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A Big Data Analysis System for Financial Trading
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A B S T R A C T

Big data analysis and cloud computing are becoming increasingly involved in the area of finance. The high compu-

tation capability enables one to apply complicated analysis utilizing large amounts offinancial data. Big data analysis 

can find hidden patterns in large amounts of data.This capability can help investors in derivatives pricing, risk 

management and financial forecasting, and profitable trading. Owing to the high risk associated with trading finan-

cial options, this study aims to develop anintelligent option trading support system, where nonlinear or kernel 

canonical correlation analysis (KCCA) is used to extract the hidden forces that drive the price movement of an 

option, and a generalized dynamic kernel based predictors are employed to generate trading signals. Comparing 

with convectional feature extractions and pure regression models, the performance improvement of the new method 

is significant and robust. The cumulated trading profits are substantially increased. The resultant intelligent trading 

support system can help investors, fund managers and investment decision-makers make better and profitable 

decisions.
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1. Introduction

For financial investment and trading, data represents 

the ultimate challenge and the ultimate opportunity. 

The ability to manage and analyze data effectively 

can lead to better business decisions and lasting 

competitive advantages. To achieve the objectives, 

recent studies have put emphasis on exploiting big 

data techniques to manage and use datasets that are 

too large and complex to process with conventional 
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methods. Financial trading of securities using technical 

and quantitative analysis has been traditionally 

modelled by statistical techniques. In contrast to these 

statistical approaches, complex models coming from 

big data analysis or machine learning have emerged 

as new solutions. The extensive literature (Yoo, et 

al., 2007) has shown how some machine learning 

techniques have demonstrated that they are well-suited 

for quantitative analysis within the financial industry, 

as their capabilities of finding hidden patterns in 

large amounts of financial data may help in derivatives 

pricing, risk management and financial forecasting.

Financial investment is knowledge-intensive. Due 

to the high risk associated with trading financial 

derivatives, an online trading support system for 

option trading is important for investors in controlling 
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and hedging their risk. Recently, many big data 

analysis or machine learning methods have been 

employed for algorithmic trading. However, their 

performance is not satisfactory, because these models 

do not reflect key features of financial information. 

Financial price is known to have a series of 

change-points, and good prediction for its movements 

is the key to successful trading. However, to make 

the correct trading decision is a very difficult problem 

because of the influence of the embedded noise and 

price fluctuations that confuse the price trend 

interpretation. The study employs wavelet analysis 

to resolve the financial big data, and uses kernel 

canonical correlation analysis (KCCA, Fyfe and Lai, 

2001) to extract the hidden features that drive the 

price movement of an option, and a generalized 

dynamic kernel based predictors are employed to 

generate trading signals.

In recent years, with the advances in electronic 

transactions, vast amounts of data have been collected. 

In this context, the emergence of data mining 

technology enables researchers to build a financial 

trading support system (Boginski, Butenkob, and 

Pardalos, 2006; Bose and Mahapatra, 2001; Enke 

and Thawornwong, 2005; Hu et al., 2015; Irma, 

Stelios, and Steven, 2002; Patel et al., 2015; Wang 

and Weigend, 2004). Prior studies may use the 

charting heuristics of technical analysis to identify 

the bull flag, or focus on the forecast of financial 

prices. They often employ a statistical or artificial 

intelligence (AI) approach to facilitate the trading 

strategy-making. Typical decision models include 

decision tree (Wang and Chan, 2006; Wu, Lin, and 

Lin, 2005), case based reasoning (CBR) (Chun and 

Park, 2005; Oh and Kim, 2007), neural networks 

(Armano, Marchesi, and Murru, 2005; Chen, Leung, 

and Daouk, 2003; Thawornwong and Enke, 2004), 

fuzzy system (Wang, 2003), support vector machines 

(Żbikowski, 2015), and hybrid ones (Cervelló-Royo, 

Guijarro, and Michniuk, 2015; Chun and Kim, 2004; 

Fang and Xu, 2003; Zhang, 2003).

Option is a kind of financial derivatives. Its price 

is nonlinearly determined by future value of the 

underlying stock. Its equilibrium price is also 

determined by the arbitrage opportunity in the market. 

