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1. INTRODUCTION

Uncertainty has received a substantial amount of attention as a driving force of business cycle fluctu-

ations following the experiences of economists and policy makers in the aftermath of the Great Recession.

Measuring uncertainty and its impact on the economy is the subject of numerous articles, with prominent

contributions including Fernández-Villaverde et al. (2015), Jurado et al. (2015), Ludvigson et al. (2015),

Caldara et al. (2016), Baker et al. (2016), Basu and Bundick (2017), Fajgelbaum et al. (2017), Schaal

(2017), Bloom et al. (2018), and Carriero et al. (2018b), among others.1 These studies provide com-

pelling theoretical and empirical evidence suggesting negative economic consequences of uncertainty

shocks. Elevated levels of uncertainty can produce large drops in economic activity, and moreover render

counteracting monetary and fiscal policies less effective (see, for instance, Aastveit et al., 2013; Bertolotti

and Marcellino, 2019). Transmission channels of uncertainty shocks to the macroeconomy relate mainly

to real phenomena in the traditional literature, such as distorted corporate decision making (Bernanke,

1983; Bloom, 2009), while recent papers highlight the importance of disturbances on credit and financial

markets (Gilchrist and Zakrajšek, 2012; Gilchrist et al., 2014; Alessandri and Mumtaz, 2019).

The measurement of uncertainty is a non-trivial task, stemming from its fundamentally unobservable

nature. Many researchers construct proxies for uncertainty (e.g. stock market volatilities, or the occurance

of uncertainty related keywords in newspapers), and treat them as observed in subsequent analyses.

Approaches relying on such measures are critizised by Carriero et al. (2018b) for several reasons, with

incorrect statistical inference in two-step econometric frameworks, and measurement errors biasing the

results among them (see also Carriero et al., 2015a;b). Methods proposed to alleviate these concerns

include variants of stochastic volatility in mean (SVM) models. This modeling approach assumes time

variation in the second moments of shocks to economic series, that also affect the respective first moments

in dynamic time series models (see Koopman and Hol Uspensky, 2002). The time-varying volatilities are

considered as a measure of uncertainty, establishing a unified framework for estimating uncertainty and its

effects jointly. Econometric studies featuring variants of this approach are, for instance, Berument et al.

(2009), Mumtaz and Zanetti (2013), Carriero et al. (2018b), Mumtaz and Surico (2018), or Alessandri

and Mumtaz (2019).

Even though the literature on the impact of uncertainty shocks appears voluminous, most of the

relevant contributions are confined to single-country analysis, and assume model parameters other than

the time-varying volatilities to be constant over time.2 Both of these limitations in general may be

considered overly restrictive: A growing number of papers suggests the presence of structural breaks in

many economic time series, a feature that requires flexible econometric specifications to obtain reliable

inference. Popular methods to deal with such dynamics are time-varying parameter models that allow

for drifting coefficients in addition to stochastic volatilities (see, for instance, Cogley and Sargent, 2005;

Primiceri, 2005; D’Agostino et al., 2013; Koop and Korobilis, 2013; Aastveit et al., 2017; Chan and

Eisenstat, 2018; Huber et al., 2019).

Besides structural breaks in model parameters, there exists substantial evidence on the importance

of taking global linkages, spillovers, and feedback effects between economies into account. Neglecting

cross-border relationships entails the risk of omitted variable bias and may obscure important transmis-

1A comprehensive survey of the related literature is provided by Bloom (2014).

2For notable exceptions in terms of nonlinear modeling, see Mumtaz and Theodoridis (2018) and Alessandri and Mumtaz

(2019). Examples for multi-economy modeling frameworks include Mumtaz and Theodoridis (2015), Crespo Cuaresma et al.

(2017), Mumtaz and Theodoridis (2017), Rossi and Sekhposyan (2017), and Carriero et al. (2018a).

2



sion channels of shocks. Multi-economy frameworks proposed to study international macroeconomic

dynamics include factor models (see Kose et al., 2003; Mumtaz and Surico, 2009), panel VARs (PVARs,

see Canova and Ciccarelli, 2004; 2009; Koop and Korobilis, 2016) and global VARs (GVARs, see Pesaran

et al., 2004; Dees et al., 2007; Eickmeier and Ng, 2015; Feldkircher and Huber, 2016; Huber, 2016).

Motivated by the notions above, this paper proposes a multi-economy model with drifting coefficients

and factor SVM to estimate uncertainty and its effects on a set of economies jointly. The contributions of

this article are both of empirical and methodological nature. From an empirical perspective, we estimate

an international measure of uncertainty and use the endogenous volatility-based measure to simulate

dynamic responses for multiple economies and variable types to an international uncertainty shock.

Similar to Carriero et al. (2018b) for the United States, the employed specification discriminates between

uncertainty common to a large set of macroeconomic and financial indicators, while also featuring series-

specific idiosyncrasies. The paper is also similar to Crespo Cuaresma et al. (2017), who rely on a factor

stochastic volatility specification to measure uncertainty and assess the international effects of uncertainty

shocks. By contrast, using a time-varying parameter multi-country VAR allows for studying whether the

implications of volatility shocks changes over time.

From an econometric perspective, the paper provides several modeling contributions. First, we

extend the GVAR model of Pesaran et al. (2004) to account for time-varying static and dynamic interde-

pendencies between economies (for a similar approach, see Crespo Cuaresma et al., 2019). The GVAR

specification serves as a parsimonious framework to impose sensible parametric restrictions in large-scale

multi-country models. Second, for capturing international financial sectors, we augment the basic setup

with a term-structure model for interest rates in the spirit of Nelson and Siegel (1987). Though this

modeling framework decreases the number of parameters compared to unrestricted estimation substan-

tially, the parameter space of the model is still high-dimensional. As a remedy and third contribution,

we employ Bayesian methods and adapt global-local priors designed for achieving shrinkage in time-

varying parameter models (see Frühwirth-Schnatter and Wagner, 2010; Belmonte et al., 2014; Bitto

and Frühwirth-Schnatter, 2019). Finally, for measuring uncertainty endogenously, we follow Crespo

Cuaresma et al. (2017) and model the high-dimensional variance covariance matrix of the system using a

factor stochastic volatility structure. The proposed measure of uncertainty is a scalar driving the variance

of the common factors. The model can thus be considered a multivariate extension of the SVM model

with time-varying parameters by Chan (2017).

Bayesian inference is obtained by constructing a hierarchical prior that efficiently exploits cross-

sectional information. In particular, the country-specific coefficients are assumed to arise from a common

distribution, capturing that domestic dynamics across countries are similar. This approach provides a

link to the literature on the Bayesian treatment of panel data, related to the random coefficients and

heterogeneity model (Verbeke and Lesaffre, 1996; Allenby et al., 1998; Frühwirth-Schnatter et al., 2004).

Moreover, we impose a global-local shrinkage prior on the common mean, allowing to push less important

coefficients towards zero. Combined with the non-centered parameterization for state space models set

forth in Frühwirth-Schnatter and Wagner (2010), this setup allows to test a set of parametric restrictions.

First, we stochastically select which coefficients are non-zero. Second, we identify which coefficients can

be set to zero in a data driven fashion, and which of them are heterogeneous and homogeneous across

countries. Third, the prior shrinks the model towards a constant parameter specification when suggested

by likelihood information. Imposing a similar shrinkage prior also on the innovation variances of the
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stochastic volatility state equations allows to center the system on homoscedastic errors. Flexible local

scaling parameters preserve the possibility of heteroscedasticity across idiosyncratic series, if required.

Our model is applied to monthly data for six economies (France, Germany, United Kingdom, Italy,

Japan, and the United States) for the period ranging from 1991:04 to 2018:07. The information set

includes several recessionary episodes, and thus periods of economic distress when uncertainty is typically

perceived to play a major role.3 The endogenous measure of uncertainty is comparable to established

proxies, and links well to events associated with high uncertainty. Besides macroeconomic uncertainty

that is common to all series across all considered economies, we find various interesting patterns and

idiosyncratic events in variable-specific volatilities.

Impulse responses shed light on the consequences of uncertainty shocks to a set of macroeconomic

and financial quantities. Here, one key insight is that the responses for prices, unemployment, industrial

production and equity prices are heterogeneous across the six countries in terms of magnitude and timing.

In general, we find that uncertainty shocks exert disinflationary pressure, increase unemployment, depress

industrial production and negatively affect equity prices, in line with the established literature. We provide

evidence for time-varying consequences of uncertainty shocks. Some variables show systematic declines

in their responsiveness to uncertainty shocks while the responses remain comparatively stable over time

for others, corroborating findings in Mumtaz and Theodoridis (2018). For selected quantities in a subset

of countries, the time-varying effects of uncertainty shocks do not evolve gradually, but exhibit distinct

features for specific periods, as discussed for instance in Alessandri and Mumtaz (2019).

The article is structured as follows. Section 2 proposes the global vector autoregressive model

with drifting coefficients and factor SVM to analyze the impact of uncertainty shocks across multiple

economies. This section includes details on the Bayesian econometric framework. Section 3 presents

the data and discusses model specification. Section 4 investigates the uncertainty measure and provides

a discussion of the empirical results. Section 5 concludes.

2. ECONOMETRIC FRAMEWORK

In this section, we set forth a parsimonious multi-country model to measure the international consequences

of uncertainty shocks on macroeconomic and financial variables for a set of economies. We first discuss the

general setup and proceed with the specification for the drifting coefficients and time-varying volatilities.

The section also contains information on the prior setup and the sampling algorithm.

2.1. Model specification

Let yit denote a k × 1 vector of endogenous variables for t = 1, . . . ,T specific to country i = 1, . . . , N .

Collecting country-specific endogenous variables yields the K × 1 vector yt = (y ′
1t
, . . . , y ′

Nt
) with

K = k N , while we stack the reduced form shocks to yit in a K × 1 vector ǫ t = (ǫ ′
1t
, . . . , ǫ ′

Nt
)′. Following

Aguilar and West (2000) and Kastner and Huber (2018), we consider a factor stochastic volatility structure

on the error term,

ǫ t = L ft + ηt, ft ∼ N (0, exp(ht ) × Σ), ηt ∼ N (0,Ωt ). (1)

3In particular, relevant events are the 1997 Asian financial crisis, the early 2000s recession related to the burst of the Dot-com

bubble, the global financial crisis, the Great Recession, and the subsequent European sovereign debt crisis.
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Here, ft is a vector of d × 1 common static factors (with d ≪ K), and ηt an idiosyncratic white noise

shock vector of dimension K×1. Latent factors are linked to the errors by the K×d factor loadings matrix

L. The factors ft are Gaussian with zero mean and common time-varying volatility exp(ht ) scaling a

diagonal d × d matrix Σ = Id, with Id referring to a d-dimensional identity matrix.

