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Abstract

�is paper describes a moments estimator for a standard state-space model

with coefficients generated by a random walk. A penalized least squares

estimation is linked to the GLS (Aitken) estimates of the corresponding

linear model with time-invariant parameters. �e VC estimates are moments

estimates. �ey do not require the disturbances to be Gaussian, but if they are,

the estimates are asymptotically equivalent to maximum likelihood estimates.

In contrast to Kalman filtering, no specification of an initial state or an initial

covariance matrix is required. While the Kalman filter is one sided, the VC

filter is two sided and therefore uses more of the available information for

estimating intermediate states.. Further, the VC filter has a clear descriptive

interpretation.
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1 Introduction

�is paper describes and discusses an estimator for a linear time series model

with time-varying coefficients. Such a model, the variable coefficients model, or

“VC model” for short, generalizes the standard linear model. �e standard model

assumes that the coefficients giving the influence of the independent variables on

the dependent variable remain constant. In the VC model, these coefficients are

permitted to change over time.

�eVCmodel has been initially proposed for dealing empirically with economic

theories that are subject to a ceteris paribus clause (Schlicht, 1977, ch.4). Schlicht

(1989) has proposed an estimation method – the VC method – which has been

embodied in some freely available so�ware packages (Schlicht 2005b, 2005c

Ludsteck 2004; 2018). Some simulations in Schlicht and Ludsteck (2006) have

shown that the VC is preferable for studying the specific class of models for which

it was designed.

In the meanwhile, VC has found a number of applications in various settings,

mainly dealing with structural change, such as the recent decoupling of growth and

pollution in the wake of global warming, the changes occurring in financial markets

a�er the financial crisis of 2008, dri�s in Okun’s Law over time, and more. �e

references to contributions that have employed VC given at the end of the paper list

some of these studies.

�e paper is divided in two parts. In the first part the VC method is described,

and in the second part, some points regarding the application of the VC method

and some methodological issues are discussed.

Part I

The VCMethod

�e following sections introduce the model and describe the “criteria” or

“penalty” approach that permits to estimate the time-paths of the coefficients in a
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purely descriptive way (Sections 2 to 4). Based on that, a moments estimator will

be proposed (Sections 5 to 8). If it is assumed additionally that the disturbances

are normally distributed, a maximum likelihood estimator can be given (Sections 9

and 10). It is shown that this estimator coincides with the moments estimator for

sufficiently long time series (Section 11).

2 �e Linear �eoretical Model and its Empirical

Application

Consider a theory stating that the dependent variable y as a linear function of some

independent variables x1, x2, ... , xn:

y = a1x1 + a2x2 + ... + anxn (2.1)

�e coefficients a1, a2, ... , an give the influence of the independent variables.

If we have T observations yt , x1,t , x2,t ,. . .xn,t with t = 1, 2, ... T denoting the time

of an observation, we can try to estimate the theoretical coefficients a1, a2, ... , an

by a standard linear regression. In order to do that, we have to add an error term

ut to capture discrepancies of the empirical from the theoretical regularity due to

measurement errors etc. and obtain

yt = a1x1,t + a2x2,t + ... + anxn,t + ut , t = 1, 2, ...T . (2.2)

It appears, however, improbable, that outside influences not captured in the

theoretical model (and theoretically held constant under a ceteris paribus clause)

affect only the disturbance term, and not the coefficients themselves – think of

changes in technology, preferences, market structure, and the composition of

aggregates over time. �ese outside influences may affect the coefficients themselves,

and they might change over time.

�e problem of possibly time-varying coefficients was the subject of the famous
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Keynes-Tinbergen controversy around 1940.1 While Tinbergen (1940, p. 153)

defended the use of regression analysis with the argument that in “many cases

only small changes in structure will occur in the near future”, Keynes (1973, p. 294)

objected that “the method requires not too short a series whereas it is only in a short

series, in most cases, that there is a reasonable expectation that the coefficients will

be fairly constant.”

It appears that both arguments are correct. �e VC model takes care of both

by assuming that the coefficients change only slowly over time: �ey are highly

auto-correlated. �is is formalized by a random walk (Cooley and Prescott 1973,

Schlicht 1973, Athans 1974). If ai ,t denotes the state of coefficient ai at time t, it is

assumed that

ai ,t+1 = ai ,t + vi ,t (2.3)

with the disturbance term vi ,t of expectation zero and with variance σ2
i . �e

assumption of expectation zero formalizes the idea that “the coefficients will be

fairly constant” in the short run, while the variance σ 2
i is a measure of the stability

of coefficient i and is to be estimated. For σ2
i = 0 for some i , the case of a constant

(time-invariant) coefficients is covered as well. As a consequence, the standard

linear model is replaced by

yt = a1,tx1,t + a2,tx2,t + ... + an,txn,t + ut

E {ut} = 0, E {u2
t} = σ 2 (2.4)

ai ,t+1 = ai ,t + vi ,t ,
E {vi ,t} = 0, E {v2i ,t} = σ 2

i (2.5)

�e VC method estimates the expected time-paths of the coefficients. It can be

viewed as a straightforward generalization of the method of least squares:

● While the method of ordinary least squares selects estimates that minimize

the sum of squared disturbances ∑T
t=1 u

2
t in the equation, VC selects

1See Tinbergen (1940), Keynes (1939), Keynes (1973, pp. 285–321).
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estimates that minimize the sum of squared disturbances in the equation

and a weighted sum of squared disturbances in the coefficients ∑T
t=1 u

2
t +

γ1∑T
t=2 v

2
1,t +γ2∑T

t=2 v
2
2,t + ... +γn∑T

t=2 v
2
n,t , where the weights for the changes

in the coefficients γ1, γ2, ... , γn are determined by the inverse variance ratios,

i.e. γi = σ 2/σ 2
i . In other words, it balances the desiderata of a good fit and

parameter stability over time.

● Estimation can proceed by focusing on some selected coefficients and

keeping the remaining coefficients constant over time. �is is done by

keeping the corresponding variances σ2
i close to zero, rather than estimating

them. (If all coefficients are frozen in this manner, the OLS result is

obtained.)

● �e time-averages of the regression coefficients are GLS estimates of the

corresponding regression with fixed coefficients, i.e. 1
T ∑t at = aGLS .

● �e VC method does not require initial values for the initial state and the

initial variances. Rather all states and variances are estimated in an integrated

unified procedure. �is is an advantage over Kalman filtering and of some

importance for shorter time series.

● All estimates are moments estimates. It is not necessary to presuppose

Gaussian disturbances.

● For increasing sample sizes T and under the assumption that all disturbances

are normally distributed, the moments estimates approach the maximum

likelihood estimates.

3 Notation and Basic Assumptions

All vectors are conceived as column vectors, and their transposes are indicated

by an apostrophe. �e observations at time t are x′t =(x1,t , x2,t , ..., xn,t) and yt for
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t = 1, 2, .. , T . We write

y =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2

.

.

yT

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x′1
x′2
.

.

x′T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x′1 0

x′2
.

.

0 x′T

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
order T T × n T × Tn

at =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,t

a2,t

.

.

an,t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, a =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

a2

.

.

aT

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, vt =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1,t

v2,t

.

.

vn,t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, v =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1

v2

v3

.

.

vT−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
order n Tn n (T − 1) n

We write further

Σ = diag

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2
1

σ2
2

.

.

σ2
n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ2
1 0 0

0 σ2
2

.

. 0

0 0 σ 2
n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
order n n × n

and define

6



p =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0

0 −1 1 0

. .

. . 0

0 0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, P = p⊗ In =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−In In 0

−In In

. .

. .

0 −In In

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
order (T − 1) × T (T − 1) n × Tn

with In denoting the identity matrix of order n.

�e model is obtained by writing equations (2.4) and (2.5) in matrix form:

�e model

y = Xa + u, E {u} = 0, E {uu′} = σ2IT (3.1)

Pa = v , E {v} = 0, E {vv′} = V = IT−1 ⊗ Σ (3.2)

Note that the explanatory variables X are taken as predetermined, rather than

stochastic.

Regarding the observations X and y we assume that a perfect fit of the model to

the data is not possible:

�is assumption rules out the (trivial) case that the standard linear model (2.2) fits

the empirical data perfectly, a case that cannot reasonably be expected to occur

in practical applications. Further, the assumption implies that the number of

observations exceeds the number of coefficients to be estimated:

T > n. (3.3)

Assumption (“No Perfect Fit”).