Consequently, charting heuristic and traditional 

decision models are not suitable for option trading. 

In order to effectively predict the future movement 

of option price, high dimensional option data of the 

same strike price and major stock indices related 

to the market are used in this study for analyzing 

the price co-movement. In financial big data analysis, 

the most important is the feature extraction. 

Low-dimensional representative features can prevent 

the problem of the curse of dimensionality, and 

alleviate computation burden of the predictor. In 

feature extraction, KCCA is a relatively new 

methodology in big data analysis. KCCA is a nonlinear 

supervised method that finds maximal correlated input 

features for the outputs. What distinguishes KCCA 

from other methods (such as kernel principal component 

analysis) is that KCCA extracts a representative 

subspace that maximally correlated with the output. 

Based on the more discriminative subspace (or 

features), the performance of next stage predictor 

can be improved.

Although KCCA has found good applications in 

many fields, traditional KCCA operates on time 

domain is not very effective for the analysis of financial 

data. Market investors ranging from short-term traders 

(hedging strategists, market makers), medium-term 

traders (international portfolio managers), to long-term 

investors (central banks) are a diverse group. They 

operate on very different time scales. Consequently, 

traditional KCCA could not reveal key features of 

each group. On the contrary, wavelet analysis (Percival 

and Walden, 2000; Gençay et al., 2002) is a 

time-frequency technique which overcomes the 

limitations of traditional KCCA. Wavelet multi-resolution 

analysis is increasingly popular for financial time 

series analysis because it enables the practitioner to 

focus on particular time scales where trading patterns 

are considered important. The basic idea is to apply 

KCCA in wavelet domain to find hidden patterns. 

According to the arbitrage pricing theory (APT) of 

Ross (1976). If one could find useful hidden factors 

or sources that drive the market. The target asset 

could be price more correctly by these driving sources.
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For trading decisions, the support vector machine 

(SVM) method (e.g., Vapnik, 1995; Cristianini and 

Shawe-Taylor, 2000; Schoelkopf, Burges, and Smola, 

1999), is a good candidate for trend forecasting and 

buy/sell decisions. SVM and kernel machine (KM) 

models (Chen, 2006; Schölkopf and Smola, 2002) 

attract considerable interest. These techniques have 

been gaining more and more in popularity and are 

regarded as the state-of-the-art technique for regression 

and classification problems, with hugely successful 

application in many areas. The theoretical basis of 

SVM is the structural risk minimization principle, 

which gives excellent generalization properties. 

However, it has been shown that the standard SVM 

technique is not always able to construct parsimonious 

models in system identification (Drezet and Harrison, 

1998). This shortcoming encourages the exploration 

of new methods for the parsimonious models under 

the framework of both SVM and KM. Tipping (2001) 

first introduced the relevance vector machine (RVM) 

method, which can be viewed from a Bayesian learning 

framework of the kernel machine and produces an 

identical functional form to the SVM/KM. The results 

given in Tipping (2001) demonstrate that the RVM 

has a generalization performance comparable to the 

SVM but requires dramatically fewer kernel functions 

or model terms. A drawback of the RVM algorithm 

is a significant increase in computational complexity, 

compared with the SVM method.

Recently, Rosipal and Trejo (2001) derived a novel 

method for constructing sparse kernel models based 

on partial least square regressions (PLSR, Wold et al., 

1984; Rosipal and Kramer, 2006). Their kernel-based 

PLSR (KPLSR) algorithm extends traditional PLSR 

to high dimensional Reproducing Kernel Hilbert 

Space (RKHS). PLSR creates score vectors (components, 

latent vectors) by using the existing covariances 

between input and output variables while keeping 

most of the variance of both data sets. PLSR has 

proven to be useful in situations where the dimension 

of input variables is much greater than that of 

observations or high multi-collinearity among the 

input variables exists. This situation is also quite 

common in the case of kernel-based learning where 

the original data are mapped to a high-dimensional 

feature space which dimension is much higher than 

the sample size.