The idiosyncratic error components ηt are assumed to follow a Gaussian distribution centered on zero

with a K × K time-varying diagonal variance covariance matrix Ωt = diag(exp(ω1t ), . . . , exp(ωKt )).

Note that the sign and scale of the factors and their loadings are not econometrically identified. We

achieve identification by setting the upper d × d block of L to a lower triangular matrix with ones on the

diagonal.

For both the volatility of the factors and the variances of the idiosyncratic component of the decom-

posed error term, we rely on a stochastic volatility model (see, for instance, Jacquier et al., 2002). Here, ht

and ωi j,t for i = 1, . . . , N and j = 1, . . . , k follow independent autoregressive processes. As in Primiceri

(2005), we assume a random walk specification

ht = ht−1 + ξt, ξt ∼ N (0, σh) (2)

ωi j,t = ωi j,t−1 + ζt, ζt ∼ N (0, σωi j ) (3)

with σh and σωi j denoting the state-equation innovation variances.4 Note that for the case of σh and

σωi j equal to zero, we obtain homoscedastic errors. We exploit this notion below by rewriting the model

in its non-centered parameterization (see Frühwirth-Schnatter and Wagner, 2010). This allows us to

impose flexible shrinkage priors for stochastically selecting whether time-varying volatilities are required

to adequately fit the data.

The dynamic evolution of yit is governed by a vector autoregressive (VAR) process with drifting

coefficients and features the common volatility of the factors in the mean:

yit = αit +

P
∑

p=1

Aip,t yit−p +
Q
∑

q=1

Biq,t y
∗
it−q + βitht + ǫ it . (4)

Here, we define the k × 1 intercept vector αit and k × k coefficient matrices Aip,t (p = 1, . . . , P).

To establish dynamic interdependencies between economies in the spirit of the GVAR model (Pesaran

et al., 2004), we construct a k × 1-vector y∗
it
=

∑N
j=1 wi j y jt . The wi j denote pre-specified weights (we

let wii = 0, wi j ≥ 0 and
∑N

j=1 wi j = 1 for i, j = 1, . . . , N) that capture the strength of the linkages.

The process in Eq. (4) is augmented by Q lags of these non-domestic cross-sectional averages y∗
it

, with

associated k × k coefficient matrices Biq,t (q = 1, . . . ,Q). The vector βit associated with the log of the

factor volatility ht is of dimension k × 1.

Our setup allows for interpreting βit as the impact of uncertainty ht on the endogenous variables

of country i. We exploit this notion for calculating impulse response functions. Considering ht to be

orthogonal to the VAR errors implies that we do not impose restrictions on the contemporaneous effects,

which relates to recursive identification schemes that order uncertainty indices first (see, e.g. Bloom,

2009). Empirical evidence for the credibility of this exogeneity assumption is provided by Carriero et al.

4In the empirical application, the likelihood turns out to be quite flat for σh , and we therefore impose the restriction σh = 0.2.

Evaluating various values for this parameter over a grid suggests this choice to be only of minor importance for the results.
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(2019), who find little evidence for endogenous responses of macroeconomic uncertainty to movements

in key macroeconomic variables (see also Ludvigson et al., 2015).

Before proceeding, we recast the model in standard regression form for notational simplicity,

yit = Cit xit + ǫ it, (5)

with xit = (1, y ′
it−1
, . . . , y ′

it−P, y
∗′
it−1, . . . , y

∗′
it−Q, ht )′, andCit = (αit, Ai1,t, . . . , AiP,t, Bi1,t, . . . , BiQ,t, βit ).

In what follows, it is convenient to consider the jth equation of country i in Eq. (5) which is given by

yi j,t = C ′i j,t xit + ǫ i j,t .

We refer to the jth row of the matrixCit byCi j,t , which is a vector of dimension K̃×1 with K̃ = k (P+Q)+2.

The state vector is assumed to follow a random walk process

Ci j,t = Ci j,t−1 + ut, ut ∼ N (0,Θi j ), (6)

with diagonal K̃ × K̃ variance-covariance matrix Θi j = diag(θi j,1, . . . , θi j,K̃ ).

As for the stochastic volatility specification, if θi j,l equals zero in Eq. (6), the respective coefficient

is constant over time. To test the restriction θi j,l = 0, we introduce the non-centered parameterization set

forth by Frühwirth-Schnatter and Wagner (2010), which allows to impose standard shrinkage priors on

these innovation variances. In particular, this approach splits the model coefficients into a constant and a

time-varying part, a feature we exploit for designing sensible priors for the high-dimensional multivariate

system proposed in this paper.

We proceed with rewriting the model in its non-centered parameterization.5 Using a K̃×1-vector con-

taining the square root of the state innovation variances in Eq. (6) denoted
√

Θi j = diag(
√

θi j,1, . . . ,
√

θi j,K̃ ),

the reparameterized measurement equation is

yi j,t = C ′i j,0xit + C̃ ′i j,t

√

Θi j xit + ǫ i j,t . (7)

Let c̃i jl,t denote a typical element of C̃i j,t , then the transformation ci jl,t = ci jl,0 +
√

θi j,l c̃i jl,t yields the

corresponding state equation

C̃i j,t = C̃i j,t−1 + vt, vt ∼ N (0, IK̃ ),

with C̃i j,0 = 0K̃ . This procedure moves the square root of the innovation variances to the states into

Eq. (7), implying that the measurement equation features all unknown parameters. The resulting state

space representation has the convenient property that the
√

θi j,l can be treated as standard regression

coefficients, and flexible shrinkage priors can be applied.

Stochastically selecting whether series should feature time-variation in their respective volatilities

can be carried out using a transformation in similar vein (see Frühwirth-Schnatter and Wagner, 2010;

Kastner and Frühwirth-Schnatter, 2014). Conditional on L ft and the full history of the VAR coefficients

Cit , we obtain a set of unrelated heteroscedastic error terms ηt by the diagonal structure ofΩt . Here, we

5For applications of this approach in a VAR context see Feldkircher et al. (2017), Bitto and Frühwirth-Schnatter (2019) and

Huber et al. (2019).
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use ηi j,t to indicate the error term of the jth equation for country i. Squaring and taking logs of ηi j,t and

using ωi j,t =
√
σωi jω̃i j,t results in

η̃i j,t =
√
σωi jω̃i j,t + νi j,t, νi j,t ∼ ln χ(1),

ω̃i j,t = ω̃i j,t−1 + wi j,t, wi j,t ∼ N (0, 1),

again moving the square root of the innovation variances
√
σωi j from the state to the measurement

equation. The transformation again allows to impose shrinkage priors on these coefficients, potentially

pushing the model towards a homoscedastic specification if suggested by likelihood information.

2.2. Prior distributions

Bayesian methods are employed for estimation and inference. The panel structure of the data allows for

constructing flexible shrinkage priors that are equipped to extract both cross-sectional information and

moreover shrink the model towards sparsity, resulting in more precise inference. Before proceeding with

the prior setup, it is necessary to stack the coefficients for the sake of notational simplicity. In particular,

we use ci = vec(C ′
i1,0
, . . . ,C ′

ik,0
) to refer to the vector of constant regression coefficients associated

with country i. In similar fashion, we collect square roots of the innovation variances
√

θi j,l in a vector
√
θi = (

√

θi1,1, . . . ,
√

θi1,K̃, . . . ,
√

θik,1, . . . ,
√

θik,K̃ )′. We index the jth element in ci and
√
θi by ci j and

√

θi j respectively, with j = 1, . . . , kK̃ .

This article draws from the literature on the Bayesian treatment of panel data and global-local

shrinkage priors. In particular, we center the prior on a common mean that is estimated from the data,

reflecting the notion that macroeconomic dynamics across economies are typically similar. The prior

setup thus relates to the random coefficients and heterogeneity model (Verbeke and Lesaffre, 1996;

Allenby et al., 1998; Frühwirth-Schnatter et al., 2004), and restrictions often imposed in the context of

panel VARs (see, for instance, Jarociński, 2010; Canova and Ciccarelli, 2013; Koop and Korobilis, 2016).

In what follows, we propose hierarchical priors akin to the Normal-Gamma (NG) shrinkage prior of

Griffin and Brown (2010) recently adopted in the VAR context by Bitto and Frühwirth-Schnatter (2019)

and Huber and Feldkircher (2019). Since an analogous setup is applied for different parts of the parameter

space, we rely on the generic indicator • to indicate various combinations of indexes. For the constant

part of the VAR coefficients, we assume that ci j arises from

ci j |µc j, τc j ∼ N (µc j, τc j ), τc j |λc ∼ G(a•, a•λc/2), λc ∼ G(d•0, d•1). (8)

Here, a key novelty is that we do not push all country-specific coefficients towards zero, but rather towards

a common mean µc j . The overall degree of shrinkage is determined by a global shrinkage parameter

λc, thus serving as a general indicator of cross-country homogeneity. To provide flexibility for country-

specific macroeconomic dynamics and deviations from the common mean, we introduce local scaling

parameters τc j . In the presence of heavy shrinkage governed by λc, the τc j allow for flexibly selecting

idiosyncrasies in coefficients across economies. This is an innovation compared to similar approaches

(see, for instance, Malsiner-Walli et al., 2016; Fischer et al., 2019) who solely rely on a set of Gamma

priors on these variances, disregarding a common degree of overall shrinkage towards homogeneity.

Shrinkage on the innovation variances of the states in Eq. (6) is introduced in similar vein. We follow

Bitto and Frühwirth-Schnatter (2019) and stipulate a Gamma prior on these variances, which combined
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with a hierarchical prior relying again on Gamma distributions yields the setup they term the double

Gamma prior. This is advantageous to the often employed inverse Gamma prior, because it does not

artificially pull mass away from zero, a crucial feature when interest centers on stochastically shrinking

the time-varying coefficients towards constancy. Frühwirth-Schnatter and Wagner (2010) show that this

is equivalent to imposing a Gaussian prior on the square root of the state innovation variances,

√

θi j |µθ j, τθ j ∼ N (µθ j, τθ j ), τθ j |λθ ∼ G(a•, a•λθ/2), λθ ∼ G(d•0, d•1).

As in the case of the constant coefficients of the model, we introduce a common mean µθ j rather than

pushing the variances towards zero. This feature captures the notion that not only the constant coefficients

across countries may be similar, but also the degree of time variation of the model parameters. The

global shrinkage parameter λθ exerts shrinkage towards cross-sectional homogeneity of the innovation

variances, while the local scalings τθ j allow for flexibility and heterogeneity across countries governed

by data information.

