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1. INTRODUCTION

A growing number of papers explores how shocks on the micro- and macro-level propagate

through economic networks and how such shocks relate to aggregate fluctuations. Most articles

provide substantial evidence for the importance of network effects (see, for instance, Gabaix,

2011; Acemoglu et al., 2012; Elliott et al., 2014; Acemoglu et al., 2015; Ozdagli and Weber,

2017). Recent empirical analyses, however, suffer from a set of limiting shortcomings: they

mainly rely on constant parameter specifications and either focus on aggregate data or neglect

heterogeneities among cross-sectional observations.

In this article, we address these issues and extend the literature on spatial panel data models

(see, for instance, Elhorst, 2014; Aquaro et al., 2015; LeSage and Chih, 2016), linking them to

the vast literature on Bayesian state-space modeling (see Kim and Nelson, 1999). As a topical

application, we focus on the transmission of monetary policy shocks through the US production

network. Our approach is closely related to Ozdagli and Weber (2017), who generalize the

setup proposed in Bernanke and Kuttner (2005) and Gürkaynak et al. (2005) for analyzing the

impact of changes in monetary policy on equity prices.1 While Bernanke and Kuttner (2005)

and Gürkaynak et al. (2005) focus mostly on aggregate data like the S&P500 index, Ozdagli

and Weber (2017) find substantial evidence for higher-order effects of monetary policy on stock

market returns using disaggregate data on the industry-level, and attribute between 60 to 80

percent of the total effects to spillovers between industries.

In the empirical application, however, Ozdagli and Weber (2017) neglect industry specific

idiosyncrasies and disregard time-variation in the strength of network dependencies. This is

problematic for two reasons. First, pooling information across industries may conceal important

underlying structural relationships, and potentially distorts the estimated importance of some

industries in the disaggregate transmission of monetary policy shocks compared to others (see

also Bernanke and Kuttner, 2005). Second, structural breaks in macroeconomic and financial

series are increasingly drawing interest in the related literature (see, for instance, Cogley and

Sargent, 2005; Primiceri, 2005; Sims and Zha, 2006). Time-varying parameter models are a

popular tool for alleviating concerns of misspecification arising from nonlinear dynamics in

small-scale models (Feldkircher et al., 2017).

To address these empirical shortcomings and circumvent concerns of biases, we develop

a Bayesian state-space model for analyzing network effects of US monetary policy, allowing

for heterogeneity both over time and the cross-section. Our contributions are thus both of

methodological and empirical nature. First, we assume the spatial dependence parameter to vary

over time via imposing a random walk state-equation, and provide Bayesian prior and posterior

distributions alongside a sampling algorithm for inference. Second, we address how to efficiently

exploit cross-sectional information for obtaining precise inference, but allow for heterogeneous

1 These articles are among a larger body of diverse literature focusing on measuring monetary non-neturality
using high-frequency market surprises around central bank policy announcements (see Kuttner, 2001; Cochrane
and Piazzesi, 2002; Gürkaynak et al., 2005; Gertler and Karadi, 2015; Nakamura and Steinsson, 2018; Altavilla
et al., 2019; Jarociński and Karadi, 2019).
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effects across units in a stochastic fashion.2 Most of the established spatial methods for panel

data analysis rely on deterministic data transformations such as fixed effects. By contrast,

we take a fully Bayesian stance by imposing a hierarchical shrinkage prior on the regression

coefficients and the residual variances. In particular, we base our prior setup on sparse finite

Gaussian mixtures (see Malsiner-Walli et al., 2016), providing a link to the literature on random

coefficient and heterogeneity models (Verbeke and Lesaffre, 1996; Allenby et al., 1998; Frühwirth-

Schnatter et al., 2004).

From an empirical perspective, two main findings are worth noting. First, there is substantial

evidence pointing towards the necessity of addressing industry specific reactions to monetary

surprises. Estimated effects are much smaller when disregarding the notion that some industries

are more sensitive to Fed policy changes than others, up to a magnitude of roughly one percentage

point. In particular, we find that the average stock market response across industries to a one

percentage point surprise increase in federal funds futures translates to a median response across

all industries of approximately 1.9 percentage points, with industry-specific estimates up to five

percentage points. Second, we find substantial evidence for time-variation in the strength of

network dependency structures. In particular, US recessions tend to coincide with periods where

between 40 to 60 percent of the overall effects can be attributed to network effects; expansionary

economic episodes show muted network effects with magnitudes of around 20 to 30 percent.

The remainder of the paper is structured as follows. In Section 2, we set forth the spatial

panel model. Section 3 discusses the Bayesian prior setup and provides a Gibbs sampling

algorithm for inference. We apply the model in a study of the network effects of US monetary

policy in Section 5. Section 6 concludes.

