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Abstract

Motivated by a real situation arising in the Brazilian sugarcane industry, this paper
addresses the integrated planning of harvest and transport operations over a multi-period
planning horizon. The aim is to develop a schedule for the deployment of harvest and
transport equipment that specifies the periods for the execution of the harvest operations
on the sugarcane fields, and the type of harvesting machines and transport vehicles
to be operated. These decisions are made subject to multiple constraints related to
the projected crop yield, resource availability, demand for sugarcane at the mills, and
further technical requirements specific to the harvest operations. The tactical plan to
be determined minimizes the total cost incurred by the equipment used and the total
time required to harvest all the fields. We propose a bi-objective mixed-integer non-
linear programming model for this new problem. A computational study is conducted for
test instances capturing the characteristics of a Brazilian milling company. Pareto-optimal
solutions are identified by the Progressive Bounded Constraint Method that is extended to
the problem at hand. A comparative analysis highlights the trade-offs between economic
performance and harvest efficiency, thereby supporting the decision maker in making a
more informed choice of the preferred tactical plan. Useful managerial insights are also
provided into the profile of the harvest and transport resources that should be used under
different weather conditions and work schedules.

Keywords: Multi-objective optimization; Mixed-integer Programming; Sugarcane har-
vest and transport planning

1 Introduction

Brazil’s sugarcane industry is one of the largest in the world and a key sector in the Brazilian

economy. It supports around 1 million direct jobs, generates an annual revenue of US$ 70 billion
∗Corresponding author. E-mail address : teresa.melo@htwsaar.de
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(Glueck (2015)), and contributes approximately 2 percent to Brazil’s gross domestic product

(UNICA (2017)). In the 2018/19 harvest season, Brazil ranked second after India, with a share

of 16.5 percent (or 29.5 million tonnes) of the world’s sugar production of 178.612 million

tonnes (International Sugar Organization (2020); Statista (2020)). Brazil is expected to regain

its position as the world’s leading producer and exporter of sugar due to recent adverse weather

conditions for sugarcane cultivation in Asian countries, especially India and Thailand, which will

lead to a production decline in this region (Conab (2020)). In addition to the production of

raw sugar, sugarcane can also be processed into ethanol to be used as a suitable alternative to

fossil fuels. Brazil has the largest fleet of flexible-fuel vehicles in the world, which can run on

either pure ethanol or on a mix of ethanol with gasoline (Antunes et al. (2019)). Furthermore,

82 percent of the biomass used in Brazil to generate electricity is derived from sugarcane residues

(UNICA et al. (2019)).

Until recently, growing domestic demand for ethanol fuel in Brazil had resulted in the

diversion of 65 percent of sugarcane towards ethanol production, with an estimated production

of 34.45 billion liters in 2019 (Barros (2019, 2020)). However, the coronavirus COVID-19

pandemic and the resulting sharp decline in oil prices due to an unprecedented fall in demand

are expected to negatively affect the ethanol industry, thereby significantly increasing the sugar

production (Barros (2020)).

South-Central Brazil is the heart of the country’s sugarcane industry, especially the state

of São Paulo, which accounts for 90 percent of the total production, while the north-east

region contributes the remaining 10 percent (Barros (2020)). The sugarcane production chain

involves cane growing, cane harvesting, cane transport to the mills, and cane processing at

the mills. Motivated by a real situation faced by a milling company operating in the state

of São Paulo, we address in this paper a problem arising at the tactical level, which involves

the combined planning of harvest and transport operations for sugarcane. Specifically, the

problem consists in allocating available resources (i.e., harvesting machinery and transport

vehicles) over a multi-period planning horizon. In addition, the execution of harvest operations

in the fields and the trips to be performed by vehicles to deliver sugarcane to the processing

facilities also need to be scheduled. These decisions are affected by several factors, such as

the projected crop yield and the estimated maturity period of the cane in each individual field,

the characteristics and availability of machinery and vehicles, the expected demands of the

mills, and further technical issues associated with harvesting. We propose a mixed-integer

non-linear programming (MINLP) model for this tactical planning problem. Two objectives are
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considered, namely the minimization of the total cost incurred by the harvesting machinery and

the road haulage vehicles used, and the minimization of the total time needed to harvest a set

of geographically dispersed sugarcane fields. The most effective way of reducing the harvest

time is to increase machinery efficiency and fleet size, which usually comes at the expense of

higher operating costs. Thus, the two objectives are conflicting.