The first hierarchy of priors captures the notion that the dynamic coefficients of the model might be

similar over the cross-section. However, VARs with drifting coefficients are prone to overfitting issues.

We deal with this problem and induce sparsity in the coefficient matrices by imposing another NG prior

to achieve regularization at the second level of the hierarchy. On the common mean µs j (for s ∈ {c, θ})
we specify

µs j |τµs j ∼ N (0, τµs j ), τµs j |λµs
∼ G(a•, a•λµs

/2), λµs
∼ G(d•0, d•1).

This setup pushes the elements in the common mean towards zero, where the overall level of shrinkage

is again governed by the global parameter λµs
. Similar to the first prior hierarchy, the prior allows for

non-zero elements if suggested by the data via the local scalings τµs j . This completes the setup for the

VAR coefficients and the state innovation variances.

For the stochastic volatility specification we rely on analogous priors. In particular, for the state

innovation variances of the stochastic volatility processes for the jth variable of country i, we impose

Gamma distributed priors, translating to Gaussian priors on the square root of these variances. The prior

is given by

√
σωi j |τσi j ∼ N (0, τσi j ), τσi j |λσ ∼ G(a•, a•λσ/2), λσ ∼ G(d•0, d•1),

with the global shrinkage parameter λσ pushing the model towards a homoscedastic specification. The

local scalings τσi j allow for non-zero state innovation variances. Intuitively, if τσi j is small, we introduce

substantial prior information and the parameter is pushed towards zero, ruling out time-variation in the

respective volatility. For larger values of τσi j , the prior is less informative and allows for movements in

the corresponding error variances.

It remains to specify prior distributions on the factor loadings in L. Here, we stack the free elements

in a vector l with typical element l j for j = 1, . . . , R (R = Kd − d(d + 1)/2)) and again opt for an NG

shrinkage prior,

l j |τLj ∼ N (0, τLj ), τLj |λL ∼ G(a•, a•λL/2), λL ∼ G(d•0, d•1). (9)
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This choice implies shrinkage towards sparsity governed by the global parameter λL , while the local

scalings τLj once more serve to pull prior mass away from zero if likelihood information suggests

non-zero factor loadings.6

Until now we remained silent on the choices of hyperparameter values. In the empirical specification,

and referring by • to the indexes {c, θ, µs, σ, L}, we follow the literature and set d•0 = d•1 = 0.01 which

implies heavy shrinkage via the global shrinkage parameter. Note that the hyperparameter a• for the local

scalings plays a crucial role in the specific properties of the prior. In fact, setting a• = 1 would yield

the Bayesian LASSO (Park and Casella, 2008) used in Belmonte et al. (2014). Given that the generic

prior is applied to a range of different quantities of the model’s parameter space, we integrate out this

hyperparameter by imposing exponential priors a• ∼ E (1).

This completes the prior setup for achieving regularization in the high-dimensional state space model.

Full conditional posterior distributions obtained from combining the likelihood function with the priors

and the corresponding estimation algorithm are discussed in Appendices A and B. Fortunately, most of

the distributions are of well-known form, allowing for a simple Markov chain Monte Carlo (MCMC)

algorithm to obtain draws from the joint posterior using Gibbs sampling.

3. DATA AND MODEL SPECIFICATION

In this section, we introduce the dataset and discuss several important aspects in terms of model spe-

cification. Our dataset consists of monthly data for the period ranging from 1991:04 to 2018:07 for six

economies: France (FRA), Germany (DEU), the United Kingdom (GBR), Italy (ITA), Japan (JPN), and

the United States (USA). Consequently, the information set covers the G7 countries, similar to Crespo

Cuaresma et al. (2017), except Canada due to limitations of government bond yield data.

Macroeconomic and financial quantities across countries included in the system are obtained from

various sources. In particular, the model features series on industrial production (IP, as a monthly indicator

of economic activity), unemployment (UN), year-on-year consumer price inflation (PR), exports (EX)

and equity prices (EQ), downloaded from the FRED database of the Federal Reserve Bank of St. Louis.

Industrial production, exports and equity prices enter the model in natural logarithms. To construct the

cross-sectional weights for establishing links between economies, we rely on bilateral annual trade flows

averaged over the sample period. Moreover, data on government bond yields at different maturities are

downloaded from Quandl.7

A crucial determinant of business cycle fluctuations and the transmission of uncertainty shocks to

the real sector of the economy are financial markets, with changes in term spreads being of particular

importance (Gilchrist et al., 2009; Gilchrist and Zakrajšek, 2012; Gilchrist et al., 2014; Alessandri and

Mumtaz, 2019). For a parsimonious representation of the full term structure of interest rates across

countries, we adopt a Nelson-Siegel type model (see Nelson and Siegel, 1987; Diebold and Li, 2006).

Government bond yield curves are estimated employing a factor model denoting yields by rit (τ) at

maturity τ,

rit (τ) = Lit +Sit

(

1 − exp(−λτ)
λτ

)

+ Cit

(

1 − exp(−λτ)
λτ

− exp(−λτ)
)

. (10)

6For a recent contribution proposing a comparable prior setup, see Kastner (2019).

7All series are available for download at fred.stlouisfed.org and quandl.com.
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This setup allows the factors Lit ,Sit and Cit to be interpreted as the level, (negative) slope and curvature

of the yield curve, and may be estimated using ordinary least squares.8 Using an m × 1-vector of

macroeconomic indicators mit , we exploit the yield curve fundamentals extracted in Eq. (10) to construct

the k × 1 endogenous vector yit = (m′
it
,Lit,Sit,Cit )′ for t = 1, . . . ,T specific to country i = 1, . . . , N . In

the discussion of the empirical results, Lit ,Sit and Cit are labeled NSL, NSS and NSC, respectively.

All dimensions of the involved vectors can be derived based on k = 8 and N = 6. To select the lag

order of the model and the number of latent factors that drive the full system variance covariance matrix,

we rely on the deviance information criterion (DIC, Spiegelhalter et al., 2002). This measure allows for

model comparison and establishes a trade-off between model fit and complexity. We estimate the model

over a grid of lag and latent factor combinations, and choose the specification minimizing the DIC. To

add to the robustness of our findings, we iterate this procedure a number of times for all specifications and

calculate the empirical standard deviation of the DIC. This procedure selects a model with P = Q = 2

lags and d = 4 factors.

For the empirical application, we slightly adopt the general prior setup put forward in Section 2. In

particular, to reduce influence of the prior setup on the estimated impact of uncertainty, we use a rather

diffuse prior on the constant part of these coefficients with prior variance equal to ten. The square roots

of the state innovation variances of the impact vector are tightly centered on zero a priori. The latter

choice mutes differences in impact reactions over time, but improves the stability of the model.

4. EMPIRICAL RESULTS

In the following results, we examine the consequences of international uncertainty shocks for the set of

six economies. First, we identify similarities and idiosyncrasies across countries. Second, we discuss

our measure of international uncertainty and link it to established proxies. Finally, we provide a thorough

discussion of the dynamic responses for the macroeconomic and financial variables to uncertainty shocks.

4.1. Homogeneity and heterogeneity across countries and over time

In this section, we illustrate the key features of the proposed prior setup in terms of homogeneities and

heterogeneities across countries and over time. In a first step, we assess the degree of sparsity imposed

on the common mean that is inferred from the country-specific models. As a second step, we assess

differences in coefficients across countries by analyzing the amount of shrinkage of country-specific

coefficients towards the common mean.

Shrinkage towards sparsity

The non-centered parameterization of the state space model allows to investigate both shrinkage on

the common mean of the time-invariant part of the VAR coefficients µc j , and the corresponding state

innovation variances µθ j . Here, shrinkage is governed by the scaling parameters τµc j and τµθ j . Figure 1

shows the respective posterior mean of this variable on the logarithmic scale. Panel (a) indicates log(τµc j ),

scalings associated with the constant part of the VAR coefficients, while (b) depicts log(τµθ j ) associated

8We adopt a two-stage procedure to reduce the computational burden in the empirical application. The factor loadings are

determined by the parameter λ = 0.0609 (see Diebold and Li, 2006, for details on this choice). For a more detailed discussion

of how the three factors relate to level, slope and curvature of the yield curve, see also Diebold et al. (2006).
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(a) Time-invariant VAR coefficients
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(b) Square root state innovation variances
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Fig. 1: Log posterior mean of prior variances τµs j shrinking the common mean to zero.

Note: Panel (a) shows the prior variances associated with the common mean of the constant part of the VAR coefficients µc j ,

while panel (b) depicts the prior variances associated with the common mean of the state innovation variances in µθ j . The

columns refer to the coefficients associated with a countries’ own lagged variables in yit−p (labeled “Domestic”) of lag t − p,

while “Foreign” indicates the coefficients associated with y∗
it−q at t − q. Variables (rows): Unemployment (UN), industrial

production (IP), exports (EX), consumer price inflation (PR), equity prices (EQ), Nelson-Siegel factors for level (NSL), slope

(NSS) and curvature (NSC) of the yield curve.

with the state innovation variances. Smaller values indicate heavier shrinkage towards zero. Note that

due to visualization purposes and the imposed prior restrictions, we do not present the corresponding

prior variances for the intercept term and the impact vector βit .

The first column of Fig. 1(a) highlights the first own lag of each equation in µc j to feature mainly

non-zero coefficients, reflected in values of log(τµc j ) close to zero. This implies that only little shrinkage

towards zero is imposed on these coefficients by the resulting loose prior variance τµc j . Such patterns,

albeit less distinctive, are also observable for the second lag of the domestic coefficients in the second

column. However, we generally detect tighter prior variances for the second lags, with differences

depending on the respective equation. The equity price equation, for instance, and to a slightly lesser

degree the equations associated with the Nelson-Siegel factors, exhibit tighter shrinkage governed by τµc j .

Two equation specific idiosyncrasies are worth mentioning. First, both the first and second lag of equity

prices feature less shrinkage for the unemployment, export, and especially the industrial production

equations. Second, the second lag of unemployment appears to be crucial in the inflation equation,

pointing towards a Phillips curve type relationship.

Turning to the third and fourth columns that indicate shrinkage on the foreign lags per equation, we

find similar shrinkage patterns when comparing to the first domestic lag. Interestingly, non-domestic

movements appear to play a role in the dynamic evolution of the Nelson-Siegel factors. In general, the

results point towards the necessity of considering international dynamics, a feature explicitly addressed

by the proposed multi-country approach.
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(a) Time-invariant VAR coefficients
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(b) Square root state innovation variances
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Fig. 2: Log posterior mean of prior variances τs j shrinking country-specific coefficients towards µs j .