2. A TIME-VARYING SPATIAL DEPENDENCE PANEL MODEL

The baseline model is in the spirit of spatial panel specifications3 and can be written for obser-

vation i = 1, . . . , N as

yit = ρt

N
∑

j=1

wijyjt + αi + x′
itβi + ǫit, ǫit ∼ N (0, σ2i ), (1)

where yit is the response variable at time t = 1, . . . , T . We include K exogenous covariates in

the K × 1-vector xit with associated observation specific parameter vector βi of size K × 1 and

a Gaussian error term with zero mean and variance σ2i .

Information on the cross-sectional dependency structure is incorporated using weighted av-

erages of the “foreign” quantities yjt (j = 1, . . . , N) with exogenous weights wij denoting the

elements of an N ×N weighting matrix W subject to the typical restrictions wii = 0, wij ≥ 0

and
∑N

j=1wij = 1 that guarantee the stability of the model. The first novelty proposed in this

2 For a recent paper addressing heterogeneity over the cross-sectional dimension in the spatial econometric context,
see Cornwall and Parent (2017). For a textbook introduction on mixture models for panel data, see Frühwirth-
Schnatter (2006).

3 The proposed framework for the static version of the panel model adopted for the empirical application in this
paper can easily be extended to more flexible specifications, including dynamic models, and setups allowing for
stochastic volatilities.
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paper is that the scalar parameter ρt features time-variation. The state equation for the spatial

dependence parameter ρt is a random walk process:

ρt = ρt−1 + ςξt, ξt ∼ N (0, 1). (2)

Established econometric methods typically rely on constant spatial dependency structures. Note

that ς = 0 implies that the model collapses to a constant parameter model, and testing whether

the data suggests time-varying spatial dependence is thus a variance selection problem, as dis-

cussed in the context of a standard time-varying parameter model by Frühwirth-Schnatter and

Wagner (2010). We exploit this fact below by imposing a suitable shrinkage prior on these

variances that pushes the model towards the constant parameter specification if suggested by

likelihood information.

2.1. Interpreting the model coefficients

The approach to modeling spatial dependence pursued in this paper establishes a large sys-

tem of simultaneous equations with specific parametric restrictions. Consequently, standard

interpretations for linear regressions have to be adapted to account for the notion of cross-

sectional dependencies. Here, we follow LeSage and Chih (2016) and derive the impact matrix

for the kth coefficient for k = 1, . . . ,K with respect to a change in the kth exogenous covariate

xkt = (x1kt, . . . , xNkt)
′ for all cross-sectional units as

∂yt

∂xkt
= Skt = (IN − ρtW )−1Bk.

Here, Bk = diag(β1k, . . . , βNk) with βik referring to the kth coefficient of observation i. Following

LeSage and Pace (2009), it is conventional to define 1/N × tr(Skt) as the average direct effect,

1/N × ι′NSktιN as the average total effect, and the difference between the two as the average

indirect, or network effect. Assuming time-varying spatial dependence yields an impact matrix

Skt for t = 1, . . . , T .

It is worth mentioning that the Bayesian approach we set forth allows for adequate quan-

tification of uncertainty surrounding all model parameters and functions thereof. Besides full

posterior distributions of the total, direct and indirect effects, we obtain confidence bounds for

the overall strength of the network effects over time.

3. PRIOR SPECIFICATION

We estimate the proposed model using Bayesian methods. This involves selecting suitable prior

distributions for all parameters and combining them with the likelihood of the data. We first

discuss the prior setup for the time-varying spatial dependence parameter. Conditional on a

draw of the full history of this parameter {ρt}Tt=1, inference for the other model parameters is

mostly standard, and we subsequently discuss the prior setup for the regressions coefficients and

the error variances.
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3.1. A spike-and-slab prior testing for time variation

For the spatial dependence parameter, we propose a prior setup that stochastically determines

whether time-variation is required for adequately capturing observed dynamics, nesting conven-

tional constant parameter specifications as a special case of our framework. We adapt a variant of

the well known stochastic search variable selection prior of George and McCulloch (1993) in the

context of the time-varying parameter model (for a related approach, see Frühwirth-Schnatter

and Wagner, 2010).

We impose a mixture of two gamma priors allowing either for substantial mass close to zero,

suppressing time variation, or loose enough to allow for time-varying spatial dependence. In

particular, we specify a mixture of two Gaussians on the signed square root of the innovation

variance in Eq. (2),

±ς ∼ δ ×N (0, B1) + (1− δ)×N (0, B0) ,

with B1 ≫ B0 and B0 close to zero, which is equivalent to stating

ς2 ∼ δ × G
(

1

2
,

1

2B1

)

+ (1− δ)× G
(

1

2
,

1

2B0

)

.

The latent binary indicator δ dictates which one of the two components is active. Given δ = 1,

the prior on ς2 is rather loose based on larger values of B1 and reflects time variation in the

spatial dependence parameter by allowing for non-zero variances of the error term in the state

equation. For δ = 0, the second component with variance B0 close to zero is active, pushing the

signed square root of the innovation variance towards zero, effectively ruling out time variation.

