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Abstract. We characterize the equilibrium set of the n-player Hirshleifer con-

test with homogeneous valuations. A symmetric equilibrium always exists. It

necessarily corresponds to multilateral peace for suffi cient noise and uses finite-

support randomized strategies otherwise. Asymmetric equilibria are feasible for

n ≥ 3 contestants only, and only for suffi ciently small noise. In pure strategies,

any asymmetric equilibrium corresponds to one-sided dominance, but there is also

a variety of payoff-inequivalent mixed-strategy equilibria for small noise. For ar-

bitrarily small noise, at least two contestants engage in cut-throat competition,

while any others become ultimately inactive. Of some conceptual interest is the

observation that, for n suffi ciently large, the unique equilibrium is multilateral

peace.
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1. Introduction

Recent years have witnessed a tremendous surge in interest in the game-theoretic

analysis of contests.1 Much of this interest has focused on specific classes of contest

technologies that admit a simple axiomatic characterization.2 In particular, this

includes the Hirshleifer contest (Hirshleifer, 1989), which is one of the canonical

models of the difference-form contest. Indeed, within the class of difference-form

contests, the Hirshleifer contest is highlighted by the fact that it admits a simple

alternative representation in the logit form.

In his seminal contribution, Hirshleifer (1989) identified two main types of pure-

strategy Nash equilibria (PSNE) between two contestants, viz. bilateral peace and

one-sided dominance. He also offered an insightful discussion of mixed-strategy

Nash equilibria (MSNE), yet without explicitly characterizing them. In earlier

work (Ewerhart and Sun, 2018), we have shown that the two-player Hirshleifer

contest with homogeneous valuations generally admits a unique Nash equilibrium.

We also provided an explicit characterization of the Nash equilibrium, which is

necessarily symmetric. However, the Hirshleifer contest with more than two con-

testants has not been studied extensively so far.3

This paper examines the equilibrium set of the n-player Hirshleifer contest

with homogeneous valuations. Given that the contest technology exhibits increas-

ing returns to scale, a PSNE is not guaranteed to exist in general. However, a

MSNE can be shown to exist for any parameter constellation. Considered are,

1For an introduction to the theory of contests, see Konrad (2009) or Vojnovíc (2015). A
recent survey is Corchón and Serena (2018).

2See Skaperdas (1996) and Ewerhart (2015b), respectively, for axiom systems applying to a
population of varying and constant size. Cubel and Sanchez-Pages (2016) axiomatized difference-
form contest success functions more generally.

3We are aware of only three papers that discuss the n-player Hirshleifer contest. To start
with, Hirshleifer (1989, pp. 104-105) himself introduced the n-player generalization, and noted
the equivalence of representations (1) and (2) below. However, he did not discuss equilibria for
n ≥ 3. Further, the two papers pursuing axiomatic characterizations mentioned before both
considered the n-player case, yet likewise did not explore the equilibrium set.
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therefore, both PSNE and MSNE. We prepare the equilibrium analysis by making

three initial observations. First, as payoffs in the Hirshleifer contest are analytic

functions, any randomized best response necessarily has finite support. Second, in

any equilibrium, at least (n− 1) of the contestants use the zero bid with positive

probability. Third and last, if a contestant i always submits positive bids, then

no positive bid is placed by her opponents weakly below contestant i’s lowest bid.

Taken together, these results set the stage for our in-depth examination of the

equilibrium set.

The main analysis starts by considering symmetric equilibria. Symmetric

PSNE necessarily corresponds to multilateral peace. Multilateral peace is con-

sistent with any number n ≥ 2 of contestants, yet only if there is suffi cient noise.

In fact, multilateral peace is the unique symmetric MSNE whenever multilateral

peace is a PSNE. This result is obtained by a new type of argument that exploits,

in particular, that bids are strategic substitutes in the relevant domain. For small

noise, we show that any symmetric equilibrium is in mixed strategies, where the

number of mass points in the distribution of equilibrium bids is bound to grow as

the contest technology becomes increasingly deterministic.

Next, we deal with asymmetric equilibria. These are feasible for n ≥ 3 con-

testants only, and only for suffi ciently small noise. Any asymmetric PSNE reflects

one-sided dominance, i.e., precisely one contestant is active.4 As the identity of

the dominant contestant in this type of equilibrium is undetermined, there exist

multiple, payoff-inequivalent PSNE. Yet the pure-strategy outcome with just one

active bidder is feasible only if the noise parameter is in an intermediate range.

For smaller noise, a variety of asymmetric MSNE arise, which may be either semi-

mixed or mixed. In a knife-edge case, there is even a continuum of asymmetric

4Thus, in this regard, the n-player Hirshleifer contest with more than two contestants has a
certain resemblance to a natural monopoly.
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MSNE. However, we also construct several robust examples of asymmetric MSNE.

We go on and study the case of arbitrarily small noise. It is shown that, as

the technology becomes increasingly deterministic, at least two contestants engage

in cut-throat competition, i.e., bid nearly up to the value of the prize. As a

consequence, the undissipated rent goes to zero for all contestants. Next, for at

least two contestants, which are possibly the same as those that bid up to the value

of the prize, the probability weight placed on the zero bid goes to zero. Further,

any contestant that does not engage in cut-throat competition becomes ultimately

inactive in the limit. Finally, as the noise vanishes, any sequence of MSNE in

the Hirshleifer contest that converges in distribution approaches a MSNE of the

standard all-pay auction.

The analysis is complemented by a simple but potentially important observa-

tion for the case of large populations. Specifically, keeping the decisiveness para-

meter α fixed, we find that, if the number of contestants n is suffi ciently large, then

the unique PSNE and even the unique MSNE in the n-player Hirshleifer contest

is multilateral peace.5 We will conclude that, for more than two contestants, the

Hirshleifer technology does not seem to serve well as a model of military conflict.

General classes of difference-form contests have been analyzed for somewhat

more than two decades (Baik, 1998). Che and Gale (2000) were the first in com-

prehensively characterizing equilibria for a class of contests of the difference form

with uniform noise. More recently, Cubel and Sanchez-Pages (2020) have gener-

alized that analysis by allowing for more than two contestants and more flexible

difference-form contests. However, none of those papers touches upon the ques-

tions addressed in the present study.

The remainder of this paper is structured as follows. Section 2 introduces

5This observation contrasts, in particular, with the case of the standard n-player Tullock
contest where, regardless of n, all contestants are active in the symmetric PSNE (Corcoran,
1988).
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the notation and collects some preliminary observations. Symmetric equilibria are

characterized in Section 3. Section 4 deals with asymmetric equilibria. The case of

arbitrarily small noise is studied in Section 5. Section 6 discusses the equilibrium

in large populations. Section 7 concludes. All technical proofs have been relegated

to an Appendix.

2. Preliminaries

2.1 Set-up and notation

There are n ≥ 2 contestants (or players), collected in a set N = {1, . . . , n}, that

expend resources to win a prize of value V > 0. Contestant i’s payoff in the

n-player Hirshleifer contest with parameter α > 0 is given as

ΠN,α
i (x1, . . . , xn) =

V∑n
j=1 exp(α(xj − xi))

− xi, (1)

where xj ≥ 0, for j ∈ N , denotes contestant j’s expenses (or bid). The parameter

α measures the decisiveness of the contest technology. It is easy to see that, as

α → 0, the contest converges to the limit case of a pure lottery, where decisions

about expenses do not matter and the winner is determined by chance alone. As

α→∞, however, the vector of payoffs approximates that of the standard all-pay

auction, where the highest bidder wins with certainty (Baye et al., 1996).6 Thus,

intuitively, chance plays a larger role in the determination of the winner when α is

small. We rewrite relationship (1) and obtain the equivalent logit representation

of contestant i’s payoffs as

ΠN,α
i (x1, . . . , xn) =

exp(αxi)V∑n
j=1 exp(αxj)

− xi. (2)

It is noteworthy that the impact function xi 7→ Xi ≡ exp(αxi) exhibits strictly

increasing returns, i.e., it is strictly convex. Moreover, as mentioned in the Intro-
6In fact, the case of homogeneous valuations, which corresponds more closely to our analysis,

is analyzed in the working paper version (Baye et al., 1990).
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duction, the Hirshleifer contest may be characterized by imposing a collection of

simple axioms on its CSF.