Note: Panel (a) shows the prior variances associated with the constant part of the VAR coefficients ci j , while panel (b) depicts

the prior variances associated with the square root of state innovation variances
√

θi j . The columns refer to the coefficients

associated with a countries’ own lagged variables in yit−p (labeled “Domestic”) of lag t − p, while “Foreign” indicates the

coefficients associated with y∗
it−q at t − q. Variables (rows): Unemployment (UN), industrial production (IP), exports (EX),

consumer price inflation (PR), equity prices (EQ), Nelson-Siegel factors for level (NSL), slope (NSS) and curvature (NSC) of

the yield curve.

Figure 1(b) provides evidence of shrinkage towards zero of the state innovation variances that drive

time-variation in the model coefficients. Note, however, that shrinkage of the common mean towards

zero does not necessarily imply constant model coefficients, due to additional flexibility on the second

prior hierarchy. A key finding is that the unemployment and industrial production equations are pushed

strongly towards a constant parameter specification both for domestic and foreign lags. A simliar picture

is present in the inflation equation, albeit at a slightly lower overall degree of shrinkage induced by the

respective τµθ j , and for the Nelson-Siegel level and slope factors. The higher value of log(τµθ j ) on the

first own domestic lag of inflation in the inflation equation suggests changes in the persistence of prices

over time. Even more variation across the lags of variables is present for exports, equity prices and

the Nelson-Siegel curvature factor equations. The overall least degree of shrinkage is imposed for the

Nelson-Siegel curvature factor, implying a substantial degree of time-variation in the respective equation.

Shrinkage towards cross-sectional homogeneity

Next, we analyze the estimated prior variances τc j and τθ j that shrink country-specific coefficients

towards µc j and µθ j , respectively. Again, we consider the posterior mean of log(τc j ) and log(τθ j ) in

Fig. 2. The scalings provide a natural measure of similarity across countries. Values close to zero (or

large negative numbers on the log-scale) yield a situation referred to as cross-sectional homogeneity in the

panel literature (see Canova and Ciccarelli, 2013). Here, coefficients in the country-specific equations are
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strongly pushed towards the common mean. In the adverse case of looser priors, we observe a situation

where macroeconomic dynamics potentially differ across countries.

One notable result in Fig. 2(a) is that all coefficients are strongly pushed towards homogeneity,

suggested by predominantly large negative values for log(τc j ). No clear patterns of similarities are

visible across equations or both the domestic and foreign lag structure, and we thus proceed with results

in the context of equation-specific shrinkage. Note that the first own domestic lags per equation usually

feature less heavy shrinkage towards the common mean (except for inflation and equity prices), implying

subtle differences in the persistence of the considered series across countries. Particularly strong evidence

of homogeneity is present for subsets of domestic and foreign lags in all equations.

Figure 2(b) displays that heavy shrinkage on the state innovation variances is applied to all domestic

and foreign lags in the unemployment and industrial production equation. A similar picture emerges

for the inflation equation, and the dynamics captured in the context of the Nelson-Siegel level and slope

factors. However, some variables appear to require flexibility in terms of country-specific breaks in the

coefficients. Substantial differences in the amount of shrinkage towards homogeneity across domestic

and foreign lags are featured in the export and equity price equations. The least degree of homogeneity is

apparent in the context of the dynamic relationships between the Nelson-Siegel curvature factor and the

remaining variables in the model.

Combining the discussions in the context of Figs. 1 and 2 allows for different scenarios in terms

of homogeneity across countries and the degree of induced sparsity: First, there is the possibility of

heterogeneous non-zero coefficients and state innovation variances, in cases where both τµs j and τs j are

comparatively large. Here, prominent examples are provided by most first own lags of the domestic

coefficients in their respective equation. Second, if both τµs j and τs j are small, the prior setup implies

heavy shrinkage of the country-specific parameters towards zero, for example regarding most state

innovation variances in the equations for unemployment and industrial production. Third, for large τµs j

and small τs j , the prior implies homogeneous non-zero parameters featured mainly in the context of the

first autoregressive foreign lags.

Interestingly, while no clear relationship between Fig. 1 and Fig. 2 in terms of the constant part of the

VAR coefficients can be identified, the adverse is true for the state innovation variances. This implies that

if the common mean of the latter is non-zero on the first hierarchy of the prior, this is typically associated

with less heavy shrinkage towards the common mean on the second hierarchy of the prior. Supplementary

results for the country-specific square roots of the state innovation variances and the unconditional mean

per equation are reported in Appendix C.

Summarizing this section, three points are worth noting. First, shrinkage of the common mean

towards sparsity differs substantially depending on the respective equation, the lag order and whether

domestic or foreign parameters are considered. Second, a substantial part of the parameter space of the

model is shrunk heavily towards cross-sectional homogeneity, indicating similarity of macroeconomic

dynamics for the economies considered. Third, in light of the discussion relating to shrinkage on the

state innovation variances, a key finding of this article is that evidence for time-variation in the VAR

coefficients is limited.

Our results corroborate previous studies indicating that considering stochastic volatility usually suf-

fices for adequately capturing nonlinear dynamics in macroeconomic datasets (see Sims and Zha, 2006;

Aastveit et al., 2017; Chan and Eisenstat, 2018). The proposed model detects this data-feature and
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stochastically shrinks the parameter space towards the more parsimonious specification. However, breaks

in macroeconomic dynamics are not ruled out by the prior setup. Subtle nonlinearities in model paramet-

ers may be crucial in forecast exercises, and potentially yield illuminating patters in structural inference.

4.2. The measure of uncertainty

We proceed with a discussion of the obtained measure of uncertainty, depicted in Fig. 3. This figure shows

the log-volatility ht of the factors that enters the mean of the VAR process. The most striking episode of

high international uncertainty occurs during the global financial crisis and subsequent economic downturn

– the Great Recession. During this period, volatilities of the common factors are more than twice as high

than at the second highest peak.

Several less pronounced episodes of similarly elevated levels of international uncertainty are worth

noting. Chronologically, uncertainty rises in the first half of 1997, related to the Asian financial crisis. A

spike in late 1998 reflects the Russian financial crisis and the subsequent collapse of the U.S. hedgefund

Long-term Capital Management. Afterwards, a brief period of lower uncertainty is observable, coming

to an end with the burst of the Dot-com bubble and the 9/11 terror attacks in late 2001. Sustained elevated

levels, albeit declining, are observable until the end of 2003, a period encompassing the outbreak of the

second Gulf War. The period between 2004 and the bancruptcy of the U.S. investment bank Lehman

Brothers features relatively low levels of international uncertainty.

Surging international volatilities are detected by the model starting in late 2007, capturing the onset

of the crisis in the U.S. subprime mortgage market and first signs of disturbances on credit markets. After

a decline of common volatilities to pre-crisis levels around 2010, the second highest peak of ht occurs

in 2011, related to events during the European sovereign debt crisis. This period of elevated uncertainty

sustains until late 2013. The most recent episode of high uncertainty emerges in early 2016, indicating

peaks related to the Brexit referendum and the election of Donald Trump as President of the United States

in late 2016.

Following this brief discussion of the measure in light of uncertainty-related events, we compare

our findings to commonly adopted proxies for uncertainty. The set of measurements is obtained from

various sources. We consider the geopolitical risk (GPR) index described in Caldara and Iacoviello

(2018), the global policy uncertainty (GEPU) index and the world uncertainty index (WUI) constructed

as described in Baker et al. (2016), and complement these international measures of uncertainty with the

proxy employed in many empirical studies of uncertainty, the Chicago Board Options Exchange volatility

index (VIX).9 Moreover, we take the arithmetic average for all benchmark indices and label the resulting

series “Mean” in corresponding visualizations. To make the scales of the uncertainty measurements

comparable, we standardize all measures to lie in the unit interval.

The resulting series are depicted in Fig. 4. A few points are worth noting. First, ht provides a

smoother estimate of uncertainty. However, most peaks apparent in the benchmark uncertainty measures

are traced accurately. Differences occur mainly in the magnitude of the implied level of uncertainty. For

instance, “Mean” peaks in 2003, with most benchmark measures showing substantial uncertainty around

the outbreak of the second Gulf War. The endogenous measure of uncertainty traces this peak, but at a

comparatively lower level. The Great Recession peak in late 2008 on the other hand, exhibiting a spike

9The indices are available for download at www2.bc.edu/matteo-iacoviello/gpr.htm (GPR), policyuncertainty.com (GEPU and

WUI) and the FRED database of the Federal Reserve Bank of St. Louis (VIX).
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Note: The thick black line depicts the posterior median, alongside the 16th and 84th posterior percentiles (thin lines). Russian

crisis/LTCM refers to the Russian crisis of 1998 and the resulting collapse of the U.S. hedge fund Long-term Capital Management,

9/11 indicates the terror attacks of September 11, 2001; Lehman Brothers refers to the bancruptcy filing of the investment bank

Lehman Brothers in September 2008, and Trump/Brexit marks the election of Donald Trump as President of the United States

and the Brexit referendum in the United Kingdom in mid/late 2016.
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Fig. 4: Comparison of standardized uncertainty measures over time.

Note: Measures are standardized to lie in the unit interval. The thick black line depicts the posterior median of ht . The

remaining uncertainty measures are geopolitical risk (GPR), global policy uncertainty (GEPU), world uncertainty index (WUI),

the Chicago Board Options Exchange volatility index (VIX), and the thick grey line refers to the arithmetic average of GPR,

GEPU, WUI and VIX.

in the VIX and most other measures apart from GPR, is the highest level of uncertainty detected by ht .

Maximum values of WUI are associated with elevated levels in ht , and also the peaks of GPR and GEPU

coincide with upward movements in ht . Besides the measures shown in Fig. 4, it is worth mentioning

that our uncertainty measurement compares well to similar approaches dealing with the endogenous

measurement of uncertainty (see Crespo Cuaresma et al., 2017; Carriero et al., 2018a).

Discussions of the evolution of common international uncertainty are complemented by the findings

for idiosyncratic volatility series. Recall that the prior setup imposes shrinkage on the idiosyncratic

residual variances towards constancy. As evidenced by the figure, the likelihood strongly suggests the

necessity of a stochastic volatility specification. Hence, we refrain from a detailed discussion of the

associated shrinkage parameters τσi j . It is worth mentioning that heteroscedasticity plays only a minor
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Fig. 5: Series-specific log-volatilities ωi j,t for all variables across countries.