The major innovation of this paper lies in integrating 

wavelet-domain KCCA with generalized dynamic 

kernel regressions (KPLSR) for option trading. In 

the first stage, wavelet-domain KCCA finds the 

hidden significant features suitable for financial 

forecasting and trading decisions. In the second stage, 

a dynamic KPLSR is constructed for price forecasting 

and buy/sell decisions. This study conducts a series 

of experiments on the proposed model using option 

data on the Taiwan Weighted Stock Index (TAIEX) 

to validate its trading profits. Empirical results 

indicated that comparing with other feature extraction 

methods and pure regressors, the proposed system 

performs best. The cumulated trading profits are 

significantly increased. The resultant intelligent 

investment decision support system can help investors 

make profitable decisions.

The remainder of the paper is organized as follows. 

Section 2 introduces prior research on financial trading, 

the neural network and support vector regression 

models. Section 3 describes wavelet-domain KCCA 

algorithm used in the new algorithmic trading system. 

Section 4 introduces the KPLSR algorithm. Section 

5 describes the data used in the study, and discusses 

the experimental findings. Conclusions are given in 

Section 6.

2. Prior Research

2.1 Multi-layer Neural Networks

This class of networks consists of multiple layers 

of computational units, usually interconnected in a 

feed-forward way (Haykin, 1999). Each neuron in 

one layer has directed connections to the neurons 

of the subsequent layer. In many applications the 

units of these networks apply a sigmoid function 

defined by
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as an activation function. Multi-layer networks use 

a variety of learning techniques, the most popular 

being back-propagation. The output values are 

compared with the correct answer to compute the 

value of some predefined error-function. By various 

techniques (e.g., gradient descent), the error is then 

fed back through the network. Using this information, 

the algorithm adjusts the weights of each connection 

in order to train the model.

2.2 Support Vector Regressions(SVR)

The support vector machines (SVM) were proposed 

by Vapnik (1995). Based on the structured risk 

minimization (SRM) principle, SVMs seek to minimize 

an upper bound of the generalization error instead 

of the empirical error as in other neural networks. 

The SVM regression function is formulated as follows:
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where x  is the input vector. φ  is a nonlinear mapping 

from the input space to the future space. T  stands 

for the matrix transposition. The coefficients w  and 
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where i
y  is the actual price in the i th period, and 

i
ŷ  is the model prediction. Both C  and ε  are 

prescribed parameters. The first term )ˆ,(
ii
yyLε  is 

called the ε -intensive loss function. This function 

indicates that errors below ε  are not penalized. The 

term )ˆ,(
1

1= ii

N

i
yyL

N
ε∑  is the empirical error. The 

second term, 
2||||

2

1
w , measures the smoothness of 

the function. C  evaluates the trade-off between the 

empirical risk and the smoothness of the model. 

Introducing positive slack variables ξ  and 
*ξ , which 

represent the distance from the actual values to the 

corresponding boundary values of ε -tube. Equation 

(3) is transformed to the following constrained 

formation:
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After taking the Lagrangian and conditions for 

optimality, one can get the model solution in dual 

representation,
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* bKfy
iii

N
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+−∑ xxx αααα

(9)

where i
α  and 

*

i
α  are nonzero Lagrangian multipliers, 

which are the solution to the dual problem, and 

)()(=),(
ii

K xxxx φφ  is the kernel function.

3. Wavelet-domain Kernel Canonical 
Correlation Analysis

A long-standing problem in statistics and related 

areas is how to find a suitable representation of 

multivariate data. Representation means that we 

somehow transform the data so that its essential 

structure is made more visible or accessible. Kernel 

canonical correlation analysis is a method for finding 

maximal correlated input features for the outputs.

Traditional KCCA operates on time domain is not 
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very effective for the analysis of financial time series. 

Market investors are diverse groups. They operate 

on very different time scales. Wavelet multi-resolution 

analysis (Percival and Walden, 2000; Gençay et al., 

2002) enables the practitioner to focus on particular 

time scales where trading patterns are considered 

important. Consequently, wavelet-domain KCCA is 

better than pure KCCA in analyze financial time series, 

which could reveal richer characteristic features of 

each time scale.