In the non-cooperative n-player game defined above, a pure-strategy Nash equi-

librium (PSNE) is a vector of bids, x∗ = (x∗1, . . . , x
∗
n) ∈ Rn≥0, such that

ΠN,α
i (x∗i , x

∗
−i) ≥ ΠN,α

i (xi, x
∗
−i) (3)

holds for any i ∈ N and xi ∈ R≥0, where we adhere to the usual convention

that x∗ = (x∗i , x
∗
−i), etc. A mixed strategy for contestant i is defined as a prob-

ability measure µi on (the Borel subsets of) the interval [0, V ].7 Let Mi denote

the set of mixed strategies for contestant i, where pure strategies xi ∈ [0, V ] are

understood as Dirac probability measures, as usual. Contestant i’s expected pay-

off from a mixed-strategy profile µ ∈ M ≡ M1 × . . . × Mn will be written as

E(µi,µ−i)[Π
N,α
i (xi, x−i)]. A mixed-strategy Nash equilibrium (MSNE) is then a tuple

µ∗ = (µ∗1, . . ., µ
∗
n) ∈M such that

E(µ∗i ,µ∗−i)[Π
N,α
i (xi, x−i)] ≥ E(µi,µ∗−i)[Π

N,α
i (xi, x−i)] (4)

for any i ∈ N and µi ∈ Mi. General results guarantee the existence of a MSNE

for all parameter constellations.

Lemma 1. (Existence) The n-player Hirshleifer contest with parameter α ad-

mits a MSNE for any n ≥ 2 and α > 0.

Proof. See the Appendix.8 �

In all that follows, we will normalize the value of the contested prize to one, so

that V = 1. This normalization is without loss of generality, as may be easily seen

7Clearly, the upper bound is without loss of generality. Indeed, any bid weakly exceeding the
value of the prize is strictly dominated by the zero bid.

8In Section 3, we will show that there always exists a symmetric MSNE.
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by expressing expenses in units of the prize.9

2.2 Initial observations

We prepare the main analysis by collecting some general facts regarding the distri-

bution of equilibrium bids in any equilibrium. The first is that any optimal mixed

strategy in the n-player Hirshleifer contest has finite support.10

Lemma 2.11 (Finite support) Let i ∈ N . Then, for any profile of mixed strate-

gies µ−i = (µ1, . . ., µi−1, µi+1, . . ., µn), the set of pure strategies that maximize con-

testant i’s expected payoff against µ−i,

Xi(µ−i) = arg max
xi∈[0,1]

Eµ−i [Π
N,α
i (xi, x−i)] , (5)

is finite. Moreover, any mixed strategy µi ∈Mi maximizing E(µi,µ−i)[Π
N,α
i (xi, x−i)]

has finite support.

Proof. See the Appendix. �

This lemma has the useful implication that, in any MSNE, each contestant i ∈ N

randomizes over a finite set of bids

y
(1)
i > . . . > y

(Li)
i ≥ 0, (6)

for some Li ≥ 1, such that y(li)i is selected with probability q(li)i > 0, for li ∈

{1, . . . , Li}. In particular, the expectation over a profile of equilibrium strategies

reduces to a finite sum, which of course simplifies the analysis in many ways.

Illustrations of MSNE with finite support will be provided later in the paper.

9It suffi ces to note that a bid vector x̂∗ ∈ Rn≥0 is a PSNE in the unnormalized contest with
prize of value V and parameter α̂ if and only if the rescaled vector x∗ = x̂∗/V is a PSNE in the
normalized contest with parameter α = α̂ · V . An analogous relationship holds for MSNE.
10The support of a mixed strategy µi ∈ Mi, denoted by supp{µi} ⊆ [0, 1], is defined as usual

as the intersection of all closed sets to which the probability measure µi assigns probability one.
11This result is essentially known (see, e.g., Ewerhart and Sun, 2018, Lemma 1). For the

reader’s convenience, however, we include a derivation in the Appendix.
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Lemma 2 implies a difference to the standard model of the all-pay auction

(Baye et al., 1996), where mass points in equilibrium strategies are feasible at

the origin only, and where the interior part of the bid distribution is absolutely

continuous.12

Next, we look at mass points at the zero bid. In fact, we will also consider

mass points located in a small neighborhood of the zero bid. An analysis of the

second-order condition at any lowest positive bid leads to the following result.

Lemma 3. (Zero bids and small bids)

(i) At least (n− 1) of the contestants choose zero with positive probability.

(ii) If y(Li)i > 0 for some i ∈ N , then there is no mass point in the interval

(0, y
(Li)
i ] for any contestant j 6= i.

Proof. See the Appendix. �

Thus, either all contestants choose the zero bid with positive probability (e.g., in

a symmetric MSNE), or there is precisely one contestant i ∈ N whose lowest bid

y
(Li)
i is positive, while nobody else bids in the interval (0, y

(Li)
i ].

We say that contestant i ∈ N is active (always active, inactive) in a mixed-

strategy profile µ ∈ M if her strategy µi employs positive bids with positive

probability (with probability one, with probability zero). Lemma 3(i) may hence

be summarized by saying that at most one contestant is always active.

Lemma 3(i) reveals another difference between the Hirshleifer contest and the

standard all-pay auction. Indeed, the symmetric MSNE in the all-pay auction

with homogeneous valuations does not feature any mass points (Hillman and Ri-

ley, 1989). Furthermore, in any asymmetric MSNE of the all-pay auction with

homogeneous valuations, at most (n− 2) contestants bid zero with positive prob-

ability (Baye et al., 1996).
12Of course, the picture changes once there are resource constraints. See Che and Gale (1998).
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3. Symmetric equilibria

As usual, we call a Nash equilibrium (pure or mixed) symmetric if all players use

the same strategy. In Subsection 3.1, we characterize the set of symmetric PSNE.

Then, in Subsection 3.2, we describe the set of symmetric MSNE.

3.1 Pure-strategy Nash equilibrium

We will say that a PSNE x∗ reflects multilateral peace if x∗1 = . . . = x∗n = 0.

Note that the equilibrium payoff under multilateral peace is Π∗i = 1
n
, for any

i ∈ N . By Lemma 3(i), multilateral peace is the only symmetric PSNE feasible. To

understand the conditions for this to be an equilibrium, suppose that all opponents

j 6= 1 of contestant 1 choose an expense level of zero. Then, contestant 1’s expected

payoff is given by

Π
N

1 (x1;α) ≡ ΠN,α
1 (x1,0n−1) =

exp(αx1)

exp(αx1) + n− 1
− x1, (7)

where 0n−1 = (0, . . . , 0) ∈ Rn−1. Figure 1 outlines the graph of the function

Π
N

1 (·;α) for n = 3 and selected values of α. As the illustration suggests, multi-

lateral peace is sustainable as an equilibrium between three contestants only with

a suffi cient amount of noise, i.e., only if α is small enough. This fact holds analo-

gously for any number of contestants, as will be explained below.

Figure 1. Payoff against inactive contestants
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A straightforward examination of marginal payoffs shows that Π
N

1 (·;α) is strictly

declining for α ≤ 4, regardless of n.13 On the other hand, for α > 4, there is a

unique interior local maximum x̃1(α) > 0, where we suppress the dependence on

n in the notation. In that case, an application of the envelope theorem shows that

the payoff at the local maximum, Π
N

1 (x̃1(α), α), is strictly increasing in α. Indeed,

we have

∂Π
N

1 (x̃1(α);α)

∂α
=

∂Π
N

1 (x1;α)

∂α

∣∣∣∣∣
x1=x̃1(α)

(8)

=
αx̃1(α) exp(αx̃1(α))(n− 1)

(exp(αx̃1(α)) + n− 1)2
(9)

> 0. (10)

Further, it should be intuitively clear that Π
N

1 (x̃1(α);α) strictly exceeds the fair

share Π∗i = 1
n
for any suffi ciently large α. Arguing along these lines, we arrive at

the following result.

Proposition 1. (Symmetric PSNE) Consider the n-player Hirshleifer contest

with parameter α, where n ≥ 2. Then, there is a threshold value α∗(n) ≥ 4 such

that:

(i) a symmetric PSNE exists if and only if α ∈ (0, α∗(n)];

(ii) in this case, the PSNE is unique and corresponds to multilateral peace.

Proof. See the Appendix. �

Thus, for any n ≥ 2, there is a nonempty and half-open interval of values for the

decisiveness parameter α such that multilateral peace is a PSNE. Proposition 1

illustrates one important dimension in which the Hirshleifer contest differs dra-

matically from the Tullock contest. Indeed, it is well-known that any equilibrium

in the standard Tullock contest requires activity of at least two contestants.

13For α = 4, there is a saddle point. Of course, Π
N

1 (·;α) is strictly declining also in that case.
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The threshold α∗(n) may be characterized as the unique solution of the indif-

ference relationship

Π
N

1 (x̃1(α);α) = Π
N

1 (0;α) =
1

n
. (11)

For the special case n = 2, solving this equation delivers α∗(2) = 4, so that we

retrieve Hirshleifer’s (1989) classic result that bilateral peace is a PSNE if and only

if α ≤ 4. For n ≥ 3, however, the threshold value α∗(n) does not allow a simple

analytical expression. E.g., α∗(3) ≈ 4.12. Nonetheless, one can show that α∗(n) is

strictly increasing in n, as well as unbounded.14 Intuitively, the strict monotonicity

of the threshold says that the advent of an additional contestant always makes it

easier to sustain peace. We will elaborate on this point in Sections 6 and 7 below.