Note: The thick black line depicts the posterior median, alongside the 16th and 84th posterior percentiles (thin lines). Countries

(columns): Germany (DEU), France (FRA), United Kingdom (GBR), Italy (ITA), Japan (JPN), United States (USA). Variables

(rows): Unemployment (UN), industrial production (IP), exports (EX), consumer price inflation (PR), equity prices (EQ),

Nelson and Siegel (1987) factors for level (NSL), slope (NSS) and curvature (NSC) of the yield curve.

role for a subset of the considered series, most prominently in the context of industrial production and

unemployment for selected economies. The resulting log volatilities are shown in Fig. 5. Note that neither

of these series enters the mean of the VAR process as in Mumtaz and Surico (2018) due to our focus on

the effects of international uncertainty, however, they may be considered as a measurement of specific

types of uncertainty. For instance, log volatilities associated with equity prices may be interpreted as

country-specific financial market uncertainty. Individual series feature pronounced heterogeneities both

in terms of the magnitude and the timing of peaks. This provides evidence that the approach employed

for measuring common uncertainty in this paper discriminates well between country-specific events and

international uncertainty-related events of significance.

Largest differences in the magnitude of the volatilities are visible for unemployment, with Germany

and France exhibiting lower residual variances, when compared for instance to Italy or the United States.

However, both feature substantial higher-volatility periods in the years surrounding 2005. While ωi j,t

for industrial production is rather homogenous for the continental European countries, the series of the

remaining economies exhibit heterogeneities both in terms of magnitude and time-variation. The same

is true, even though to a slightly lesser degree, in the case of export volatilities. Moreover, pronounced

time-variation is clearly featured in the respective series relating to country-specific inflation dynamics,

and equity prices. Volatilities associated with the factors capturing yield curve dynamics show marked

similarities across countries, reflecting international commonalities in equity markets. This concludes

the section on the measurement of uncertainty.
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4.3. Dynamic responses to uncertainty shocks

In this section, we assess the dynamic responses across countries to an international uncertainty shock.

With ht entering the mean of the process, impulse response functions are computed based on the

contemporaneous impact vector βit . This identification corresponds to ordering the uncertainty variable

first in VARs achieving identification via zero-impact restrictions.

Figure 6 displays an overall summary of the dynamic responses for the periods between January 1992

and July 2017 on a biannual frequency, and reports the posterior median of the impulse response functions

to the uncertainty shock. Colors refer to the respective period (red indicates early parts of the sample,

blue marks later periods). Figure 7 depicts cumulative responses at the five year horizon. To save space,

numerical values for peak and cumulative effects are provided for three selected periods in Tables 1 and

2: The first in the beginning of the sample (January 1993); the second in the middle period just before the

Great Recession in a period of comparative stability (July 2004); and the third after the Financial Crisis of

2008/09 and the Great Recession (July 2017) at the end of the sample. Numbers in parentheses indicate

16th and 84th credible intervals alongside the posterior median.10 Units are scaled as percentages for

industrial production, exports and equity prices, while consumer price inflation, unemployment and the

Nelson and Siegel (1987) factors for level, slope and curvature are in basis points (BPs).

Shrinkage is imposed via the prior setup on time-variation of the impact vector βit . This is reflected in

time-invariant impact responses for all periods considered. In general, our results corroborate empirical

findings from previous contributions, and both directions and magnitudes of the responses are similar.

One notable result concerning the timing of the responses is that most react strongly on impact of the

shock. We find significant increases of unemployment in all countries, while industrial production,

exports, inflation and equity prices decrease. Timing and shape of the impulse responses for Nelson-

Siegel level, slope and curvature factors indicate a flattening of the yield curve associated with overall

decreases in interest rates at most maturities. In what follows we discuss our findings in detail, paying

particular attention to country-specific dynamics and differences in transmission channels over time.

Unemployment. For unemployment reactions to international macroeconomic uncertainty shocks,

we detect significant peaks on impact, ranging from two BPs in the case of Germany, France, the

United Kingdom and Italy, while Japan exhibits larger magnitudes up to roughly four BPs. The largest

unemployment responses result in the United States, with increases up to eight BPs roughly in line with

Carriero et al. (2018a). The estimated effects are rather persistent, with significant positive reactions in

terms of the the posterior median over the impulse response horizon of five years. Figure 6 suggests

only a minor degree of time-variation, with the impacts leveling out slightly quicker in later parts of

the sample. A key difference to previous findings in the literature is that unemployment effects peak on

impact, and peter out slowly over the considered horizon, opposed to the often observed hump shaped

impulse response functions (see, for instance, Carriero et al., 2018b).

Closer inspection of time-variation of the cumulative effects over five years in the first row of Fig. 7

yields some interesting insights. Slight systematic decreases in the overall consequences of international

uncertainty shocks on unemployment are visible for France, Italy, the United Kingdom and Japan. This

notion is most pronounced for the United Kingdom, where cumulative effects decline from a significant

70.9 BPs in January 1992 to insignificant estimates of 44.3 BPs in July 2017. Different behavior occurs in

Germany and the United States, with substantially larger cumulative responses at 112.1 BPs for Germany

10Additional results are available from the author upon request.
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Fig. 6: Impulse response functions for selected periods to an international uncertainty shock.

Note: Posterior median of the impulse response functions over time, with the shading referring to the respective period:

—— 1992:01 to —— 2017:07 on biannual frequency. The black line marks zero. Countries (columns): Germany (DEU),

France (FRA), United Kingdom (GBR), Italy (ITA), Japan (JPN), United States (USA). Variables (rows): Unemployment (UN),

industrial production (IP), exports (EX), consumer price inflation (PR), equity prices (EQ), Nelson-Siegel factors for level

(NSL), slope (NSS) and curvature (NSC) of the yield curve.

in the years surrounding 2005, reflecting labor markets under severe stress during this period. For the

U.S., estimates gradually amplify before the global financial crisis, with substantially larger effects close

to 160 BPs during the Great Recession. This finding is mainly driven by higher persistence of the effects

during this period.

Industrial production. Industrial production shows the largest declines in Italy and Japan, with

significant negative peak responses on impact of 0.5 and 0.6 percent, respectively. The remaining

countries exhibit rather homogeneous responses, with largest effects in France, followed by the United

Kingdom and Germany of approximately 0.2 percent. The United States shows the smallest effects, with

an approximate decline of 0.1 percent on impact. Note that for some countries posterior credible sets

of the peak responses include zero. Time variation at a first glance again appears limited, however, as

reported in the second row Fig. 7, subtle changes in the persistence of the estimated uncertainty shocks

translates to time-varying patterns in terms of cumulative responses.
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Fig. 7: Cumulative impulse response functions over time to an international uncertainty shock.

Note: The thick black line depicts the posterior median, alongside the 16th and 84th posterior percentiles (thin lines). The red

line marks zero. Countries (columns): Germany (DEU), France (FRA), United Kingdom (GBR), Italy (ITA), Japan (JPN),

United States (USA). Variables (rows): Unemployment (UN), industrial production (IP), exports (EX), consumer price inflation

(PR), equity prices (EQ), Nelson-Siegel factors for level (NSL), slope (NSS) and curvature (NSC) of the yield curve.

Similar to our findings in the context of unemployment responses, cumulative effects for industrial

production appear to gradually decrease in the first years of the sample period, in line with Mumtaz

and Theodoridis (2018). However, except for the United Kingdom, and different to the homogeneous

dynamics of cumulative responses for unemployment on the country-level, this trend disappears just prior

to the outbreak of the global financial crisis, with larger resulting estimates. Interestingly, in a brief period

after the Great Recession, uncertainty shocks appear to play a less important role for industrial production,

a notion that reverts later in the sample. Considering the three selected periods, cumulative industrial

production responses differ markedly over the cross-section, ranging from 6.3 percent (in Germany) to

2.4 percent (in the United Kingdom) in January 1992, decreasing slightly towards the end of the sample

for most economies.

Exports. Exports indicate insignificant impacts close to zero for Germany and the United Kingdom,

with a significant peak decline around two quarters after impact of roughly −0.3 percent. France and Italy
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exhibit positive impacts, but the responses quickly turn negative, with peak negative effects lying between

−0.2 and −0.4 percent. Substantial decreases are indicated for the United States, and more strikingly,

Japan, with decreases of about 0.5 percent in exports on impact which coincides with the peak response.

Note that the magnitude of the estimates is approximately in line with findings by Crespo Cuaresma et al.

(2017).

Regarding time-variation in the responses, no clear pattern emerges in terms of selected time points or

the reported responses in Fig. 6, and no conclusions can yet be drawn whether the impact of uncertainty

shocks changed systematically over time. Here, we again resort to Fig. 7, with the third row providing

evidence of substantial differences over time in the cumulative responses of uncertainty shocks to exports.

No clear pattern emerges previous to the global financial crisis, with estimates fluctuating approximately

around −10 percent across countries. The largest fluctuations in the cumulative responses are observable

for the United Kingdom. Analogous to the results for unemployment and industrial production, the

consequences of uncertainty shocks on exports in the aftermath of the Great Recession are muted in

comparison to previous periods. From 2015 onwards, the cumulative responses are again similar to

earlier in the sample, with estimates of roughly −10 percent with minor differences over the cross-section.

Consumer price inflation. Our findings for inflation require a more thorough discussion. First, note

that the employed index includes food and energy prices. Previous studies often use richer information

sets comprised of multiple inflation indices. Second and relatedly, Fernández-Villaverde et al. (2015)

identify two contradicting channels how uncertainty affects consumer prices: The so-called aggregate

demand channel, characterized by reducing the consumption of households and thereby leading to an

overall decrease in prices; and the upward-pricing bias channel, which yields increases in inflation based

on profit-maximizing firms. In our case, the former appears to dominate the latter, with significant

decreases of inflation on impact for most economies in row four of Fig. 7. The estimated peak effects for

selected periods in Tables 1 and 2 indicate constancy in magnitudes ranging from−8.5 BPs in Germany on

impact, to a mere −2.5 BPs for the case of Japan after two quarters (with insignificant impact responses).

The impulses for inflation in Germany, France, Italy and the United States exhibit only a small degree

of persistence, with responses quickly leveling out. In terms of time-variation, the effects of uncertainty

shocks on prices appear more persistent early in the sample, especially in Germany, and to a lesser degree

in Italy. The shape of inflation responses in the United Kingdom is similar to the other countries before

2005. However, impulse response functions turn hump-shaped in later periods, comparable to those of

Japan.