As a byproduct, this specification yields a posterior probability measure whether time variation

for these coefficients is necessary to adequately reflect the data generating process. The binary

indicators δ are assigned a Bernoulli distribution δ ∼ BER(p) with prior inclusion probability

p = 0.5. This establishes a prior that assumes contant and time-varying spatial dependence to

be equally likely.

3.2. Sparse finite mixtures to pool coefficients

There are multiple possibilities to estimate observation specific parameters θi = {αi,βi, σi} for

i = 1, . . . , N , with two extreme cases: either one decides to pool information over the cross-

section, restricting θi to be equal for all units, or one introduces truly observation specific

parameters. The first restriction, especially in the empirical application of this paper, is likely

to be overly restrictive and may mask important structural dynamics. The second variant,

however, implies estimating a large number of parameters, and may thus result in imprecise

estimates and overfitting issues.

In this paper, we allow for heterogeneous parameters per unit i, but introduce a hierarchical

prior that exploits cross-sectional information for more precise inference and pushes similar

clusters of observations towards estimated cluster-specific common means. We follow Malsiner-

Walli et al. (2016) and introduce a sparse finite mixture of Gaussians prior for the observation
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specific regression coefficients βi, resembling a random effects specification (Verbeke and Lesaffre,

1996; Allenby et al., 1998; Frühwirth-Schnatter et al., 2004). The prior is given by

fN
(

βi|{ω}Mm=1, {µm}Mm=1,V
)

=
M
∑

m=1

ωmfN (βi|µm,V ), (3)

where fN denotes the Gaussian probability density function, {ωm}Mm=1 are mixture weights

and {µm}Mm=1 refer to group-specific means for a pre-determined number of M clusters. By

introducing an auxiliary variable ηi, Eq. (3) can be rewritten as:

βi|ηi = m,µm,V ∼ N (µm,V ), (4)

with ηi = m denoting an integer indicating that βi belongs to the mth cluster. Consequently,

Pr(ηi = m) = ωm refers to the assignment probability of βi tom. Moreover, V = diag(v1, . . . , vK)

denotes a common K-dimensional diagonal prior covariance matrix. We select independent in-

verse gamma priors for the diagonal elements vk (k = 1, . . . ,K) of the prior covariance matrix,

vk ∼ G−1(d0, d1), with d0 = 3 and d1 = 0.03 set weakly informative.

We specify a shrinkage prior on the mixture component weights. A priori, M is chosen to be

large value, translating into an overfitting mixture specification. A natural choice for achieving

shrinkage of the components, following Malsiner-Walli et al. (2016), is to assign a Dirichlet

prior on ω = (ω1, . . . , ωM ) subject to the typical restrictions
∑M

m=1 ωm = 1 and ωm ≥ 0 for

m = 1, . . . ,M :

ω|κ ∼ D(κ, . . . , κ).

Here, κ is of crucial importance, since it determines how irrelevant clusters are treated; shrinking

κ empties clusters and thus ensures a parsimonious mixture representation with only a moderate

number of groups. Shrinkage is achieved via a gamma distributed prior on κ ∼ G(ϑ, ϑM), with

G denoting the gamma distribution with shape ϑ and scale ϑM . In the empirical application,

we follow Malsiner-Walli et al. (2016) and define ϑ = 10, introducing heavier shrinkage with

increasing M .4

To achieve further parsimony, we combine the shrinkage prior on the weights with shrinkage

on the mixture-specific means (Yau and Holmes, 2011; Malsiner-Walli et al., 2016):

µm ∼ N (µ0,V0),

with µ0 referring to a common mean and V0 = LRL denoting the prior covariance matrix for the

component means µm. L = diag(
√
l1, . . . ,

√
lK) is a K-dimensional diagonal matrix, collecting

the coefficient-specific shrinkage parameters lj for j = 1, . . . ,K and R = diag(R2
1, . . . , R

2
K) refers

to aK-dimensional diagonal matrix with the jth element R2
j given by the range of (µ1j , . . . , µMj).

In what follows, we specify a normal gamma shrinkage prior (Griffin and Brown, 2010) on µm

4 Note that the expectation of κ is given by E(κ) = 1/M and the variance is Var(κ) = 1/(ϑM2).
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assuming that lj (j = 1, . . . ,K) is gamma distributed,

lj ∼ G(e0, e1).

In the empirical application, we specify e0 = e1 = 0.1.5 To complete the set-up for the regression

coefficients, we specify an improper Gaussian prior on the common mean µ0 ∼ N (0,Q), centered

on zero and with precision Q−1 = 0K .

Sofar, we remained silent on how we specify the priors for the unit-specific error variances

σ2i . Here, we choose to cluster variances for the M groups and use a conjugate inverse gamma

hierarchical prior (Frühwirth-Schnatter, 2006),

σ2m ∼ G−1(ξ,Ξ), Ξ ∼ G−1(ψ,Ψ).

with hyperparameters specified as ξ = 2.5+(T −1)/2, ψ = 0.5+(T −1)/2 and Ψ = 100ψ/(ξR2
y).