3.2 Symmetric mixed-strategy Nash equilibrium

In this subsection, we offer a characterization of symmetric MSNE in the n-player

Hirshleifer contest. From Lemma 2, the support of any symmetric equilibrium

strategy is necessarily a finite set including, in particular, the zero bid. Denote

by L the number of mass points in the equilibrium distribution of bids. For any

number n ≥ 2 of contestants, we establish the following result.

Proposition 2. (Symmetric MSNE) Consider the n-player Hirshleifer contest

with parameter α. Then, the following holds true:

(i) there exists a symmetric MSNE with L ≥ 2 if and only if α > α∗(n);

(ii) the number L respects the lower bound given by

L ≥
(

(n− 1)α

n2

) 1
n−1

. (12)

Proof. See the Appendix. �
14The proof can be found in the Appendix.
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This proposition characterizes the structure of symmetric MSNE in the n-player

Hirshleifer contest, and clarifies how the parameter α relates to the cardinality

of the support of the symmetric equilibrium strategy. Part (i) establishes exis-

tence of MSNE with L ≥ 2 if and only if α strictly exceeds the threshold α∗(n)

introduced in the previous subsection. It should be noted that, combined with

Proposition 1(i), this entails a general existence result for symmetric MSNE. The

more interesting implication, however, is that multilateral peace (where L = 1)

is the unique symmetric MSNE whenever multilateral peace is a PSNE, i.e., for

α ≤ α∗(n).15 Part (ii) puts a general lower bound on the number of mass points in

the equilibrium bid distribution. As can be seen, the lower bound on L is strictly

increasing and unbounded in α. Thus, the number of mass points will ultimately

surpass any finite bound as α→∞.

The following example illustrates the symmetric MSNE in the simplest case

where the support of the symmetric equilibrium strategy has precisely two ele-

ments.

Example 1 (Symmetric MSNE with L = 2). Let n ≥ 2. Consider a symmetric

equilibrium strategy that places probability q(1) > 0 on the positive bid y(1) > 0,

and a complementary probability q(2) = 1−q(1) > 0 on the zero bid y(2) = 0. Then,

we have two equations that jointly characterize y(1) and q(1), viz. the first-order

condition at the interior bid y(1), and the indifference condition between y(1) and

y(2). E.g., for n = 3, this type of equilibrium exists for α ∈ (4.12, 6.98). For smaller

values of α, each contestant would prefer to become inactive. On the other hand,

for larger values of α, each contestant would wish to deviate to a bid level strictly

between zero and y(1).

15To prove this, we first show that for α ≤ α∗(n) and n ≥ 3, any contestant strictly prefers
bidding zero over matching the bid of a single active opponent. The claim then follows by noting
that bids are strategic substitutes in the relevant domain.
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In the example, each of the n contestants randomizes between a positive and the

zero bid. It follows from Proposition 2(ii) that similar examples may be constructed

for values of L that exceed any given finite bound.

4. Asymmetric equilibria

In this section, we characterize the set of asymmetric equilibria in the n-player

Hirshleifer contest. Subsection 4.1 deals with PSNE, while Subsection 4.2 discusses

MSNE.

4.1 Asymmetric pure-strategy Nash equilibria

We will say that a PSNE x∗ reflects one-sided dominance if x∗i > 0 is positive for

some contestant i ∈ N , while x∗j = 0 holds for all other contestants j ∈ N\{i}. In

that case, player i will be referred to as the dominant contestant. As mentioned

before, the two-player Hirshleifer contest with homogeneous valuations does not

admit one-sided dominance as a PSNE, let alone any other type of asymmetric

equilibrium. However, as our next result shows, one-sided dominance is feasible as

a PSNE outcome for any number n ≥ 3 of contestants.

Proposition 3. (Asymmetric PSNE) Consider the n-player Hirshleifer contest

with parameter α. Suppose that n ≥ 3. Then:

(i) there is a threshold value α∗∗(n) satisfying α∗∗(n) > α∗(n) such that one-sided

dominance is a PSNE if and only if α ∈ [α∗(n), α∗∗(n)];

(ii) whenever it exists, one-sided dominance is the unique PSNE up to renaming

of the dominant contestant;

(iii) for α > α∗∗(n), there does not exist any PSNE.

Proof. See the Appendix. �
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Part (i) says that, for any n ≥ 3, there is a non-empty, compact, and nonde-

generate interval of values for the decisiveness parameter α with the property

that one-sided dominance is a PSNE if and only if α lies in that interval. For

α < α∗(n), the dominant contestant would prefer to back off by bidding zero.

For α > α∗∗(n), however, any of the other contestants would find it profitable to

overbid the dominant contestant. In the proof, we use again the envelope theorem

to show that α∗∗(n) is well-defined, in analogy to the argument used in Section

2. E.g., α∗∗(3) ≈ 4.66. To verify that α∗(n) < α∗∗(n), we check that none of the

inactive players has an incentive to deviate at α = α∗(n). It may be noted that

limn→∞ α
∗∗(n) =∞, as an immediate implication of the unboundedness of α∗(n).

Regarding part (ii), we remark that the necessary first-order condition for the

unique interior optimum delivers the resource commitment of the dominant con-

testant as x∗1 = x̃1(α), where

x̃1(α) =
1

α
ln

(
n− 1

2

{
α− 2 +

√
α(α− 4)

})
. (13)

A numerical exercise reveals that, in the relevant range where the equilibrium

exists, x̃1(α) is strictly increasing in α for n ∈ {3, 4}, hump-shaped in α for

n ∈ {5, 6}, and strictly declining n ≥ 7.16 Thus, contrary to intuition, if the

number of contestants is small, then a sharper sword may actually require higher

expenses to dominate the population.

As for the equilibrium payoffs, the dominant contestant, say player 1, receives a

payoffweakly exceeding the fair share, i.e., Π∗1 ≥ 1
n
. Indeed, contestant 1 must find

it weakly profitable to depart from multilateral peace, which yields Π∗i = 1
n
for any

i ∈ N . Moreover, as the dominant contestant’s expenses and raised probability of

winning bite into the total cake available for distribution, less than the fair share is

left for each of the subdued contestants. Thus, Π∗j <
1
n
for any j 6= 1. We remark

16Details on the numerical results reported in this paper are available from the authors upon
request.
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that, because the identity of the dominant contestant is undetermined, the present

discussion implies the existence of a multiplicity of payoff-inequivalent PSNE.17

Finally, part (iii) of the proposition says that there is no PSNE whatsoever for

α > α∗∗(n). Given that multilateral peace and one-sided dominance are the only

feasible types of PSNE by Lemma 3(i), this conclusion should be immediate in

view of part (i) and Proposition 1.

4.2 Asymmetric mixed-strategy Nash equilibria

In this subsection, we turn to the analysis of asymmetric MSNE. Thus, we consider

equilibria in which (i) at least one contestant randomizes and (ii) not all contestants

use the same strategy. As discussed, there are no asymmetric MSNE for n = 2.

For n ≥ 3, however, the set of asymmetric equilibria turns out to be quite large.

Proposition 4. (Continuum of payoff-inequivalent MSNE) Suppose there

are n ≥ 3 contestants. Then, at α = α∗(n), there is a continuum of MSNE

in which contestant 1 randomizes, choosing y
(1)
1 = x̃1(α) > 0 with probability

q
(1)
1 ∈ [0, 1], and the zero bid otherwise, while the other (n − 1) contestants all

remain inactive.

Proof. See the Appendix. �

Thus, a continuum of MSNE exists when the parameter α lies precisely at the

threshold value, i.e., when α = α∗(n). On a purely technical level, this possibility

is due to the fact, familiar from the theory of bimatrix games, that the set of

beliefs to which a pure strategy is a best response is convex. However, a similar

multiplicity does not occur in the case of n = 2 contestants. Indeed, one-sided

dominance is not possible with only two players.
17The comparative statics of equilibrium payoffs is intuitive. Indeed, as seen before, the equi-

librium payoff of the dominant contestant, Π∗
1 = Π

N

1 (x̃1(α);α), is strictly increasing in α. On
the other hand, the equilibrium payoff of any subdued contestant j 6= 1 is strictly declining in α,
as may be easily seen by plugging the explicit solution (13) into j’s payoff function.
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Below, we present examples of robust asymmetric MSNE. To keep oversight,

it is useful to recall from Lemma 3(i) that at most one contestant can be always

active. In Example 2 below, two contestants randomize in an identical way, while

a third contestant remains inactive. In Example 3, one contestant is always active,

one contestant randomizes, and all others remain inactive. Finally, in Example 4,

one contestant is always active, while two other contestants randomize identically.

