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Abstract

We address the problem of finding the optimal lockdown and reopening policy during

a pandemic like COVID-19 for a social planner who prioritizes health over the economy.

Agents are connected through a fuzzy network of contacts, and the planner’s objective is

to determine the policy that contains the spread of infection below a tolerable incidence

level, and that maximizes the present discounted value of real income, in that order of pri-

ority. We show theoretically that the planner’s problem has a unique solution. The optimal

policy depends both on the configuration of the contact network and the tolerated infec-

tion incidence. Using simulations, we apply these theoretical findings to: (i) quantify the

trade-off between the economic cost of the pandemic and the infection incidence allowed

by the social planner, and show how this trade-off depends on network configuration; (ii)

understand the correlation between different measures of network centrality and individual

lockdown probability, and derive implications for the optimal design of surveys on social

distancing behavior and network structure; and (iii) analyze how segregation induces differ-

ential health and economic dynamics in minority and majority populations, also illustrating

the crucial role of patient zero in these dynamics.

Keywords: COVID-19, health-vs-wealth prioritization, economic cost, fuzzy networks, net-

work centrality, segregation, patient zero, optimally targeted lockdown policy.
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1 Introduction

The rapid spread of the novel coronavirus disease (COVID-19) has already affected over 29 mil-

lion individuals and claimed 925,820 lives globally (JHU CSSE, September 14, 2020, 4:05 PM).

Governments around the world are implementing a variety of strategies to contain this pandemic:

prescriptions of social distancing and hygiene measures, extensive production of personal protec-

tion equipment (PPE), expansion of testing and hospital capacities, use of face masks and contact

tracing, and racing towards developing vaccines. In particular, the enforcement of social distanc-

ing policies has led to the cumulative lockdown of over half of the world population (Buchholz,

2020). While this approach for mitigating the contagion has shown some positive results, the

associated economic costs are considerable. The Growth Domestic Product in both advanced and

developing countries has decreased significantly as a result of the COVID-19 pandemic (see Figure

1 below), but the economy is projected to recover if this health situation is dealt with properly.

In the United States, the Bureau of Labor Statistics reported on May 8, 2020 that total non-farm

Figure 1: Growth Domestic Product, Percent Difference

payroll employment fell by 20.5 million in April 2020, and the unemployment rate rose to 14.7

percent. In the United Kingdom, the National Institute for Economic and Social Research predicts
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that a prolonged lockdown could contract the economy by 15% to 25% in the second quarter of

2020 (Whyte, 2020). Additionally, only a small fraction of the jobs currently available in major

economies are being done remotely. Dingel & Neiman (2020) estimate that in the United States,

only 35% of jobs can be performed from home. Such a situation may not be economically viable

in the long run. The important economic and social costs implied by quasi-complete lockdown is

forcing governments and policymakers to think about less costly alternatives that might consist

of imposing quarantine measures only on certain individuals while letting others go back to work.

This new development raises the question of how to design optimally targeted lockdown policies,

and how these policies are likely to affect different population subgroups.

In this paper, we address these important questions in a society that prioritizes health over

the economy, and where agents are connected through a fuzzy network of physical contacts. We

develop a theoretical model, which we apply to analyze: (1) the effect of network structure on the

dynamics of optimal lockdown, infection, recovery, death, and economic costs; (2) the trade-off

between public health and the economic cost of the pandemic; (3) how network centrality affects

the probability of being sent to lockdown; and (4) how segregation induces differential health and

economic dynamics for minority and majority populations.

We view this question as a planning problem, and our assumption that health is prioritized

over the economy is consistent with several recent observations. Indeed, a survey conducted in

Canada, China, France, Germany, India, Japan, Mexico, Saudi Arabia, South Korea, the UK and

the US shows that on average, 67% of the people interviewed highly prioritize saving as many

lives as possible even if it induces a cost burden to the economy (John, 2020). In another study

carried out in the US and UK, Heap et al. (2020) find that people highly value health over wealth.

Recently, when asked about relaxing travel restrictions for international travelers, Canadian Prime

Minister Justin Trudeau cited public health over the economy as a top priority: “As we look at

those next steps we need to make sure we are keeping Canadians safe, first and foremost.”(Aiello,

2020, n.d). The latter confirms a statement of Stiglitz (2020, n.d): “There can be no economic

recovery until the virus is contained, so addressing the health emergency is the top priority for

policymakers.” As we argue later, this approach is more general and flexible, as it helps us avoid

the difficult problem of giving a precise monetary value to health and life.1

1See Pindyck (2020) for the expression of a similar concern.
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We describe our model and state the social planner’s objective problem below:

A: Agents (including individuals and social infrastructures) are connected through a fuzzy

network of physical contacts through which the virus is likely to spread. The fuzzy nature

of the contact network implies that the intensity of interactions between agents is not

necessarily binary, and it is likely to vary across relationships.2

B: At any point in time, an agent is one of the following five states: susceptible, infected,

recovered, dead, or isolated (that is, in lockdown). At time zero, all agents are susceptible.

Susceptible agents can become infected or can be sent to lockdown, while infected agents

can recover or die. The dynamics of infection, recovery, death, and lockdown follow a

model that generalizes the classical SIR model (Kermack & McKendrick, 1927, 1932) in

two ways. First, whereas the classical model assumes a random matching technology, our

model assumes any arbitrary network structure, and agents can only be infected through

connections in the prevailing contact network if they have not been sent to lockdown.

Second, whereas the classical model assumes three states (susceptible, infected, recovered),

our model incorporates two additional states (death and lockdown), with the lockdown

variable being a key choice variable for the social planner.

C: The social planner’s objective is to determine the lockdown policy that contains the spread

of the infection below a tolerable incidence level, and that maximizes the present discounted

value of real income (or alternatively, that minimizes the economic cost of the pandemic),

in that order of priority. In other words, the social planner allocates the “work-from-home”

rights to achieve these goals. An appeal of this lexicographic approach to the social planner’s

problem is that it does not force us to assign a precise monetary value to health or to life.

Rather, it allows a great deal of flexibility in how to design policies, with clear health and

economic goals in mind. For instance, the social planner could set an incidence level that

2Our model allows the interpretation of a contact network to be broad. At the micro-level, agents are individuals

and the infrastructures (for example, public buildings, transportation infrastructures, shopping centers, parks,

etcetera) they interact with daily. At the macro-level, agents can be viewed as spatial entities such as countries

or cities. Moreover, network configuration is arbitrary, making sense given that social structure varies a great deal

across societies. For example, some societies are individualistic, while others are organized around extended family

and ethnic groups (Deji, 2011; Pongou, 2010).
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allows to keep the number of infected individuals below hospitals capacities, or she could

set an incidence level that is high enough if she prioritizes wealth over health.

In order to solve the social planner’s problem, we first characterize the dynamic of infection,

recovery and death rates in our N-SIRD model with lockdown, and show that this dynamic yields

a unique solution under classical conditions (Proposition 1). This unique solution shows that the

rates of infection, recovery and death at any given time is a function of the lockdown variable

and the initial network of contacts that captures social structure.

The social planner’s objective is lexicographic, where the first objective is to identify the set of

lockdown policies that contain the infection incidence (as dictated by the solution of the N-SIRD

above) below a tolerable threshold, and the second objective is to choose among those contagion-

minimizing policies the policy which maximizes the discounted stream of economic surpluses. We

show that this problem has a unique solution as well, and this solution depends on both the

infection incidence level allowed by the planner and the prevailing network of physical contacts

that characterizes society (Proposition 2). This unique solution also shows that the tolerated

infection incidence level and the prevailing network of physical contacts determine the dynamic

of infection, recovery, death, and economic costs.

The same approach can be followed to design optimal exit policies from a situation of complete

or quasi-complete lockdown. In this case, the social planner solves the inverse problem of the

problem stated above, which consists of selecting which individuals should be released from

lockdown first. It can be shown that the solution to this problem is unique, and that this solution

has the same properties as the solution to the lockdown problem.