Further inspection of the estimates in light of Fig. 7 reveals substantial heterogeneities. First, we

observe differences in posterior uncertainty over the sample period. Less precisely estimated cumulative

effects mainly occur in the context of short-term interest rates hitting zero-lower bound for most economies,

and we also detect differences in the posterior median for this period especially in the case of the United

Kingdom. Second, inflated credible sets and differences in the posterior mean moreover occur early in

the sample. Third, responses at the end of the sample period in July 2017 feature little cross-sectional

heterogeneity, with cumulative estimates of approximately −100 BPs for most economies. Finally,

idiosyncratic movements for the United Kingdom are worth mentioning. After large negative effects early

in the sample, the consequences of uncertainty shocks on inflation declined substantially until late 2007.

After the Great Recession, substantially larger effects are detected, as suggested by the evolution of the

shape of the impulse responses for the United Kingdom in Fig. 6.
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Table 1: Peak and cumulative impulse response functions for selected periods (DEU, FRA and GBR).

Period 1992:01 Period 2004:07 Period 2017:07

Country Variable Peak Hor Cumulative Peak Hor Cumulative Peak Hor Cumulative

DEU UN 2.2 (1.2, 3.2) 0 89.8 (40.0, 166.1) 2.2 (1.2, 3.2) 0 112.1 (50.9, 211.0) 2.2 (1.2, 3.2) 0 86.4 (25.9, 193.9)
IP −0.2 (−0.4, 0.0) 0 −6.3 (−11.6,−3.3) −0.2 (−0.4, 0.0) 0 −6.8 (−11.3,−3.9) −0.2 (−0.4, 0.0) 0 −6.7 (−12.6,−3.2)
EX −0.3 (−0.4,−0.1) 6 −11.6 (−21.1,−5.9) −0.3 (−0.4,−0.2) 6 −10.7 (−17.6,−5.9) −0.3 (−0.5,−0.2) 6 −10.7 (−20.8,−4.2)
PR −8.5 (−14.1,−2.9) 0 −138.6 (−225.1,−79.7) −8.5 (−14.1,−2.9) 0 −78.3 (−128.3,−46.9) −8.5 (−14.1,−2.9) 0 −89.7 (−171.5,−44.5)
EQ −0.5 (−0.8,−0.3) 15 −26.0 (−45.7,−12.8) −0.4 (−0.5,−0.2) 0 −19.3 (−35.6,−8.3) −0.4 (−0.5,−0.2) 0 −13.9 (−34.5, 0.1)
NSL −5.3 (−9.1,−1.5) 0 −14.6 (−39.3, 18.1) −5.3 (−9.1,−1.5) 0 −5.7 (−28.5, 27.5) −5.3 (−9.1,−1.5) 0 −22.3 (−76.4, 17.0)
NSS 4.9 (0.5, 8.7) 0 −91.1 (−187.8,−23.2) 4.9 (0.5, 8.7) 0 −82.8 (−200.5,−6.4) 4.9 (0.5, 8.7) 0 −62.1 (−247.3, 33.0)
NSC −18.7 (−30.0,−6.2) 0 −139.2 (−290.8,−45.6) −18.7 (−30.0,−6.2) 0 −95.8 (−230.6,−16.1) −18.7 (−30.0,−6.2) 0 −85.9 (−346.0, 47.0)

FRA UN 2.7 (1.4, 4.2) 0 89.2 (42.8, 160.9) 2.7 (1.4, 4.2) 0 83.2 (39.5, 145.8) 2.7 (1.4, 4.2) 0 73.6 (23.2, 156.6)
IP −0.4 (−0.5,−0.2) 0 −4.8 (−7.9,−2.9) −0.4 (−0.5,−0.2) 0 −4.3 (−7.0,−2.6) −0.4 (−0.5,−0.2) 0 −4.1 (−7.5,−2.0)
EX 0.7 (0.3, 1.2) 0 −9.3 (−17.5,−4.1) 0.7 (0.3, 1.2) 0 −9.0 (−15.3,−4.7) 0.7 (0.3, 1.2) 0 −8.5 (−17.4,−2.9)
PR −6.4 (−10.9,−2.3) 0 −95.4 (−160.3,−57.3) −6.4 (−10.9,−2.3) 0 −81.5 (−131.7,−48.2) −6.4 (−10.9,−2.3) 0 −88.5 (−162.4,−47.3)
EQ −0.5 (−0.8,−0.2) 16 −25.0 (−44.4,−12.4) −0.3 (−0.6,−0.1) 22 −16.9 (−31.5,−6.9) −0.3 (−0.4, 0.2) 0 −13.9 (−33.2,−0.7)
NSL −2.1 (−3.8,−0.5) 0 −11.7 (−45.8, 23.3) −2.1 (−3.8,−0.5) 0 −2.6 (−28.3, 30.0) −2.1 (−3.8,−0.5) 0 −17.1 (−62.7, 25.5)
NSS −2.2 (−3.5,−0.8) 16 −103.0 (−195.7,−40.2) −1.9 (−3.6,−0.5) 20 −86.6 (−192.5,−18.1) −1.5 (−3.1,−0.3) 16 −63.2 (−172.4,−0.8)
NSC −3.5 (−6.3,−1.2) 3 −137.3 (−291.6,−44.3) −3.1 (−9.1, 0.8) 1 −127.0 (−303.3,−33.0) −2.2 (−5.4,−0.3) 21 −106.0 (−326.2,−1.4)

GBR UN 2.7 (1.0, 4.6) 0 70.9 (27.1, 142.8) 2.7 (1.0, 4.6) 0 52.0 (14.4, 109.1) 2.7 (1.0, 4.6) 0 44.3 (−12.5, 123.7)
IP −0.2 (−0.3,−0.1) 0 −2.4 (−4.3,−1.1) −0.2 (−0.3,−0.1) 0 −1.8 (−3.3,−0.8) −0.2 (−0.3,−0.1) 0 −1.7 (−3.9,−0.3)
EX −0.5 (−0.6,−0.1) 0 −9.3 (−16.6,−4.4) −0.5 (−0.6,−0.1) 0 −12.7 (−20.8,−7.6) −0.5 (−0.6,−0.1) 0 −8.6 (−17.4,−2.9)
PR −4.3 (−8.7, 0.4) 0 −88.1 (−154.4,−45.7) −4.3 (−8.7, 0.3) 0 −55.7 (−99.8,−22.6) −4.3 (−8.7, 0.4) 0 −131.3 (−281.1,−57.1)
EQ −0.3 (−0.5,−0.2) 15 −16.7 (−29.0,−8.3) −0.2 (−0.4,−0.1) 19 −11.1 (−20.8,−4.3) −0.2 (−0.4, 0.0) 12 −9.4 (−22.3, 0.3)
NSL −1.5 (−4.6, 4.6) 0 −4.2 (−40.1, 47.4) −1.5 (−4.6, 4.6) 0 6.7 (−19.8, 45.2) −1.5 (−4.6, 4.6) 0 4.5 (−39.5, 54.2)
NSS 6.4 (2.0, 10.7) 0 −75.8 (−197.2, 3.2) 6.4 (2.0, 10.7) 0 −60.0 (−171.9, 16.2) 6.4 (2.0, 10.7) 0 −73.8 (−249.4, 29.9)
NSC −20.2 (−34.3,−8.6) 0 −198.9 (−410.4,−72.4) −20.2 (−34.3,−8.6) 0 −117.9 (−265.4,−35.2) −20.2 (−34.3,−8.6) 0 −115.5 (−370.7, 5.2)

Notes: Countries shown are Germany (DEU), France (FRA), United Kingdom (GBR). Variables: Unemployment (UN), industrial production (IP), exports (EX), consumer price inflation (PR), equity prices (EQ), Nelson-

Siegel factors for level (NSL), slope (NSS) and curvature (NSC) of the yield curve. Peak refers to the peak of the impulse response function in terms of the median, while Hor indicates the impulse response horizon when

the peak occured in months (zero implying the impact response). Cumulative indicates cumulative impulse response functions over the full horizon. The numbers refer to the posterior median with the 16th and 84th

percentile of the posterior distribution in parentheses.
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Table 2: Peak and cumulative impulse response functions for selected periods (ITA, JPN and USA).

Period 1992:01 Period 2004:07 Period 2017:07

Country Variable Peak Hor Cumulative Peak Hor Cumulative Peak Hor Cumulative

ITA UN 2.4 (0.5, 4.4) 0 91.8 (33.5, 170.4) 2.4 (0.5, 4.4) 0 83.8 (27.4, 161.0) 2.4 (0.5, 4.4) 0 82.2 (−5.0, 212.6)
IP −0.5 (−0.7,−0.3) 0 −5.8 (−9.5,−3.5) −0.5 (−0.7,−0.3) 0 −5.5 (−8.7,−3.3) −0.5 (−0.7,−0.3) 0 −5.5 (−10.5,−2.4)
EX 0.5 (0.3, 0.7) 0 −10.3 (−19.5,−4.8) 0.5 (0.3, 0.7) 0 −10.3 (−17.3,−5.4) 0.5 (0.3, 0.7) 0 −12.0 (−22.5,−4.8)
PR −3.8 (−6.4,−1.5) 2 −128.1 (−211.4,−72.6) −3.5 (−7.3,−0.1) 0 −94.1 (−154.7,−56.1) −3.5 (−7.3,−0.1) 0 −105.2 (−204.3,−51.3)
EQ −0.5 (−0.8,−0.3) 17 −26.3 (−47.4,−12.1) −0.3 (−0.6,−0.1) 18 −18.4 (−34.4,−7.4) −0.4 (−0.6,−0.2) 4 −17.2 (−41.1,−0.9)
NSL −1.8 (−3.6, 0.4) 3 −18.7 (−72.5, 38.9) −1.4 (−3.2, 0.7) 1 −5.5 (−39.2, 31.9) −1.6 (−3.3, 0.2) 3 −26.8 (−97.6, 28.3)
NSS 4.8 (−3.9, 12.1) 0 −88.7 (−215.2, 12.0) 4.8 (−3.9, 12.1) 0 −79.9 (−240.5, 43.2) 4.8 (−3.9, 12.1) 0 −67.1 (−318.5, 115.5)
NSC −8.5 (−23.7, 6.4) 0 −170.0 (−380.7,−49.2) −10.1 (−19.3,−2.0) 1 −145.9 (−416.3, 3.5) −10.8 (−23.1,−1.4) 1 −121.7 (−585.5, 155.2)