Jointly, these examples illustrate the richness of the set of asymmetric MSNE in

the n-player Hirshleifer contest with n ≥ 3.

Example 2. (Two identically randomizing players and one inactive

player) Let n = 3. Suppose that contestants 1 and 2 use an identical mixed

strategy that selects y(1)1 = y
(1)
2 > 0 with probability q(1)1 = q

(1)
2 ∈ (0, 1) and the

zero bid otherwise, while contestant 3 remains inactive. Then, similar to Example

1, a first-order condition and an indifference relation jointly characterize y(1)1 and

q
(1)
1 . The resulting MSNE exists for α ∈ (4.12, 7.01).18 For smaller values of α,

contestants 1 and 2 would wish to reduce expenses to zero. For larger values of α,

however, both contestants would prefer some bid strictly between y(1)1 and zero.

Example 3. (One always active player, one randomizing player, and

(n − 2) inactive players) Let n ≥ 3 be arbitrary. Suppose that contestant 1

chooses a positive bid y(1)1 > 0 with probability one, while contestant 2 randomizes

between y(1)2 > 0 and the zero bid. Suppose also that contestants 3, . . ., n all remain

inactive. In this case, we have three equilibrium conditions, viz. the respective

first-order conditions for y(1)1 and y(1)2 , and the indifference relation for contestant

2. E.g., for n = 3, the MSNE exists for α ∈ (4.58, 4.66).19 For smaller values of α,

contestant 1 has an incentive to deviate to zero. For larger values of α, however,

18E.g., for α = 4.5, one finds y(1)1 = 0.348 and q(1)1 = 0.36.
19At α = 4.6, for instance, we find y(1)1 = 0.300, y(1)2 = 0.513, and q(1)2 = 0.163.
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contestant 2 would prefer placing all probability weight on the zero bid.

Example 4. (One always active and two identically randomizing players)

Let n = 3. Suppose that contestant 1 plays a pure strategy y
(1)
1 > 0, while

contestants 2 and 3 identically randomize between y(1)2 = y
(1)
3 > 0 and the zero

bid. This MSNE exists for α ∈ (4.66, 4.86). For smaller values of α, contestants 2

and 3 would prefer to become inactive, while for larger values of α, contestant 1

would wish to withdraw.20

5. The case of arbitrarily small noise

In this section, we study the structure of MSNE for both very small and vanishing

noise. We start by characterizing equilibrium bid distributions for α arbitrarily

large but still finite.

Proposition 5. (Arbitrarily small noise) Let ε > 0. Then, for any α suffi -

ciently large, any MSNE µ∗ of the n-player Hirshleifer contest with parameter α

has the following properties:

(i) y(1)i > 1− ε, for at least two contestants i ∈ N ;

(ii) Π∗i < ε, for any i ∈ N ;

(iii) prµ∗i {xi = 0} < ε, for at least two contestants i ∈ N ;21

(iv) either y(1)i > 1− ε or y(1)i < ε, for any i ∈ N .

Proof. See the Appendix.

The proposition characterizes equilibrium strategies and expected payoffs in the

case where the noise in the contest technology becomes arbitrarily small.
20It may be noted that all our examples of asymmetric MSNE are semi-mixed, i.e., at least one

contestant uses a pure strategy. However, it seems that, in the set-up of Example 4, at α = 4.86,
there is an asymmetric equilibrium in which all three contestants randomize.
21We use prµ∗i {xi = 0} to denote the probability that contestant i uses the zero bid when

adhering to the mixed strategy µ∗i .
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Part (i) says that at least two contestants bid arbitrarily close to one. This

cut-throat competition is intuitively necessary because without it, every contestant

could earn a substantial rent by overbidding the entire population. Indeed, this

possibility would be open even to those (n− 1) bidders that occasionally bid zero,

as follows from Lemma 3(i). However, rents from bidding zero are very small for

large α, intuitively because such rents could be easily taken away by any other

contestant that bids zero with positive probability. In fact, as we show more

specifically in the Appendix, for any contestant i ∈ N such that 0 ∈ supp{µ∗i },

the equilibrium payoff satisfies

Π∗i ≤
n

(n− 1)α
. (14)

Next, part (ii) says that any rent is dissipated as α→∞. Given what we have

said above, this claim reduces to showing that even the rent of any always active

contestant goes to zero. Here the argument is that any bidder earning substantial

rents cannot be part of the cut-throat competition, i.e., would not bid arbitrarily

close to the value of the prize. But then, as we show, one of the bidders involved in

the cut-throat competition would find it strictly beneficial to marginally overbid

the always active contestant, which is impossible.

Part (iii) says that, for at least two contestants, the probability of bidding zero

vanishes as α → ∞.22 The argument here is simple and related to one that has

been used above. Specifically, too much weight on the zero bid would allow others

to profitably overbid.

Finally, part (iv) shows that, in the limit, everyone either bids up to one or

becomes ultimately inactive. Like in part (ii), this claim relies on the idea that

one of the contestants bidding nearly up to the value of the prize would prefer

to slightly overbid any contestant whose highest bid lies in the interval [ε, 1 − ε].
22Judging on the basis of the all-pay auction, all of these contestants should bid up to one in

the limit.
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However, compared to the proof of part (ii), the proof of part (iv) requires an

additional argument, as the rent of the lower bidder cannot be assumed to be

substantial.23

Thus, overall, the structure of equilibria in the Hirshleifer contest as α → ∞

is similar to those of the n-bidder all-pay auction with homogeneous valuations.

And indeed, in the Appendix, we outline the proof of the following limit result.

Proposition 6. (Robustness of the APA) Let {αm}∞m=0 be an increasing

and unbounded sequence of parameters in R>0, and let {µm}∞m=0 be a sequence of

mixed-strategy profiles in M , such that µm is a MSNE in the n-player Hirshleifer

contests with parameter αm, for any m ≥ 0. If {µm}∞m=0 converges in distribution

to some limit µ∗ ∈M , then µ∗ is a MSNE of the all-pay auction.

Proof. See the Appendix. �

6. The case of large n

In this section, we change the perspective by letting the number of contestants grow

indefinitely while keeping the decisiveness parameter of the contest technology

fixed.

It turns out that, for any given α > 0, there exists a threshold value n#(α)

for the number of contestants such that, for n ≥ n#(α), multilateral peace is the

unique PSNE. To see this, take any PSNE x∗ = (x∗1, . . . , x
∗
n). Suppose that some

contestant i ∈ N is active, i.e., x∗i > 0. Then, clearly, noting that the prize has

normalized value one, and that inactivity guarantees a positive payoff, it follows

that x∗i < 1. Moreover, from the second-order necessary condition for an interior

23For completeness, we mention that the conclusions become a bit more specific when attention
is restricted to symmetric MSNE. In that case, as easily follows from Proposition 5, all bidders
enter the cut-throat competition, and give less and less weight to the mass point at the zero bid.
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solution to contestant i’s optimization problem,

0 ≥
∂2ΠN,α

i (x∗i , x
∗
−i)

∂x2i
(15)

=
α2X∗i

(∑
j 6=iX

∗
j

)
(∑

j∈N X
∗
j

)3
{
−X∗i +

∑
j 6=i

X∗j

}
(16)

>
α2X∗i

(∑
j 6=iX

∗
j

)
(∑

j∈N X
∗
j

)3 {− exp(α) + n− 1} , (17)

where we used the shorthand notation X∗i = exp(αx∗i ), etc. The point to note

now is that, for n ≥ n#(α) ≡ 1 + exp(α), the term in the curly brackets in (17) is

weakly positive, which is impossible. The contradiction shows that, for n ≥ n#(α),

there is no PSNE other than multilateral peace. Intuitively, as n increases, it gets

harder for a single contestant to keep the dominant position. As the following

result shows, this observation extends to MSNE.

Proposition 7. For any α > 0 and n > n#(α), multilateral peace is the unique

MSNE in the n-player Hirshleifer contest with parameter α.

Proof. See the Appendix. �

7. Concluding remarks

In this paper, we have conducted a thorough examination of the equilibrium set

of the n-player Hirshleifer contest with homogeneous valuations. Both PSNE and

MSNE have been considered.