Pa = 0 implies y ≠ Xa. (3.4)
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4 Least Squares

In a descriptive spirit, the time-paths of the coefficients can be determined by

following the penalized least square approach, where some criteria are employed

that formalize some descriptive desiderata.2 In the case at hand, the desiderata are

that the model fits the data well and that the coefficients change only slowly over

time – u and v ought to be as small as possible. �e sum of the squared errors u′u

is taken as a criterion for the goodness of fit of equation (3.1), the weighted sum of

the squared changes of the coefficients v′ivi over time give criteria for the stability

of the coefficients over time. �e combination of all these criteria gives an overall

criterion that combines the desiderata of a good fit and stability of coefficients over

time. �e weights (γ1, γ2, .. , γn) give the relative importance of the stability of the

coefficients over time, where weight γi relates to coefficient ai . For the time being,

these weights are taken as given but will later be estimated, too.

Write

Γ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1 0 . 0

0 γ2 0 .

. 0 . .

. . 0

0 0 γn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.1)

and

G = IT−1 ⊗ Γ. (4.2)

Adding the sum of squares u′u and the weighted sum of squares v′Gv gives the

overall criterion

Q = u′u + v′Gv (4.3)

2For the penalized least squares approach, see Green and Silverman (2000). �e approach was
introduced byWhittaker (1923), Henderson (1924) and Leser (1961). It has been used also by Hodrick
and Prescott (1997), and has been further developed by Leser (1963), Schlicht (1981), Schlicht and
Pauly (1983), Schlicht (1984) and Schlicht (2005a).
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�is expression is to be minimized under the constraints given by the model (3.1),

(3.2) with the observations X and y

u = y − Xa (4.4)

v = Pa. (4.5)

�is determines the time-paths of the coefficients a that optimize this criterion.

Hence we can write

Q = (y − Xa)′ (y − Xa) + a′P′GPa (4.6)

�e weighted sum of squares Q is the sum of two positive semi-definite quadratic

forms. �e “no perfect fit” assumption (3.4) rules out the case that Q can be

zero. Hence Q is positive definite and of full rank. �e first order condition for a

minimizing a is

∂Q

∂a
= −2Xy + 2 (X′X + P′GP) a = 0 (4.7)

and the second order condition is that the Jacobian

∂2Q

∂a∂a′
= 2 (X′X + P′GP) (4.8)

be positive definite, which is the case. Solving (4.7) for a and plugging this into

(4.4) and (4.5) gives the estimates

aLS = (X′X + P′GP)−1 X′y (4.9)

uLS = (IT − X (X′X + P′GP)−1 X′) y (4.10)

vLS = P (X′X + P′GP)−1 X′y (4.11)

where the subscript LS stands for “least squares”.
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5 Orthogonal Parametrization

For purposes of estimation we need a model that explains the observation y as

a function of the observations X and the random variables u and v. �is would

permit calculating the probability distribution of the observations y contingent on

the parameters of the distributions of u and v, viz. σ2 and Σ. �e true model does

not permit such an inference, though, because the matrix P is of rank (T − 1) n
rather than of rank Tn and cannot be inverted. Hence v does not determine a

unique a but rather the set of solutions

A ∶= {a = P̃v + Zβ∣ β ∈ Rn} . (5.1)

with β as a shi� parameter and

P̃ ∶= P′ (PP′)−1 (5.2)

of order Tn × (T − 1) n as the right-hand pseudo-inverse of P. For any v we have

a ∈ A⇔ Pa = v. Hence equation (3.1) and the set (5.1) give equivalent descriptions

of the relationship between a and v.

Define further the Tn × n matrix

Z ∶=
⎛⎜⎜⎜⎜⎜⎝

In

In

.

In

⎞⎟⎟⎟⎟⎟⎠
. (5.3)

It is orthogonal to P:

PZ = 0

and the square matrix (P′, Z) is of full rank. Note further that
Z′Z = T ⋅ In , P′ (PP′)−1 P + ZZ′ = ITn . (5.4)
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�e last equality is implied by the identity

( P′ Z )⎛⎝
⎛
⎝

P

Z′
⎞
⎠( P′ Z )⎞⎠

−1 ⎛
⎝

P

Z′
⎞
⎠ = ITn .

Regarding the matrices P, P̃, and Z we have

PP̃ = P̃′P′ = I(T−1)n

P̃P = P′P̃′ = ITn − ZZ′
Z′P̃ = P̃′Z = 0.

(5.5)

In view of (5.1), any solution a to Pa = v can be written as

a = P̃v + Z β (5.6)

for some β ∈ Rn. Equation (3.1) can be re-written as

y = u + XP̃v + XZβ. (5.7)

�e model (5.6), (5.7) will be referred to as the equivalent orthogonally

parameterized model. It implies the true model (3.1), (3.2). It implies, in particular,

that at is a random walk even though at depends, according to (5.6), on past and

future realizations of vt .

�e formal parameter β has a straightforward interpretation. Pre-multiplying

(5.6) by Z′ gives

Z′a = Z′Zβ = Tβ
and therefore

β = 1

T

T∑
t=1

at .

Hence β gives the averages of the coefficients ai ,t over time.
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Equation (5.7) permits calculating the density of y dependent upon the

parameters of the distributions of u and v and the formal parameters β. In a second

step, all these parameters – σ2, Σ, and β – can be determined bymoments estimators

that will be derived in Section 8.

�e orthogonal parametrization, proposed in Schlicht (1985, Sec. 4.3.3), entails

some advantages with respect to symmetry and mathematical transparency, as

compared to more usual procedures, such as parametrization by initial values. It

permits to derive our moments estimator that does not require normally distributed

disturbances, and to write down an explicit likelihood function for the case of

normally distributed disturbances that permits estimation of all relevant parameters

in a unified one-shot procedure.

�e formal parameter vector β relates directly to the coefficient estimates of a

standard generalized least squares (GLS, Aitken) regression. Equation (5.7) can

be interpreted as a standard regression for this parameter vector with the matrix

x = XZ giving the explanatory variables:

y = xβ +w (5.8)

and the disturbance

w = XP̃v + u. (5.9)

It has expectation zero

E {w} = 0 (5.10)

and covariance

E {ww′} = XP̃VP̃′X′ + σ2IT =W . (5.11)

�e Aitken estimate βA satisfies

x′W−1 (y − xβA) = 0 (5.12)
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or

βA = (x′W−1x)−1 x′W−1y. (5.13)

where the subscript A stands for “Aitken”. As x = XZ andW = XP̃VP̃′X′ + σ2IT ,

equations (5.12) and (5.13) can be written as

Z′X′ (XP̃VP̃′X′ + σ2IT)−1 (y − XZβA) = 0 (5.14)

and equation (5.13) gives rise to

βA = (Z′X′ (XP̃VP̃′X′ + σ 2IT)−1 XZ)−1 Z′X′ (XP̃VP̃′X′ + σ 2IT)−1 y. (5.15)

6 �e Filter

�is section derives the VC filter which gives the expectation of the coefficients a

for given observations X and y, a given shi� parameter β, and given variances σ2

and Σ.

For given β and X, the vectors y and a can be viewed as realizations of random

variables determined jointly by the system (5.6), (5.8) as brought about by the

disturbances u and v:

⎛
⎝

a

y

⎞
⎠ =
⎛
⎝

Z

XZ

⎞
⎠ β +

⎛
⎝

P̃ 0

XP̃ IT

⎞
⎠
⎛
⎝

v

u

⎞
⎠

�e covariance is

E

⎧⎪⎪⎨⎪⎪⎩
⎛
⎝

a

y

⎞
⎠( a′ y )

⎫⎪⎪⎬⎪⎪⎭ =
⎛
⎝

P̃ 0

XP̃ IT

⎞
⎠
⎛
⎝

V 0

0 σ2IT

⎞
⎠
⎛
⎝

P̃′ P̃′X′

0 IT

⎞
⎠

= ⎛⎝
P̃V P̃′ P̃V P̃′X′

XP̃VP̃′ XP̃VP̃′X′ + σ2IT

⎞
⎠ .

�e marginal distribution of y is as given by (5.8) and (5.11). On this basis, we take

13



our estimate of a as

aA = ZβA + P̃V P̃′X′ (XP̃VP̃′X′ + σ 2IT)−1 (y − XZβA) . (6.1)

which is the expectation of a for the case that u and v are Gaussian and y, β, σ 2, and

Σ are given. (It will turn out later on that aA is the expectation of a for non-Gaussian

disturbances as well, see equation (7.10) below.)