Depending on the country, harvest operations may account for more than 30 percent of the

total sugarcane production cost (Salassi and Barker (2008)). Transportation also represents

an important cost component of the logistics planning with a share of more than one-third of

the total cost (Martin et al. (2001); Masoud et al. (2016b); Saranwong and Likasiri (2016)).

Therefore, reducing costs in harvesting and transport of sugarcane is a significant business

driver. Cost savings can be achieved through integrated planning of both harvest and transport

operations. In general, a lack of coordination among the decision makers involved in these

activities affects the efficiency of the whole system. The potential benefit of the novel model

that we propose in this paper is to assist decision makers at the tactical planning level in

improving the overall performance of their harvest and transport operations through better

resource allocation.

The contributions of the present work are summarized as follows: (1) We develop a bi-

objective MINLP formulation for simultaneously planning harvest and transport decisions at a

milling company managing multiple sugarcane fields and processing facilities. As our review of

the literature will show, significant differences among sugar-producing countries substantiate the

need to create a new model that addresses the specific organizational context of the Brazilian

sugarcane industry at the tactical planning level. (2) We apply different linearization techniques

to obtain a computationally tractable formulation. (3) We extend the Progressive Bounded

Constraint method to identify Pareto-optimal solutions for the problem at hand. (4) We evaluate

the results of a computational study on a set of semi-randomly generated instances that capture

the characteristics of a Brazilian milling company. In particular, we provide important managerial

insights that reveal the trade-offs between economic performance and harvest efficiency, and

assist the decision maker in making an informed choice of the preferred tactical plan.

The remainder of this paper is organized as follows. Section 2 gives an overview of the

relevant literature. In Section 3, we formally describe our problem and present a bi-objective

MINLP formulation. Linearization techniques are also introduced that yield an equivalent model.

In Section 4, the solution methodology is described. Computational results are reported in

Section 5. Section 6 presents a summary of our findings and directions for future research.
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2 Literature review

In this section, we review selected research articles related to decision making in the sugarcane

industry. Our aim is not to provide an exhaustive review of this field but to analyze the extent

to which the features captured by our model have been addressed in the literature. Accordingly,

special emphasis will be given to works dealing with the optimization of harvest and transport

operations, either individually or together.

The sugarcane production chain has been widely studied in the literature and many opti-

mization models have been proposed over the years. Particular attention has been given to

harvest scheduling problems since harvesting is at the core of the production chain, as for any

other agricultural product (Ahumada and Villalobos (2009); Kusumastuti et al. (2016)). Such

problems involve the allocation of the available resources (e.g., harvesting machinery, workforce)

and the specification of an execution plan for the harvest operations over a planning horizon,

taking into account a number of technical issues regarding the way the operations should be con-

ducted. The latter are affected by the practices in place, which significantly differ across sugar-

producing countries (Dourigel et al. (2018); Lamsal et al. (2017)). Jena and Poggi (2013) pro-

pose a hierarchical scheme in which at the tactical level, a mixed-integer linear programming

(MILP) model is used to decide in which fields sugarcane should be harvested on each week

of the harvest season in order to maximize total profit. Given the resulting optimal schedule,

daily activities are planned at the operational level by means of a second MILP formulation.