We develop several applications of our theoretical findings using simulations that rely on

realistic data on transmission rates. First, we conduct a comparative statics analysis to study how

the tolerated infection incidence level and the prevailing network of physical contacts determine

the dynamic of infection, recovery, death, lockdown, and economic losses. We find that these

two factors have a huge impact on these outcomes. For instance, we simulate two societies

that are identical in every respect except in their social network structure. Agents in the first

society are connected through a star network, whereas agents in the second society are connected

through a small world network (Watts & Strogatz, 1998). We find that the optimal lockdown

policy differs significantly across the two societies, with around 15 percent and 25 percent being
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sent into lockdown (Figure 2), respectively. Similarly, the dynamics of infection differs, with the

infection rate peaking both earlier and being lower in the second society. Moreover, the economic

cost of the epidemic is overall higher in the small network world compared to the star network

society. Our analysis also allows us to appreciate how the infection incidence that is tolerated,

by the social planner, affects the lockdown dynamic as well as the economic cost of the epidemic

(Figure 4). We find that a higher tolerated incidence level results in lower lockdown rates and

economic surplus loss. While this result illustrates the health-economics trade-off faced by the

social planner, it does not prescribe any resolution of this trade-off, as this is ultimately based on

the value that society puts on population health versus the economy.

Another application illustrates how network centrality affects the probability of being sent to

lockdown. Simulations based on various network structures show that individuals that are more

central in a network are more likely to be sent into lockdown. It does not imply that all agents have

to be confined under the optimal policy, as the goal is simply to disconnect the prevailing contact

network. The analysis therefore suggests that the recent quasi-universal lockdown implemented in

certain countries around the world was not necessarily optimal. While this approach was likely to

disconnect the prevailing contact networks, it was more than necessary and resulted in untenable

economic costs. Our analysis implies that only certain particular sectors of the society should

be shut down, especially those sectors that attract large numbers of people, such as shopping

centers, airports and other modes of public transportation, cities that play the role of economic

or social hubs, schools, certain government buildings and other public services, entertainment

fields, parks, beaches, among others. While this prediction was to be expected, what emerges

from the analysis as less trivial is that some centrality measures are more predictive than others.

In particular, we find that degree centrality correlates more highly to the probability of being sent

into lockdown than betweenness or eigenvector or closeness centrality (see Table 1). This result

has important empirical implications, especially in a context in which data on network structure

are hard to collect. It indicates that information on the number of direct connections that an

individual has in a network is more relevant for the design of lockdown policies than information

on both direct and indirect connections (or information on the whole geometry of the network).

As information on direct collections is also much easier and less costly to collect than information

on network configuration, our analysis is likely to inform the optimal design of surveys that collect
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data on social distancing behavior and network structure during a pandemic like COVID-19.

Our final application studies the effect of segregation on the dynamics of infection, recovery,

death, lockdown and economic losses among minority and majority populations. A striking fea-

ture of the COVID-19 pandemic is its highly unequal distribution among population subgroups

within countries. In the USA, for example, the black population, non-white Hispanics, and other

communities of color have suffered a much greater burden of the pandemic (U.S. Centers For

Disease Control and Prevention (2020) and McNeil (2020)), suggesting that both structural and

individual factors might be driving its dynamics. To investigate this latter hypothesis, we simu-

late our data and use difference-in-differences analysis to determine if the dynamics of COVID-19

outcomes differ for minorities and majorities in the presence and in the absence of segregation.

We find that these dynamics vary less across ethnic groups when the society is ethnically inte-

grated. However, segregation induces significant minority-majority inequalities in outcomes, with

the direction of these effects depending on the identity of patient zero (or the index patient,

the first individual to be infected), and the nature of the outcome. If patient zero is a minor-

ity individual, segregation increases lockdown rates and the economic costs of the pandemic for

minorities relative to majorities but reduces their infection and death rates. If patient zero is a

majority individual however, segregation has opposite effects, decreasing the lockdown rate and

hence economic costs for the minority group, but increasing the rates of infection and death in

this group. These results follow from the fact that individuals who are closer to patient zero

are more likely to be confined earlier to minimize the spread of the disease under the optimal

policy. This in turn results in relatively higher lockdown rates and economic costs in the group of

patient zero, but in lower infection and death rates in this group. The analysis therefore indicates

that segregation results in minorities bearing a greater burden of the disease and death during a

pandemic like Covid-19 in the majority of scenarios regarding the starting point of the infection.

More generally, our findings suggest that it is a combination of structural and individual factors

that determine cross-group differences in outcomes.

Our paper is related to several recent studies. In the economics literature on COVID-19, the

canonical SIR model has been generalized in several directions to address a variety of problems.

Recent generalizations include among others, Acemoglu et al. (2020) who propose a multi-risk SIR

model, Bethune & Korinek (2020) who study externalities of health interventions for infectious
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diseases in SIS and SIR models, Alvarez et al. (2020), Eichenbaum et al. (2020), and Prem

et al. (2020) who analyze optimal non-pharmaceutical controls in SIR models, Kuchler et al.

(2020) and Harris (2020) who document the importance of social networks (e.g., Facebook) in

the selection of targeted lockdown policies. While our model contains some of the ingredients

of these other approaches, it differs in incorporating into the classical model two key elements,

namely a lockdown variable and a network of contacts that is not necessarily random, and where

agents are heterogeneous with respect to their positions. Most importantly, we introduce a

lexicographic approach to the planning problem, whereby the social planner’s objective is to

determine the lockdown policy that contains the spread of the infection below an acceptable

incidence level, and that minimizes the economic cost of the pandemic, in that order of priority.

An appeal of this approach is to help avoid the difficult problem of assigning a precise monetary

value to health and life, which allows a great deal of flexibility and clarity in how to design optimal

policies, with precise health and economic goals in mind.

Our model also complements and extends Peng et al. (2020) by allowing a diffusion dynamic

similar to Lloyd et al. (2006). Additionally, in our model, the lockdown variable affects both

the infection transmission and economic production, which enables a transparent analysis of the

trade-off between public health and economic prosperity, without having to assign a monetary

value to health and life. Moreover, since our network structure is not necessarily random, we

are able to develop new applications. In particular, we show how different measures of network

centrality affect the probability of being sent into lockdown, deriving new implications for the

optimal design of surveys on social distancing and network structure. Also, our analysis shows

how segregation induces differential health and economic dynamics among minority and majority

populations, and highlights the key role of patient zero in these dynamics.

The remainder of this paper is organized as follows. Section 2 presents the N-SIRD model

with lockdown and a fuzzy network. Section 3 describes and solves the social planner’s problem.

In Section 4, we conduct simulation analyses to illustrate our theoretical findings. In Section 5, we

discuss some policy implications of our results and offer concluding remarks. Technical theoretical

derivations for the planning problem are provided in Appendix A. Additional simulation results

are presented in Appendix B.
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2 N-SIRD Model with Lockdown

In this section, we introduce a network SIRD model with lockdown. This model extends the

classical SIR model (Kermack & McKendrick, 1927, 1932) by incorporating a death state, a

lockdown variable, and a non-random network of physical contacts through which infection is

likely to spread. We shall first describe the classical SIR model followed by the exposition of our

model.

2.1 The Classical SIR Model

The SIR model separates a population that has a constant size, N , into three disjoint health

classes which change in continuous time t:

S + I +R = N, where,

S = Susceptible

I = Infected

R = Recovered.

We follow the convention in the epidemiological literature of dropping the time subscript of

different states. We assume that an individual i is in each of the three different states with the

following probabilities:

si = Prob.(i ∈ S)

xi = Prob.(i ∈ I)

ri = Prob.(i ∈ R).