Note that the variance-covariance matrix of w, as given in equation (5.11), tends

to σ 2IT if the the variances σ
2
i go to zero, and equation (5.7) approaches the standard

unweighted linear regression. In this sense, the OLS regression model is covered as

a special limiting case by the model discussed here.

7 Least Squares and Aitken

�e following theorem states that the least squares estimator aLS and the Aitken

estimator aA coincide if the weights are given by the variance ratios.

Claim 1. G = σ2V−1 implies aLS = aA.
Proof. Consider first the necessary conditions for a minimum of (4.3). �e first-

order condition (4.7) defines aLS with weights G = σ2V−1 uniquely and can be

written as

(X′X + σ2P′V−1P) aLS = X′y (7.1)

It will be shown that (6.1) implies

(X′X + σ 2P′V−1P) aA = X′y (7.2)

which will establish the proposition.

Pre-multiplication of (6.1) by (X′X + σ2P′V−1P) gives
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(X′X + σ2P′V−1P) aA = (X′X + σ 2P′V−1P)ZβA +
+(X′X + σ 2P′V−1P) P̃V P̃′X′ (XP̃VP̃′X + σ2IT)−1 ⋅
⋅ (y − XZβA) .

Because of PZ = 0 this can be written as

(X′X + σ 2P′V−1P) aA = X′XZβA +
+X′XP̃VP̃′X′ (XP̃VP̃′X + σ2IT)−1 (y − XZβA)
+σ2P′P̃′X′ (XP̃VP̃′X + σ2IT)−1 (y − XZβA) .

Adding and subtracting σ2X′ (XP̃VP̃′X + σ2IT)−1 (y − XZβA) and using P′P̃′ =
(ITn − ZZ′) results in
(X′X + σ2P′V−1P) aA = X′XZβA +

+X′ (XP̃VP̃′X′ + σ 2IT) (XP̃VP̃′X + σ2IT)−1 (y − XZβA)
−σ 2X′ (XP̃VP̃′X + σ 2IT)−1 (y − XZβA)
+σ 2 (ITn − ZZ′)X′ (XP̃VP̃′X + σ 2IT)−1 (y − XZβA)

which reduces to

(X′X + σ2P′V−1P) aA = X′XZβA +
+X′ (y − XZβA)
−σ 2X′ (XP̃VP̃′X + σ2IT)−1 (y − XZβA)
+σ2X′ (XP̃VP̃′X + σ2IT)−1 (y − XZβA)
−σ2ZZ′X′ (XP̃VP̃′X + σ2IT)−1 (y − XZβA) .
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According to (5.14), the last term is zero and we obtain

(X′X + σ 2P′V−1P) aA = X′y.

�is shows that the least squares estimator aLS and the Aitken estimator aA

coincide.

As a consequence of Claim 1, the least-squares estimates for u, v, and w and their

Aitken counterparts coincide for G = σ 2V−1. We need not distinguish them and

denote all our estimates by circumflex:

aA = aLS = â = Z β̂ + P̃V P̃′X′ (XP̃VP̃′X′ + σ 2IT)−1 (y − XZ β̂) (7.3)

uA = uLS = û = (IT − X (X′X + σ 2P′V−1P)−1 X′) y (7.4)

vA = vLS = v̂ = P (X′X + P′σ2P′V−1P)−1 X′y (7.5)

wA = wLS = ŵ = XP̃v̂ + û. (7.6)

For the sake of completeness and later use, the following observation is added:

Claim 2. G = σ 2V−1 implies Q̂ = σ 2ŵ′W−1ŵ . In other words: the sum of squared

deviations weighted by the variance ratios σ 2

σ 21
, σ

2

σ 22
, ... , σ

2

σ 2n
equals the weighted sum of

squares (the squared Mahalanobis distance) in the Aitken regression.

Proof. As ŵ = XP̃v̂ + û, we have
Q̂ = û′û + σ2v̂′V−1v̂

= û′ (ŵ − XP̃v̂) + σ 2v̂′V−1v̂

= û′ŵ − û′XP̃v̂ + σ2v̂′V−1v̂

= û′ŵ − (û′XP̃ − σ2v̂′V−1) v̂
= û′ŵ − (û′XP̃ − σ2v̂′V−1)Pâ
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With (7.3) and (5.8) this gives

Q̂ = û′ŵ − (û′XP̃ − σ2v̂′V−1)P (Z β̂ + P̃V P̃′X′W−1ŵ)
= û′ŵ − (û′XP̃ − σ2v̂′V−1)PP̃V P̃′X′W−1ŵ

= û′ŵ − (û′XP̃ − σ2v̂′V−1)VP̃′X′W−1ŵ

= û′ŵ − (û′XP̃VP̃′X′ − σ 2v̂′P̃′X′)W−1ŵ

= û′ŵ − û′XP̃VP̃′X′W−1ŵ + σ 2v̂′P̃′X′W−1ŵ

= û′ŵ − û′ (XP̃VP̃′X′ + σ 2IT − σ 2IT)W−1ŵ + σ 2v̂′P̃′X′W−1ŵ

= û′ŵ − û′ (XP̃VP̃′X′ + σ 2IT)W−1ŵ + σ 2û′W−1ŵ + σ 2v̂′P̃′X′W−1ŵ

= û′ŵ − û′ŵ + σ2û′W−1ŵ + σ2v̂′P̃′X′W−1ŵ

= σ 2 (û′ + v̂′P̃′X′)W−1ŵ

and finally

Q̂ = σ 2ŵ′W−1ŵ .

Hence the weighted sum of squaresQ equals the squaredMahalanobis distance.

Consider now the distribution of â. �e matrix (X′X + σ 2P′V−1P), henceforth
referred to as the “system matrix”, will be denoted by M:

M = (X′X + σ2P′V−1P) . (7.7)

With this, the normal equation (7.2), which defines the solution for the vector of

the coefficients â can be written as

M â = X′y. (7.8)
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With (3.1) and (7.7) we obtain

â = M−1X′ (Xa + u)
= M−1 (X′Xa + X′u + σ 2P′V−1Pa − σ2P′V−1Pa)
= a +M−1 (X′u − σ2P′V−1v) . (7.9)

Given a realization of the time-path of the coefficients a, the estimator â is

distributed with mean

E {â ∣a} = a (7.10)

and covariance

E {(a − â) (a − â)′} = M−1 ( X′ −σ2P′V−1 )⎛⎝
σ2IT 0

0 V

⎞
⎠
⎛
⎝

X

−σ 2V−1P

⎞
⎠M−1

which reduces to

E {(a − â) (a − â)′} = M−1 ( σ 2X′X +σ4P′V−1P )M−1
and finally to

E {(a − â) (a − â)′} = σ2M−1. (7.11)

�e system matrix (7.7) is determined by the observations X, the variance σ 2 and

the variances Σ. Equation (7.11) gives the precision of our estimate which is directly

related to the system matrix M. �e next step is to determine the variance σ2 and

the variances Σ.

8 Moments Estimation of the Variances

�e moments estimator that will be developed in this section has, for any sample

size, a straightforward interpretation: It is defined by the property that the variances

of the disturbances in the estimated coefficients equal their expectations. It has, thus,
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a straightforward connotation even in shorter time series and does not presuppose

that the perturbations u and v are normally distributed. It will be shown later that

the moments estimators approach the respective maximum likelihood estimators

in large samples if the disturbances are normally distributed. Hence the intuitive

appeal of the moments estimator carries over to the likelihood estimator, and the

attractive large-sample properties of the likelihood estimator carry over to the

moments estimator.

In the following we denote the estimated coefficients by â and the

estimated perturbations by û and v̂. For some variances σ 2 and ∑ =
diag( σ 2

1 , σ2
2 , . . , σ2

n ), the estimated coefficients â along with the estimated

disturbances û and v̂ are random variables brought about by realizations of the

random variables u and v. Consider û = y − Xâ = X (a − â) + u first. With (7.9) we

obtain

û = −X (M−1 (X′u − σ2P′V−1v)) + u
= (IT − XM−1X′)u + σ2XM−1P′V−1v .