Junqueira and Morabito (2019) present a MILP model that simultaneously addresses tactical

and operational harvest decisions. Since the model is computationally intractable for real-sized

instances, a two-phase heuristic algorithm is developed. Other studies focus on either tacti-

cal harvest planning problems (Jiao et al. (2005); Thuankaewsing et al. (2015)) or problems

at the operational level, where the planning horizon is divided into a given number of days

or even shorter time periods (Higgins (2002); Kong et al. (2019); Stray et al. (2012)). In the

aforementioned works, and in addition to various constraints specific to the particular problem

and country, resource planning mainly involves workforce (e.g., crews that operate machinery,

support the infield operations, or are engaged in manual cutting of the sugarcane). The choice

of different types of mechanical harvesters is not included in the set of decisions, which is a

feature that is explicitly considered in the model to be presented in Section 3. Since mecha-

nization of sugarcane harvesting has been actively promoted in Brazil through environmental

public policies (Conab (2020)), it is meaningful to account for this issue. Moreover, mechanical
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harvesting improves sugarcane productivity and thus contributes to increasing competitiveness

in the market.

Managing transport operations within the sugarcane fields or between the fields and the

mills has also received some attention in the literature. At the operational level, route plan-

ning is studied by Kittilertpaisan and Pathumnakul (2017), Pitakaso and Sethanan (2019),

Santoro et al. (2017), and Sethanan and Neungmatcha (2016). Generally, routes are designed

for harvesting machines in order to minimize the total operating time or total operating cost,

while satisfying a given set of service requirements (e.g., time windows reflecting individual field

working conditions and cane maturity levels). In Australia, sugarcane freight transport is pre-

dominantly handled by mill-owned rail systems. Trains deliver empty bins from the mills to the

farms and collect full bins from the farms to return to the mills for processing. Mixed-integer lin-

ear programming and constraint programming have been applied to schedule rail transports to a

mill over a 24 hour period subject to a number of constraints that are specific to the Australian

rail system (Martin et al. (2001); Masoud et al. (2015, 2016a,b)). In Cuba, sugarcane can be

transported either directly from the field to the mill using road transport or via intermediate

storage facilities. In the latter case, intermodal transportation is employed, combining road

transport to the storage facility and rail transport thereafter. López-Milán and Plà-Aragonés

(2014) propose a decision support system for planning daily cane transports in Cuba which uses

a MILP model developed by López-Milán et al. (2006). Higgins (2006) applies tabu search and

variable neighborhood search heuristics to determine a detailed daily schedule for road trans-

port vehicles that pick up full trailers of cane from the farms and deliver them to the mill. Our

work differs from the aforementioned studies in that we address the tactical level, instead of

the operational level, and plan road transports of sugarcane to multiple processing facilities,

instead of a single mill, using a heterogeneous vehicle fleet. Iannoni and Morabito (2006) eval-

uate different dispatching strategies by means of discrete event simulation that involve distinct

types of vehicles serving three mills. Focus is given to improving the operations in the reception

area of the mills (e.g., weighing and unloading of the trucks, assessment of the quality of the

cane). The allocation of the vehicles to the fields and the creation of vehicle schedules are not

modeled.

Several authors have highlighted the importance of integrated planning of multiple agricul-

tural operations (Ahumada and Villalobos (2009); Kusumastuti et al. (2016)). A few contribu-

tions address the simultaneous generation of cultivation and harvest plans, taking into account

the specific characteristics of different sugarcane varieties, which in turn affect the decision
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in which periods harvest operations should be performed and in which fields (Carvajal et al.

(2019); Florentino et al. (2020); Higgins (1999)). Concerning the combined planning of har-

vest and transport activities, early studies apply discrete event simulation to evaluate the impact

of varying the resource availability (i.e., workforce, harvest equipment, transport vehicles) to

supply a single processing facility. Arjona et al. (2001) simulate the harvest and transport op-

erations over the course of one day, and consider intermodal transports involving trucks and

ferries. For a time horizon of one week divided into hour intervals, the model developed by