We denote by ṡ, ẋ, and ṙ the derivative of these probabilities with respect to time. The SIR

framework assumes random (uniform) mixing of infectious individuals with the rest of the popula-

tion. Susceptible individuals contact other individuals in the population at a constant rate β > 0.

At any period, the probability that an individual i is infected, xi, increases at the rate βsi due to

new infections, while a fraction γ of the infected individuals recover. Therefore, the evolution of

variables si, xi, and ri follows the following system of first-order ordinary differential equations
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(ODE):

ṡi = −βsixi (1)

ẋi = βsixi − γxi (2)

ṙi = γxi. (3)

The parameter β represents the expected amount of people an infected person infects per period.

For instance, if we assume that the probability that an infected individual infects a susceptible

person is p, and the average number of persons that a person is in contact with per period is c,

then this individual will infect pc persons per period, i.e., β = pc. Given that 1/γ represents the

number of days that an infected person has and can spread the virus, β/γ is the total number

of persons an infected person infects. This number is the basic reproduction number R0 in

epidemiology.

2.2 The N-SIRD Model

The N-SIRD model extends the classical SIR model to incorporate the death state (D) and a

network of physical contacts through which an infection is likely to spread.3 In addition to the

susceptible, infected, and recovered states in the SIR model, the classical SIRD framework also

includes the death state, D, for individuals who died from the disease, so that:

S + I +R +D = N.

We denote the probability that an individual i dies from the infection as

di = Prob.(i ∈ D), with si + xi + ri + di = 1.

Let κ > 0 be the death probability, and ḋ the infinitesimal change in death probabilities over time.

The evolution of variables si, xi, ri, and di in the classical SIRD model follows the following system

3Hethcote (2000) and a recent textbook by Brauer et al. (2012) present an overview of the class of SIRD models

and some of their theoretical features in epidemiology. Anastassopoulou et al. (2020) and Fernández-Villaverde

& Jones (2020) apply these models to analyze the possible outcomes of the current COVID-19 pandemic.
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of equations:

ṡi = −βsixi (4)

ẋi = βsixi − γxi − κxi (5)

ṙi = γxi (6)

ḋi = κxi. (7)

Like the SIR model, the SIRD model assumes random (uniform) mixing of infectious individuals

with the rest of the population, with susceptible individuals contacting other individuals in the

population at a constant rate β > 0. We modify this assumption by assuming physical contacts

take place through a non-directed and non-random fuzzy network, A. This network is represented

by the adjacency matrix (Ai,j), where Aij ∈ [0, 1] represents the intensity at which individuals i

and j are connected in the network A. The intensity of the relationship between two individuals

could be interpreted as the degree or frequency of interactions between these individuals. Our

model therefore generalizes the binary model in which:

Aij =

1 if i and j are connected in A

0 if (i and j are not connected in A) or (i = j)

Our model accounts for weak and strong ties. An individual i can only interact with his direct

neighbors in A. In the presence of a contact network A, equations (4)–(7) therefore change to

the following system of first-order ODE:

ṡi = −βsi
∑
j∈N

(Aijxj) (8)

ẋi = βsi
∑
j∈N

(Aijxj)− γxi − κxi (9)

ṙi = γxi (10)

ḋi = κxi. (11)

Equations (8)–(11) show the spread over time of an epidemic in a fixed population of indi-

viduals through a social structure A. Remark that the N-SIRD model generalizes both the SIR

and SIRD models. In fact, if for each i, j ∈ N , Aij = 1, and κ = 0, the N-SIRD corresponds

to the random and uniform mixing transmission infection in the canonical SIR model. If for each

i, j ∈ N , Aij = 1, and κ > 0, the N-SIRD models equals the SIRD model.
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2.3 The N-SIRD Model with Lockdown

We now incorporate a lockdown variable into the N-SIRD model. This captures the fact that a

social planner might decide to reduce the spread of the infection by enforcing a lockdown policy.

We denote by L the lockdown state, so that:

S + I + L+R +D = N.

Denoting by li = Prob.(i ∈ L) the probability that a random individual i is sent into lockdown,

we have:

si + xi + li + ri + di = 1.

An individual i for which li = 1 is said to be sent into complete lockdown. Let us denote by

l̇ the infinitesimal change in lockdown probabilities over time. The infection propagation in the

N-SIRD model with the lockdown variable l is governed by the following nonlinear differential

equation:

ṡi = −β[1− li − xi − ri − di](1− li)
∑
j 6=i

[Aij(1− lj)xj] (12)

ẋi = β[1− li − xi − ri − di](1− li)
∑
j 6=i

[Aij(1− lj)xj]− (γ + κ)xi (13)

ṙi = γxi (14)

ḋi = κxi. (15)

with the initial value:

si(0) > 0, xi(0) > 0, ri(0) > 0, di(0) > 0, and si(0) + xi(0) + ri(0) + di(0) = 1− li(0) (16)

Following the first two equations (12) and (13) of the system, a susceptible individual i

becomes infected only if: (a) she is not sent into complete lockdown (li 6= 1); and (b) she is not

connected to an infected individual j who is not sent into complete lockdown (Aij > 0, xj > 0,

and lj 6= 1).

The proposition below states that the non-linear system of ODE (12)–(16) has a unique

solution.

Proposition 1. The system of equations (12)-(16) has a unique solution S∗ = S∗(l, A, β, γ, κ).
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Proof. Equations (12)-(16) describe a general first-order general ordinary differential equations

(ODE). Let i ∈ N and Xi = (si, xi, ri, di)
T , where T means “transpose”. There exists a con-

tinuously differentiable function Fi, such that Ẋi = Fi(t,Xi). Consequently, the ODE admits

a unique solution, S∗(l, A, β, γ, κ,X0), thanks to the theorem of existence and uniqueness of a

solution for first-order general ODE, where X0 = (si(0), xi(0), ri(0), di(0)) is the initial value

point, and l = (li)i∈N ∈ [0, 1]n a lockdown policy.

3 The Planning Problem: Optimal Lockdown

The unique solution of the non-linear system of ODE (12)-(16) in section 2.3 depends on both

the social network A and the lockdown variable l. The planning problem consists of choosing

l optimally. A first approach to containing the spread of COVID-19 in many countries was to

enforce a quasi-complete lockdown policy. While this approach has slowed the spread of the virus,

its economic costs have been significant. Governments around the world have been implementing

less costly alternatives consisting of sending only certain individuals into lockdown while letting

others go back to work. This raises the question of whether an optimal lockdown policy exists,

and, if it does, whether it is unique.

In this section, we answer this question for a social planner that prioritizes health over the

economy, and we show that, under minimal conditions, there exists a unique optimally targeted

lockdown policy. More formally, we assume that the social planner’s problem consists of choosing

the lockdown policy l that:

1. contains the infection incidence level (or the relative number of new infections) below a

tolerable threshold λ; and

2. minimizes the economic costs of the infection to the entire society, in this order of priority.

This lexicographic objective problem is formalized below.

Containing the spread of infection. Using (13), the first objective of the planner is to

select a lockdown policy l such that:

ẋi ≡ ẋi(l) ≤ λ, where λ is a non-negative parameter. (17)
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Note that the system (12–17) admits at least one solution. In fact, consider the policy l where

each individual is sent into complete lockdown, i.e, li(t) = 1 for all i ∈ N and t. Then,

xi = ri = di = 0 and ẋi = 0. Therefore, given any λ ≥ 0, it follows that ẋi(l) ≤ λ. In practice,

the upper bound of the parameter λ could be equal to the reproduction rate R0 = β/(γ + κ) for

a planner who seeks to eventually eliminate the disease.