Regarding v̂, consider the vectors v̂′i = ( v̂2i ,1, v̂2i ,3, . . , v̂2i ,T−1 ) for i =
1, 2, .. , n, that is, the disturbances in the coefficients âi for each coefficient separately.

�ese are obtained as follows.

Denote by ei ∈ Rn the n-th column of an n × n identity matrix and define the

(T − 1) × (T − 1) n-matrix

Ei ∶= IT−1 ⊗ e′i (8.1)

that picks the time-path of the i−th disturbance vi = (vi ,1, vi ,3, ...vi ,T−1)′ from the

disturbance vector v:

vi ∶= Eiv .
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Note that

n∑
i=1

σ2
i E
′
iEi = V . (8.2)

Pre-multiplying (7.9) with the matrices Ei yields

v̂i = Ei (I(T−1)n − σ 2PM−1P′V−1)v + EiPM
−1X′u.

�us û and v̂i are linear functions of the random variables u and v, and their

expected squared errors can be calculated.

Claim 3. For given observations X and y and given variances σ2and Σ, the expected

squared deviations of û and v̂i , i = 1, 2, ... , n are

E {û′û} = σ2 (T − trXM−1X′) (8.3)

E {v̂′i v̂i} = (T − 1) σ 2
i − σ2trEiPM

−1P′E′i . (8.4)

�is implies that the expected sum of squares is

E {Q̂} = σ 2 (T − n) . (8.5)

Proof. �e expectation of the squared estimated error û is
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E {û′û} = E {(u′ (IT + XM−1X′) + σ 2v′V−1PM−1X′) ⋅
((IT − XM−1X′)u + σ 2XM−1P′V−1v)}

= E {u′ (IT − XM−1X′) (IT − XM−1X′)u} +
+σ4E {v′V−1PM−1X′XM−1P′V−1v}

= trE {u′ (IT − XM−1X′) (IT − XM−1X′)u} +
+σ4trE {v′V−1PM−1X′XM−1P′V−1v} S

= trE {(IT − XM−1X′)uu′ (IT − XM−1X′)} +
+σ4trE {XM−1P′V−1vv′V−1PM−1X′}

= trσ2 (IT − XM−1X′) (IT − XM−1X′) + trσ4XM−1P′V−1PM−1X′

= σ 2tr ((IT − XM−1X′) (IT − XM−1X′) + σ2XM−1P′V−1PM−1X′)
= σ 2tr (I − 2XM−1X′ + XM−1X′XM−1X′ + σ2XM−1P′V−1PM−1X′)
= σ 2tr (IT − 2XM−1X′ + XM−1 (X′X + σ2P′V−1P)M−1X′)
= σ 2tr (IT − XM−1X′)
= σ 2 (T − trXM−1X′) .

In a similar way, the expectation of the squared estimated disturbance in the

i-th coefficient v̂i is evaluated as
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E {v̂′i v̂i} = E {(u′XM−1P′E′i + v′ (I(T−1)n − σ2V−1PM−1P′)E′i)
⋅ (EiPM

−1X′u + Ei (I(T−1)n − σ2PM−1P′V−1)v)}
= E {u′XM−1P′E′iEiPM

−1X′u +
v′ (I(T−1)n − σ2V−1PM−1P′)E′iEi (I(T−1)n − σ2PM−1P′V−1)v}

= E {tr (u′XM−1P′E′iEiPM
−1X′u +

v′ (I(T−1)n − σ2V−1PM−1P′)E′iEi (I(T−1)n − σ2PM−1P′V−1)v)}
= E {tr (EiPM

−1X′uu′XM−1P′E′i +
Ei (I(T−1)n − σ2PM−1P′V−1)vv′ (I(T−1)n − σ2V−1PM−1P′)E′i)}

= tr (σ 2EiPM
−1X′XM−1P′E′i) +

tr (Ei (I(T−1)n − σ 2PM−1P′V−1)V (I(T−1)n − σ2V−1PM−1P′)E′i)
= tr (σ 2EiPM

−1X′XM−1P′E′i) +
tr (Ei (V − σ 2PM−1P′) (I(T−1)n − σ 2V−1PM−1P′)E′i)

= tr (σ 2EiPM
−1X′XM−1P′E′i) +

tr (Ei (V − σ 2PM−1P′)E′i − σ 2Ei (V − σ2PM−1P′)V−1PM−1P′E′i)
= tr (σ 2EiPM

−1X′XM−1P′E′i) +
tr (Ei (V − σ 2PM−1P′ − σ2PM−1P′ + σ4PM−1P′V−1PM−1P′)E′i)

= tr (σ 2EiPM
−1X′XM−1P′E′i +

Ei (V − σ 2PM−1P′ − σ2PM−1P′ + σ4PM−1P′V−1PM−1P′)E′i)
= tr (Ei ((σ2PM−1 (X′X + σ 2P′V−1P)M−1P′) +V − 2σ2PM−1P′)E′i)
= tr (Ei (V − σ 2PM−1P′)E′i)
= tr (EiVE′i − σ2EiPM

−1P′E′i)
= tr ((IT−1 ⊗ e′i) (IT−1 ⊗ Σ) (IT−1 ⊗ ei) − σ2EiPM

−1P′E′i)
= tr (IT−1 ⊗ e′iΣei) − σ2tr (EiPM

−1P′E′i)
= (T − 1) σ2

i − σ2tr (EiPM
−1P′E′i) .
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Regarding Q̂ we note that

X′X + σ2P′V−1P = X′X + σ 2
n∑
i=1

1

σ2
i

P′iPi = M
and obtain

E {Q̂} = σ 2 (T − trXM−1X′) + n∑
i=1

σ 2

σ 2
i

((T − 1) σ2
i − σ 2trEiPM

−1P′E′i)
= σ 2 (T − trXM−1X′ + n∑

i=1

(T − 1) − n∑
i=1

σ2

σ2
i

trEiPM
−1P′E′i)

= σ 2 (T + n (T − 1) − trXM−1X′ − tr( n∑
i=1

σ 2

σ2
i

EiPM
−1P′E′i))

= σ 2 (Tn − T − n − trM−1X′X − tr(M−1 n∑
i=1

σ 2

σ 2
i

P′E′iEiP))
= σ 2 (Tn − T − n − trM−1X′X − tr(M−1 n∑

i=1

σ2P′V−1P))
= σ 2 (Tn − T − n − trM−1 (X′X − σ2P′V−1P))
= σ 2 (Tn − T − n − trInT)
= σ 2 (T − n) .

�e moments estimators are obtained by selecting variances σ2 and σ2
i , i =

1, 2, ..., n such that the expected moments E {û′û} and E {v̂′i v̂i} , i = 1, 2, ..., n are

equalized to the estimatedmoments û′û and v̂′i v̂i , i = 1, 2, ..., n. As both the expected
moments and the estimated moments are functions of the variances, the moments

estimators, denoted by σ̂2 and σ̂2
i , i = 1, 2, ..., n, respectively, are defined as a fix

point of the system

E {û′û} = û′û

E {v̂′i v̂i} = v̂′i v̂i .
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Alternatively, the moments estimators can be equivalently defined as a fix point

of the system:

E {v̂′i v̂i} = v̂′i v̂i

E {Q̂} = Q̂ .

�e implementations Schlicht (2005a, 2005b) use the latter alternative and employ

a gradient process to find the solution of the equation system

v̂′i v̂i = (T − 1) σ̂ 2
i − σ̂2trEiPM̂

−1P′E′i
1

T − n Q̂ = σ̂ 2.

�is can be written as

σ̂ 2
i

σ̂ 2
= ( v̂′i v̂i

Q̂
(T − n) − trEiPM̂

−1P′E′i) 1

T − 1 (8.6)

σ̂2 = 1

T − n Q̂ . (8.7)

Iteration starts with some variance ratios γi = σ 2

σ 2i
. �is permits to determine the

right-hand sides of equations (8.6) and (8.7). �e variance ratios at the le�-hand side

of (8.6) and the variance at the le� hand side of (8.7) are used for a new iteration,

and this continues until convergence is reached, delivering the fix-point values

γ̂i = σ̂ 2

σ̂i
2 and σ̂2 and the corresponding variances σ̂ 2

i = σ̂ 2

γ̂ i
. (If this process does not

converge, another solution procedure is available that will be discussed in Section

10 below.)

9 Maximum Likelihood Estimation of the Variances

�is section derives a maximum-likelihood estimator for the variances under the

additional assumption that the disturbances u and v are normally distributed.