A PSNE need not exist in general. However, if it exists, then there is either

a unique symmetric PSNE in the form of multilateral peace, or there is a total

of n asymmetric PNSE in the form of one-sided dominance.24 The intuition for

24As discussed, symmetric and asymmetric PSNE coexist in the borderline case where α =
α∗(n) with n ≥ 3.
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this result is as follows. If α is small, then the contest technology is not very

sharp, and incentives to become active are weak. As a result, there is multilateral

peace. However, once α exceeds the threshold value α∗(n), every contestant has

an incentive to become active. Moreover, once a single contestant grasps this

profitable opportunity, the incentives for the other contestants are moderated, so

that they optimally choose to remain inactive. But if α grows further, exceeding

a second threshold value α∗∗(n), then each of those formerly inactive contestants

again has an incentive to overbid the dominant contestant. When this happens, a

bidding war evolves, and the PSNE ceases to exist.

The set of MSNE turned out to be very diverse. The main common elements

are that the respective supports of equilibrium bid distributions are finite, and that

the zero bid is chosen with positive probability by at least (n−1) contestants. We

studied both symmetric and asymmetric MSNE. A symmetric MSNE always ex-

ists. For α < α∗(n), we could even prove that the MSNE is unique and necessarily

degenerate.25 For α ≥ α∗(n), we identified a variety of asymmetric MSNE. In

addition to a continuum of such equilibria in the borderline case α = α∗(n), we

characterized several robust examples of asymmetric payoff-inequivalent MSNE.

Finally, we derived a collection of necessary properties of the equilibrium for the

case of arbitrarily small noise, and showed that sequences of MSNE that corre-

spond to an unbounded sequence of α and that converge in distribution ultimately

approach an equilibrium of the standard all-pay auction.

The unique prediction of peace in the presence of suffi ciently many contestants

raises conceptual issues. It is at odds with anecdotal evidence in a multi-sided

armed conflict (such as the contemporary Syrian civil war, for instance). But the

result is driven by very low returns from military engagement that are predicted

25We conjecture that, more generally, the symmetric MSNE between n ≥ 3 contestants is
unique. This interesting question must be left for future work, however.
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by the Hirshleifer technology when there are many parties involved. We conclude

that, while Hirshleifer’s assumptions have much appeal as a model of military

conflict in the case of two contestants (Hirshleifer, 2000), this may be less so for

contests with many contestants. Therefore, there is a need for alternative contest

technologies that are more suitable as a model of multilateral military conflict.

While we have focused on the Hirshleifer technology, we conjecture that our

main results extend to any analytic contest technology that exhibits increasing

returns against higher bids.26

Appendix. Proofs

This Appendix contains technical proofs omitted from the body of the paper. We

start by introducing some additional notation.

Additional notation used in the proofs. For bids xi ≥ 0 and x−i ∈ Rn−1≥0 , let

pN,αi (xi, x−i) =
exp(αxi)

exp(αxi) +
∑

j 6=i exp(αxj)
(18)

denote contestant i’s probability of winning. Further, for a bid vector x ∈ Rn≥0
entering as an argument of either ΠN,α

i or pN,αi , we will alternatively write x =

(xi, xj, x−i,j), where

x−i,j = (x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xn) ∈ Rn−2≥0 .

Proof of Lemma 1. As discussed, we may assume without loss of generality

that bids are chosen from [0, V ], which is a compact and nonempty subset of

R. Moreover, payoff functions are continuous in pure strategies. Therefore, with
26Maybe surprisingly, analyticity is crucial for our results. Indeed, the n-player serial contest

with increasing returns (Alcalde and Dahm, 2007) is not analytic. Still, that contest is known
to always admit a MSNE in which precisely two of n contestants are active.
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mixed strategies corresponding to probability measures on the Borel subsets of

[0, V ], the existence of a MSNE is immediate from Glicksberg’s (1952) theorem. �

Proof of Lemma 2. For any fixed bid vector x−i ∈ Rn−1≥0 , contestant i’s payoff

ΠN,α
i (xi, x−i) may be written as

fK(xi) =
exp(αxi)

exp(αxi) +K
− xi (xi ∈ R≥0), (19)

whereK =
∑

j 6=i exp(αxj) > 0. Denote the measure of the probability distribution

induced by µ−i on values of K by ν. Then, i’s expected payoffEµ−i [Π
N,α
i (xi, x−i)]

from a pure bid xi ≥ 0 becomes

f(xi) =

∫ (n−1) exp(α)

0

fK(xi)dν(K) (xi ∈ R≥0). (20)

Let C = {ξ + θ
√
−1 : ξ, θ ∈ R} denote the field of complex numbers. Define the

strip S ⊆ C as

S = {ξ + θ
√
−1 : ξ ∈ (−ε,∞), θ ∈ (−ε, ε)} ⊇ R≥0, (21)

where ε > 0 is small. We claim that, for any K > 0, the function (19) admits the

complex-analytic extension

f̃K(zi) =
exp(αzi)

exp(αzi) +K
− zi (zi ∈ S). (22)

Indeed, by Euler’s formula,

exp(αzi) = exp(αxi +
√
−1αyi) (23)

= exp(αxi) exp(
√
−1αyi)) (24)

= exp(αxi)
{

cos(αyi) +
√
−1 sin(αyi)

}
, (25)

so that for any zi ∈ S, the real part of exp(αzi) +K is positive, i.e.,

Re(exp(αzi) +K) = exp(αxi) cos(αyi) +K > 0. (26)
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In particular, the denominator of the ratio in equation (22) does not vanish on S,

which proves the claim. Hence, we may argue as in Ewerhart (2015a) to see that

the integral

f̃(zi) =

∫ (n−1) exp(α)

0

f̃K(zi)dν(K) (zi ∈ S) (27)

is a complex-analytic extension of the expected payoff function (20). As f̃(zi) is

unbounded on S, it is not constant. Hence, the complex-analytic function f̃(zi)

attains the same value over the unit interval only at finitely many points. In

particular, there is only a finite set of solutions of contestant i’s optimization

problem. This proves the first claim. The second claim regarding the finite support

of any optimal mixed strategy is now immediate. �

Proof of Lemma 3. (i) The result is known for n = 2 (Hirshleifer, 1989). Let n ≥

3. To provoke a contradiction, suppose that two contestants i, j ∈ N with i 6= j

are always active. Then, without loss of generality, the lowest bid in contestant i’s

bid distribution, xi = y(i)
Li
, satisfies 0 < xi ≤ y

(j)
Lj
. Hence, pN,αi (xi, x−i) ∈ (0, 1

2
) for

any x−i ∈ supp{µ∗−i}. But then, the second derivative of contestant i’s equilibrium

payoff at x1 satisfies

∂2Eµ∗−i [Π
N,α
i (xi, x−i)]

∂x2i

= α2Eµ∗−i

[
pN,αi (xi, x−i)(1− p

N,α
i (xi, x−i))(1− 2pN,αi (xi, x−i))

]
(28)

> 0, (29)

which shows that xi cannot be an interior maximum. The contradiction proves the

claim. (ii) This follows, similarly, from the second-order condition at any possible

positive bid for contestant j. �

Proof of Proposition 1. (i) Calculating marginal payoff of contestant 1,

∂Π
N

1 (x1;α)

∂x1
=

α(n− 1) exp(αx1)

(exp(αx1) + n− 1)2
− 1, (30)
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it may be seen that Π
N

1 (x1;α) has at most two critical points where its derivative

with respect to x1 vanish. These are characterized by the solutions to

X2
1 + (2− α)(n− 1)X1 + (n− 1)2 = 0, (31)

where X1 = exp(αx1). There is no solution for α < 4, one solution X1 = n − 1

for α = 4, and two solutions for α > 4. In the case α > 4, contestant 1’s payoff

function has a unique local maximum at

x̃1(α) =
1

α
ln

(
n− 1

2

{
α− 2 +

√
α(α− 4)

})
. (32)

The boundary local maximum is globally optimal if and only if Π
N

1 (x̃1(α);α) ≤ 1
n
.

By the envelope theorem,

∂Π
N

1 (x̃1(α);α)

∂α
=

∂

∂α

{
exp(αx1)

exp(αx1) + n− 1
− x1

}∣∣∣∣
x1=x̃1(α)

(33)

=
(n− 1)x̃1(α) exp(αx̃1(α))

α(exp(αx̃1(α)) + n− 1)2
(34)

> 0. (35)

Thus, Π
N

1 (x̃1(α);α) is strictly increasing in α. Next, suppose that α grows above

all bounds. Then,
∂Π

N

1 (0;α)

∂x1
=
α(n− 1)

n2
− 1 (36)

turns positive, so that Π
N

1 (x̃1(α);α) > 1
n
. Thus, there is indeed a unique threshold

value α∗(n) ∈ [4, n2

n−1 ] such that multilateral peace is a PSNE if and only if α ∈

(0, α∗(n)]. This proves the assertion.

(ii) By Lemma 3(i), at least (n− 1) contestants remain inactive in any PSNE.

However, as shown in part (i), for α ≤ α∗(n), the n-th contestant’s best response

is the zero bid. The claim follows. �

The following lemma states properties of the function α∗(n) that have been claimed

without proof in the body of the paper.