Minimizing the economic costs of lockdown. The planner’s second-order objective is to

minimize the economic costs of lockdown by choosing from the set of policies that satisfy the

first objective the policy that maximizes the present discounted value of real income. At any

given period t, each individual i possesses a capital level ki, and a labor supply hi. We assume,

as in most SIR models, that individuals who recover from the infection are immune to the virus

and must be released to the workforce. It follows that individuals in states S, I, and R are the

only potential workers in the economy. The individual labor supply depends on individuals’ health

states and probability of being in the lockdown:

hi = h(li, xi, di), with h assumed to be continuous and differentiable in xi, li, and di. (18)

We assume that individual economic productivity decreases with illness, death, and being in

lockdown:
∂hi
∂li
≤ 0,

∂hi
∂xi
≤ 0, and

∂hi
∂di
≤ 0 (19)

Naturally, an individual who is working despite being infected and sick produces less compared

to when this individual is healthy. Without loss of generality, we assume that capital is constant

over time (ki(t) = ki, for each t), and labor is the only variable input in the production. A

combination of capital and labor supply generates output y according to the following production

function:

yi = Yi(ki, hi) = Yi(ki, li, xi, di). (20)

We assume that Yi is continuous and differentiable in each of its input variables. Moreover we

make the following natural assumptions:

∂Yi
∂ki

> 0,
∂Yi
∂li
≤ 0,

∂Yi
∂xi
≤ 0,

∂Yi
∂di
≤ 0, and

∂Y 2
i

∂2v
≤ 0, for v ∈ {ki, li, xi, di}. (21)
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Other important variables of the problem include:

wi = the individual cost of one unit of labor

p = the price per unit of output

δ = the social planner’s discount rate

The planner chooses l ∈ [0, 1]n to maximize the aggregate surplus:

W (k, l, x, d) : =
∑
i∈N

Wi(ki, li, xi, di)

=
∑
i∈N


∞∫
0

e−δt (pYi(ki, li, xi, di)− wih(li, xi, di)) dt


(22)

The social planner’s problem. Finally, using optimal control theory, we can formalize the social

planner’s problem as described below:

Maximize
(li)

∞∫
0

e−δt
∑
i∈N

{pYi(ki, li, xi, di)− wih(li, xi, di)} dt

subject to ẋi = β[1− li − xi − ri − di](1− li)
∑
j 6=i

[Aij(1− lj)xj]− (γ + κ)xi

ẋi ≤ λ, λ ≥ 0

ṙi = γxi

ḋi = κxi

ṡi = −β[1− li − xi − ri − di](1− li)
∑
j 6=i

[Aij(1− lj)xj]

X0 given, with si(0) + xi(0) + ri(0) + di(0) = 1− li(0)

(23)

We have the following result.

Proposition 2. The social planner’s problem (23) has a unique solution.

Proof. We denote fi = β[1 − li − xi − ri − di](1 − li)
∑
j 6=i

[Aij(1 − lj)xj] − (γ + κ)xi, and

W p
i = pYi(ki, li, xi, di)− wih(li, xi, di). The function li : t −→ li(t) ∈ [0, 1] is continuous. The

function W p
i , and the objective function in (23) are continuous and differentiable. Moreover, fi

and the right-hand sides of the laws of motion in (23) are all continuous and differentiable. It

follows that the problem (23) admits a unique optimal path {l∗(t)} of the control variable (and

the states {x∗(t), r∗(t), d∗(t), s∗(t)}, given the initial conditions X0 and the law of motion).
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Proposition 2 states the existence and uniqueness of a solution to the social planner’s problem.

However, determining a closed-form solution is intractable. To gain some insight into the optimal

dynamic of the lockdown policy and the resulting dynamics of infection, recovery and death rates

and cumulative economic loss, and how these dynamics depend both on the topology of the

contact network and the infection incidence level that the society is willing to tolerate, we resort

to simulations in the next section.4

4 A Simulation Analysis

The parameters of the model are chosen to match the dynamic of the infection and recent

papers on COVID-19. Following Alvarez et al. (2020), we use data from the World Health

Organization (WHO) made public through the Johns Hopkins University Center for Systems

Science and Engineering (JHU CCSE). The parameter β, the probability that an infected individual

infects another individual to whom he or she is connected is assumed to be 0.2. The lifetime

duration of the virus is assumed to be 18 days (see Acemoglu et al. (2020) and the references

therein). The proportion of recovered closed cases is around 70% for the USA, 93% for Germany,

and 86% for Spain (JHU CCSE access on the 5 May 2020). We thus assume that the parameter

governing the recovery of infected patient is given by γ = 0.8/18, and the parameter governing

the death dynamic is given by κ = 0.2/18. For simplification, we consider in the simulation the

following functional form for the labour function (h) and the production function (Y ):

hi(li, xi, di) = (1− (1− φ)xi)(1− li)(1− di), φ ∈ [0, 1] (24)

Yi(ki, li, xi, di) = kαi {(1− (1− φ)xi)(1− li)(1− di)}1−α , (25)

where φ represents the rate of change in productivity when an individual is infected. Using (24):

∂h

∂li
= −(1− (1− φ)xi)(1− di) ≤ 0 (26)

∂h

∂xi
= −(1− φ)(1− lk)(1− di) ≤ 0 (27)

∂h

∂di
= −(1− (1− φ)xi)(1− li) ≤ 0 (28)

4In the appendix, we extend the analysis of problem (23) that proves useful in showing how we obtain our

simulated results.
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With (25), and each of the equation (26), (27), and (28), it straightforward to show that the

conditions (19) and (21) on h and Y , respectively, are satisfied.

In all the simulations, we consider φ = 1 and we have a stationary working population such

that hi(li, xi, di) = (1− li). As for the surplus function, we assume that α = 1/3, p ∈ [1, 1.25],

w = p/3 and the level of capital is the same for all individual at all time period and normalized

to ki = 1. The annual interest rate is assumed to be equal to 5%.5

We represent the simulation results in a two-dimensional graphic, with days (or periods) in the

horizontal axis, and the percentage of population affected for the variable (infection, lockdown,

or death) illustrated on the vertical axis. In each period, a point in the graphic represents the

average value of individual probabilities. For the economic cost, the vertical axis represents the

percentage of economic loss relative to the economy without the pandemic.

In the analyses that follow, we illustrate: (a) how network configuration affects the dynamics

of lockdown, health and economic costs (section 4.1); (b) the trade-off between the tolerated

infection incidence level and the economy (section 4.2); (c) how network centrality affects indi-

vidual lockdown probability (section 4.3); and (d) how segregation and the identity of the patient

zero (the first individual to be infected) induce differential outcomes among minority and majority

populations in a society (section 4.4).

4.1 Illustration I: The Role of Network Configuration

In this first illustration of our theoretical analysis, we show how the structure of the contact

network affects the optimal lockdown policy and the resulting dynamic of infection and death

rates and economic cost, for a given infection incidence level. For the sake of concreteness, we

contrast two popular forms of networks, namely a star network (Graph (a) in Figure 2) and a

small-world network (Graph (b) in Figure 2). These networks can be viewed as representing two

societies of 10 individuals each, that are identical in all ways except the configuration of their

contact network.

In simulation, we assume that the incidence level is λ = 0.01. The simulation results lead to

the respective lockdown policies represented in Figure 3a for these two societies. The dynamic of

5The values of the parameters of the production function are chosen for illustration purposes. Thus, quantitative

outcomes of the model should be interpreted with caution.
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Figure 2: Simple Networks (n = 10)
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lockdown is significantly different for each society. The cumulative proportion of the population

sent into lockdown peaks and flattens much earlier in the star-network society than in the small-

world-network society. While this cumulative proportion is a bit larger in the former society in

the early period of the pandemic and plateaus at around 15 percent, it plateaus at 25 percent

in the latter society. Similarly, the dynamic of the infection rate is very different across the two

societies (Figure 3b), with the star-network society ultimately having a much lower infection rate.

