2

1,,,,, 

  . (11)

With the above definition, the vector t
R  is normally 

distributed with conditional mean 
t

S
μ  and conditional 

covariance matrix t
t S

Ω
,

 
tt

ttt
N

SS
ΩμR

,1
,~|



 , (12)

where

   
tttt

tt SSSS
ZHZΩ 

,, . (13)

The state-dependent correlation coefficient t
t S,

  

can be shown as
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 
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The contemporaneous correlation between stock 

sector index returns and stock index futures returns 

t
t S,

  depends on both the state variables tc
s

,  and tfs , . 

As a consequence, there are four possible time-varying 

correlation dynamics under high/high, high/low, 

low/high and low/low volatility regimes. With ARSGO, 

we can investigate the contemporaneous time-varying 

correlations between stock sector index returns and 

stock index futures returns under different regime 

combinations.

Ⅲ. Recombining Procedure and Regime-
switching Filtering Algorithm

To solve the well-known path-dependency problem 

(Cai, 1994; Hamilton and Susmel, 1994; Gray, 1996) 

due to the recursive nature and regime switching 

property, Gray’s recombining method (Gray, 1996) 

is applied for residuals and volatilities:

    
2,,1,,,1,,,

,,

1|



tctc

sctcsctctcttctctc
pprrEre  , (15)
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tftf sftfsftftfttftftf pprrEre  , (16)

where  
1,,

|1


 ttctc sPp   and  
1,,

|1


 ttftf sPp   are 

regime probabilities of being in state 1 at time t  

for state variables tc
s

,  and tfs , , respectively. The 

recombining process for the variance of stock sector 

returns is given by
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    

           
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 . (17)

The recombining process for the variance of stock 

index futures returns is given by
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Since the variance of stock index futures returns 

is equal to     tftc hh
,

2

,

2
sincos   , it follows that

   

 



2

,
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ttctf
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where the rotation coefficients   is equal to the 

weighted average of 11
 , 12

 , 21
  and 22

 , weighted 

by the conditional state probability  
1

|



tt

iP S .

The state-dependent volatilities tc
stc

h
,

,,  and tfstfh
,

,,  

are driven by different state variables tcs ,  and tfs , , 

respectively and the state-dependent dynamic conditional 

correlation is governed by both state variables of 

tcs ,  and tfs , . In Lee’s regime switching GO GARCH 

(2009a), all data series are governed by a single state 

variable, namely, tftc ss
,,

 . Although the switching 

dynamic between stock sector index returns and stock 

index futures returns is normally positively correlated, 

the correlation is less than perfect. Following Bengoechea 

et al. (2006) and Camacho and Perez-Quiros (2006), 

in ARSGO, the comovement between stock sector 

index returns and stock index futures returns is 

assumed to be cf  times the case of independent and 

 cf1  times the case of perfect dependent, where 

10  cf . The weight cf  as a consequence measures 

the extent of desynchronization between stock sector 

index returns and stock index futures returns.

To incorporate the asynchronous factor cf  into 

ARSGO, the following filtering algorithm is applied. 

If we collect all state probabilities in the vectors 

and define

 

 

 

 





































;|4

;|3

;|2

;|1

1

1

1

1

1|

tt

tt

tt

tt

tt

P

P

P

P









S

S

S

S

ξ

,  

 

 

 

 



























;|4

;|3

;|2

;|1

|

tt

tt

tt

tt

tt

P

P

P

P









S

S

S

S

ξ

, (20)

where   is a vector of system parameters to be estimated. 

The updated probability vector is given by
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111
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tttt |S| ξPξ , (21)

where S
P  is the transition matrix. Because it has 

cf  times for the case of independent and  cf1  times 

for the case of perfect dependent, S
P  is calculated as

  D

cf

I

cf PPP
S

  1 , (22)

Where I
P  and D

P  are the transition matrices in cases 

of independent and perfect synchronous, respectively. 

Substituting equation (22) into equation (21), we have
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predicted probability vector for the cases of independent 

and perfect synchronous, respectively.