25



Lemma A.1 (Properties of α∗(n))

(i) α∗(2) = 4, and α∗(n) ∈ (4, n2

n−1) for any n > 2;

(ii) α∗(n) is strictly increasing in n;

(iii) limn→∞ α
∗(n) =∞.

Proof. (i) As shown in the body of the paper, multilateral peace is a PSNE for

any α ∈ (0, 4]. Hence, α∗(n) ≥ 4 for any n ≥ 2. Conversely, from the KKT

condition in multilateral peace, we have

∂ΠN,α
i (0,0n−1)

∂xi
=
α(n− 1)

n2
− 1 ≤ 0, (37)

so that necessarily α ≤ n2

n−1 . Thus, α
∗(2) = 4. Further, the necessary second-order

condition at α = n2

n−1 reads

∂2ΠN,α
i (0,0n−1)

∂x2i
=
α2(n− 1)(n− 2)

n3
≤ 0, (38)

which is impossible for n > 2. Thus, α∗(n) < n2

n−1 for any n > 2. Further, from

the strict monotonicity of α∗(n) to be shown in part (ii),27 we may conclude that

α∗(n) > 4 for any n > 2. This proves the claim.

(ii) To see that α∗(n) increases in n, we treat n as a continuous variable, and

take the total differential of the indifference relationship pi−xi = 1
n
. This yields

dpi − dxi = −dn
n2
. (39)

However, using the first-order condition αpi(1− pi) = 1, we get

dpi = αpi(1− pi)
{
dxi −

1

α(n− 1)
dn+

xi
α
dα

}
(40)

= dxi −
1

α(n− 1)
dn+

xi
α
dα. (41)

27There is no circularity here because the proof of part (ii) uses only facts from part (i) that
have already been shown.
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Plugging this into (39) and rearranging leads to

dα

dn
=

α2

n2xi
·
(

n2

n− 1
− α

)
︸ ︷︷ ︸
>0 by part (i)

> 0, (42)

for any continuous value n > 2. The claim follows.

(iii) To provoke a contradiction, suppose that the sequence {α∗(n)}∞n=2 is

bounded. Then, the corresponding sequence {x̃i(α∗(n), n)}∞n=2, with x̃i(α, n) de-

fined by

x̃1(α, n) =
1

α
ln

(
n− 1

2

{
α− 2 +

√
α(α− 4)

})
, (43)

is easily seen to be unbounded. However, at α = α∗(n), we have pi−xi = 1
n
, hence,

x̃i(α, n) ≤ 1, a contradiction. �

The following lemma is used in the necessity part of the proof of Proposition 2(i).

Intuitively, the lemma captures the point already mentioned in the body of the

paper that, for α ≤ α∗(n) and n ≥ 3, any Hirshleifer contestant strictly prefers

remaining inactive over using the same bid as a single active opponent.

Lemma A.2 Let n ≥ 3 and α ≤ α∗(n). Then, for any y > 0,

ΠN,α
1 (y, y,0n−2) < ΠN,α

1 (0, y,0n−2) . (44)

Proof. Since α ≤ α∗(n), we know that ΠN,α
1 (0,0n−1) ≥ ΠN,α

1 (y,0n−1), i.e.,

1

n
≥ Y

Y + n− 1
− y, (45)
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where we used the shorthand notation Y = exp(αy). Hence,

ΠN,α
1 (0, y,0n−2)− ΠN,α

1 (y, y,0n−2)

=
1

Y + n− 1
− Y

2Y + n− 2
+ y (46)

≥ 1

Y + n− 1
− Y

2Y + n− 2
+

Y

Y + n− 1
− 1

n
(47)

=
(n− 2) (Y − 1)2

n (Y + n− 1) (2Y + n− 2)
(48)

> 0. (49)

This proves the claim. �

Proof of Proposition 2. (i) (Suffi ciency) Suppose that α > α∗(n). In analogy

to the proof of Lemma 1, replacing Glicksberg’s theorem by Becker and Damianov

(2006, Th. 1), there exists a symmetric MSNE. This equilibrium cannot be a PSNE

by Proposition 1(i). Hence, L ≥ 2, as claimed. (Necessity) For n = 2, the proof

follows from the uniqueness result in Ewerhart and Sun (2018). Suppose, therefore,

that n ≥ 3. Take a symmetric MSNE µ∗ with support

0 = y(L) < y(L−1) < . . . < y(1), (50)

with L ≥ 2. To provoke a contradiction, suppose that α ≤ α∗(n). Focus on the

smallest positive bid, y(L−1) > 0. By the discussion preceding the statement of

Proposition 1,

ΠN,α
1 (y(L−1),0n−1) ≤ ΠN,α

1 (0,0n−1) . (51)

Next, let x+−1 = (y(L−1),0n−2) be such that contestant 2 bids y(L−1) and contestants

3, . . ., n all bid zero. As, for any i 6= 1, expenses x1 and xi are strategic substitutes

with respect to ΠN,α
1 (x1, . . . , xn) as long as exp(αx1) ≤

∑
j 6=1 expαxj, we have

ΠN,α
1 (yL−1, x−1)− ΠN,α

1 (0, x−1) ≤ ΠN,α
1

(
yL−1, x

+
−1
)
− ΠN,α

1

(
0, x+−1

)
, (52)
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for any profile x−1 6= 0n−1 in the support of µ∗−1. By Lemma A.2,

ΠN,α
1

(
yL−1, x

+
−1
)
− ΠN,α

1

(
0, x+−1

)
< 0. (53)

Hence, bidding y(L) = 0 strictly dominates bidding y(L−1) > 0, a contradiction.

(ii) Take a symmetric MSNE µ∗ in the n-player Hirshleifer contest with para-

meter α. By Lemma 2, there exist bid levels y(1) > . . . > y(L) ≥ 0, for some L ≥ 1,

with corresponding probabilities q(1), . . . , q(L) ∈ [0, 1], such that each contestant

i ∈ N chooses y(l) with probability q(l), for any l ∈ {1, . . ., L}. Fix l ∈ {1, . . ., L}.

By the KKT condition at the optimum x1 = y(l), we get for contestant 1 that

1 ≥
∂Eµ∗−1 [p

N,α
1 (x1, x−1)]

∂x1
(54)

= αEµ∗−1 [p
N,α
1 (x1, x−1)(1− pN,α1 (x1, x−1))] (55)

= α
L∑

l2=1

. . .
L∑

ln=1(∏n
i=2 q

(li)
)
pN,α1 (x1, y

(l2), . . . , y(ln))(1− pN,α1 (x1, y
(l2), . . . , y(ln))) (56)

≥ α
(
q(l)
)n−1 1

n

(
1− 1

n

)
. (57)

where the inequality in (57) is obtained by dropping all terms corresponding to

scenarios in which at least two contestants use different bid levels. Rewriting yields

q(l) ≤
(

n2

α(n− 1)

) 1
n−1

, (58)

for any l ∈ {1, . . ., L}. Since q(l) + . . .+ q(L) = 1, this implies

L ≥
(

(n− 1)α

n2

) 1
n−1

, (59)

as claimed. �

Proof of Proposition 3. (i) Suppose first that α < α∗(n). In this case, we

have shown in the proof of Proposition 1 that contestant i’s unique pure best
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response to x−i = 0n−1 is the zero bid xi = 0. Thus, one-sided dominance is not a

PSNE for α < α∗(n). Suppose next that α ≥ α∗(n). Then, again by the proof of

Proposition 1, Π
N

1 (x̃1(α);α) ≥ Π
N

1 (x1;α) for any x1 ≥ 0. Thus, contestant 1 has

no incentive to deviate from x∗1 = x̃1(α) if all other contestants remain inactive.

To understand the incentives to deviate for any inactive contestant j ∈ {2, . . . , n},

say for contestant 2, we consider the payoff function

Π
N

2 (x2;α) =
X2

X∗1 +X2 + n− 2
− x2, (60)

where X∗1 = exp(αx̃1(α)) and X2 = exp(αx2). In analogy to the discussion of

symmetric PSNE, an examination of the derivative with respect to x2 shows that

Π
N

2 (·;α) is strictly declining for α ≤ 4. Moreover, for α > 4, solving the necessary

first-order condition
αX2 (X∗1 + n− 2)

(X∗1 +X2 + n− 2)2
= 1 (61)

for x2 shows that there is a unique interior maximum at x∗2 = x̃2(α), where28

x̃2(α) =
1

α
ln

(
n− 2 +X∗1

2

{
α− 2 +

√
α(α− 4)

})
. (62)

This equation implies x̃2(α) > x̃1(α). Thus, as informally discussed in the body

of the paper, for α > α∗(n), contestant 2 would deviate from one-sided dominance

by overbidding contestant 1. Moreover, using the envelope theorem,

∂Π
N

2 (x̃2(α);α)

∂α
=

x̃2(α)X̃2(X
∗
1 + n− 2)

(X∗1 + X̃2 + n− 2)2
− x̃1(α)X∗1X̃2(

X∗1 + X̃2 + n− 2
)2 (63)

=
X̃2 (x̃2(α)(n− 2) + (x̃2(α)− x̃1(α))X∗1 )

(X∗1 + X̃2 + n− 2)2
> 0, (64)

where X̃2 = exp(αx̃2(α)). On the other hand,

∂Π
N

2 (0;α)

∂α
= − x̃1(α)X∗1

(X∗1 + n− 1)2
< 0. (65)

28Again, we suppress the dependence on n in the notation.
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Hence, the payoff difference Π
N

2 (x̃2(α);α) − Π
N

2 (0;α) is strictly increasing in α.