Using equations (3.2) and (5.9) – (5.13) together with the identity x = XZ, the
concentrated log-likelihood function for the Aitken regression (5.8) can be written
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as

L ( σ 2, Σ ) = − 1
2
(T (log 2 + log π) + log detW) − 1

2
(y − XZβ)′W−1 (y − XZβ)

(9.1)

with

W = XP̃ (IT−1 ⊗ Σ) P̃′X′ + σ 2IT .

By maximizing (9.1) with respect to β,σ2 and Σ, the maximum likelihood estimates

for the variances are obtained and the corresponding expectation for the parameter

a is given in analogy to (7.3) as

ǎ = Z β̌ + P̃V̌ P̃′X′ (XP̃V̌ P̃′X′ + σ̌ 2IT)−1 (y − XZ β̌)
with a caron denoting the maximum likelihood estimates and V̌ = (IT−1 ⊗ Σ̌).

�e maximum likelihood estimator can be characterized in another way. �is

will be explained in the following. In order to do so, the following lemma is needed.

Claim 4.

log detW = log det (PMP′) + (T − 1) n∑
i=1

log σ2
i −

((T − 1) n − T) log σ2 − 2 logdet (PP′) . (9.2)
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Proof.

detW = det (XP̃VP̃′X′ + σ2IT)
= (σ2)T det( 1

σ2
XP̃V

1
2V

1
2 P̃′X′ + IT)

= (σ2)T det( 1

σ2
V

1
2 P̃′X′XP̃V

1
2 + I(T−1)n)

= (σ2)T det(V 1
2 ( 1

σ 2
P̃′X′XP̃ +V−1)V 1

2)
= (σ2)T det(V ( 1

σ 2
(PP′)−1 PX′XP′ (PP′)−1 +V−1))

= (σ2)T det( 1

σ2
V (PP′)−1 P (X′X + σ 2P′V−1P)P′ (PP′)−1)

= (σ2)T det( 1

σ2
V)det (PP′)−1 det (PMP′)det (PP′)−1

= (σ2)T ( n∏
i=1

σ2
i

σ2
)
(T−1)

det (PP′)−2 det (PMP′) .
Hence the result

log detW = log det (PMP′) + (T − 1) n∑
i=1

log σ 2
i −

(T − 1)n − T) log σ 2 − 2 logdet (PP′)
is obtained.

Claim 5. Minimizing the criterion

CL = log det (PMP′) + (T − 1) n∑
i=1

log σ2
i − (T − 1)n − T) log σ 2+

+ 1

σ2
u′u + v′V−1v (9.3)

is equivalent to maximizing the likelihood function (9.1).
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Proof. With (9.2) we have

CL+2L ( σ 2, Σ ) = 1

σ2
u′u+v′V−1v−w′W−1w+2 logdet (PP′)−T (log 2 + log π) .

As, according to Claim 2, w′W−1w = (y − XZβ)′W−1 (y − XZβ) equals 1
σ 2
u′u +

v′V−1v and logdet (PP′) and T (log 2 + log π) are independent of the variances, we
can write

CL = −2L ( σ2, Σ ) + constant
where “constant” is independent of the variances and maximization of L with

regard to the variances is equivalent to minimization of CL .

10 Another Representation of the Moments

Estimator

�e relationship between the likelihood estimator and the moments estimator can

be elucidated with the aid of a criterion that is very similar to the likelihood criterion

(9.3). �is criterion function is

CM ( σ 2, Σ ) = log detM + (T − 1) n∑
i=1

log σ2
i − T (n − 1) log σ2 +

+ 1

σ2
u′u + v′V−1v . (10.1)

Claim 6. Minimization of the criterion function (10.1) with respect to the

disturbances u and v and the variances σ 2 and Σ yields the moments estimators as

defined in (8.3) and (8.4).

Proof. Note that the envelope theorem together with (8.2) implies
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∂

∂σ2
( 1

σ2
û′û + v̂′V−1v̂) = − 1

σ4
û′û (10.2)

∂

∂σ2
i

( 1

σ2
û′û + v̂′V−1v̂) = −σ 2

σ4
i

v̂i
′v̂i . (10.3)

In view of (8.2) we obtain further

∂ log detM

∂σ 2
= tr (M−1P′V−1P) . (10.4)

By definition (7.7) we have

M−1 (X′X + σ 2P′V−1P) = I

and hence

M−1P′V−1P = 1

σ 2
(I −M−1X′X) .

With this, equation (10.4) can be written as

∂ log detM

∂σ2
= tr( 1

σ 2
(ITn −M−1X′X))

= 1

σ2
(trITn − trM−1X′X)

= Tn

σ2
− 1

σ2
trXM−1X′.

∂ log detM

∂σ 2
i

= −σ 2

σ4
i

tr (M−1P′E′iEiP)
and we find
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∂CM
∂σ 2

= Tn

σ2
− 1

σ 2
trXM−1X′. − T (n − 1)

σ 2
− 1

σ4
û′û = 0 (10.5)

∂CM
∂σ 2

i

= −σ 2

σ4
i

trP′F ′iFiPM
−1 + (T − 1) 1

σ2
i

− σ2

σ4
i

v̂i
′v̂i = 0 (10.6)

which gives

û′û = σ 2 (T − σ2trXM−1X′)
v̂i
′v̂i = (T − 1) σ 2

i − σ2trP′F ′iFiPM
−1.

�ese first-order conditions are equivalent to equations (8.3), (8.4) that define the

moments estimator.

Johannes Ludsteck’s (2004, 2018) Mathematica packages for VC proceed by

minimizing the criterion function (10.1). �is permits very clean and transparent

programming. As Claim 6 is confined to moments and does not require any

assumption about the normality of the disturbances, Ludsteck’s estimators are

moments estimators as well.

11 �e Relationship Between the Likelihood and the

Moments Estimator

�e likelihood estimates minimize, according to Claim 5, the criterion CL and the

moments estimatesminimize, according to Claim 6, the criterion CM . It is claimed in

the following that, for increasing T and bounded X, both estimates tend to coincide.

To show that, the following lemma is needed.

Claim 7. For sufficiently large T and bounded explanatory variables X, the following

holds true approximately:

detPMP′ ≈ detM det (PP′) .
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Proof. Define the Tn × Tn matrix

P = ⎛⎝
P

T−
1
2 Z′
⎞
⎠

and consider the matrix PMP′. One way to calculate it is as follows:

PMP
′ = ⎛⎝

P

T−
1
2 Z′
⎞
⎠M ( P′ T−

1
2 Z )

= ⎛⎝
PMP′ T−

1
2 PMZ

T−
1
2 Z′MP′ T−1Z′Z

⎞
⎠

= ⎛⎝
PMP′ T−

1
2 PX′XZ

T−
1
2 Z′X′XP′ In

⎞
⎠ .

�is implies

detPMP
′ = det In det(PMP′ − 1

T
PX′XZZ′X′XP′)

= det(PMP′ − 1

T
PX′xx′XP′)

= det(P (M − 1

T
X′xx′X)P′)

= det(P (X′ (IT − 1

T
xx′)X + σ 2P′V−1P)P′) .

For increasing T and bounded x, 1
T
xx′ tends to zero and (IT − 1

T
xx′) tends to IT .

Hence detPMP′ tends to detPMP′ and we can write

detPMP
′ ≈ detPMP′ (11.1)
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for large T . Another way to evaluate det (PMP) is the following:
detPMP

′ = det (MP
′
P)

= detM det (P′P)
= detM det (PP′)

As

det (PP′) = det
⎛
⎝

PP′ 0

0 In

⎞
⎠ = det (PP′) ,

detPMP
′ = detM det (PP′) (11.2)

is obtained. Combining (11.1) and (11.2) gives the result.

Claim 8. For increasing T and with bounded explanatory variables X, the moments

criterion and the likelihood criterion coincide.

Proof. For large T and in view Claim (7), CM and CL differ by the constant

logdet (PP′) + n. Hence the minimization of both criteria with respect to the

variances will generate the same result.

In consequence, the descriptive appeal of the moments estimator carries over to the

likelihood estimator, and the theoretical appeal of the likelihood estimator carries

over to the moments estimator.