First, we decompose time series )(ty  by a sequence 

of projections onto the wavelet basis. The wavelet 

representation of the signal or time series can be 

written as

)()(=)(
,,,,
tdtsty

kJkJ

k

kJkJ

k

ψφ ∑∑ +
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kk
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k
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where φ  is the father wavelet and ψ  the mother 

wavelet. kj ,φ  and kj ,ψ  are scaling and translation 

of φ  and ψ , defined as 
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In the representation J  is the number of multiresolution 

components, and kJs ,  are called the smooth coefficients, 

and kjd ,  are called the detailed coefficients. They 

are defined by

dtttys
kJkJ
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)(tS
J  and 

J

jj tD
1=

|)(  are called the smooth signal 

and the detail signals, respectively, which constitute 

a decomposition of a signal into components at 

different scales.

Second, an KCCA is applied on the decomposed 

signals of inputs and the output. Notationally, the 

basic canonical correlation analysis (CCA) algorithm 

consider that we are given a set of pairs 
l

iii
yx

1=
},{ , 

with 
M

i

N

i
RyRx ∈∈ , . Let us now introduce matrices 

T

l
xxX ],...,[=

1  and 
T

lyyY ],...,[=
1 , where the T  

superscript denotes matrix or vector transposition. 

Let us also denote by XUX =′  and YVY =′  two 

matrices, each one containing p
n  projections of the 

original input and output data, U  and V  being the 

projection matrices of sizes p
nN ×  and pnM × , 

respectively. The goal of CCA is to find the directions 

( VU , ) of maximum covariance between the projected 

input and output data:

}{max VCUTr
XY

T

(16)

IVCVIUCUtosubject
YY

T

XX

T
=,=: (17)

where I  is the identity matrix of size p
n , and XY

C  

represents the covariance between the input and output 

datasets; namely, YX
l

C
T

XY

~~1
= , where YX

~
,

~
 are the 

centered versions of X  and Y . Similarly, CXX
=

XX
l

T ~~1

, 
YY

l
C

T

YY

~~1
=

.

All previous methods assume that there exists a 

linear relation between the latent variables of X  and 

of Y . However, this might not necessarily hold, and 

thus non-linear versions have become necessary to 

solve this problem. Kernel methods are a promising 

approach to formulate non-linear versions from linear 

algorithms. Notationally, consider H→
N

Rx :)(φ  a 

function that maps the input data into some Reproducing 

Kernel Hilbert Space (RKHS), usually referred to 

as feature space, of very large or even infinite 

dimension. Let T

lxx )](),...,([=
1

φφΦ  and 
T

lyyY ],...,[=
1 , 

and denote by UΦΦ′ =  the projection containing 



Shian-Chang Huang

37

p
n  features of the original input data, U  being a 

projection matrix. With Φ
~  and Y

~  the centered 

versions of Φ  and Y , KCCA can be formulated as

}
~~

{max VYUTr TT
Φ (18)

.=,=
~~

: IVCVIUUtosubject YY

TTT
ΦΦ (19)

Making use of the Representer’s Theorem, which 

states that all projection vectors U  can be expressed 

as a linear combination of the training data; namely, 

AU
T

Φ
~

= , where ],...,[=
1 npA αα  and i

α  is an column 

vector containing the coefficients for the i th projection 

vector. The maximization problem of KCCA can 

be reformulated as follows: 

}
~

{max VYATr
X

T
K (20)
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YY

T

XX

T
KK (21)

where 
T

X
ΦΦ
~~

=K  is the centered kernel matrices, 

and 
T

Y
YY
~~

=K .

4. Generalized Kernel Regressions

Kernel Partial Least Squares is a nonlinear extension 

of the Partial Least Squares (PLS) method, commonly 

used in chemometrics. PLS is a method based on 

the projection of input and output variables to the 

latent variables (components), while keeping maximum 

covariances between input and output latent variables. 

Because the PLS technique is not widely known, 

first, a description of linear PLS is provided. This 

will simplify the next description of its nonlinear 

kernel-based variant.

Consider a general setting of the linear PLS algorithm 

to model the relation between two data sets. Given 

a set of input samples 
n

iix 1=
|  (where each 

m

i
x R∈ ) and 

the corresponding set of outputs 
n

iiy 1=
|  (where R∈

i
y ). 