Moreover, for obvious economic reasons, limα→∞Π
N

2 (x̃2(α);α) = 1. Thus, there is

a unique threshold value α∗∗(n) such that

Π
N

2 (x̃2(α
∗∗(n));α∗∗(n)) = Π

N

2 (0;α∗∗(n)). (66)

Finally, we claim that α∗∗(n) > α∗(n). For this, given what we have already shown,

it suffi ces to prove that

α = α∗(n)⇒ Π
N

2 (x̃2(α);α)− Π
N

2 (0;α) < 0. (67)

So assume for the moment that α = α∗(n). Comparing (13) with (62), one obtains

X2 = X∗1 ·
n− 2 +X∗1
n− 1

, (68)

and hence,
X2

X∗1 +X2 + n− 2
− 1

X∗1 + n− 1
=

X∗1 − 1

X∗1 + n− 1
. (69)

Moreover, rewriting in the indifference relationship at α = α∗(n),

X∗1
X∗1 + n− 1

− x̃1(α) =
1

n
, (70)

yields
X∗1 − 1

X∗1 + n− 1
=

n

n− 1
x̃1(α). (71)

Therefore, at α = α∗(n),

Π
N

2 (x̃2(α);α)− Π
N

2 (0;α) =
X2

X∗1 +X2 + n− 2
− 1

X∗1 + n− 1
− x̃2(α) (72)

=
n

n− 1
x̃1(α)− x̃2(α) (73)

=
1

α
ln

(
n− 1

n− 2 +X∗1
(X∗1 )

1
n−1

)
. (74)

The right-hand side of equation (74) is negative since

(X∗1 )
1

n−1 <
n− 2 +X∗1
n− 1

, (75)
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which is implied by the strict inequality between the geometric and the arithmetic

mean as X∗1 > 1. The claim follows. �
(ii) The uniqueness of the optimal dominating bid for α > α∗(n) has been shown

in Section 2. For α = α∗(n), the unique interior optimum is payoff-equivalent to

the zero bid. Notwithstanding, the dominating bid is unique.

(iii) This is immediate from Lemma 3(i). �

Proof of Proposition 4. Consider a MSNE candidate with q(1)1 ∈ [0, 1]. From

Propositions 1 and 3, this is actually a PSNE for q(1)1 ∈ {0, 1}. Thus, contestant 1

is indifferent between the two best responses x1 = x∗1 and x1 = 0. It remains to be

shown that contestant j > 1 has no incentive to deviate. The equilibrium payoff

of an inactive contestant j > 1 is

Π∗j = q
(1)
1

1

exp(αx∗1) + n− 1
+ q

(1)
2

1

n
. (76)

A deviation to some positive bid level xj > 0 yields

Πj(xj) = q
(1)
1

(
exp(αxj)

exp(αx∗1) + exp(αxj) + n− 2
− xj

)
(77)

+q
(1)
2

(
exp(αxj)

exp(αxj) + n− 1
− xj

)
.

From the PSNE property of one-sided dominance, we get

exp(αxj)

exp(αx∗1) + exp(αxj) + n− 2
− xj ≤

1

exp(αx∗1) + n− 1
. (78)

Similarly, since multilateral peace is a PSNE property, we know that

exp(αxj)

exp(αxj) + n− 1
− xj ≤

1

n
. (79)

Therefore, Πj(xj) ≤ Π∗2, as claimed. �

The following Lemmas A.3 through A.7 all prepare the proof of Proposition 5.

Lemma A.3 derives an upper bound on the equilibrium payoff for any contestant
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that uses the zero bid in equilibrium. This lemma will be used in the proof of

Lemma A.4 below.

Lemma A.3 Let µ∗ be a MSNE in the n-player Hirshleifer contest with parameter

α, and let i ∈ N be such that 0 ∈ supp{µ∗i }. Then, Π∗i <
n

(n−1)α .

Proof. Suppose that the zero bid is contained in the support of contestant i’s

equilibrium strategy µ∗i . Then, as p
N,α
i (0, x−i) ≤ 1

n
for any x−i ∈ Rn−1≥0 , we see that

Π∗i = Eµ∗−i [p
N,α
i (0, x−i)] (80)

≤ n

n− 1
Eµ∗−i [p

N,α
i (0, x−i)(1− pN,αi (0, x−i))] (81)

=
n

α(n− 1)
Eµ∗−i

[
∂pN,αi (0, x−i)

∂xi

]
. (82)

However, from the KKT condition at zero,

Eµ∗−i

[
∂pN,αi (0, x−i)

∂xi

]
≤ 1. (83)

It follows that Π∗i ≤ n
α(n−1) , as claimed. �

The next lemma is an existence result identifying, for α suffi ciently large, a contes-

tant bidding arbitrarily close to the value of the prize. The lemma is the basis for

the proof of Proposition 5(i), i.e., for the fact that at least two contestants engage

in cut-throat competition for α suffi ciently large.

Lemma A.4 Let b ∈ [0, 1). Then, for α suffi ciently large, there exists a contestant

i ∈ N such that in any MSNE µ∗ of the n-player Hirshleifer contest with parameter

α,

Fi(b) ≤
(
b+ 2

3

) 1
n−1

. (84)

Proof. Suppose the claim does not hold. Then, for any i ∈ N , and for an

unbounded and increasing sequence of α, there exists a MSNE such that∏
j 6=i Fj(b) >

b+ 2

3
. (85)
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By bidding xi = b+1
2
, contestant i wins with a probability arbitrarily close to∏

j 6=i Fj(b), and therefore has a payoff approaching at least
b+2
3
− b+1

2
= 1−b

6
> 0.

But this is impossible in view of Lemma 3(i) and Lemma A.3. �

The next two lemmas, Lemma A.5 and A.6, each capture the intuition that, as the

contest becomes increasingly decisive, a contestant’s probability of winning does

not depend on bids that are substantially lower. Lemma A.5 enters the proof of

Lemma A.6, while Lemma A.6 is used in the proof of Proposition 5(ii) to derive

the fact that all rents get dissipated for α suffi ciently large.

Lemma A.5 Let i ∈ N , δ > 0, and ε > 0. Then, for α large enough,

pN,αi (xi + ε, 0, x−i,j)− pN,αi (xi + ε, xi, x−i,j) ≤ δ, (86)

holds for any xi ≥ 0 and x−i,j ∈ Rn−2≥0 .

Proof. Writing X−i,j =
∑

k 6=i,j exp(αxk), we see that

pN,αi (xi + ε, 0, x−i,j)− pN,αi (xi + ε, xi, x−i,j)

=
exp(α(xi + ε))

exp(α(xi + ε)) + 1 +X−i,j
− exp(α(xi + ε))

exp(α(xi + ε)) + exp(αxi) +X−i,j
(87)

=
exp(α(xi + ε))(exp(αxi)− 1)

(exp(α(xi + ε)) + 1 +X−i,j) (exp(α(xi + ε)) + exp(αxi) +X−i,j)
(88)

≤ exp(αxi)− 1

exp(α(xi + ε))
(89)

≤ exp(−αε). (90)

This proves the claim. �

Lemma A.6 Let δ > 0. Then, for α large enough, in any MSNE µ∗ of the

n-player Hirshleifer contest with parameter α, we have

pN,αi (y
(1)
j + δ, xj, x−i,j) ≥ pN,αj (y

(1)
j , xi, x−i,j)− δ (91)

(xj ∈ supp{µ∗j}, xi ∈ supp{µ∗i }, x−i,j ∈ Rn−2≥0 ).
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Proof. There are two cases. If xi > y
(1)
j , then even

pN,αi (y
(1)
j + δ, xj, x−i,j) ≥ pN,αj (y

(1)
j + δ, xi, x−i,j) (92)

≥ pN,αj (y
(1)
j , xi, x−i,j). (93)

If, however, xi ≤ y
(1)
j , then by Lemma A.5, for α large enough,

pN,αi (y
(1)
j + δ, xj, x−i,j) ≥ pN,αj (y

(1)
j + δ, xi, x−i,j)− δ (94)

≥ pN,αj (y
(1)
j , xi, x−i,j)− δ. (95)

This proves (91). �

The next and final auxiliary lemma puts a lower bound on the probability that no

opponent of some contestant j bids substantially above a bid level used by j with

positive probability. Lemma A.7 may be seen as a counterpart of Lemma A.4 for

low bids. It entails an important additional argument that is needed to show the

bidding dichotomy captured by Proposition 5(iv), i.e., that for α large, bidders

either enter the cut-throat competition or ultimately become inactive.