31



Part II

Notes on the VCMethod

�e actual workings of the VC method are best illustrated by the applications found

in the literature. Some are listed at the end of the paper. As any of the authors of these

studies will be a better judge regarding the practical performance of the VCmethod

than this author (who is neither an applied economist, nor an econometrican, nor

a statistician), any comments in this regard from my side appear unwarranted.

Further, Schlicht and Ludsteck (2006) offer Monte-Carlo studies that illustrate the

performance of the VC method from a statistical point of view.

12 An Illustration3

To illustrate the working of VC, assume a model with an intercept term at and a

single explanatory variable xt with coefficient bt :

yt = at + btxt + ut

Using the simulation tool from Ludsteck (2004; 2018), a time series for the

explanatory variable was generated with xt ∼ N (0, 100), t = 1, 2, ... , 50. Further
it was assumed that ut ∼ N (0, 0.1), (at − at−1) ∼ N (0, 0.01), and (bt − bt−1) ∼
N (0, 0.001). Typically the optimally computed expectations of the time paths

(calculated by using the true variances) and the VC estimates lie very close together.

Figure 12.1 illustrates a somewhat atypical run with estimated smoothing weights

that deviate from the true smoothing weights by the order of five. �e optimally

estimated time-paths of the coefficients (based on the true variances) and the

estimated time-paths (based on the estimated coefficients) move together. �is

illustrates the general impression that the filtering results, especially the qualitative

3�is is taken from Schlicht and Ludsteck (2006, Sec. 10)
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Figure 12.1: Optimally calculated expectations (thin lines) and VC estimates (thick lines)

for intercept (le�) and slope (right), together with the realizations of the coefficients (x)

and the VC confidence bands. �e example has been selected to visually exhibit differences

between the true expectations and the VC estimates; usually the weights are estimated better

and the curves lie quite close together. As the estimated smoothing weights are considerably

smaller than the true weights, the time-paths of the VC estimates are less smooth than the

true expectations (True weights are γa = 10 and γb = 100, while the estimated weights are

γ̂a = 1.60 and γ̂b = 14.76 here. �e true variances are σ2u = 0.1, σ
2
a = 0.01, and σ2b = 0.001, the

estimated variances are σ̂2u = 0.040, σ̂
2
a = 0.025, and σ̂2b = 0.0029.)

time-patterns, are not extremely sensitive with regard to the weights used for

filtering.

It is, obviously, never possible to extract the movement of the true coefficients

from the data, irrespective how long the time series is. (Only the estimation of

the weights will improve with the length of the time series.) �e best that can be

done is to estimate the expectations of the coefficients. Given the variances, the VC

estimate (which is the mean of a normally distributed vector) is optimal and cannot

be improved upon, and the standard of comparison must be the estimates obtained

with optimal weights, as in Figure 12.1.

�e distribution of the weights in the above setting is illustrated in Figure 12.2.

�e time series for x, u, and v have been generated as described above and the VC

moments estimation applied 5000 times. �e histogram Figure 12.2 illustrates that

the estimates cluster around their theoretical values.
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Figure 12.2: Histogram of estimates for the log10 weights. �e theoretical values are

log10 γa = 1 and log10 γb = 2. �e distribution of estimates clusters around this peak.

(T = 50, 5000 trials.)
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13 Artifacts

Suppose that the data have been generated by the standard linear model (2.2). If this

is the case, the VC model is slightly misspecified, because a correct estimation

would require that the variances σ 2
1 , σ

2
2 , ... , σ

2
n of the coefficients are zero and

the weights γ1,γ2, ... , γn – the inverse variance ratios – are infinite, whereas VC

implicitly assumes that the weights are finite. As it appears that the VC estimates

with sufficiently large weights γi are indistinguishable from the OLS estimates,

the VC estimation would be approximately correct if the estimated weights are

sufficiently large.4

As VC estimates nearly twice as many parameters as OLS, there is more room

for artifacts in VC. From this point of view, VC ought to be used with caution,

especially if all parameters are permitted to vary over time, rather just a selected few.

To illustrate, consider a linearmodel yt = a+bxt+ut with a = 1, b = 2, xt drawn from
a Normal distribution with mean zero and variance 5, and ut normally distributed

with mean zero and variance σ2
u = 1. �e histogram of the lowest estimated weights

is given in Figure 13.1. In 99% of the cases, the minimum weight is above 7.97, and

in 90% of the cases, the minimum weight is above 63, 9. �e corresponding VC

estimates are given in Figure 13.2. In the 1% case, the estimate of the time paths

involve severe artifacts. In the 10% case, artifacts are still pronounced, but in the

majority of cases, VC estimates conform to OLS estimates.

With lower noise (σ 2
u = 0.1 rather than σ2

u = 1 in the above example) the problem

of artifacts is significantly reduced. Still the problem has to be kept in mind when

interpreting VC results.

4�e option “keep selected coefficients constant” in Schlicht (2005b) and Schlicht (2005c) is
implemented with σ 2

i = 10
−10 for those coefficients that are kept constant.
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13.1. �e red lines indicate the OLS estimates of the coefficients. �e true coefficients
are 1 and 2.
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14 Aggregate Data, Pyrrho’s Lemma, and the VC

Philosophy

Almost all economic models deal with aggregate data. Employment comprises

women and men, different age groups and various occupations in sundry industries

scattered over many regions. �e wage level summarizes the earnings of all these

people. Similarly, production comprises a multitude of goods and services, and the

price level is just an index of thousands of the attached prices. �e structures of these

aggregates are not rigid but change over time in response to changing technologies,

shi�ing tastes, and volatile business conditions. To assume that time-invariant laws

govern the interaction of time series of such aggregates seem preposterous to me.

Some researchers tried to cope with the problem by using weighted regression –

giving higher weights to more recent observations (Gilchrist 1967, Rouhiainen 1978).

�is seems to me to be an inferior alternative to VC.

�e reason for developing VC was my desire to show that a Marshallian view

of economics, that involves time-varying structures, does not render quantitative

economics impossible. Estimation can be done by using Kalman filtering, or the VC

method described in this paper, or perhaps other methods. I advocated estimating

time-varying structures with Kalman filtering in Schlicht (1977, Appendix B), but

without any resonance. �is puzzled me. Was this really such a bad idea?

Maybe it wasn’t, but the puzzle remains. What were the reasons for the

decade-long resistance to dealing with time-varying coefficients? And why has

this somewhat changed over the past fi�een years?

One reason may have been that structures changing over time cannot represent

the ’true model’ economists were chasing during the heydays of ’dynamic stochastic

general equilibrium’ macroeconomics. �e existence of such a ’true model’ was

simply postulated (Lucas, 1976, p. 24). I think that this is, in the context of

aggregate models dealing with long-run time series, a red herring, distracting

from considering seriously what aggregate models represent.5

Another reason, I submit, was the reductionist bent of economists. If a structure

5My view if aggregation is outlined in Schlicht (1977), Schlicht (1985), and Schlicht (1990).
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changes over time, this warrants explanation. Hence there was a tendency to add

additional explanatory variables as ’controls’ in order to explain the change. While

this may be sensible in many cases, it seems, statistically speaking, a problematic

way of dealing with time-varying coefficients because of the following theorem that

has been provided by�eo Dijkstra (1995, p. 122).

Pyrrho’s Lemma: For every collection of vectors, consisting of

observations on a regressand and regressors, it is possible to get any set

of coefficients as well as any set of predictions with variances as small

as one desires, just by adding one additional vector from a continuum

of vectors.

In other words: �ere exists a time series xn+1 that, if added to the explanatory

variables x1,x2, ..., xn in the standard linear model (2.2), will deliver arbitrarily

predetermined coefficients and variances as estimates.�is shouldmake us reluctant

to seek to explain too much by inserting additional controls which, taken together,

span an entire set of such additional time series. Further, the procedure can generate

the mirage of a ’true model’ in cases when such a model actually does not exist.

Using VC reduces the necessity for adding further controls and mitigates, therefore,

Pyrrho’s problem.

Let me add another remark. �e VC model (2.4), (2.5) can easily be generalized

in many ways. A possibility would be, for instance, to replace ai ,t+1 = ai ,t + vi ,t by
ai ,t+1 = θ i (ai ,t − āi) + vi ,t. Such generalizations (and many more) can be handled

by Kalman filtering. So why not allow for more general specifications?

My objection would be that such generalizations would impinge on the

descriptive transparency of the VC method which is, to me, a major concern –

trumping more technical statistical considerations.