Ry denotes the range of the dependent variable. The hierarchical structure again implies that

the group variances σ2m arise from a common distribution (Malsiner-Walli et al., 2016). The

cluster specific variance σ2m is assigned to all observations i that are associated with the mth

cluster.6

4. POSTERIOR COMPUTATION

Combining the likelihood of the model with the proposed prior distributions yields a set of

well-known conditional posterior distributions that can be used for setting up a Markov Chain

Monte Carlo (MCMC) sampling algorithm. Most of the quantities involved are standard, and

we discuss details on the posteriors for the mixture model set forth in Malsiner-Walli et al.

(2016) alongside the sampling algorithm in Appendices A and B.

Producing draws for the full history of the time-varying spatial dependence parameter, how-

ever, is novel to the literature. In the following, we propose a sampling algorithm for the time-

varying spatial dependence parameter. Due to the non-Gaussian setup, Kalman-filter based

methods (Carter and Kohn, 1994; Frühwirth-Schnatter, 1994) are inapplicable. Simulation from

the posterior distribution can be carried out using a Metropolis-Hastings algorithm. We denote

the current state of the respective quantity by s−1 and s refers to a proposal from the candidate

density. The procedure is similar to the algorithm proposed in the context of Bayesian stochastic

volatility models in Jacquier et al. (2002). We rely on three proposal densities:

1. For all points in time other than the first and last observation, a draw ρ
(s)
t is generated

from the proposal distribution given by ρ
(s)
t ∼ N (µt, St), with µt = (ρ

(s−1)
t−1 +ρ

(s−1)
t+1 )/2 and

St = ς2/2.

5 As suggested by Malsiner-Walli et al. (2016), e0 < 1 is important to strongly push µm towards a common mean
to avoid overlapping component-specific densities. This specification contrasts to Yau and Holmes (2011), who
choose a Lasso prior on lj with e0 = 1 (see also Park and Casella, 2008).

6 Identification issues in mixture models arising from label switching may be resolved by implementing a ran-
dom permutation sampler and ex post clustering of the posterior draws, or using economic theory to impose
restrictions on the component means or variances (see Frühwirth-Schnatter, 2001).
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2. Since no initial value ρ0 is available, we rely on Jacquier et al. (2002) who show that

this quantity can be obtained by drawing from a Gaussian distribution ρ0 ∼ N (µ0, S0).

Under the prior ρ0 ∼ N (µ0, ς
2
0 ), the corresponding moments are S0 = (ς20 ς

2)/(ς20 + ς2) and

µ0 = ς20 (µ0/ς
2
0 + ρ

(s−1)
1 /ς2). The proposal at t = 1 is then given by ρ

(s)
1 ∼ N (µ1, S1) where

µ1 = (ρ0 + ρ
(s−1)
1 )/2 and S1 = ς2/2.

3. A similar problem arises for the final value at t = T , due to no ρT+1 being available. Jac-

quier et al. (2002) suggest drawing from the modified candidate density ρ
(s)
T ∼ N (µT , ST )

with µT = ρ
(s−1)
T−1 and ST = ς2.

For each point in time, we generate a proposal for ρ
(s)
t that can be used to calculate the ac-

ceptance probability of the Metropolis-Hastings algorithm. To simplify notation, we define

ỹit(ρ
(s)
t ) = ρ

(s)
t

∑N
j=1wijyjt×σ−1

i and ỹt(ρ
s
t ) =

(

ỹ1t(ρ
(s)
t ), . . . , ỹNt(ρ

(s)
t )
)′

as the vector of spatial

lags depending on the current value of ρ
(s)
t , with σ2i referring to the clustered error variance as-

signed to industry i, and set ǫ̃it = (yit − αi − x′
itβi)×σ−1

i , where we again stack these quantities

in ǫ̃t = (ǫ̃1t, . . . , ǫ̃Nt)
′. Let

L
(

ρ
(s)
t

)

= det(IN − ρ
(s)
t W )× exp

{

−0.5
(

ǫ̃t − ỹt(ρ
(s)
t )
)′ (

ǫ̃t − ỹt(ρ
(s)
t )
)

}

,

then the acceptance probability ζ of the proposal ρ
(s)
t implied by the likelihood is

ζ = min





L
(

ρ
(s)
t

)

L
(

ρ
(s−1)
t

) , 1



 .

The candidate draw ρ
(s)
t is accepted with probability ζ, while in the opposite case, we retain the

previous draw ρ
(s−1)
t . After obtaining the full history for ρt, it is easy to simulate the variance

ς2, and the latent binary indicator δ. The conditional posterior of δ = 1|ς2 is given by

δ = 1|ς2 ∼ BER (u1/(u0 + u1)) ,

u1 = B
−1/2
1 exp{−ς/2B1}p,

u0 = B
−1/2
0 exp{−ς/2B0}(1− p).