PLS models the relations between these two data 

sets by means of score vectors. In matrix notation, 

PLS decomposes the input variable X  and the output 

variable Y  into the following form: 

FTPX T
+= (22)

GUQY T
+= (23)

where the UT ,  are matrices of the extracted score 

vectors (components, latent vectors). P  and Q  represent 

matrices of loadings, while F  and G  are the matrices 

of residuals. The aim of PLS method is to find T  

and U  by maximizing their covariance. Then T  and 

U  are the best subspaces to represent X  and Y .

For kernel PLS, with the use of a kernel, a nonlinear 

transformation maps the original input space into 

a feature space F , i.e. φ : FxRx i

m

i ∈→∈ )(ϕ . By 

constructing a linear PLS regression model in the 

kernel-induced feature space F , effectively a 

nonlinear kernel PLS regression in the original input 

space is obtained and the mutual orthogonality of 

the score vectors can be retained.

Let Φ  be the mn ′×  matrix of input samples in 

the feature space F , and its i th row be the vector 
T

i
x )(ϕ . Let m′  be the dimensionality of )(

i
xϕ , which 

can be infinite. Let t  is the score vector (component) 

which is obtained in the following way: the process 

starts with random initialization of the Y -score u  

and then iterates the following steps:

1. randomly initialize u ; 

2. ||||/,= tttut
T

←φφ ; 

3. tYc
T

= ; 

4. ||||/,= uuuYcu ← ; 

5. Repeat steps 1-4 until convergence; 

6. Deflate 
Tφφ , Y  matrices:

).(,))())((( YttYYtttt
TTTTT

−←−−← φφφφφφ

The kernel PLS regression is an iterative process; 

i.e. after extraction of one component the algorithm 

starts again using the deflated matrices 
Tφφ  and Y  

computed in step 6 to extract next component. Thus 

we can achieve the sequence of the models up to 

the point when the rank of 
Tφφ  is reached.
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K=7000 K=7200 K=7400

SVR 22.0741 28.6068 22.7995

KPLSR 13.6116 28.6165 67.1632

FFNN -26.2771 -38.0781 -2.0962

K=7600 K=7800 K=8000

SVR 29.6664 36.5542 85.7189

KPLSR 60.3635 -6.8489 32.6066

FFNN -8.0082 -2.6998 12.6068

Table 1. Cumulated trading profits (%) of call options 
under different models

Assume that the process is iterated for Fac  times. 

Denote the sequence of t ’s and u ’s obtained 

Fac
ttt ,...,,

21  and Fac
uuu ,...,,

21 , respectively. Moreover, 

let ],...,,[=
21 Fac

tttT  and ],...,,[=
21 Fac

uuuU . The “kernel 

trick” can then be utilized instead of explicitly mapping 

the input data, and results in: 
T

K φφ= , where K  stands 

for the nn×  kernel matrix: ),(=),( ji xxkjiK , where 

k  is the kernel function. K  can now be directly used 

in the deflation instead of φ , as

).()( T

n

T

n
ttIKttIK −−← (24)

Given a set of test samples 
n

ii
z

1=
|  (where m

i
z R∈ ), 

the predictions made on testing points is

,)(=ˆ 1
YTKUTUKY

TT

tt

−

(25)

where t
K  is the nn

t
×  kernel matrix defined on the 

test set such that ),(=),( jit xzkjiK .

5. Empirical Data Analysis

The empirical data used in this research are the 

option prices on the Taiwan composite stock index 

(TWSI) traded on the Taiwan Futures Exchange 

(TWIFEX). The transaction data for call and put options 

from January 2, 2007 to June 20, 2007 with expiration 

on June 20, 2007 are used for the study. The data 

comprise a total of 109 observations. It’s well known 

that TWSI is highly correlated with major Asian stock 

indices, such as NK225(Japan), KOSPI(South Korea), 

HSI(Hong Kong), and TSI(Singapore). Moreover, 

TWSI is also heavily influenced by NASDAQ(U.S.) 

and S&P500(U.S.). Consequently, we include all these 

indices together with the daily high, low, open, close 

prices, trading volumes, and uncovered contract 

positions for daily trading decisions.