Hansen et al. (2002) simulates manual harvest operations and the transport of the cane to a

mill using farm-owned or sub-contracted vehicles. Grunow et al. (2007) propose a hierarchical

scheme that comprises cultivation planning, harvest scheduling, and crew and equipment dis-

patching. At the tactical level, the timing for harvesting is set along with the choice of the

harvest mode (manual or mechanical) and the transport volume to be delivered to a mill by

means of a MILP model that minimizes total cost. The tactical plan is used to create detailed

crew and equipment dispatch schedules at the operational level. Salassi and Barker (2008)

present a MILP formulation to determine an optimal harvest and transport schedule for a group

of farms delivering sugarcane to a common mill with the goal of minimizing the waiting time

of the trucks upon their arrival at the mill. A homogenous vehicle fleet and a homogeneous

set of harvesters are assumed to be available. Silva et al. (2015) propose a multi-choice goal

programming model to determine the timing and the varieties of sugarcane that should be

harvested manually or with mechanical harvesters, and transported to a mill over the harvest

season. Two modes of transportation are offered, namely mill-owned vehicles and third-party

vehicles. The MILP model developed by Morales-Chávez et al. (2016) allocates machines and

workers to fields and transport volumes to a biofuel plant at the tactical level, considering

one single period. The total cost to be minimized includes machinery, workforce, and transport

costs as well as penalty costs for unsatisfied demand. Lamsal et al. (2016a) present a two-phase

solution approach, in which the first phase consists of fixing the harvest start times at a set

of geographically dispersed fields over several time intervals spanning one day. The objective

is to minimize the total deviation between the quantity of sugarcane that is transported to

the mill and the mill’s demand in each time interval. The optimal solution obtained to the

associated MILP model is used in the second phase to determine the number of trucks needed

to transport the cane to the mill by the arrival times prescribed in the first phase. The authors

also address the problem from a continuous time perspective by considering infinitesimal time

blocks (Lamsal et al. (2016b)). For the discrete-time model, Lamsal et al. (2017) introduce
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valid inequalities and heuristics to find an initial feasible solution and to lift the lower bound

provided by the linear relaxation. Even though a few authors have dealt with integrated harvest

and transport planning as shown by our review, focus has been primarily given to operational

problems in which each harvest location is assigned to a specific processing facility in advance.

Hence, allocation decisions involving multiple sugarcane fields and multiple mills are not ex-

plicitly addressed by any model. Moreover, decisions on the type of harvest equipment and

transport vehicles to be used are also not incorporated into the proposed optimization models.

By contrast, these features are captured by our model at the tactical planning level.

Given the numerous stakeholders and their individual interests, planning problems with con-

flicting objectives occur frequently along the sugarcane production chain. Yet, the majority

of the mathematical programming models reviewed before have a single objective. An ap-

proach followed by some authors (e.g., Higgins (2002)) is to convert multiple decision cri-

teria into a single-objective scalar function by assigning weights to the individual criteria.

Florentino et al. (2011, 2018), Florentino and Pato (2014), Kittilertpaisan and Pathumnakul

(2017), Masoud et al. (2016a), Sethanan and Neungmatcha (2016), and Silva et al. (2015)

are among the few authors that formulate their optimization models with multiple (mainly

two) objectives. Different techniques have been applied to solve these problems, namely the

ε-constraint method, goal programming, and various heuristic methods. The problem that

we address in this paper is formulated with two conflicting objectives, in which one of them

is described by a non-linear function. In addition, since some technical issues specific to the

Brazilian sugarcane industry are modeled by non-linear constraints, these features result in a

challenging non-convex problem (cf. Section 3).

Table 1 summarizes the main characteristics of the works reviewed in this section and that

are related to the problem that we study. Our classification scheme has five categories. The

category ‘Planning scope’ (columns 2–4) comprises the strategic, tactical, and operational lev-

els according to the planning horizon. The category ‘Decision planning’ (columns 5–8) includes

the main types of planning problems related to harvest and transport operations. The category

‘Modeling approach’ (column 9) considers simulation and optimization models, and specifies

the features of the latter. The category ‘Objective function’(columns 10–11) indicates if a

single objective or multiple objectives are considered. The last category classifies the solution

approach adopted by the researchers. We distinguish between those problems solved to optimal-

ity (column 12) and those solved with a specially tailored heuristic algorithm (column 13). The

majority of the problems are optimally solved with general-purpose optimization software under
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default parameter settings. Some researchers also develop valid inequalities and other enhance-

ments to improve the tractability of their models (e.g., Jena and Poggi (2013); Lamsal et al.