Conditional on the latent binary indicator δ and the full history of the spatial dependence

parameter, it can be shown that the conditional posterior distribution of ς2 is a generalized

inverse Gaussian distribution. The parameter can thus be drawn using

ς2|δ, ρ1, . . . , ρT ∼ GIG
(

(1− T )/2,

T
∑

t=2

(ρt − ρt−1)
2, (δB1 + (1− δ)B0)

−1

)

.

This completes the section on model estimation. We proceed by applying the proposed econo-

metric framework to a study of time-varying effects in the transmission of US monetary policy

shocks through the production network.
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5. NETWORK EFFECTS OF US MONETARY POLICY

5.1. Data and model specification

For the sake of brevity, we only provide a brief overview of the data and refer to Ozdagli and

Weber (2017) for more details. The event returns for industries used as dependent variables

yit are constructed based on returns for all common stocks trading on the NYSE, Amex or

Nasdaq around press releases by the Federal Open Market Committee (FOMC). In particular,

the dependent variable is defined as the difference between the last trade observation before and

the first observation after the event window.

To establish the cross-sectional dependency structure via the weighting matrix W , following

Ozdagli and Weber (2017) we use input-output (IO) tables capturing dollar trade flows between

industries published by the Bureau of Economic Analysis and the United States Department of

Commerce. Industries i for i = 1, . . . , N are aggregated at the four-digit IO-level, resulting in

N = 89 cross-sectional units over time. Due to missing values, we augment the baseline Gibbs

sampling scheme with an additional step for imputing these values in a Bayesian fashion (see,

for instance, Gelman et al., 2013).

As exogenous measure of the monetary policy shocks, we rely on high-frequency changes in

Federal funds futures featured in Gorodnichenko and Weber (2016). The predetermined nature

of monetary policy announcement dates (eight regular FOMC meetings per year), combined with

high-frequency data on forward-looking financial instruments in a tight window of 30 minutes

around the press release allows for extracting the surprise component of the monetary policy

action. The tight window around the announcement reduces the risk of other events than

monetary policy affecting futures prices and provides support for the claim of exogeneity (see

also Gürkaynak et al., 2005; Altavilla et al., 2019).7

The vector xit in Eq. (1) thus collapses to a scalar xt that is common to all i, while βi is the

associated observation-specific parameter capturing the sensitivity of industry i to the monetary

policy shock. Moreover, we include an industry-specific intercept term αi. The information set

includes data on FOMC announcements between early 1994 and late 2008, that is, T = 121.

5.2. Empirical results

First, we assess the importance of allowing for cross-sectional heterogeneities across industries.

For this purpose, we estimate restricted versions of the general model proposed in Eq. (1)

reflecting the empirical approaches of Bernanke and Kuttner (2005), Gürkaynak et al. (2005)

and Ozdagli and Weber (2017). Second, we provide a discussion of the main findings of this

paper resulting from relying on a time-varying spatial dependence specification.

7 Concerns of central bank information shocks accompanying the monetary policy announcement biasing the effects
caused by pure monetary policy shocks (see Nakamura and Steinsson, 2018; Jarociński and Karadi, 2019), can
be neglected for the employed dataset (for details, see Ozdagli and Weber, 2017).
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Table 1: Estimated impacts of monetary policy on stock returns across industries.

BK2005/GSS2005 Ozdagli and Weber (2017)

homogeneous heterogeneous homogeneous heterogeneous

β −1.183 −2.352 −0.793 −2.318
(−1.45,−0.887) (−2.992,−1.861) (−1.08,−0.532) (−2.979,−1.759)

α −0.015 −0.031 −0.011 −0.031
(−0.082,0.06) (−0.185,0.125) (−0.062,0.041) (−0.18,0.115)

σ2 1.134 1.009 1.126 1.014
(0.948,1.426) (0.592,2.614) (0.935,1.452) (0.592,2.75)

ρ 0.332 0.016
(0.224,0.418) (0.001,0.092)

Direct −1.183 −2.352 −0.797 −2.318
(−1.45,−0.887) (−2.992,−1.861) (−1.085,−0.535) (−2.979,−1.759)

Indirect −0.386 −0.038
(−0.594,−0.221) (−0.224,−0.001)

Total −1.183 −2.352 −1.189 −2.366
(−1.45,−0.887) (−2.992,−1.861) (−1.584,−0.799) (−3.038,−1.819)

Network (%) 32.9 1.6
(22.2,41.4) (0.1,9.1)

Notes: The numbers refer to the estimated posterior median with the 1st and 99th percentile of the posterior distribution
in parentheses. Benchmark specifications are provided by the similar setups in Bernanke and Kuttner (2005), Gürkaynak
et al. (2005), abbreviated by BK2005 and GSS2005 respectively, and Ozdagli and Weber (2017). “Homogeneous” refers to
pooling information deterministically across industries, while “heterogeneous” indicates industry-specific estimates. For the
models featuring heterogeneous coefficients, we take the arithmetic mean over all industries per iteration of the algorithm
and report the resulting posterior percentiles.