In the case when the switching dynamics of spot 

and futures returns are mutually independent, elements 

in the transition matrix S
P  are calibrated as a product 

of those for the independent chains governing tcs ,  

and tfs , . For example,
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by:
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As in the case when both spot and futures returns 

share a common pattern of regime switches, state 

2 and 3 for t
S  are excluded. In this case, the transition 

matrix is reduced to a 2×2 matrix and the forecasted 

probability vector in the case of perfect synchronization 

denoted as 
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tt 1| ξ  is given by:
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where tftct sss
,,

 . To estimate the transition probability 

matrix, the following logistic functions are applied 

to calculate the transition probabilities for spot and 

futures returns.
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 , (28)

where 0,cp , 0,c
q , 0,fp , 0,fq  are estimated along with 

system parameters. The filtered probabilities are 

updated according to the following formula:

 
ttt
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|
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, (29)

where 1 is a 2×1 vector of ones, o  denotes elements-

by-elements and t
η  is a vector of conditional density 

given by
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. (30)

The density of spot and futures returns conditional 

on past observations and being in regime t
S  at time 

t is denoted as

 
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t
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2

1
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(31)

The mixture likelihood is the weighted average 

of conditional densities given by
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. (32)

The unknown parameters in ARSGO are  cfΘ , 

0,cp , 0,c
q , 0,fp , 0,fq , tcsc

,

,

 , tfsf
,

,

 , tc
sc

,

,
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,

,
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,

,
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tfsf
,

,
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,

,
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 , 
t

S
  for  2,1

,


tc

s ,  2,1, tfs  and 

 4,3,2,1
t

S , which can be estimated by maximizing 

the following log-likelihood function

  






T

t

tt
fLL

1

1
;|log R

, (33)

where  


;|
1tt

f R  is defined in equation (32).

IV. Measuring Hedging Performance, 
Data Description, and Empirical 
Results

Let tftttctp rrr ,1|,,
ˆ



   be the hedged portfolio return 

constructed by shorting 1|
ˆ

tt  units of futures for each 

unit of spot exposure, where 1|
ˆ

tt  is the conditional 

hedge ratio estimated at time 1t and to be held 

over the time period  tt ,1 . A hedger chooses a 

hedging strategy to minimize the variance of the 

hedged portfolio return or equivalently maximize the 

percentage variance reduction compared with the 

unhedged position. The hedging effectiveness  HE  

is defined as

   
 

100

,

,,






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tptc

rVar

rVarrVar
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, (34)

The hedge ratios 1|
ˆ

tt  is given by
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where  
1,,

|,
ttftc rrCov   is the conditional covariance 

of spot and futures returns and  
1,

|
ttfrVar   is the 

conditional variance of futures return estimated with 

GARCH models. Suppose that a hedger has the 

following mean-variance expected utility function:

      
1,1,1,

|||



ttpttpttp

rVarrErUE  , (36)

where   stands for the degree of risk aversion. From 

a utility-maximizing standpoint, a hedger chooses a 

hedging strategy that maximizes the expected utility.

The proposed asynchronous Markov regime switching 

generalized orthogonal GARCH (ARSGO) model is 

applied to nearby contracts of TAIEX futures to hedge 

the spot exposure of Taiwan stock sector indices including 

food, textiles, electric & machinery, automobile, and 

glass products. All data series are from July 1998 to 

December 2018 obtained from Datastream. The weekly 

returns of each price series are computed as the changes 

in the natural logarithms of prices multiplied by 100 

using Wednesday closing prices. The estimation of all 

the models are conducted using data from July 1998 

to December 2017, and the data from January 2018 

to December 2018 are used for out-of-sample analysis. 

Summary statistics for spot and futures returns are shown 

in Table 1. All unconditional mean returns are small 

and less than 0.1%. The largest mean return is equal 

to 0.06% for the case of food sector and the smallest 

mean return is equal to -0.065% for the case of glass 

products sector. Glass products sector has the largest 

return volatility with a standard deviation of 4.349 and 

Electric & Machinery sector has the lowest return 

volatility with a standard deviation of 3.159. According 

to the skewness, leptokurtosis, and significant Jarque-

Bera statistics, the unconditional distribution of spot 

and futures returns are all asymmetric, fat tailed, and 

non-Gaussian.