This study selectes all types of options to test 

forecasting performance, namely, in-the-money, 

at-the-money and out-of-the-money options. For call 

options, data near 7500=K  approximates the at-the-money 

options in the sample period; data below 7500=K  

represents the in-the-money options, while data above 

7500=K  represents the out-of-money options. The 

call options with strike price 7000,=K  7200,=K

8000=7800,=7600,=7400,= KKKK  are analyzed in 

this study. Put options with similar strike prices are 

also analyzed for comparison.

5.1 The Trading Signalsand Cumulated 
Profits

First, this study compares three basic models: SVR, 

KPLSR, and FFNN. Secondly, this study compares 

KCCA and PCA (principal component analysis, 

Jolliffe, 2002) for feature extractions. In KCCA and 

PCA, the eigenvectors corresponding to the first five 

largest eigenvalues are used.We list the results of 

cumulative profits (in %) and trading signalsfor every 

model. If the prediction on next day exceeds a profit 

of 5% , the automated trading system will take a 

long position on this option. Similarly, when the 

prediction exceeds a loss of 5% , the automated trading 

system will make a short position on the option. 

The structure of the feed-forward backpropagation 

network (FFBPN) is two layers with five neurons. 

The parameters used in the SVR and KPLSR models 

are optimized by grid search. For SVM, they are 
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K=7000 K=7200 K=7400

The new model 101.2550 149.7855 275.4207

PCA+SVR  15.6657  1.5593  7.5426 

PCA+KPLSR  18.1733  28.0473  64.5697 

SVR  22.0741  28.6068  22.7995 

KPLSR  13.6116  28.6165  67.1632 

K=7600 K=7800 K=8000

The new model 322.5194 478.1150 657.9662

PCA+SVR  55.9362  31.9186  89.1505 

PCA+KPLSR  40.7616  -6.8489  32.6066 

SVR  29.6664  36.5542  85.7189 

KPLSR  60.3635  -6.8489  32.6066 

Table 3. Cumulated trading profits (%) of call options 
under the new model

 K=7000  K=7200  K=7400 

The new model 593.6436 334.7599 371.9502

PCA+SVR  -273.6423  -252.9529  -225.5476 

PCA+KPLSR  -147.3769  40.1962  -40.4817

SVR  117.2673  -41.3225  -229.0310 

KPLSR  -130.7604  40.1962  -191.7443 

 K=7600  K=7800  K=8000 

The new model 209.8987 397.4558 587.3596

PCA+SVR  -51.5558  -44.7000  -169.4751 

PCA+KPLSR  27.0277  58.1332  125.3836

SVR  70.2156  -79.7672  172.7433 

KPLSR  -74.8175  240.7303  99.9757 

Table 4. Cumulated trading profits (%) of put options 
under the new model

K=7000 K=7200 K=7400

SVR 117.2673 -41.3225 -229.0310

KPLSR -130.7604 40.1962 -191.7443

FFBPN -153.3545 -117.6523 -304.2971

K=7600 K=7800 K=8000

SVR 70.2156 -79.7672 172.7433

KPLSR -74.8175 240.7303 99.9757

FFBPN -182.6939 -125.0797 119.2406

Table 2. Cumulated trading profits (%) of put options 
under different models

set as follows: 4
10=C , 0.01=ε , and 0.1=σ  for the 

Gaussian Kernel. The KPLSR also uses Gaussian 

Kernel with the same parameter. The training of SVR 

(or KPLSR) is in a dynamic manner, namely, the 

data window of the training set slides with the current 

prediction.

Table 1 lists the performances of FFBPN, SVR, 

and KPLSR models for call options with different 

strike prices, while Table 2 provides similar results 

on put options.

For trading profits, Tables 1 and 2 indicate KPLSR 

and SVR have similar performance, and they are 

significantly better than FFBPN. For pure models 

no matter SVR or KPLSR their performances are 

not stable. For trading signals, the trading frequency 

of SVR is higher than KPLSR. This will induce very 

high transaction costs which heavily erode the profits. 