The lower lockdown and infection rates in the star-network society are simply explained by the

fact that optimal lockdown simply requires isolating the hub, and once the hub is isolated, the

infection can no longer spread from one individual to another individual. The situation is different

in the small-world network society, where several individuals have to be isolated to contain the

infection below a chosen incidence level.

Similar to the dynamics of lockdown and infection, the dynamics of the death rate (Figure

3d) and the lost economic surplus (Figure 3c) are different across the two societies. Once again,

the cumulative death rate and lost economic surplus due to the pandemic are ultimately lower in

the star-network society.

This thought experiment sufficiently highlights the fact that network configuration should be

a key factor in the design of optimal lockdown policy during a pandemic like COVID-19, and this

has important implications for health dynamics and economic costs. Our analysis also suggests
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Figure 3: Optimal Infection Dynamic in Simple Networks (n = 10)

(a) Dynamic of Lockdown (b) Dynamic of Infection

(c) Dynamic of Economic Cost (d) Dynamic of Death

that the wide range of variation in COVID-19 outcomes observed across countries and across

communities within countries can be explained by differences in their network configuration.

4.2 Illustration II: Infection Incidence Control and Optimal Lockdown

Policy—The Health-vs-Economy Trade-off

In the second illustration of our theoretical findings, we document the effect of varying the toler-

ated infection incidence level on the optimal lockdown policy and analyze the trade-off between

the desired level of population health and the well-being of the economy.

19



For this analysis, we consider an economy of n = 1000 agents connected through a small

world network with 2×n edges. This network is simulated using Watts & Strogatz (1998)’s graph

model approach. Figure 4 represents the dynamic of the infection, optimal lockdown, economic

costs, and deaths for three different values of infection incidence λ: 0.01, 0.05, and 0.1.

Figure 4a illustrates that the optimal cumulative lockdown rate increases with lower infection

incidence level. This rate is around 15 percent for an incidence level equal to 0.1 to 25 percent

for an incidence of 0.05 to 40 percent for an incidence level of 0.01. What emerges from these

numbers is that the relationship between the tolerated incidence level and the ultimate proportion

of the population sent into lockdown is not linear. As the tolerated infection incidence level

decreases, the fraction of the population sent into lockdown increases disproportionately.

The optimal lockdown policy resulting from a given tolerated infection incidence level trans-

lates into a corresponding dynamic of infection, death and economic cost. In particular, Figure

4b shows that a lower tolerated incidence level results in a lower infection and death rate (see

Figure 4b and Figure 4d).

Figure 4c illustrates the trade-off between population health and the well-being of the econ-

omy. A lower tolerated infection incidence level induces a greater economic cost of the pandemic.

Indeed, if the targeted level of infection incidence is low, more individuals must be sent to lock-

down. Then, with a decrease in individuals’ productiveness in the economy, the loss in terms of

economic surplus is huge. For instance, when the tolerated incidence decreases from 0.1 to 0.05,

the fraction of the economic surplus lost to the pandemic increases from around 7 percent to 14

percent; and a further decrease of the tolerated incidence level to 0.01 induces an surplus loss of

around 23 percent. It follows that a greater level of health is achieved at the cost of the economy.
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Figure 4: Optimal Lockdown Policy and Infection Dynamic

(a) Dynamic of Lockdown (b) Dynamic of Infection

(c) Dynamic of Economic Cost (d) Dynamic of Death
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4.3 Illustration III: Network Centrality and Optimally Targeted Lock-

down

Our third illustration highlights how lockdown policies can be optimally targeted at individuals

based on their characteristics. The individual characteristic we consider is centrality in the contact

network. In general, in a networked economy, certain agents occupy more central positions than

others in the prevailing contact network. This can be due to a variety of reasons, including

the distinct social and economic roles played by each individual. It is argued that individuals

who occupy more central positions in networks are more likely to be infected and to spread an

infection (see, for example, Pongou & Tondji (2018) and Rodrigues (2019)). This suggests that

an optimal lockdown policy should be targeted at more central agents in a network. However,

various measures of network centrality exist, and it is not clear which of these measures are more

predictive in the context of a pandemic like COVID-19. Answering this question is essential, and it

has important implications for how to optimally design surveys to collect data on social distancing

behavior and network structure to curb an infection that spreads through contact networks.

In order to address this question, we consider four popular measures of network centrality:

degree centrality, eigenvector centrality, betweenness centrality, and closeness centrality. The

degree centrality for a vertex (or agent) in a network is measured by the number of direct

connections that vertex has. The betweenness centrality for a vertex is the number of shortest

paths that pass through this vertex. It therefore measures the extent to which nodes stand

between each other in a network. The eigenvector centrality for a vertex is measured based on

relative scores assigned to vertices in a network and reflects the notion that connections to high-

scoring vertices are more important. For this reason, it is considered a measure of influence or

prestige in a network. The closeness centrality for a vertex measures how close this vertex is to all

other vertices in a network. It is calculated as the inverse of the sum of the length of the shortest

paths between that vertex and all other vertices in a network. It follows from these definitions

that degree centrality is less based on network configuration than the other centrality measures.

To answer the question of how each of the aforementioned centrality measures predicts the

probability of lockdown, we consider the same economy used to illustrate the health-economy

trade-off in section 4.2. Agents in this economy are connected through a small world network
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with 2 × n edges. They occupy very distinct positions in this network, resulting in some agents

being more central than others. For robustness, our simulation analysis assumes three different

values for the tolerated infection incidence λ: 0.01, 0.05, and 0.1.

Table 1: Correlation between measure of centrality and optimal lockdown probability

λ Degree Betweness Closeness Eigenvector

corr p-value corr p-value corr p-value corr p-value

0.1 0.60 4.2e-100 0.58 1.3e-93 0.53 1.7e-76 0.53 5.6e-76

0.05 0.67 2.9e-133 0.63 1.2e-112 0.58 4.6e-91 0.56 4.8e-86

0.01 0.72 1.9e-160 0.67 7.5e-132 0.64 1.6e-114 0.60 8.4e-98

The p-value for each centrality measure is for the test of the hypothesis H0 ρ = 0 vs H1 ρ 6= 0

The results of our analysis are presented in Table 1. This table reports the correlation between

each of our centrality measures and optimal lockdown probabilities for different values of the

tolerated infection incidence. We find that all of these centrality measures positively correlate to

the probability of lockdown under the optimal lockdown policy, and this correlation is pretty high

and statistically significant as implies by the different p-value statistics. However, the predictive

value of degree centrality is greater for all values of λ. These results have at least two practical

and/or testable implications.

The first implication is that agents who are more central in the prevailing contact network

should have a greater probability of being sent into lockdown. Moreover, in terms of the lockdown

timing, more central agents should be confined earlier. Our findings do not imply that all agents

should be sent into lockdown, as the goal of lockdown is simply to disconnect the contact

network. While quasi-universal lockdown would achieve this goal, it may not be optimal. This

finding highlights the limitations of quasi-universal lockdown policies such as those implemented

in several countries around the world in the early period of COVID-19.

Our analysis suggests that only particular sectors of society should be shut down during a

pandemic like COVID-19. These are sectors that attract large numbers of individuals, such as

large shopping centers, airports and other public transportation infrastructure, schools, certain

government buildings, entertainment fields, parks, beaches, among others. Our findings also
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imply that lockdown should be targeted at social and economic hubs, including big cities and

high-density areas within a city. Interestingly, this latter policy may be easier to implement in

countries with a higher degree of government centralization, which would imply that infection

spread is less likely to be contained in less centralized countries as coordination failure among

multiple local social planners is likely. This latter prediction can be tested empirically.

Second, our findings have implications for the design of surveys to collect data on social

distancing behavior and network structure during a pandemic like COVID-19. Indeed, the fact

that degree centrality correlates more highly with the optimal lockdown probability than measures

of centrality that are based on network structure means that information on the number of direct

connections that an agent has in a network is more relevant for the design of lockdown policies

than information on network configuration. Fortunately, information on the number of direct

connections or close contacts is also much easier and less costly to collect than information on

network configuration, as the latter requires collecting data on people’s identity as well as on

their direct and indirect contacts.