Lemma A.7 Let j ∈ N , ε > 0, and δ > 0. Then, for α large enough, we have

for any MSNE µ∗ in the n-player Hirshleifer contest with parameter α that

∏
k∈N\{j} Fk(xj + δ) >

ε

2
, (96)

for any xj ∈ supp{µ∗j} such that xj ≥ ε.

Proof. Clearly, contestant j may ensure herself a positive payoff by bidding zero.

Hence, Π∗j > 0. Furthermore, as xj ∈ supp{µ∗j}, we get

Eµ∗−j [pj(xj, x−j)] > xj ≥ ε. (97)
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Note that Qj =
∏

k∈N\{i} Fk(xj + δ) is the probability that all opponents of con-

testant i bid at most xj + δ. Hence,

Eµ∗−j [pj(xj, x−j)] = Eµ∗−j

[
exp(αxj)

exp(αxj) +
∑

k 6=j exp(αxk)

]
(98)

≤ Qj · 1 + (1−Qj) exp(−αδ) (99)

≤ Qj + exp(−αδ). (100)

Choosing now α such that exp(−αδ) ≤ ε
2
proves the claim. �

Proof of Proposition 5. (i) By Lemma A.4, for any α suffi ciently large, and

any MSNE µ∗ in the n-player Hirshleifer contest with parameter α, there exists

a contestant i ≡ i(α, µ∗) ∈ N such that, y(1)i ≥ 1 − ε
2
. We claim that, possibly

after raising α even further, there always exists another contestant j ≡ j(α, µ∗) ∈

N\{i(α, µ∗)} such that y(1)j > 1 − ε. Suppose not. Then, y(1)j ≤ 1 − ε for any

j ∈ N\{i}. But then, by the optimality condition for contestant i’s bid xi = y
(1)
i ,

0 =
∂

∂xi
Eµ∗−i [Π

N,α
i (xi, x−i)] (101)

= αEµ∗−i [p
N,α
i (xi, x−i)(1−pN,αi (xi, x−i))]− 1 (102)

≤ αEµ∗−i [1− p
N,α
i (xi, x−i)]− 1 (103)

≤ α (n− 1)

exp(αε/2) + (n− 1)
− 1. (104)

As the right-hand side of inequality (104) turns negative for large α, we arrive at

the desired contradiction. The claim follows.

(ii) The idea of the following argument is adapted from Baye et al. (1990). As

above, let i ≡ i(α, µ∗) ∈ N such that y(1)i ≥ 1 − ε
2
. Clearly, this implies Π∗i <

ε
2
.

We claim that, possibly after raising α even further, Π∗j < ε for any j ∈ N\{i}.

Suppose not. Then, Π∗j ≥ ε for some j ∈ N\{i}. In particular, y(1)j < 1 − ε.

Suppose that contestant i overbids j using the bid y(1)j + δ, where δ > 0 is small.
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Then, from Lemma A.6, taking expectations over µ∗, we see that

Eµ∗−i [p
N,α
i (y

(1)
j + δ, xj, x−i,j)] ≥ Eµ∗−j [p

N,α
j (y

(1)
j , xi, x−i,j)]− δ, (105)

resulting in
ε

2
> Π∗i ≥ Π∗j − 2δ ≥ ε− 2δ. (106)

However, for δ ≤ ε/4, this is impossible. The claim follows.

(iii) By contradiction. Suppose that there is ε > 0 and a contestant i ∈ N such

that for any j 6= i, the probability for j being inactive weakly exceeds ε. Then, by

bidding slightly above zero, contestant i could guarantee a positive rent even as

α→∞, which is impossible. The claim follows.

(iv) The argument is a refinement of the proof of part (ii). To provoke a

contradiction, suppose that y(1)j ∈ [ε, 1 − ε] for some contestant j ∈ N . Then, in

particular, y(1)j + ε
2
≤ 1 − ε

2
. By Lemma A.4, for α large enough, there is some

contestant i ∈ N such that

Fi(y
(1)
j +

ε

2
) ≤ Fi(1−

ε

2
) ≤

(
1− ε

6

) 1
n−1

. (107)

Using Bernoulli’s inequality, this delivers

1− Fi(y(1)j +
ε

2
) ≥ ε

6(n− 1)
. (108)

Let δ ∈ (0, ε
2
) be small. Then, from Lemma A.7, for α large enough,

∏
k∈N\{j} Fk(y

(1)
j + δ) >

ε

2
. (109)

Note that i 6= j and Fi ≤ 1, Hence, inequality (109) implies

∏
k∈N\{i,j} Fk(y

(1)
j + δ) >

ε

2
. (110)

Thus, combining (108) with (110), we obtain(
1− Fi(y(1)j + δ)

)
·
∏

k∈N\{i,j} Fk(y
(1)
j + δ) >

ε2

12(n− 1)
≡ ε̂. (111)
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Note that, even though ε̂ may be very small, it is positive and exogenous (i.e., it

does not depend on α nor on δ). We wish to show that contestant i may win with

a substantially higher probability by overbidding contestant j by the arbitrarily

small increment δ. Suppose that xk ≤ y
(1)
j for all k ∈ N\{i, j}. Then

pN,αi (y
(1)
j + δ, xj, x−i,j) ≥

1

1 + (n− 1) exp(−αδ) . (112)

Suppose also that xi ≥ y
(1)
j + δ. Then,

pN,αj (y
(1)
j , xi, x−i,j) ≤ exp(−αδ). (113)

Thus, in this case, for α large enough,

pN,αi (y
(1)
j + δ, xj, x−i,j) ≥ pN,αj (y

(1)
j , xi, x−i,j) +

1

2
. (114)

As shown above, this case happens with probability ε̂. Therefore, using Lemma

A.6, taking expectations over µ∗, we find

Eµ∗−i [p
N,α
i (y

(1)
j + δ, xj, x−i,j)] ≥ Eµ∗−j [p

N,α
j (y

(1)
i , xi, x−i,j)]− δ +

ε̂

2
. (115)

Thus, by bidding y(1)j + δ, contestant i achieves a payoff in excess of ε̂
4
, for any

suffi ciently large α, in conflict with part (ii). This proves the last claim and, hence,

the proposition. �

Proof of Proposition 6 (Sketch). For any m ≥ 0 and i ∈ N , we denote by

Fm
i the cumulative distribution function of contestant i’s mixed strategy µmi in the

MSNE µm of the n-player Hirshleifer contest with parameter αm. Clearly, each

contestant can ensure a positive expected payoff by bidding zero. Hence, for ε

small enough,

∏
j 6=i F

m
j (xi − ε)− xi ≥ 0 (xi ∈ supp{µmi }). (116)
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As there cannot be any mass points in the interior of [0, 1] in the limit, this implies∏
j 6=i F

m
j (xi)− xi ≥ ε (xi ∈ supp{µmi }). (117)

On the other hand, as all rents are dissipated in the limit,∏
j 6=i F

m
j (xi)− xi ≤ ε (xi ∈ [0, 1]). (118)

Letting m go to infinity yields∏
j 6=i Fj(xi)− xi = 0 (xi ∈ supp µ∗i ), (119)

where Fj denotes the cumulative distribution function of contest j’s limit strategy

µ∗j . Thus, the limit µ
∗ is indeed a MSNE of the all-pay auction. �

Proof of Proposition 7. Assume that n > n#(α) = exp(α) + 1. Take a MSNE

µ∗ in the n-player Hirshleifer contest with parameter α, and let xi ∈ supp{µ∗i }

with i ∈ N . Then, using xi ≤ 1,

0 < pN,αi ≡ pN,αi (xi, x−i) ≤
exp(αxi)

exp(αxi) + n− 1
<

1

2
, (120)

for any x−i ∈ supp{µ∗−i}. Hence, as in the proof of Lemma 3(i),

∂2Eµ∗−i [Π
N,α
i (xi, x−i)]

∂x2i
= α2Eµ∗−i

[
pN,αi (1− pN,αi )(1− 2pN,αi )

]
> 0, (121)

i.e., the second derivative of i’s equilibrium payoff function is strictly positive at

xi. As this implies xi = 0, the claim follows. �
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