Moreover, the training of KPLSR is faster than SVR, 

and KPLSR produces sparser model than SVR. The 

overall performance of KPLSR is more stable and 

robust than SVR.

Tables 3, 4 compare various models with or without 

feature extraction. Figure 1 is the bar chart of Table 

3, and Figure 2 is that of Table 4. Tables 3 and 

4 indicate that the new model (wavelet-domain KCCA) 

is better than time-domain PCA. The subspace or 

features extracted by PCA is not sufficiently to 

represent the latent structure of the input data set. 

Consequently, the performance of PCA+SVR is poor 

and unstable. Sometimes PCA+SVR is even poor than 

the pure SVR model. Contrarily, due to the superior 

capability of wavelet-domain KCCA to infer the 

independent hidden driving forces of market data, 

the performance of the new model is substantially 

improved, and thus the cumulated trading profits are 

significantly increased. Figures 2-14 plot the trading 

signals and cumulative profits of the new model under 

different strike prices for comparison. It can be seen 

that the new system is stable and robust no matter 

in call or put options tradings.
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Figure 1. Cumulated trading profits (%) of call options 
under the new model

Figure 2. Cumulated trading profits (%) of put options 
under the new model

Figure 3. Cumulated profit and trading signal of the 
new model under call option of K=7000.

Figure 4. Cumulated profit and trading signal of the 
new model under call option of K=7200.

Figure 5. Cumulated profit and trading signal of the 
new model under call option of K=7400.

Figure 6. Cumulated profit and trading signal of the 
new model under call option of K=7600.
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Figure 7. Cumulated profit and trading signal of the 
new model under call option of K=7800.

Figure 8. Cumulated profit and trading signal of the 
new model under call option of K=8000.

Figure 9. Cumulated profit and trading signal of the 
new model under put option of K=7000.

Figure 10. Cumulated profit and trading signal of the 
new model under put option of K=7200.

Figure 11. Cumulated profit and trading signal of the 
new model under put option of K=7400.

Figure 12. Cumulated profit and trading signal of the 
new model under put option of K=7600.
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Figure 13. Cumulated profit and trading signal of the 
new model under put option of K=7800.

Figure 14. Cumulated profit and trading signal of the 
new model under put option of K=8000.

In sum, by score components KPLSR is superior 

to SVR in modeling the input and output relationship 

in our high dimensional data set. Integrating wavelet- 

domain KCCA with KPLSR is even better in the 

financial input/output modeling, because wavelet- 

domain KCCA could transform original input space 

to a better subspace which uncovers the most important 

hidden driving forces of the market, and thus help 

KPLSR to generate more accurate buy/sell signals.

Moreover, the non-stationarity of financial time 

series is successfully solved by our sliding training 

algorithm which driven by data adaptively adjusts 

the SVR and KPLSR models. The traditional pure 

SVR or KPLSR models operate on original data space 

can not capture characteristic financial features for 

trading, and thus their performances are poor.

6. Conclusions

What drives the movements of a financial time 

series? This surely is a question of interest to many 

people, ranging from researchers who wish to understand 

financial markets, to traders who will benefit from 

such knowledge. Can modern big data analysis or 

data mining techniques help discover some of the 

underlying forces? In this paper, we focus on a new 

technique–wavelet-domain kernel canonical correlation 

analysis to uncover the hidden driving forces. 

Wavelet-domain KCCA enables the investors to focus 

on particular time scales where trading patterns are 

considered important and highly correlated with 

future movements of the market.

By integrating wavelet-domain KCCA with dynamic 

kernel based regressions, this paper develops a novel 

automated trading decision system. Conducting a 

series of experiments using option data on the Taiwan 

Weighted Stock Index (TAIEX), the new system 

outperformed other feature extraction methods and 

pure regressors. The cumulated trading profits are 

significantly increased. The resultant intelligent 

investment trading support system can help investors, 

fund managers and investment decision-makers make 

good profits.

The highly effective decision support system can 

also be applied to other problems involving financial 

trading. Results of this study can also be used to 

perform a good hedge on global investments.
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