4.4 Illustration IV: Segregation

A striking feature of the COVID-19 pandemic is its highly unequal distribution among people

of different ethnic and cultural backgrounds.6 In the USA, for example, African-Americans,

Indigenous people, Hispanics, and other communities of color have suffered a much greater

burden of the pandemic7, suggesting that both structural and individual factors might be driving

its dynamics. We therefore ask the question of whether segregation is a cause of the differential

dynamics of COVID-19 outcomes in multi-ethnic societies.

To answer this question, we simulate data to determine the extent to which segregation

induces differential COVID-19 outcomes for minorities and majorities. We consider two economies

involving a minority ethnic group and a majority ethnic group, and that only differ by their level

of ethnic segregation. The first economy, represented by Graph (a) in Figure 5, is assumed to

6See, for example Aldridge et al. (2020), Barr et al. (2020), Cookson & Milne (2020), Rothschild (2020),

Williamson et al. (2020), and Zhang et al. (2017).
7See, for example, U.S. Centers For Disease Control and Prevention (2020), McNeil (2020), APM Research

Lab (2020), and Yaya et al. (2020).
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Figure 5: Segregated vs Integrated Networks (n = 15)
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be integrated, and the second economy, represented by Graph (b) Figure 5, is assumed to be

segregated along ethnic lines.8 In simulation, we assume that the incidence level is λ = 0.01.

At the initial period, a patient zero is infected. The effects of segregation on minority-majority

differences is evaluated by computing the dynamic of the difference-in-differences (diff-in-diffs)

estimate, for each outcome of interest. We use the following formula:

DiDV,t = [(VS,mi,t − VI,mi,t)− (VS,ma,t − VI,ma,t)],

where V ∈ {Infection, Lockdown, Economist cost, Death}, t is the day, S represents “segre-

gated”, I stands for “integrated”, mi for minority group, and ma for majority group. VS,mi,t

(VS,ma,t respectively) is the average probability of the variable of interest V for minority (ma-

jority) individuals in the segregated network at time t, while VI,mi,t (VI,ma,t respectively) is the

average probability of the variable of interest V for minority (majority) individuals in the integrated

network at time t. Below, we represent two typical simulation results from the data, one with

individual 2 (from the minority group) as patient zero, and another with individual 9 (member

of the majority group) as patient zero. All simulation results are presented in Appendix B and

summarized in the analyses below.

8We note that these networks are typical representations of integrated and segregated societies. We also

assume a small economy (15 agents). This is a deliberate choice that has several advantages. One important

advantage is that it allows us to analyze how the identity of patient zero affects outcomes. Working with a large

sample size would make this latter analysis intractable.
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Figure 6: Dynamics of Outcomes under the Optimal Lockdown Policy: Whole Population

Patient Zero: Individual 2

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death

We find that the effect of segregation on outcomes crucially depends on the identity of the

patient zero. In 33 percent (or ∼ 1/3) of the cases, segregation increases infection rates in the

whole population, and it results in lower infections rates in 67 percent (or ∼ 2/3) of the cases.9

9Note that the fact that segregation reduces infection rates in the majority of cases is not surprising. In

fact, policies of lockdown being implemented in different countries around the world are able to reduce infection

rates because they disconnect (or segregate) existing contact networks by partitioning the population between

households. The main difference between lockdown-induced segregation and ethnic segregation is that the former
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Figure 7: Dynamics of Outcomes under the Optimal Lockdown Policy: Whole Population

Patient Zero: Individual 9

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death

However, segregation does not appear to affect death rates significantly (see Figures 6 and 7).

Moreover, we do not find that segregation has a significant effect on the lockdown dynamic or

overall economic surplus losses in the whole population.

Segregation induces significant minority-majority differences in outcomes. However, the di-

rection of this effect depends on the identity of patient zero, and it varies across outcomes. When

is identity-blind (or neutral) unlike the latter.
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patient zero belongs to the majority group (for example, individual 9), segregation generally in-

creases infection and death rates among minorities, but results in lower lockdown and economic

costs in this group; see Figure 8. If patient zero is a minority individual instead (for example,

individual 2), segregation has the opposite effects, increasing the economic costs of the pandemic

for minorities relative to majorities, and reducing their infection and death rates; see Figure 9.

It follows that segregation carries important cross-group externalities. These results follow from

the fact that individuals who are closer to patient zero are more likely to be confined earlier to

minimize the spread of the disease under the optimal policy. This in turn results in relatively

higher lockdown rates and economic costs in the group of patient zero, but in lower infection and

death rates in this group.

The analysis therefore tends to suggest that if patient zero is chosen randomly, implying that

a majority individual is more likely to be the first person to be infected, ethnic segregation is

likely to increase infection and death rates among minority populations, although it will induce a

greater economic cost in the majority group.

The results therefore indicate that it is a combination of structural and individual factors that

determine whether the burden of the pandemic is much greater in minority groups than in the

majority group when the society is segregated, under the optimal policy.

5 Conclusion

This paper solves the problem of finding the optimal lockdown and reopening policy during a

pandemic like COVID-19, for a social planner who prioritizes health over the economy. Agents

are connected through a fuzzy network of contacts, and the planner’s objective is to determine the

policy that contains the spread of infection below a tolerable incidence level and that maximizes

the present discounted value of real income, in that order of priority. We show theoretically that

the planner’s problem has a unique solution. The optimal policy depends both on the configuration

of the contact network and the tolerated infection incidence level. Simulation-based comparative

statics analyses highlight the crucial role of network structure in infection, spread and quantify

the trade-off between the tolerable infection level and human losses on the one hand, and the

economic losses due to the pandemic on the other hand.
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Figure 8: Effect of Segregation on Minority-Majority Differences in Outcomes: Diff-in-Diffs Analysis

Patient Zero: Individual 9

(a) Infection (b) Lockdown

(c) Economic Cost (d) Death

The simulation exercises also show how different measures of network centrality correlate with

the likelihood of being sent to lockdown, showing that degree centrality is more predictive than

other measures of centrality. This result has implications for the optimal design of surveys to

collect data on social distancing measures and network structure, and suggests that information

on direct connections is more relevant than information on the whole configuration of a contact

network. This result also suggests that priority in leaving lockdown should be given to professions

in which employees have a limited number of contacts.
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Figure 9: Effect of Segregation on Minority-Majority Differences in Outcomes: Diff-in-Diffs Analysis

Patient Zero: Individual 2

(a) Infection (b) Lockdown

(c) Economic Cost (d) Death

Moreover, we apply the theoretical findings to analyse how segregation affects health and

economic dynamics in minority and majority populations in ethnically segregated societies. We

find that while segregation induces differences in the dynamics of infection, death, lockdown, and

economic costs, the direction of these differences crucially depends on the identity of patient zero.