Table 2 shows the estimates of unknown parameters 

of ARSGO. In the transition probability equation, 

0,cp  and 0,c
q  are parameters of the logistic functions 

in equations (27) for spot return and 0,fp  and 0,fq  

are parameters of the logistic functions in equations 

(28) for futures return. Most of the parameters in the 

transition probability equation are significant showing 

that it is important to model spot and futures returns 
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Food Textiles Electric & Machinery Automobile

Mean 0.060 0.034 0.026 0.009

Maximum 17.406 18.011 14.053 24.236

Minimum -15.295 -16.402 -14.219 -16.175

Std. Dev. 3.540 3.840 3.159 3.907

Skewness -0.134 -0.113 -0.424 0.296

Kurtosis 5.911 5.169 5.357 6.660

Jarque-Bera 379.549*** 211.225*** 278.662*** 610.569***

Glass Products Transportation TAIFEX Futures

Mean -0.065 -0.019 0.017

Maximum 14.005 18.543 14.987

Minimum -18.507 -15.558 -14.211

Std. Dev. 4.349 3.861 3.323

Skewness -0.312 0.091 -0.268

Kurtosis 4.601 5.460 5.536

Jarque-Bera 131.078*** -0.019*** 298.290***

Note: *** indicates significance at the 1% level and returns (in percentage) are calculated as the differences in the logarithm of prices 
multiplied by 100.

Table 1. Summary statistics of weekly returns (In percentage)

Figure 1. Regime probability of being in the 
high volatility state estimated with 

ARSGO for food sector index

Figure 2. Regime probability of being in the 
high volatility state estimated with 

ARSGO for TAIEX futures

with multiple state variables. Figures 1 and 2 show 

the regime probabilities of being in the high volatility 

state estimated with ARSGO for food sector index 

and TAIEX futures, respectively.

In the volatility equation, for a given   , higher 

  implies a higher volatility. Take glass products 

sector for instance,   is respectively equal to 5.289 

and 0.015 in state 1 and state 2 for spot return and 

is respectively equal to 1.580 and 0.011 in state 1 

and state 2 for futures return. State 1 has higher   

and is the higher volatility state. The persistence in 

volatility is measured with tt sjsj ,,

  , },{ fcj , and 

}2,1{
t
s . Take automobile sector for instance, 1,1, cc

   

and 2,2, cc
   are respectively equal to 1.000 and 0.490 

and 1,1, ff    and 2,2, ff    are respectively equal 

to 1.000 and 0.822. Because state 1 is the high-volatility 

state, automobile sector has higher volatility persistence 

in the high volatility state. For most of the cases, 

high-volatility state exhibits higher volatility persistence. 

Figures 3 and 4 respectively illustrate the state-dependent 

volatilities of food sector index and TAIEX futures 
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Food Textiles Electric & Machinery Food Textiles Electric & Machinery

Transition probability Equation Variance Equation

0,cp 5.746 6.057 1.046 1c
 5.334 6.308 9.951

(0.628)***
1

(1.380)*** (0.774)* (1.958)*** (5.813) (13.222)

0,cq 6.722 6.203 3.043 2c
 0.563 0.253 0.000

(0.857)*** (1.140)*** (0.992)*** (0.240)*** (0.253) (0.021)

0,fp 2.164 1.641 -1.765 1f 7.617 11.493 5.432

(1.255)** (0.984)** (6.064) (3.483)** (23.835) (5.104)

0,fq 3.291 4.655 -0.334 2f 0.965 0.735 0.000

(0.759)*** (1.598)*** (0.756) (0.501)** (0.992) (0.029)

Mean Equation

1c
 2 -0.268 -0.086 -1.321 1c

 0.054 0.124 0.000

(0.213) (0.247) (1.015)* (0.033)** (0.089)* (0.017)

2c
 2 0.108 0.056 0.293 2c

 0.024 0.000 0.000

(0.086) (0.069) (0.117)*** (0.016)** (0.025) (0.024)

1f -0.762 -0.560 -1.277 1f 0.035 0.075 0.082

(0.450)** (0.806) (0.821)* (0.056) (0.178) (0.135)

2f 0.275 0.136 0.347 2f 0.000 0.022 0.032

(0.070)*** (0.081)** (0.164)** (0.016) (0.050) (0.058)

Correlation Equation

11
 0.880 0.682 0.764 1c

 0.707 0.669 1.000

(0.106)*** (0.525)* (0.078)*** (0.103)*** (0.245)*** (0.953)