Nested specifications and benchmarks

Table 1 displays the results for restricted versions of our model. In particular, the columns

labeled BK2005/GSS2005 correspond to econometric frameworks of Bernanke and Kuttner

(2005), Gürkaynak et al. (2005), disregarding cross-sectional dependency structures and network

effects (that is, ρ1 = . . . = ρT = 0). The columns labeled Ozdagli and Weber (2017) feature

spatial econometric models without time variation (that is, ρ1 = . . . = ρT ). A further dis-

tinction is provided by estimating the model with homogeneous and heterogeneous coefficients.

Here, “homogeneous” refers to pooling information deterministically across industries, that is

θ1 = . . . = θN , while “heterogeneous” indicates industry-specific estimates for i = 1, . . . , N .

For the models featuring heterogeneous coefficients, we take the arithmetic mean over all in-

dustries per iteration of the algorithm and report the resulting posterior percentiles (the posterior

median, the 1st and 99th percentile), providing a measure of the average impact of monetary

policy shocks on heterogeneous industry returns.

Negative coefficients β imply stock market responses in line with standard economic theory.

Monetary tightening induces a reduction of future expected dividends, and by basic asset pricing

theory, higher interest rates increase the discout rate of future dividends, resulting in stock

market declines. Considering the first column of Tab. 1, a one percentage point surprise increase

of the federal funds rate translates to a decline in stock market returns of about 1.2 percentage

points with the 98 percent credible set ranging from approximately −0.9 to −1.5 percentage

points.
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This example also serves to illustrate the correspondence between interpretation of spatial

econometric models and standard linear regressions, with obtained direct, indirect and total

effects directly reflecting the regression coefficient due to the assumption of independent and

identically distributed error terms. Compared to the findings of Bernanke and Kuttner (2005)

and Gürkaynak et al. (2005), our estimates are rather small. Note, however, that the empirical

findings are not directly comparable, due to their focus on the aggregate S&P 500 rather than

industry-specific returns, and a different sampling period. Relaxing the assumption of parameter

homogeneity, we find that the effects are roughly twice as large, where a one percent surprise

in the federal funds futures causes stock returns to decline by roughly 2.4 percentage points, on

average across industries. We focus on heterogeneities over the cross-sectional dimension in the

next section.

Turning to the analysis of network effects, we find that the estimated effects for the spatial

econometric specification with pooled coefficients are smaller than those obtained by Ozdagli

and Weber (2017), for two reasons. First, our proposed framework directly imputes missing

values using Bayesian techniques, and thus accounts for selection bias and adequate uncertainty

quantification. Second, in contrast to Ozdagli and Weber (2017) we impose the restriction

wii = 0 to guarantee the stability of the model.8

The estimated total effects for the homogeneous specification are roughly in line with the

effects estimated from a non-spatial model. Higher-order spillover dynamics explain roughly

33 percent of the total effects, with the posterior credible set ranging from 22 to 41 percent.

An interesting finding is that when allowing for heterogeneous coefficients across industries, the

obtained effects are roughly in line with the non-spatial specification of negative effects around

2.4 percentage points, while the estimated share of network effect contributions lies between 0.1

and 9.1 percent, with a posterior median of 1.6 percent. This finding suggests that disregarding

heterogeneous effects across industries by pooling coefficients is consequential for the parameter

ρ that adjusts to reflect idiosyncrasies in direct effects and biases estimates for network effects.

Allowing for time-varying spatial dependence and cross-sectional heterogeneity

In the following, we discuss our findings for the full model featuring time-varying spatial depend-

ence and cross-sectional heterogeneities. Given the importance of industry-specific idiosyncrasies

identified in Tab. 1, we begin by discussing our findings for the heterogeneous regression coef-

ficients. The mixture model provides substantial support for one common cluster, however,

roughly in 25 percent of the draws we find evidence for two clusters. Differences mainly origin-

ate from idiosyncrasies in the sensitivity of industries to the monetary policy shocks, while the

intercept terms αi are pushed more strongly towards their common mean. The error variances

σ2m are heavily shrunk towards homogeneity.

Figure 1 shows the distribution of the posterior medians across industries in form of a boxplot.

The upper panel displays the intercept αi, while the middle panel depicts the coefficients βi

8 Disregarding this restriction, as in Ozdagli and Weber (2017), results in upward bias of the estimated network
effects due to the lack of convergence of the Neumann series expansion of the impact matrix (IN − ρW )−1 =∑

∞

i=1
ρiW i. Our results are comparable to the provided robustness check in their paper where the main diagonal

of W is set to zero, accounting for posterior uncertainty of the estimates.
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Fig. 1: Posterior median of the regression coefficients across industries.

Note: The solid black line indicates the median of the estimated posterior medians across industries, while the
box covers the 25th and 75 quartile. Individual lines denote industries.

associated with the monetary policy shock. Starting with the intercept coefficients αi, half of

the industries exhibit estimates between −0.05 and 0.01. This implies that the average return

across industries around FOMC announcements is negative. Some few industries exhibit positive

responses, however, these observations typically feature large posterior uncertainty surrounding

the median. A substantially larger number of industries exhibit more pronounced negative

estimates.