Our results indicate that segregation results in minorities bearing a greater burden of disease and

death, but lower economic costs, during a pandemic like Covid-19 in the majority of scenarios

regarding the starting point of the infection. The analysis suggests that a combination of both
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structural and individual factors explain why minority populations seem to have suffered a greater

burden of COVID-19 in countries like the USA.
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Appendix A: Theoretical derivations for the planning problem

We recall the planner’s problem (23) below:

Maximize
(li)

∞∫
0

e−δt
∑
i∈N

{pYi(ki, li, xi, di)− wh(li, xi, di)} dt

subject to ẋi = β[1− li − xi − ri − di](1− li)
∑
j 6=i

[Aij(1− lj)xj]− (γ + κ)xi

ẋi ≤ λ, λ ≥ 0 (17)

ṙi = γxi

ḋi = κxi

ṡi = −β[1− li − xi − ri − di](1− li)
∑
j 6=i

[Aij(1− lj)xj]

X0 given, with si(0) + xi(0) + ri(0) + di(0) = 1− li(0)

We denote fi(ki, li, xi, di) = β[1 − li − xi − ri − di](1 − li)
∑
j 6=i

[Aij(1 − lj)xj] − (γ + κ)xi, and

W p
i (ki, li, xi, di) = pYi(ki, li, xi, di)− wh(li, xi, di). The current Hamiltonian of problem (23) is

given as:

Hc(l, x, r, d, s, µ
1, µ2, µ3, µ4) =

∑
i∈N

W p
i (ki, li, xi, di) +

∑
i∈N

µ1
i fi + γ

∑
i∈N

µ2
ixi + κ

∑
i∈N

µ3
ixi

+
∑
i∈N

µ4
i [−fi − (γ + κ)xi]. (29)

Given the inequality constraints (17), we can augment the current Hamiltonian (29) into a

Lagrangian function:

L(l, x, r, d, s, µ1, µ2, µ3, µ4, θ) =
∑
i∈N

W p
i (ki, li, xi, di) +

∑
i∈N

µ1
i fi + γ

∑
i∈N

µ2
ixi + κ

∑
i∈N

µ3
ixi

+
∑
i∈N

µ4
i [−fi − (γ + κ)xi] +

∑
i∈N

θi(λ− fi). (30)

We can also rewrite (30) as:

L(l, x, r, d, s, µ1, µ2, µ3, µ4, θ) =
∑
i∈N

W p
i (ki, li, xi, di) +

∑
i∈N

(µ1
i − µ4

i − θi)fi + γ
∑
i∈N

µ2
ixi

+ κ
∑
i∈N

µ3
ixi − (γ + κ)

∑
i∈N

µ4
ixi + λ

∑
i∈N

θi. (31)
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The first-order conditions for maximizing L call for, assuming interior solutions,

∂L
∂lk

= 0, k ∈ N (32)

as well as

∂L
∂θk

= λ− ẋk ≥ 0, θk ≥ 0, θk
∂L
∂θk

= θk(λ− ẋk) = 0, k ∈ N. (33)

Finally, the other maximum-principle conditions that include the dynamics for state and co-

state variables are, for k ∈ N :

ẋk =
∂L
∂µ1

k

ṙk =
∂L
∂µ2

k

ḋk =
∂L
∂µ3

k

ṡk =
∂L
∂µ4

k

(34)

µ̇1
k = δµ1

k −
∂L
∂xk

µ̇2
k = δµ2

k −
∂L
∂rk

µ̇3
k = δµ3

k −
∂L
∂dk

µ̇4
k = δµ4

k −
∂L
∂sk

(35)

Recall that fi(li, xi, ri, di) = β(1 − li − xi − ri − di)(1 − li)
∑
j 6=i

[Aij(1 − lj)xj] − (γ + κ)xi.

Then,

∂fi
∂lk

=


−β(2(1− li)− xi − ri − di)

∑
j 6=i

[Aij(1− lj)xj] if k = i

−β(1− li − xi − ri − di)(1− li)Aikxk if k 6= i

(36)

∂fi
∂xk

=


−β(1− li)

∑
j 6=i

[Aij(1− lj)xj]− (γ + κ) if k = i

β(1− li − xi − ri − di)(1− li)(1− lk)Aik if k 6= i

(37)

∂fi
∂rk

=
∂fi
∂dk

=


−β(1− li)

∑
j 6=i

[Aij(1− lj)xj] if k = i

0 if k 6= i

(38)
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We also recall that W p
i (ki, li, xi, di) = pYi(ki, li, xi, di)− wh(li, xi, di). Therefore,

∂W p
i

∂lk
=

p
∂Yi
∂lk
− w ∂h

∂lk
if k = i

0 if k 6= i

(39)

∂W p
i

∂xk
=

p
∂Yi
∂xk
− w ∂h

∂xk
if k = i

0 if k 6= i

(40)

∂W p
i

∂rk
= 0 (41)

∂W p
i

∂dk
=

p
∂Yi
∂dk
− w ∂h

∂dk
if k = i

0 if k 6= i

(42)

Therefore, using (33), we have the following equation:

∂L
∂lk

=
∑
i∈N

∂W p
i

∂lk
+
∑
i∈N

(µ1
i − µ4

i − θi)
∂fi
∂lk

=
∂W p

k

∂lk
+
∑
i∈N

(µ1
i − µ4

i − θi)
∂fi
∂lk

using (39)

= p
∂Yk
∂lk
− w ∂h

∂lk
+
∑
i∈N

(µ1
i − µ4

i − θi)
∂fi
∂lk

(43)

Hence, using the first-order conditions (32), equation (43) becomes:

0 = p
∂Yk
∂lk
− w ∂h

∂lk
+
∑
i∈N

(µ1
i − µ4

i − θi)
∂fi
∂lk

. (44)

Using the other conditions from (35) and using (40):

µ̇1
k = δµ1

k−
∂L
∂xk

= δµ1
k−p

∂Yk
∂xk

+w
∂h

∂xk
−γµ2

k−κµ3
k+(γ+κ)µ4

k−
∑
i∈N

(µ1
i −µ4

i −θi)
∂fi
∂xk

. (45)

Similarly, using (35), we get:

µ̇2
k = δµ2

k −
∂L
∂rk

= δµ2
k −

∑
i∈N

(µ1
i − µ4

i − θi)
∂fi
∂rk

using (41), (46)

µ̇3
k = δµ3

k −
∂L
∂dk

= δµ3
k − p

∂Yk
∂dk

+ w
∂h

∂dk
−
∑
i∈N

(µ1
i − µ4

i − θi)
∂fi
∂dk

using (42), (47)

and

µ̇4
k = δµ4

k −
∂L
∂sk

= δµ4
k, since

∂L
∂sk

= 0. (48)
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Appendix B: Integrated vs. Segregated Networks Simulation Results

Figure 10: Dynamics of Outcomes under the Optimal Lockdown Policy: Whole Population

Patient Zero: Individual 1

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death

38



Figure 11: Dynamics of Outcomes under the Optimal Lockdown Policy: Minority Group (1 to 5)

Patient Zero: Individual 1

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 12: Dynamics of Outcomes under the Optimal Lockdown Policy: Majority Group (6 to

15)

Patient Zero: Individual 1

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 13: Effect of Segregation on Minority-Majority Differences in Outcomes: Diff-in-Diffs Analysis

Patient Zero: Individual 1

(a) Infection (b) Lockdown

(c) Economic Cost (d) Death
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Figure 14: Dynamics of Outcomes under the Optimal Lockdown Policy: Whole Population

Patient Zero: Individual 2

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 15: Dynamics of Outcomes under the Optimal Lockdown Policy: Minority Group (1 to 5)

Patient Zero: Individual 2

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 16: Dynamics of Outcomes under the Optimal Lockdown Policy: Majority Group (6 to 15)

Patient Zero: Individual 2

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 17: Effect of Segregation on Minority-Majority Differences in Outcomes: Diff-in-Diffs Analysis

Patient Zero: Individual 2

(a) Infection (b) Lockdown

(c) Economic Cost (d) Death
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Figure 18: Dynamics of Outcomes under the Optimal Lockdown Policy: Whole Population

Patient Zero: Individual 3

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 19: Dynamics of Outcomes under the Optimal Lockdown Policy: Minority Group (1 to 5)

Patient Zero: Individual 3

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 20: Dynamics of Outcomes under the Optimal Lockdown Policy: Majority Group (6 to 15)

Patient Zero: Individual 3

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 21: Effect of Segregation on Minority-Majority Differences in Outcomes: Diff-in-Diffs Analysis