12
 1.194 0.972 0.856 2c

 0.836 0.915 0.771

(0.083)*** (0.063)*** (0.280)*** (0.050)*** (0.092)*** (0.063)***

21
 0.504 0.429 0.603 1f 0.965 0.875 0.918

(0.085)*** (0.210)** (0.202)*** (0.340)*** (0.582)* (0.633)*

22
 0.907 0.969 0.744 2f 0.536 0.643 0.809

(0.048)*** (0.042)*** (0.051)*** (0.110)*** (0.385)**X (0.107)***

cf 0.950 0.889 0.140

(0.029)*** (0.044)*** (0.094)*

LL
3

-4865.04 -4779.83 -4590.17

1. Figures in parentheses are standard errors and *, ** and *** indicate significance at the 10% level, 5% level and 1% level, respectively.
2. The subscripts 1 and 2 stand for state 1 and 2, respectively. State 1 is the higher volatility state.
3. LL stands for log likelihood.

Table 2. Estimates of the unknown parameters of ARSGO

estimated with ARSGO. The mean volatilities of food 

sector index and TAIEX futures are equal to 11.327 

and 5.995, respectively, in the low volatility state and 

are equal to 14.845 and 17.065, respectively, in the 

high-volatility state.

In the correlation equation, there are four possible 

correlation dynamics. Taking food for instance, when 

both spot and futures are in the high volatility regime, 
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Automobile Glass Products Transportation Automobile Glass Products Transportation

Transition probability Equation Variance Equation

0
p 1.273 1.341 2.225 1c

 8.252 5.289 1.434

(0.256)***
 1

(0.219)*** (1.044)** (15.321) (1.248)*** (1.469)

0
q 1.460 0.324 1.574 2c

 0.000 0.015 0.000

(0.295)*** (0.078)*** (0.524)*** (0.055) (0.008)** (0.033)

0
p -3.247 -3.168 -2.915 1f 1.642 1.580 0.928

(13.097) (0.981)*** (4.175) (2.498) (0.550)*** (0.387)***

0
q -1.859 -1.318 -0.363 2f 0.000 0.011 0.056

(2.002) (0.197)*** (1.155) (0.113) (0.003)*** (0.145)

Mean Equation

1c
 2 -0.165 0.409 0.141 1c

 0.066 0.037 0.000

(0.572) (0.014)*** (0.537) (0.085) (0.020)** (0.033)

2c
 2 0.093 -0.324 -0.163 2c

 0.016 0.250 0.350

(0.586) (0.059)*** (0.405) (0.083) (0.196) (0.121)***

1f -0.617 -0.039 -0.161 1f 0.137 0.130 0.086

(0.305)** (0.059) (0.461) (0.063)** (0.031)*** (0.038)**

2f 0.491 0.407 0.368 2f 0.000 0.133 0.112

(0.217)** (0.015)*** (0.181)** (0.144) (0.020)*** (0.091)

Correlation Equation

11
 1.145 1.178 1.084 1c

 0.934 0.963 1.000

(0.093)*** (0.022)*** (0.067)*** (0.818) (0.215)*** (0.079)***

12
 0.403 0.033 0.489 2c

 0.474 0.205 0.531

(0.909) (0.022)* (0.239)** (0.073)*** (0.029)*** (0.127)***

21
 0.949 0.001 0.188 1f 0.863 0.870 0.914

(2.394) (0.000)** (0.179) (0.373)** (0.041)*** (0.189)***

22
 0.896 0.956 0.832 2f 0.822 0.486 0.592

(0.089)*** (0.093)*** (0.130)*** (0.390)** (0.195)*** (0.266)**

cf 0.042 0.038 0.156

(0.365) (0.022)** (0.207)

LL
3

-4979.22 -5122.78 -4895.30

1. Figures in parentheses are standard errors and *, ** and *** indicate significance at the 10% level, 5% level and 1% level, respectively.
2. The subscripts 1 and 2 stand for state 1 and 2, respectively. State 1 is the higher volatility state.
3. LL stands for log likelihood.