An estimation method, such as VC, can be viewed as a filter that seeks to

identify certain patterns in clouds of data. In doing so, such a filter gives preference

to certain patterns rather than others. �e patterns preferred by the VC method

are the desiderata underlying the descriptive account (Section 4). �ese are that

the coefficients remain as time-invariant as possible and that a good fit is obtained.
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�is makes sure that all time-variance estimated is driven by the data, rather than a

preference of the model, as would be the case in auto-regressive specifications.

Unfortunately the determination of weights used in VC is descriptively less

transparent than the desiderata of stable coefficients and a good fit, but it carries

nevertheless some descriptive meaning; in this regard, at least, there is room for

improvement.

Acknowledgements �is paper relies heavily on two earlier discussion papers

(Schlicht 1989 and Schlicht and Ludsteck 2006). I thank Daniela Diekmann,�eo

Dijkstra. Walter Krämer, José Alberto Bravo Lopez, Johannes Ludsteck, and Ralf

Pauly for comments on earlier attempts. Not the least I wish to thank the authors of

the works mentioned in the references given at the end of the paper.. �eir use of VC

eventually convinced me that it may be worthwhile to provide this documentation.

References

Athans,Michael (1974). “�e Importance of KalmanFilteringMethods for Economic

Systems”. In: Annals of Economic and Social Measurement, Volume 3, number 1.

NBER Chapters. National Bureau of Economic Research, Inc, pp. 49–64. url:

https://ideas.repec.org/h/nbr/nberch/9994.html.

Cooley,�omas F and Edward C Prescott (1973). “An Adaptive Regression Model”.

In: International Economic Review 14.2, pp. 364–371. url: https://ideas.repec.

org/a/ier/iecrev/v14y1973i2p364-71.html.

Dijkstra, �eo (1995). “Pyrrho’s lemma, or have it your way”. In: Metrika:

International Journal for�eoretical and Applied Statistics 42.1, pp. 119–125. doi:

10 .1007/s00184- 005- 0020- 0. url: https :// ideas .repec.org/a/spr/metrik/

v42y1995i1p119-125.html.

Gilchrist, W. G. (1967). “Methods of Estimation Involving Discounting”. In: Journal

of the Royal Statistical Society. Series B (Methodological) 29.2, pp. 355–369. issn:

00359246. url: http://www.jstor.org/stable/2984595.

39



Green, P.J. and B.W. Silverman (2000). Nonparametric Regression and Generalized

Linear Models. a Roughness Penalty Approach. Boca Raton, Fla.: Chapman &

Hall. isbn: 0412300400.

Henderson, R. (1924). “A New Method of Graduation”. In: Transactions of the

Actuarial Society of America 25, pp. 29–40.

Hodrick, Robert J and Edward C Prescott (1997). “Postwar U.S. Business Cycles: An

Empirical Investigation”. In: Journal of Money, Credit and Banking 29.1, pp. 1–16.

url: https://ideas.repec.org/a/mcb/jmoncb/v29y1997i1p1-16.html.

Keynes, JohnMaynard (1939). “Professor Tinbergen’sMethod”. In: Economic Journal

49.195, pp. 558–68. url: https://www.jstor.org/stable/2224838.

— (1973).�e General�eory and A�er, Part II: Defense and Development. Ed. by

Moggridge. Vol. xiv.�e Collected Works of John Maynard Keynes. London:

Macmillan.

Leser, C. E. V. (1961). “A Simple Method of Trend Construction”. In: Journal of

the Royal Statistical Society. Series B (Methodological) 23, pp. 91–107. url: http:

//www.jstor.org/stable/2983845.

— (1963). “Estimation of Quasi-Linear Trend and Seasonal Variation”. In: Journal

of the American Statistical Association 58, pp. 1033–43. url: http://www.jstor.

org/stable/2283329.

Lucas, Robert (1976). “�e Econometric Policy Evaluation: A Critique”. In: Phillips

Curve and Labor Markets. Ed. by K. Brunner and A. H. Meltzer. Amsterdam:

North Holland, pp. 19–46. url: https://EconPapers.repec.org/RePEc:eee:crcspp:

v:1:y:1976:i::p:19-46.

Ludsteck, Johannes (2004).VCPackage forMathematica.url: http://library.wolfram.

com/infocenter/MathSource/5195/.

— (2018). VC Packages for Estimating Time-Varying Coefficients with Mathematica

8 - 11. url: https://epub.ub.uni-muenchen.de/59479/.

Rouhiainen, Juhani (1978). “�e problemof changing parameters in demand analysis

and forecasting”. In: European Review of Agricultural Economics 5.3-4, pp. 349–

359. url: https://ideas.repec.org/a/oup/erevae/v5y1978i3-4p349-359..html.

40



Schlicht, Ekkehart (1973). Forcasting Markov Chains. A �eoretical Foundation

for Exponential Smoothing. Working paper B 13, Department of Economics,

University of Regensburg. url: http://www.semverteilung.vwl.uni-muenchen.

de/mitarbeiter/es/paper/schlicht-exponential_smoothing.pdf.

— (1977). Grundlagen der ökonomischen Analyse. Reinbek: Rowohlt. url: https:

//epub.ub.uni-muenchen.de/25821/.

— (1981). “A Seasonal Adjustment Principle and a Seasonal Adjustment Method

Derived from�is Principle”. In: Journal of the American Statistical Association

76(374). Paper presented at the Econometric Society EuropeanMeeting Helsinki

1976, pp. 374–78. url: http://www.semverteilung.vwl.uni-muenchen.de/

mitarbeiter/es/paper/schlicht-seasonal_adjustment.pdf.

— (1984). “Seasonal Adjustment in a Stochastic Model”. In: Statistische He�e 25,

pp. 1–12. url: http://www.semverteilung.vwl.uni-muenchen.de/mitarbeiter/es/

paper/schlicht_seasonal-adjustment-in-a-stochastic-model.pdf.

— (1985). Isolation and Aggregation in Economics. Annotated electronic reprint.

38821. Springer-Verlag. url: https://ideas.repec.org/p/lmu/muenec/38821.html.

— (1989). “Variance Estimation in a Random Coefficients Model”. In: Munich

Discussion Paper. mwb 2006-12. Paper presented at the Econometric Society

European Meeting Munich 1989. url: https://epub.ub.uni-muenchen.de/59143/.

— (1990). “Local aggregation in a dynamic setting”. In: Journal of Economics 51.3,

pp. 287–305. doi: 10.1007/s00712-008-0015-1. url: https://ideas.repec.org/a/

kap/jeczfn/v51y1990i3p287-305.html.

— (2005a). “Estimating the Smoothing Parameter in the So-Called Hodrick-

Prescott Filter”. In: Journal of the Japan Statistical Society 35, pp. 99–119. url:

https://doi.org/10.14490/jjss.35.99.

— (2005b). VC - A Program for Estimating Time-Varying Coefficients. url: http:

//epub.ub.uni-muenchen.de/archive/00000684/.

— (2005c). VCC - A Program for Estimating Time-Varying Coefficients. Console

Version With Source Code in C. url: http://epub.ub.uni-muenchen.de/archive/

00000719/.

41



Schlicht, Ekkehart and Johannes Ludsteck (2006). “Variance Estimation in a

Random Coefficients Model”. In:Munich Discussion Paper 2006-12. url: https:

//ideas.repec.org/p/lmu/muenec/904.html.

Schlicht, Ekkehart and Ralf Pauly (1983). “Descriptive Seasonal Adjustment by

Minimizing Perturbations”. In: Empirica. url: http://www.semverteilung.vwl.

uni-muenchen.de/mitarbeiter/es/paper/schlicht-pauly-perturbations.pdf.

Tinbergen, Jan (1940). “On a Method of Statistical Business-Cycle Research. A

Reply”. In: Economic Journal 50.197, pp. 141–54. url: http://www.jstor.org/

stable/2225763.

Whittaker, E. T. (1923). “On a New Method of Graduation”. In: Proceedings of the

Edinburgh Mathematical Society 41, pp. 63–75.

Contributions�at Have Employed VC

Afonso, Antonio, Pedro Gomes, and Davide Furceri (2011). “Sovereign credit ratings

and financial markets linkages: application to European data”. In: European

Central Bank Working Paper Series 1347. url: https://ideas.repec.org/p/ecb/

ecbwps/20111347.html.