Patient Zero: Individual 3

(a) Infection (b) Lockdown

(c) Economic Cost (d) Death
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Figure 22: Dynamics of Outcomes under the Optimal Lockdown Policy: Whole Population

Patient Zero: Individual 4

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 23: Dynamics of Outcomes under the Optimal Lockdown Policy: Minority Group (1 to 5)

Patient Zero: Individual 4

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death

51



Figure 24: Dynamics of Outcomes under the Optimal Lockdown Policy: Majority Group (6 to 15)

Patient Zero: Individual 4

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death

52



Figure 25: Effect of Segregation on Minority-Majority Differences in Outcomes: Diff-in-Diffs Analysis

Patient Zero: Individual 4

(a) Infection (b) Lockdown

(c) Economic Cost (d) Death

53



Figure 26: Dynamics of Outcomes under the Optimal Lockdown Policy: Whole Population

Patient Zero: Individual 5

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 27: Dynamics of Outcomes under the Optimal Lockdown Policy: Minority Group (1 to 5)

Patient Zero: Individual 5

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 28: Dynamics of Outcomes under the Optimal Lockdown Policy: Majority Group (6 to 15)

Patient Zero: Individual 5

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 29: Effect of Segregation on Minority-Majority Differences in Outcomes: Diff-in-Diffs Analysis

Patient Zero: Individual 5

(a) Infection (b) Lockdown

(c) Economic Cost (d) Death
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Figure 30: Dynamics of Outcomes under the Optimal Lockdown Policy: Whole Population

Patient Zero: Individual 6

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 31: Dynamics of Outcomes under the Optimal Lockdown Policy: Minority Group (1 to 5)

Patient Zero: Individual 6

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 32: Dynamics of Outcomes under the Optimal Lockdown Policy: Majority Group (6 to 15)

Patient Zero: Individual 6

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death

60



Figure 33: Effect of Segregation on Minority-Majority Differences in Outcomes: Diff-in-Diffs Analysis

Patient Zero: Individual 6

(a) Infection (b) Lockdown

(c) Economic Cost (d) Death
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Figure 34: Dynamics of Outcomes under the Optimal Lockdown Policy: Whole Population

Patient Zero: Individual 7

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 35: Dynamics of Outcomes under the Optimal Lockdown Policy: Minority Group (1 to 5)

Patient Zero: Individual 7

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death

63



Figure 36: Dynamics of Outcomes under the Optimal Lockdown Policy: Majority Group (6 to 15)

Patient Zero: Individual 7

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death

64



Figure 37: Effect of Segregation on Minority-Majority Differences in Outcomes: Diff-in-Diffs Analysis

Patient Zero: Individual 7

(a) Infection (b) Lockdown

(c) Economic Cost (d) Death
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Figure 38: Dynamics of Outcomes under the Optimal Lockdown Policy: Whole Population

Patient Zero: Individual 8

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 39: Dynamics of Outcomes under the Optimal Lockdown Policy: Minority Group (1 to 5)

Patient Zero: Individual 8

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 40: Dynamics of Outcomes under the Optimal Lockdown Policy: Majority Group (6 to 15)

Patient Zero: Individual 8

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 41: Effect of Segregation on Minority-Majority Differences in Outcomes: Diff-in-Diffs Analysis

Patient Zero: Individual 8

(a) Infection (b) Lockdown

(c) Economic Cost (d) Death
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Figure 42: Dynamics of Outcomes under the Optimal Lockdown Policy: Whole Population

Patient Zero: Individual 9

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 43: Dynamics of Outcomes under the Optimal Lockdown Policy: Minority Group (1 to 5)

Patient Zero: Individual 9

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 44: Dynamics of Outcomes under the Optimal Lockdown Policy: Majority Group (6 to 15)

Patient Zero: Individual 9

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 45: Effect of Segregation on Minority-Majority Differences in Outcomes: Diff-in-Diffs Analysis

Patient Zero: Individual 9

(a) Infection (b) Lockdown

(c) Economic Cost (d) Death
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Figure 46: Dynamics of Outcomes under the Optimal Lockdown Policy: Whole Population

Patient Zero: Individual 10

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 47: Dynamics of Outcomes under the Optimal Lockdown Policy: Minority Group (1 to 5)

Patient Zero: Individual 10

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 48: Dynamics of Outcomes under the Optimal Lockdown Policy: Majority Group (6 to 15)

Patient Zero: Individual 10

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death

76



Figure 49: Effect of Segregation on Minority-Majority Differences in Outcomes: Diff-in-Diffs Analysis

Patient Zero: Individual 10

(a) Infection (b) Lockdown

(c) Economic Cost (d) Death
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Figure 50: Dynamics of Outcomes under the Optimal Lockdown Policy: Whole Population

Patient Zero: Individual 11

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 51: Dynamics of Outcomes under the Optimal Lockdown Policy: Minority Group (1 to 5)

Patient Zero: Individual 11

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 52: Dynamics of Outcomes under the Optimal Lockdown Policy: Majority Group (6 to 15)

Patient Zero: Individual 11

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 53: Effect of Segregation on Minority-Majority Differences in Outcomes: Diff-in-Diffs Analysis

Patient Zero: Individual 11

(a) Infection (b) Lockdown

(c) Economic Cost (d) Death
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Figure 54: Dynamics of Outcomes under the Optimal Lockdown Policy: Whole Population

Patient Zero: Individual 12

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death

82



Figure 55: Dynamics of Outcomes under the Optimal Lockdown Policy: Minority Group (1 to 5)

Patient Zero: Individual 12

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 56: Dynamics of Outcomes under the Optimal Lockdown Policy: Majority Group (6 to 15)

Patient Zero: Individual 12

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 57: Effect of Segregation on Minority-Majority Differences in Outcomes: Diff-in-Diffs Analysis

Patient Zero: Individual 12

(a) Infection (b) Lockdown

(c) Economic Cost (d) Death
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Figure 58: Dynamics of Outcomes under the Optimal Lockdown Policy: Whole Population

Patient Zero: Individual 13

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 59: Dynamics of Outcomes under the Optimal Lockdown Policy: Minority Group (1 to 5)

Patient Zero: Individual 13

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 60: Dynamics of Outcomes under the Optimal Lockdown Policy: Majority Group (6 to 15)

Patient Zero: Individual 13

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 61: Effect of Segregation on Minority-Majority Differences in Outcomes: Diff-in-Diffs Analysis

Patient Zero: Individual 13

(a) Infection (b) Lockdown

(c) Economic Cost (d) Death
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Figure 62: Dynamics of Outcomes under the Optimal Lockdown Policy: Whole Population

Patient Zero: Individual 14

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 63: Dynamics of Outcomes under the Optimal Lockdown Policy: Minority Group (1 to 5)

Patient Zero: Individual 14

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 64: Dynamics of Outcomes under the Optimal Lockdown Policy: Majority Group (6 to 15)

Patient Zero: Individual 14

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 65: Effect of Segregation on Minority-Majority Differences in Outcomes: Diff-in-Diffs Analysis

Patient Zero: Individual 14

(a) Infection (b) Lockdown

(c) Economic Cost (d) Death
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Figure 66: Dynamics of Outcomes under the Optimal Lockdown Policy: Whole Population

Patient Zero: Individual 15

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 67: Dynamics of Outcomes under the Optimal Lockdown Policy: Minority Group (1 to 5)

Patient Zero: Individual 15

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 68: Dynamics of Outcomes under the Optimal Lockdown Policy: Majority Group (6 to 15)

Patient Zero: Individual 15

(a) Dynamic of Infection (b) Dynamic of Lockdown

(c) Dynamic of Economic Cost (d) Dynamic of Death
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Figure 69: Effect of Segregation on Minority-Majority Differences in Outcomes: Diff-in-Diffs Analysis

Patient Zero: Individual 15

(a) Infection (b) Lockdown

(c) Economic Cost (d) Death
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