Table 2. Continued

the mean correlation is equal to 0.609 and when both 

of them are in the low volatility regime, the mean 

correlation is equal to 0.723. When the spot return 

is in the high volatility regime and futures return 

is in the low volatility regime, the mean correlation 

is equal to 0.550 and when the spot return is in the 

low volatility regime and futures return is in the high 

volatility regime, the mean correlation is equal to 0.802. 
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Figure 3. State-dependent volatility of food sector 
index estimated with ARSGO

Figure 4. State-dependent volatility of TAIEX futures 
estimated with ARSGO

Figure 5. State dependent correlations of food sector 
index and TAIEX futures estimated with ARSGO

Figure 6. Hedge ratio of TAIEX futures for cross 
hedging food sector index estimated with ARSGO

Figures 5 illustrates the state-dependent correlations 

of food sector index and TAIEX futures estimated 

with ARSGO.

In this paper, ARSGO is applied to TAIEX futures 

to cross hedge the spot exposure of Taiwan stock sector 

indices including food, textiles, electric & machinery, 

automobile, glass products, and transportation sectors. 

The performance of ARSGO is compared with the 

state-independent generalized orthogonal GARCH (GO) 

and the conventional single-state-variable regime switching 

GO GARCH (RSGO) models. Figures 6 shows the hedge 

ratio of TAIEX futures for cross hedging food sector 

index estimated with ARSGO and RSGO models. 

Table 3 reports the out-of-sample hedging effectiveness. 

Overall, the proposed ARSGO model exhibits superior 

out-of-sample hedging performance. Taking food as 

an example, the variance of the unhedged portfolio 

is equal to 4.149. If a hedger applies the GO model 

for hedging, the variance is reduced to 3.063 or a 

26.16% variance reduction. If a hedger applies the 

RSGO model for hedging, the variance of the hedged 

portfolio is equal to 3.282 or a 20.89% variance 

reduction. For the case of food industry, single-state- 

variable regime switching model does not improve 

the hedging performance compared with the state- 

independent GO model. If a hedger applies ARSGO 

hedging, the variance of the hedged portfolio is equal 

to 2.873 or a 30.74% variance reduction. The marginal 

improvements of ARSGO over RSGO and GO are 

equal to 4.57% and 9.85%, respectively. Overall, 

multiple-state-variable ARSGO model outperforms 

the conventional single-state-variable RSGO model 

for all of the data considered.

A hedger chooses a hedging strategy that minimizes 

the variance or maximizes the utility of the hedged 

portfolio return. The expected utility gains are reported 

in Table 3. The hedger is assumed to have an expected 

utility function given by equation (36) with the coefficient 
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Variance of 

Hedged

Portfolio Return

Percentage 

Variance 

Reduction
1

Improvement of 

ARSGO over 

Other Models
2

Hedged 

Portfolio 

Return

Expected 

Weekly 

Utility
3

Utility Gain of 

ARSGO over Other 

Models
4

Food

Unhedged 4.149

GO 3.063 26.16% 4.57% 0.138 -12.115 0.838

RSGO 3.282 20.89% 9.85% 0.180 -12.948 1.670

ARSGO 2.873 30.74% 0.216 -11.277

Textiles

Unhedged 5.027

GO 3.376 32.84% 1.89% 0.224 -13.281 0.391

RSGO 3.288 34.60% 0.13% 0.224 -12.927 0.038

ARSGO 3.281 34.73% 0.236 -12.890

Electric & Machinery

Unhedged 9.986

GO 5.219 47.73% -2.27% -0.187 -21.064 -0.955

RSGO 5.502 44.91% 0.55% -0.244 -22.250 0.231

ARSGO 5.446 45.46% -0.235 -22.020

Automobile

Unhedged 6.909

GO 3.365 51.29% 6.97% -0.290 -13.751 1.956

RSGO 3.320 51.95% 6.32% -0.320 -13.600 1.805

ARSGO 2.884 58.27% -0.261 -11.795

Glass Products

Unhedged 12.948

GO 7.476 42.26% 2.28% -0.625 -30.528 1.233

RSGO 7.577 41.48% 3.07% -0.697 -31.006 1.711

ARSGO 7.180 44.55% -0.575 -29.295

Transportation

Unhedged 3.503

GO 1.691 51.72% -0.97% 0.003 -6.763 -0.080

RSGO 1.758 49.81% 0.93% 0.064 -6.969 0.125

ARSGO 1.725 50.74% 0.059 -6.843

1. The percentage variance reductions are calculated as the differences of the variance of unhedged position and the estimated variances 
of alterative models over the variance of unhedged position multiplied by 100.