JPN UN 3.6 (2.2, 5.0) 0 90.9 (54.0, 142.8) 3.6 (2.2, 5.0) 0 74.6 (43.8, 122.3) 3.6 (2.2, 5.0) 0 64.4 (22.1, 126.3)
IP −0.6 (−0.9,−0.4) 0 −6.2 (−9.7,−3.8) −0.6 (−0.9,−0.4) 0 −5.8 (−9.2,−3.7) −0.6 (−0.9,−0.4) 0 −5.7 (−10.4,−3.0)
EX −0.7 (−1.2,−0.2) 0 −10.5 (−18.6,−5.4) −0.7 (−1.2,−0.2) 0 −11.0 (−18.3,−6.5) −0.7 (−1.2,−0.2) 0 −11.3 (−21.7,−5.0)
PR −2.5 (−3.9,−1.3) 6 −86.5 (−156.3,−45.6) −2.5 (−4.1,−1.0) 4 −83.4 (−149.5,−42.3) −3.5 (−5.9,−1.7) 8 −117.7 (−280.8,−43.9)
EQ −0.5 (−1.0,−0.1) 1 −25.5 (−42.4,−13.2) −0.5 (−1.4, 0.3) 0 −16.3 (−30.2,−6.8) −0.5 (−1.4, 0.3) 0 −13.2 (−34.2, 0.6)
NSL −1.3 (−2.5, 0.0) 1 −11.9 (−34.4, 11.2) −1.3 (−3.0, 0.6) 0 −5.2 (−25.7, 14.4) −1.3 (−3.0, 0.6) 0 −11.5 (−54.8, 17.7)
NSS 2.7 (0.5, 4.9) 0 −49.0 (−125.6, 7.2) 2.7 (0.5, 4.9) 0 −23.7 (−91.5, 22.3) 2.7 (0.5, 4.9) 0 −12.0 (−100.6, 44.4)
NSC −2.1 (−5.1, 1.0) 2 −111.4 (−254.0,−17.6) −1.6 (−4.4, 0.0) 24 −79.3 (−261.4, 11.8) 2.8 (−1.5, 6.9) 2 −11.9 (−210.3, 127.0)

USA UN 8.1 (6.1, 10.2) 0 157.3 (100.8, 226.4) 8.1 (6.1, 10.2) 0 161.3 (102.1, 241.5) 8.1 (6.1, 10.2) 0 152.6 (80.5, 269.0)
IP −0.1 (−0.2, 0.0) 0 −3.7 (−6.3,−2.0) −0.1 (−0.2, 0.0) 0 −3.3 (−5.3,−1.8) −0.1 (−0.2, 0.0) 0 −3.2 (−6.2,−1.3)
EX −0.3 (−0.6, 0.1) 0 −8.7 (−16.5,−4.1) −0.3 (−0.6, 0.1) 0 −8.7 (−14.6,−4.6) −0.3 (−0.6, 0.1) 0 −8.6 (−16.9,−3.8)
PR −4.8 (−9.4,−0.4) 0 −109.3 (−190.1,−66.1) −5.0 (−9.3,−0.9) 1 −104.7 (−173.4,−62.1) −5.3 (−9.7,−0.9) 1 −102.0 (−223.7,−31.8)
EQ −0.5 (−0.7,−0.3) 13 −21.5 (−38.1,−10.9) −0.3 (−0.5,−0.1) 10 −14.7 (−26.3,−6.2) −0.3 (−0.5,−0.1) 7 −11.7 (−27.1,−1.3)
NSL −3.3 (−5.6, 0.6) 0 −20.0 (−48.6, 10.4) −3.3 (−5.6, 0.6) 0 −5.9 (−29.0, 26.5) −3.3 (−5.6, 0.6) 0 −9.6 (−54.1, 33.9)
NSS 3.3 (−0.2, 6.4) 0 −54.7 (−140.3, 10.9) 3.3 (−0.2, 6.4) 0 −72.0 (−175.7, 4.7) 3.3 (−0.2, 6.4) 0 −78.1 (−222.5, 10.1)
NSC −3.4 (−6.2,−0.7) 2 −104.3 (−212.9,−37.0) −3.4 (−6.2,−0.8) 2 −83.6 (−194.6,−19.5) −1.3 (−3.3, 0.3) 6 −64.6 (−199.2, 6.7)

Notes: Countries shown are Italy (ITA), Japan (JPN), United States (USA). Variables: Unemployment (UN), industrial production (IP), exports (EX), consumer price inflation (PR), equity prices (EQ), Nelson-Siegel

factors for level (NSL), slope (NSS) and curvature (NSC) of the yield curve. Peak refers to the peak of the impulse response function in terms of the median, while Hor indicates the impulse response horizon when the

peak occured in months (zero implying the impact response). Cumulative indicates cumulative impulse response functions over the full horizon. The numbers refer to the posterior median with the 16th and 84th percentile

of the posterior distribution in parentheses.
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Equity prices. Equity prices, displayed in the fifth row of Fig. 7, prominently feature time-variation in

the dynamic responses for all countries, with rather homogeneous patterns over the cross-section (except

for the United Kingdom and the United States). The responses in the United Kingdom are less pronounced

than in the other countries, with an impact of approximately −0.1 percent, peaking after roughly one to

one and a half years at about −0.3 percent. For the United States, we observe an insignificant impact

response quickly turning negative, with peak effects after one year between −0.25 and −0.5 percent,

depending on the respective period. The remaining economies exhibit rather similar responses, with

Japanese equity prices indicating the largest impact responses of around −0.5 percent. Germany, France

and Italy show declines between −0.25 and −0.3 percent.

The cumulative responses for equity prices in the beginning of the sample period show large and

significant homogeneous declines over the cross-section of economies between −26.3 and −21.5 percent,

except for the United Kingdom where the posterior median is substantially smaller at −16.7 percent. The

cumulative responses for equity prices move towards zero across all economies rather homogeneously

for the period in the middle of the sample in July 2004, declining in absolute value by approximately

5 percentage points. In July 2017, the cumulative responses decline even further, with the 68 percent

posterior credible set covering zero in some economies. However, note that substantial posterior mass is

centered away from zero. A clear empirical regularity is that the impact of uncertainty shocks on equity

prices declines over time, in line with findings provided in Mumtaz and Theodoridis (2018). However,

note that this downward trend is not linear for the whole sample period, with subtle changes especially

in periods associated with economic crisis and higher international uncertainty (see also Alessandri and

Mumtaz, 2019; Bertolotti and Marcellino, 2019).

Nelson-Siegel factors. For interpretational clarity, recapture Eq. (10), where the loading on Lit is a

constant for all τ; hence it affects all maturities equally, and is interpreted as the long-term level of the

yield curve. The loading associated with Sit decreases rapidly in τ, and is thus closely related to the

negative slope of the yield curve and term spreads (for details, see Diebold and Li, 2006). Consequently,

an increase in Sit implies a decrease in term spreads, and thus a flattening of the yield curve. Diebold

et al. (2006) provide empirical evidence for the close relationship between this factor and central bank

policy rates. The loading of Cit is hump-shaped, and loads most strongly on the middle segment of the

yield curve that affects its curvature.

Impulse responses for the Nelson-Siegel factors are displayed in the last three rows of Fig. 6. The

dynamic evolution of the level factor exhibits substantial heterogeneity across countries, but appears

comparatively constant over time with slight differences in the curvature of the responses. In particular,

we find the largest and significant decreases on impact, coinciding with the peak response, for Germany

of around −5.3 BPs. In general, the credible sets associated with the impulse responses of the level factor

are rather large, and cover zero in most economies. The effects peter out quickly, with impulse responses

returning to zero after about two quarters. Observed heterogeneity over the cross-section may originate

from international capital flows toward safer assets in uncertain times (see, for instance, Caballero et al.,

2017). Figure 7 indicates that the posterior distribution of the cumulative effects for the level factor

cover zero for all economies over the sample period considered, featuring detectable yet insignificant

time-varying dynamics in the responses.

The slope factor detects significant positive reactions peaking instantaneously in Germany, the United

Kingdom, and Japan. The effects for the remaining countries on impact are estimated less precisely,
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however, the posterior centers on positive values for all countries ranging from one to five BPs. An

increase in the slope factors translates to a decrease in term spreads and a flattening of the yield curve, a

phenomenon that has been linked to the emergence of recessions in the literature (Estrella and Mishkin,

1998). This effect reverses in subsequent months, turning significantly negative between one and one

and a half years after impact across countries. Given the close empirical relationship between the

slope factor and central bank policy, we conjecture that this pattern captures a delayed response of

central banks, lowering policy rates to counteract detrimental economic effects of uncertainty shocks.

Considering previous contributions, we hypothesize that the overall decrease in interest rates is thus

related to expansionary monetary policy measures (both conventional and unconventional) enacted by

central banks, and international capital flows towards safety.

Assessing cumulative effects, we find that estimates are statistically significant early in the sample

for Germany and France, with decreases of approximately 90 to 100 BPs. The model captures large

but insignificant effects for the remaining economies except Japan, which is unsurprising considering the

country’s recent monetary history. In general, the impact of uncertainty shocks on the slope factor appears

to decrease over time, evidenced by subtle trends visible for most countries except the United Kingdom

and the United States. At the end of the sample period, we do not observe significant cumulative effects

for the countries considered.

Findings associated with the curvature factor signal decreases for most countries. Again, we observe

pronounced heterogeneity over the cross-section, but also over time. The responses peak on impact for

Germany and the United Kingdom at about 20 BPs, and approximately ten BPs in Italy. France, the

United States and Japan show only small consequences of uncertainty shocks for middle-term maturities.

Overall, this implies dynamics typically associated with a flattening of the yield curve. In terms of

cumulative responses, we find systematic declines in the magnitude of the effects associated with inflated

posterior uncertainty for Japan, dynamics that are also visible in the case of Germany, France, the United

Kingdom and the United States. Minor differences occur for selected periods after the Great Recession.

Italy presents a special case, with distinct periods featuring substantial differences in the cumulative

responses. In particular, the estimated effects are much smaller during the early 2000s and the European

sovereign debt crisis.

5. CONCLUDING REMARKS

This paper investigates the time-varying effects of international uncertainty shocks on macroeconomic

and financial variables for a set of six countries. To obtain an endogenous measure of uncertainty and to

trace its time-varying impacts on economies jointly, we propose a global vector autoregressive model with

drifting coefficients. We assume the shocks to the system to feature a factor stochastic volatility in mean

structure, with a scalar driving the time-varying variances of the factors interpreted as macroeconomic

uncertainty, similar to Crespo Cuaresma et al. (2017). This setup disentangles series-specific volatilities

from volatility that is common to all series, and inclusion of the factor volatility in the mean of the process

allows to compute impulse response functions to an international uncertainty shock.