Afonso, Antonio and Joao Tovar Jalles (2015). “Economic Volatility and Sovereign

Yields’ Determinants: A Time-Varying Approach”. In: Working Papers

Department of Economics. url: https://ssrn.com/abstract=2712221.

— (2017a). “Euro area time-varying fiscal sustainability”. In: International Journal

of Finance & Economics 22.3, pp. 244–254. url: https://ideas.repec.org/a/wly/

ijfiec/v22y2017i3p244-254.html.

— (2017b). “Sovereign debt composition and time-varying public finance

sustainability”. In:�e North American Journal of Economics and Finance 42.C,

pp. 144–155. doi: 10.1016/j.najef.2017.08.0. url: https://ideas.repec.org/a/eee/

ecofin/v42y2017icp144-155.html.

42



Afonso, Antonio and Joao Tovar Jalles (2019). “Decomposing and Analysing the

Determinants of Current Accounts’ Cyclicality: Evidence from the Euro Area”.

In: Open Economies Review. doi: 10 . 1007 / s11079 - 018 - 9503 - 2. url: https :

//ideas.repec.org/a/kap/openec/v30y2019i1d10.1007_s11079-018-9503-2.html.

Afonso, António and João Tovar Jalles (Jan. 2017). Sovereign Debt Effects

and Composition: Evidence from Time-Varying Estimates. Working Papers

Department of Economics 2017/03. ISEG - Lisbon School of Economics and

Management, Department of Economics, Universidade de Lisboa. url: https:

//ideas.repec.org/p/ise/isegwp/wp032017.html.

Baxa, Jaromir, Roman Horvath, and Borek Vasicek (2011). “Time Varying Monetary

Policy Rules and Financial Stress”. In: ed. by S. Eijffinger and Donato

Masciandaro. Edward Elgar Publishing. Chap. Time Varying Monetary Policy

Rules and Financial Stress, pp. 268–312. url: http://www.e-elgar.com/shop/

handbook-of-central-banking-financial-regulation-and-supervision.

— (2014). “How Does Monetary Policy Change? Evidence on Inflation-Targeting

Countries”. In: Macroeconomic Dynamics 18.3, pp. 593–630. doi: 10 . 1017 /

S1365100512000545.

Cohen, Gail et al. (2017). “Emissions and Growth: Trends and Cycles in a Globalized

World”. In: IMF Working Paper WP17/191. url: https://www.imf.org/~/media/

Files/Publications/WP/2017/wp17191.ashx.

Conway, P., R. Herd, and T. Chalaux (2010). “Reforming China’s Monetary Policy

Framework toMeet Domestic Objectives”. In: 6th NIPFPDEAResearch Program

Conference. doi: doi.org/10.1787/5km32vmsq6f2-en.

Cournede, Boris, Rudiger Ahrend, and Robert Price (2008). “Have Long-Term

Financial Trends Changed the Transmission of Monetary Policy?” In: OECD

Economic Department Working Papers 634. url: http://dx.doi.org/10.1787/

238203348082.

Cournede, Boris and Frederic Gonand (2006). “Restoring Fiscal Sustainability in

the Euro Area: Raise Taxes or Curb Spending?” In:Working Paper. url: http:

//pcsi.pa.go.kr/files/JT03216787.pdf.

43



Flaschel, P. et al. (2008). Topics in Applied Macrodynamic�eory. Berlin-Heidelberg:

Springer-Verlag. doi: 10.1007/978-3-540-72542-8.

Flaschel, Peter (2008). “Linking Goods with Labor Markets: Okun’s Law and

Beyond”. In: Topics in Applied Macrodynamic �eory. Berlin, Heidelberg:

Springer Berlin Heidelberg, pp. 213–283. isbn: 978-3-540-72542-8. doi: 10.1007/

978-3-540-72542-8_5. url: https://doi.org/10.1007/978-3-540-72542-8_5.

Flaschel, Peter and Ekkehart Schlicht (2006). “�e New Keynesian�eory and the

New Phillips Curves: A Competing Approach”. In: Quantitative and Empirical

Analysis of Nonlinear Dynamic Macromodels. Ed. by Carl Chiarella et al.

Elsevier. Chap. �e New Keynesian �eory and the New Phillips Curves: A

Competing Approach, pp. 113–145. url: https://books.google.de/books?id=

5MmwM5vyhUQC.

Franke, Reiner (2006).�emes on Okun’s Law and Beyond. Tech. rep. SCEPA. doi:

10.1007/978-3-540-72542-8_5.

Furceri, Davide and Joao Tovar Jalles (2017). “Fiscal Stabilization and Productive

Investment: Evidence from Advanced Economies”. In: Working Paper. url:

https://www.bancaditalia.it/pubblicazioni/altri-atti-convegni/2018-workshop-

public-finance/7-Furceri-Jalles.pdf?language_id=1.

— (2018). “Fiscal counter-cyclicality and productive investment: evidence from

advanced economies”. In:�e B.E. Journal ofMacroeconomics. doi: 10.1515/bejm-

2017-0222.

Furceri, Davide, Joao Tovar Jalles, and Aleksandra Zdzienicka (2017). “China

Spillovers: New Evidence from Time-Varying Estimates”. In: Open Economies

Review 28.3, pp. 413–429. url: https://link.springer.com/article/10.1007/s11079-

016-9430-z.

He, Qizhi (2012). “Research on the Dynamic Relationship between Prices of

Agricultural Futures in China and Japan”. In: Journal of Computers 7(9). doi:

10.4304/jcp.7.9.2342-2350.

Jalles, João Tovar (2018). “On the Time-Varying Relationship

Between Unemployment and Output: What shapes it?” In: Scottish Journal

of Political Economy 66, pp. 605–630. doi: 10.1111/sjpe.12200.

44



Jalles, João Tovar (2019a). Explaining Africa’s Public Consumption Procyclicality:

Revisiting Old Evidence. Working Papers REM 2019/0100. ISEG - Lisbon School

of Economics and Management, REM, Universidade de Lisboa. url: https :

//ideas.repec.org/p/ise/remwps/wp01002019.html.

— (2019b).On the Cyclicality of Social Expenditure: NewTime-Varying evidence from

Developing Economies. Working Papers REM 2019/82. ISEG - Lisbon School

of Economics and Management, REM, Universidade de Lisboa. url: https :

//ideas.repec.org/p/ise/remwps/wp0822019.html.

— (2019c). Polluting Emissions and GDP: Decoupling Evidence from Brazilian States.

Working Papers REM 2019/0104. ISEG - Lisbon School of Economics and

Management, REM, Universidade de Lisboa. url: https:// ideas.repec.org/

p/ise/remwps/wp01042019.html.

López-Herrera, Francisco, Humberto Valencia-Herrera, et al. (2016). “Hacia

un Modelo de Valuación de Activos de Capital para México: Análisis de

Activos Individuales con Coeficientes Variantes en el Tiempo”. In: Panorama

Económico 11.22, pp. 75–103. url: http : / / yuss . me / revistas / panorama /

pano2016v11n22a04p074_103.pdf.

Madsen, Michael Walter (2012). “Does Financial Stress Have an Impact on

Monetary Policy?: An Econometric Analysis Using Norwegian Data”. PhD

thesis. Department of Economics, University of Oslo. url: https://www.duo.uio.

no/bitstream/handle/10852/17126/Madsen_Michael_Masteroppgave.pdf.

Nogueira, Reginaldo Pinto (2009). “Testing credibility with time-varying

coefficients”. In: Applied Economics Letters 16.18, pp. 1813–1817. doi: 10.1080/

13504850701719611.

Rodriguez, Cesar M. (2014). “Financial development, fiscal policy and volatility:

�eir effects on growth”. In: �e Journal of International Trade & Economic

Development 23.2, pp. 223–266. doi: 10.1080/09638199.2012.711014.

45


	Introduction
	Part I: The VC Method
	The Linear Theoretical Model and its Empirical Application
	Notation and Basic Assumptions
	Least Squares
	Orthogonal Parametrization
	The Filter 
	Least Squares and Aitken
	Moments Estimation of the Variances
	Maximum Likelihood Estimation of the Variances
	Another Representation of the Moments Estimator
	The Relationship Between the Likelihood and the Moments Estimator

	Part II: Notes on the VC Method
	An Illustration
	Artifacts
	Aggregate Data, Pyrrho's Lemma, and the VC Philosophy

	References
	Contributions That Have Employed VC