Turning to the industry-specific impacts of monetary policy surprises captured by βi, we find

that the median across industries is approximately −1.3 percentage points in response to a one

percentage point increase in the instrument. This is roughly in line with our findings for the non-

spatial specification featuring homogeneous coefficients in Tab. 1. As discussed in the context

of how to interpret spatial models, however, the regression coefficients cannot be interpreted

directly. For this purpose, we calculate the total effect per region which corresponds to the row

sums of Skt depicted in the bottom panel of Fig. 1. For simplicity, we consider the average

effect over time and refer to the following paragraphs for information on time-variation of the

estimates. The median impact across industries and over time to a one percent surprise increase

in federal funds futures around Fed announcements is about −1.9 percentage points, with half

of the industries showing declines in stock returns between −1.3 to −2.4 percentage points.

We find that effects for all industries are negative, with a substantial number exhibiting effects

higher than −2.5 up to more than −5 percentage points. Considering hypothetical responses to

a surprise 25 basis points interest rate hike, this implies that a number of industries shows stock

market return declines exceeding 0.75 percent.
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We proceed with discussing our findings for time-varying spatial dependence. Figure 2 shows

the evolution of ρt over time. The solid black line indicates the posterior median, alongside the

98 and 90 percent credible sets in shaded blue. FOMC announcement dates are indicated by

the black vertical lines. Inference on the binary indicator dictating time variation shows that

likelihood information strongly suggests time-varying spatial dependence, with δ = 1 for all

iterations of the sampling algorithm, translating into substantial differences in the parameter

over time.

| | | ||| ||| | || || ||| | || || || | | ||
|||| |
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Fig. 2: Time-varying spatial dependence parameter.

Note: The solid black line indicates the posterior median, alongside the 98 and 90 percent credible sets in
shaded blue. FOMC announcement dates are indicated by the black vertical lines.

Interestingly, higher importance of spatial dependence appears to occur during recessions.

Relevant recessionary episodes for the employed dataset identified by the NBER Business Cycle

Dating Committee are the mild recession between March and November 2001, and the global

financial crisis and subsequent Great Recession from December 2007 to June 2009. Largest

magnitudes for ρt are detected during the Great Recession, with median estimates of roughly

0.55, followed by the first recession in the sample in early 2001 of approximately 0.4. The

initial period covered by the sample is characterized by small contributions of spatial effects,

with median estimates just below 0.2, while the time between the two recessions exhibits a

spatial dependence parameter around 0.25 increasing gradually towards the outbreak of the

global financial crisis.

It remains to quantify the overall importance of the network effects over time. Figure 3

shows the posterior distribution of the estimated total effects in the upper panel, while the

lower panel depicts the relative share of indirect effects in percent. Movements in the strength of

spatial dependence observed in Fig. 2 clearly translate to changes in the role of network effects

of monetary transmission channels. The upper panel of Fig. 3 suggests that we do not only

observe substantial difference over the cross-section, but also over time. In particular, the effect

size before the first, and between the two recessions covered by the sample roughly correspond

to the average effect of monetary policy surprises over time of about −1.9. The recessionary

episodes, however, exhibit larger effects up to three percentage points on average caused by a

12



contractionary one percent policy surprise in the federal funds futures. Considering the lower

panel of Fig. 3, we find that not only effect sizes are larger during recessions, but also that network

effects tend to increase. During the recession of 2001, about 40 percent of the total effect sizes can

be attributed to spillover effects, while this effect increases to approximately 60 percent during

the Great Recession. This result links our findings to Kastner (2019), who finds pronounced

increases in co-movement across industries during periods of economic turmoil. Expansionary

economic episodes, on the other hand, show muted network effects with magnitudes of roughly

20 to 30 percent.
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Fig. 3: Total effects of monetary policy shocks and share attributed to network effects.

Note: The solid black line indicates the posterior median, alongside the 98 and 90 percent credible sets in
shaded blue.

6. CLOSING REMARKS

This paper studies the importance of spillover effects in the transmission of monetary policy

shocks through the US production network. We propose a novel Bayesian spatial panel state-

space model to capture time-variation in the magnitude of network effects. Moreover, we address

industry specific heterogeneities via a sparse finite Gaussian mixture prior on the model coeffi-

cients. Our results suggest substantial differences in industry responses, and identify recessionary

episodes as periods where network effects play a crucial role.
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A. POSTERIORS FOR MIXTURE-SPECIFIC QUANTITIES

For simplicity we suppress observation-specific intercepts {αi}Ni=1
in Appendix A. Conditional on the

observation-specific coefficients {βi}Ni=1
, variances {σ2

i }Ni=1
and the group-allocation indicators {η}Ni=1

,

the posteriors for the prior mean and covariance matrix are independent from the data and can be drawn

using standard results from linear regression models (see, for instance, Koop, 2003).