From an econometric perspective, we provide several contributions. First, a multi-country model

related to the GVAR (see Pesaran et al., 2004) is proposed to account for time-varying static and

dynamic interdependencies between economies. Second, we employ Bayesian techniques and adapt

global-local priors designed for achieving shrinkage in time-varying parameter models (Belmonte et al.,
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2014; Bitto and Frühwirth-Schnatter, 2019). Extensions relate to parametric restrictions common in

the panel data literature, with a specific focus on extracting cross-sectional information besides overall

shrinkage towards sparsity for reliable and precise inference. The setup centers the model on a constant

parameter specification with homoscedastic errors and cross-country homogeneity, but allows for data-

driven idiosyncrasies along several dimensions. Finally, the high-dimensional variance covariance matrix

of the system is modeled using a factor stochastic volatility in mean structure, and the model can thus

be considered a multivariate extension of the stochastic volatility in mean model with time-varying

parameters in Chan (2017).

Our measure of uncertainty is comparable to established proxies, and correctly identifies known events

associated with elevated levels of uncertainty. Considering the idiosyncratic volatilities of country-specific

series, we find that the factor stochastic volatility structure discriminates well between events confined to

individual economies and overall macroeconomic uncertainty. Moreover, the model detects a substantial

degree of homogeneity in macroeconomic dynamics along the cross-sectional dimension. Key insights

from the structural analysis of uncertainty shocks are that the responses for prices, unemployment, indus-

trial production and equity prices are heterogeneous across the six countries. We find that uncertainty

shocks cause downward pressure on inflation, increase unemployment levels, decrease industrial produc-

tion and depress equity prices, with differences in timing and magnitude of the effects over the cross

section. The terms structure of interest rates generally exhibits decreases in the levels of government bond

rates at all maturities, with an accompanying overall flattening of the yield curve. In line with Mumtaz

and Theodoridis (2018), the consequences of uncertainty shocks appear to decline gradually for some

macroeconomic and financial quantities, while other variables show only little variation in responses over

time. We find limited evidence for abrupt changes in the transmission channels of uncertainty shocks.
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A. POSTERIOR DISTRIBUTIONS AND MCMC ALGORITHM

Conditional on the full history of the factors { ft }Tt=1
and the loadings L, the full system of equations

reduces to K unrelated regression models with heteroscedastic errors. This allows for estimation of the

system on an equation-by-equation basis, greatly reducing the computational burden compared to full

system estimation. To see this, we define ỹt = yt − L ft and refer to the jth variable of country i by ỹi j,t ,

which yields

ỹi j,t = C ′i j,0xit + C̃ ′i j,t

√

Θi j xit + ηi j,t .

Moreover, conditional on the full history of the states {C̃i j,t }Tt=1
, the innovation variances in

√

Θi j can

be treated as standard regression coefficients. For notational simplicity, we define the vector di j =

(C ′
i j,0
,
√

θi j,1, . . . ,
√

θi j,K̃ )′. Let • refer to conditioning on all the other parameters, latent states of the

model, and the data; then the posterior distribution of di j is a multivariate Gaussian,

di j |• ∼ N (µ̃i j, Ṽi j ). (A.1)

The posterior moments are Ṽi j = (X̃ ′
i j
X̃i j + V

−1)−1 and µ̃i j = Ṽi j (X̃ ′i jỸi j + V
−1µ), with prior moments

µ = (µc1, . . . , µcK̃, µθ1, . . . , µθK̃ )′ and V = diag(τc1, . . . , τcK̃, τθ1, . . . , τθK̃ ). The matrix X̃i j is of

dimension T × 2K̃ , with the tth row given by [x ′
it
, C̃ ′

i j,t
⊙ x ′

it
] exp(−ωi j,t/2), while Ỹi j is of dimension

T × 1 with tth element ỹi j,t exp(−ωi j,t/2). This normalization enables to draw the coefficients from

standard posterior quantities for the parameters of homoscedastic linear regression models.

Given draws for the country-specific constant part of the model parameters and the state innovation

variances, it is straightforward to obtain the conditional posterior distributions for the prior moments

collected in µ and V . Since the results apply to the coefficients in ci and
√
θi, we again use an indicator

s ∈ {c, θ} and obtain the required quantities for the prior variances

τs j |• ∼ GIG *,as − N/2,

N
∑

i=1

(ci j − µs j )2, asλs+- , λs |• ∼ G
*.,ds0 + kK̃as, ds1 +

as

2

kK̃
∑

j=1

τs j
+/- ,

with the local scalings τs j following a generalized inverse Gaussian distribution and the global shrinkage

parameter a Gamma distribution. We proceed with the posterior distribution of the common mean.

Conditional on {ci j }Ni=1
, standard methods yield a Gaussian posterior

µs j ∼ N ( µ̃s j, Ṽs j ),

with Ṽs j = (Nτ−1
s j
+ τ−1

µs j
)−1 and µ̃s j = Ṽs j (

∑N
i=1 ci jτ

−1
s j

). For the prior variance of the common mean,

τµs j , following Griffin and Brown (2010) it is straightforward to obtain

τµs j |• ∼ GIG
(

aµs
− 1/2, µ2

s j, aµs
λµs

)

, λµs
|• ∼ G *.,dµs0 + kK̃aµs

, dµs1 +
aµs

2

kK̃
∑

j=1

τµs j
+/- .
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To obtain draws from the posterior distribution of σωi j we rely on the methods discussed in Kastner

and Frühwirth-Schnatter (2014). Conditional on a realization of σωi j , the derivation for the required

posteriors is similar to the ones above. Specifically, we obtain

τσi j |• ∼ GIG(aσ − 1/2, σωi j, aσλσ), λσ ∼ G *.,dσ0 + Kaσ, dσ1 +
aσ

2

k
∑

i=1

N
∑

j=1

τσi j
+/- .

Note that Eq. (1) conditional on the other parameters of the model is a simple linear regression model

with conditionally homoscedastic errors and standard formulae apply (see, for instance, Zellner, 1973).

The NG prior employed for the R free elements factor loadings translates to the following posteriors for

the corresponding global and local shrinkage parameters:

τLj |• ∼ GIG(aL − 1/2, l2
j , aLλL), λL ∼ G *.,dL0 + RaL, dL1 +

aL

2

R
∑

j=1

τLj
+/- .

We proceed with the posterior distribution for the hyperparameters of the prior on the local scalings

a•. Combining likelihood and prior, the conditional posterior for this parameter has no well-known form

and we rely on a Metropolis-Hastings step for simulation. By the fact that this step is applicable for the

different NG priors on the parameters of the model, for the sake of brevity we refrain from presenting

all respective indices and refer again to the various possible index combinations using •. Given the

support of a•, we propose candidate draws a∗• from N (ln(a•), κ•), with κ• denoting a tuning parameter

that is updated during half of the burn-in period to achieve an acceptance rate between 0.15 and 0.35.

Acceptance probabilities are given by

min

[
1,

p(a∗•)p(a∗• |τ•)a∗•
p(a•)p(a• |τ•)a•

]
, (A.2)

Note that due to the non-symmetric proposal density, the acceptance probability includes a correction

term. The respective candidate draw is accepted based on the expression in Eq. (A.2), otherwise the

previous draw is retained.
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B. MCMC ALGORITHM

Employing the posterior distributions presented in Appendix A, the full MCMC algorithm cycles through

the following steps:

1. We simulate the constant part of the VAR coefficients and the process variances of the drifting

coefficients jointly equation-by-equation using Eq. (A.1).

2. For the full history of the transformed states {C̃i j,t }Tt=1
, we rely on a forward filtering backward

sampling algorithm (see Carter and Kohn, 1994; Frühwirth-Schnatter, 1994). This task that can

again be carried out equation-by-equation, conditional on the remaining quantities of the model.

3. Conditional on the country-specific coefficients, it is straightforward to obtain a draw for the

common mean µ and the associated global and local shrinkage parameters to be featured in V ,

employing the distributions presented above. Subsequently, given a simulated value for the common

mean, we again draw the global and local shrinkage parameters τµs j and λs that push the common

mean towards sparsity.

4. Simulation of the full history of the idiosyncratic variances {ωi j,t }Tt=1
is carried out using the

algorithm set forth in Kastner and Frühwirth-Schnatter (2014), implemented in the R-package

stochvol. The package moreover draws the innovation variances of the stochastic volatility

processes. Conditional on this draw, we use the posterior distribution provided above for obtaining

the shrinkage parameters τσi j related to the time-varying variances.

5. It is straightforward to simulate from the Gaussian conditional posterior distributions for the

factors { ft }Tt=1
. Given the full history of the factors we simulate the free factor loadings in L using

standard posteriors. Conditional on a draw of the loadings, we obtain the prior variances τLj using

the posteriors presented above.

6. The full history for the scalar volatility of the factor {ht }Tt=1
, the proposed measure of uncertainty

that also features in the mean of the VAR process, is sampled via an independence Metropolis-

Hastings algorithm (Jacquier et al., 2002). A minor adaption required by the notion of the volatility

being featured in the mean is accounted for in the respective acceptance probabilities.

7. We update the hyperparameters a• via Metropolis-Hastings steps sketched above.

For the empirical application, we iterate this algorithm 12, 000 times and discard the initial 6, 000 draws

as burn-in. We consider each third draw of the remaining 6, 000, resulting in a set of 2, 000 draws for

posterior inference. It is worth mentioning that the algorithm exhibits satisfactory convergence properties.
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C. ADDITIONAL RESULTS
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Fig. C.1: Country-specific state innovation variances on the log-scale.

Note: The columns refer to the coefficients associated with a countries’ own lagged variables in yit−p (labeled “Domestic”) of

lag t − p, while “Foreign” indicates the coefficients associated with y∗
it−q at t − q. Countries: Germany (DEU), France (FRA),

United Kingdom (GBR), Italy (ITA), Japan (JPN), United States (USA). Variables (rows): Unemployment (UN), industrial

production (IP), exports (EX), consumer price inflation (PR), equity prices (EQ), Nelson-Siegel factors for level (NSL), slope

(NSS) and curvature (NSC) of the yield curve.
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Fig. C.2: Unconditional means over time.

Note: The thick black line depicts the posterior median, alongside the 16th and 84th posterior percentiles (thin lines). Countries

(columns): Germany (DEU), France (FRA), United Kingdom (GBR), Italy (ITA), Japan (JPN), United States (USA). Variables

(rows): Unemployment (UN), industrial production (IP), exports (EX), consumer price inflation (PR), equity prices (EQ),

Nelson-Siegel factors for level (NSL), slope (NSS) and curvature (NSC) of the yield curve.
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