2. The improvement of ARSGO over other hedging strategies is defined as the differences of the percentage variance reduction of ARSGO 
and the percentage variance reduction of alternative models.

3. The expected weekly utility is calculated based on equation (36)
4. The utility gains of ARSGO over other hedging strategies are defined as the differences of the expected utility of ARSGO and the 

expected utilities of alternative models.

Table 3. Out-of-sample hedging effectiveness of alternative models

of absolute risk aversion   equal to 4 (Lee 2010; 

Sheu & Lee, 2014; Lien et. al., 2018). If the hedger 

uses RSGO hedging, the average weekly utility is 

  948.12282.340.180 
RSGO

U . With ARSGO hedging, 

the average weekly utility is 
ARSGO

U  873.24216.0 

277.11 . The hedger’s net benefit from using 

ARSGO hedging over RSGO hedging is equal to 

670.1
RSGOARSGO

UU . A meanvariance expected 
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utility-maximizing hedger should thus adopt ARSGO 

hedging because of the positive utility gain. As presented 

in Table 3, ARSGO model outperforms the conventional 

single-state-variable RSGO model for all of the data 

considered in terms of utility gains.

V. Conclusions

Most of the existing regime switching GARCH 

hedging models assume a common state variable for 

both the spot and futures returns. In this paper, we 

suggest an asynchronous Markov regime switching 

generalized orthogonal GARCH (ARSGO) model 

such that different financial variables are governed 

by different state variables with the dependence of 

switching captured by a synchronization factor. ARSGO 

is different from Sheu and Lee’s (2014) multi-chain 

Markov regime switching GARCH (MCSG) model 

which restricts the correlation to be a constant within 

each regime. The multiple-state-variable ARSGO is 

more flexible in capturing the time-varying state-

dependent correlation between spot and futures returns.

ARSGO is applied to TAIEX futures to cross hedge 

the spot exposure of Taiwan stock sector indices 

including food, textiles, electric & machinery, automobile, 

glass products, and transportation sectors. The 

empirical results reveal that the hedging effectiveness 

of multiplestate- variable ARSGO is superior to the 

conventional single- state-variable RSGO in terms 

of both variance reduction and utility gain. The 

improvement of ARSGO over RSGO on variance 

reduction could be as large as 9.85% for the case 

of food industry and the improvement of ARSGO 

over GO on variance reduction could be as large 

as 6.97% for the case of automobile industry. Most 

of the expected utility gains are positive showing the 

economic significance of the superiority of ARSGO 

over RSGO and GO. This shows the importance of 

modelling the spot and futures returns with multiple- 

state-variable regime-switching time-varying correlation 

GARCH model in optimal futures hedging. A mean- 

variance expected utility-maximizing hedger should 

adopt ARSGO hedging in order to minimize his hedged 

portfolio risk for a given level of expected return.
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Appendix A. Summary of estimation 
procedure for ARSGO

To complete the likelihood function in (33) for 

the proposed asynchronous regime switching generalized 

orthogonal GARCH model (ARSGO), the filtering 

algorithm is summarized below:

(i) Given the filtered probabilities 
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where I
P  and D

P  are respectively the transition 

variable in cases of independent and perfect 

synchronous.

(ii) Evaluate the regime dependent likelihood
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where the mapping matrix  
t

S
Z   and volatility 

elements 
t

tt S
H ,1|   are defined in equations (7), 

(9) and (10).

(iii) Evaluate the mixture likelihood
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where the projected probabilities  

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are estimated in step (i).

(iv) Update the joint probabilities
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Where 1 is a 2×1 vector of ones, o  denotes 

elementsby-elements and t
η  is a vector of 

conditional density defined in equation (30).

(v) Recombining

Apply equations (15)-(19) to recombine the 

statedependent residuals and volatilities. The 

recombined rotation coefficients   is a weighted 

average of 11
 , 12

 , 21
  and 22

  using projected 

state probabilities.

(vi) Iterate (i) to (v) until the end of the sample 

and the likelihood is obtained as a by-product 

of this filter given by
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The vector of steady state probabilities are 

used as initial regime probabilities to initialize 

the filtering algorithm which is given by
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which is the solution of the system of equations 

πPπ   and 1π1  . The solution can be 

derived as  
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ν , n  is the number of state variables, 

n

2
I  is a ×  identity matrix and   is 

a × zero vector.