Given draws for the group-allocation indicators η = {η}Ni=1
, the posterior distribution of the mixture

probabilities follows a Dirichlet distribution:

ω|η ∼ D(κ1, . . . , κM ), (A.1)

Here, we define κm = κ + Nm with Nm referring to the number of industries assigned to cluster m.

Conditional on the group means {µm}Mm=1
, the common prior prior covariance matrix V and the mixture

weights ω, the regime indicators η follow a multinomial distribution with

Pr(ηi = m|ωm,µm,V ) ∝ ωmfN (βi|µm,V ), for m = 1, . . . ,M. (A.2)

The full conditional posterior of µ = vec(µ1, . . . ,µM ) follows a multivariate Gaussian distribution with

diagonal covariance matrix:

µ|V ,η,µ0,V0 ∼ N
(

µ,Vµ

)

, (A.3)

with the posterior variance and mean given by,

Vµ =
(

V −1 ⊗H ′H + IM ⊗ V −1

0

)−1

,

µ = Vµ

(

V −1 ⊗H ′β + ιM ⊗ V −1

0
µ0

)

.

Here, H is a N ×M matrix with ith row given by Hi = (I(ηi = 1), . . . , I (ηi =M)), β = (β1, . . . ,βN )′

is a KN -dimensional vector and ιM is a M -dimensional vector of ones.

Conditional on V0 and µ, the conditional posterior distribution of the common mean µ0 reads as:

µ0|V0,µ ∼ N
(

∑M

m=1
µm

M
,
1

M
V0

)

. (A.4)

The final ingredients for the location mixture are the shrinkage parameters l1, . . . , lK . Conditional on R

and µ the conditional posterior distribution is given by:

lj |R,µ ∼ GIG
(

e0 −M/2, 2e1,

∑M

m=1
(µmj − µ0j)

2

Rj

)

, (A.5)

with µmj , µ0j and Rj , for m = 1, . . . ,M denoting the jth element of the component-specific means,

common mean and of R, respectively.

Finally, we sample σ2

m, for m = 1, . . .M) from a inverse gamma conditional posterior distribution

given by

σ2

m|• ∼ G−1(ξm,Ξm)

Ξm = Ξ+
1

2

∑

i:ηi=m

(yi − x′
iβi − αi)

′(yi − x′
iβi − αi).

ξm = ξ + TNm/2

16



The common scaling indicator Ξm is also drawn from an inverse gamma conditional,

Ξ|{σ2}Mm=1
,Ψ, ψ ∼ G−1(ψ,Ψ)

Ψ = Ψ+

M
∑

m=1

σ−2

m ,

ψ = ψ +Mξ.

B. MCMC ALGORITHM

The set of conditional posterior distributions in Section 3 and Appendix A is used to generate draws for

all parameters of the model by a standard MCMC sampling algorithm. Specifically, the sampler iterates

through the following steps:

1. Sample the observation-specific regression coefficients βi on an equation-by-equation basis. The

posterior takes a standard form (see, for instance Koop, 2003) conditional on the full history of the

spatial parameter {ρt}Tt=1
.

2. Given draws for the observation-specific coefficients {βi}Ni=1
, variances {σ2

i }Ni=1
and the group-

allocation indicators, the posteriors for the prior mean and covariance matrix are independent

from the data. For the corresponding posterior distributions and moments, see Appendix A and

Malsiner-Walli et al. (2016).

3. Conditional on {βi}Ni=1
and the group-allocation indicators, the posterior for the cluster-specific

variances {σ2

i }Ni=1
can be sampled based on the quantities provided again in Appendix A and

Malsiner-Walli et al. (2016).

4. Obtaining draws for the full history of the spatial dependence parameter ρt is achieved by employing

the proposed Metropolis-Hastings algorithm in Section 3.

5. Conditional on {ρt}Tt=1
it is easy to sample the process variances ς2. Given ς2, a draw from the

posterior of the binary indicator δ that governs time-variation is obtained using the corresponding

posteriors Section 3.

6. Given a draw for all model parameters, it is straightforward to obtain a draw for the missing values

in the dependent variable (Gelman et al., 2013).

This completes the MCMC algorithm employed to simulate from the posterior distribution. After

choosing starting values and a sufficient burn-in period we store draws from the conditional posterior

distributions. In particular, we discard the initial 4, 000 draws, while Bayesian inference is performed

based on each third of the subsequent 6, 000 draws resulting in a set of 2, 000 draws from the posterior.

17


	Introduction
	A time-varying spatial dependence panel model
	Interpreting the model coefficients

	Prior specification
	A spike-and-slab prior testing for time variation
	Sparse finite mixtures to pool coefficients

	Posterior computation
	Network effects of US monetary policy
	Data and model specification
	Empirical results
	Nested specifications and benchmarks
	Allowing for time-varying spatial dependence and cross-sectional heterogeneity


	Closing remarks
	References
	Appendix Posteriors for mixture-specific quantities
	Appendix MCMC algorithm