(2016b, 2017)). The last row in Table 1 highlights the main features that are captured by our

model and that will be detailed in the next section.

3 Problem statement and formulation

We consider a milling company that operates a number of large mills where sugarcane is

processed to produce sugar and ethanol. The biomass residue (bagasse) that is left, after the

sugarcane is crushed, is used as fuel source by the mills to cover their needs for heat and

electrical energy (Florentino and Pato (2014)). Sales forecasts set the production levels at the

mills, which in turn determine their demand levels for sugarcane in each time period.

The company also manages a set of geographically dispersed fields in the state of São Paulo

(Brazil), whose individual areas range from 25 to 100 hectares. Farmers rent out their lands

for a specified period of time (e.g., 5 years), during which the company is responsible for all

operations involving sowing, growing, harvesting, and supplying the mills with sugarcane. Over

the harvest season and for each field, an individual time window is specified for harvesting which

depends on the projected maturation of the sugarcane and weather forecasts.

Brazilian regulations on sugarcane harvesting have resulted in a significant increase in the

use of machinery over the years, particularly in the south-central region. Harvest equipment

is owned or hired by the milling company, and depending on the cutting capacity and other

technical characteristics, a mechanical harvester can harvest 10-30 tonnes of cane per hour.

Typically, the equipment is stored in a depot whose location may be adjacent to one of the

mills or in a convenient site in the milling area. Due to the high cost of the machinery, which

comprises depreciation, energy, maintenance, repair, labor, and transport costs, once a harvester

starts working in a field, it remains in that field until all sugarcane is harvested, even if this

operation may take several periods. Moreover, minimum and maximum time limits for operating

a harvesting machine at a period are imposed, depending on the type of equipment and the labor

contracts negotiated. Unlike other countries (e.g., Australia and Cuba), sugarcane harvesting

in Brazil is not limited to daylight hours, and up to three 8-hour shifts can be run each day,

also on weekends.

After the cane is harvested, it is transported directly to the mills to be processed. In Brazil,
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transport of sugarcane is mostly performed by road haulage vehicles. In our case, transport

equipment is owned by the milling company, although occasionally additional vehicles may be

hired from third-party logistics partners to cover peak harvest periods. Since the quantity cut

by a harvester over a time period often exceeds the capacity of a single vehicle, more than one

collection and delivery per field and per period are necessary. Hence, vehicles commute between

the fields and the mills. The time for full loading a vehicle at a harvest location and the time

for unloading it at the processing facility are assumed to be known. The time dedicated to

these tasks is called service time hereafter. The available vehicles differ in transport capacity,

speed, and operating cost. Coordination of the harvest and transport operations requires the

vehicles’ work shifts to coincide with the operating times of the harvest equipment.

The mathematical model to be presented in Sections 3.1–3.2 supports the integrated plan-

ning of harvest and transport operations over a time horizon that can span either the entire

harvest season (i.e., from April to December) or a pre-selected part of it. The planning horizon

is divided into a finite number of (usually equal-length) time periods. The aim is to deter-

mine the timing and duration of harvest operations in each field, the choice of equipment (i.e.,

harvesters and transport vehicles) from the available alternatives, and the timing and number

of commuting trips to be made by the different vehicles. These tactical decisions must meet

a given set of constraints that include the achievement of the productivity targets set for the

fields, the satisfaction of the demands of the mills, the execution of harvest activities within

the time windows specified for the individual fields, the utilization of equipment according to

its availability and capacity, and the satisfaction of further technical requirements specific to

the harvest conditions in place at the milling company. A trade-off is to be considered between

minimizing the total cost incurred by the harvest and transport operations and minimizing the

total harvest time. Accordingly, two objective functions are formulated that are conflicting ow-

ing to the fact that a reduction of the harvest time can only be achieved either by increasing the

use of equipment or by using more efficient but at the same time more expensive equipment.

Before detailing the optimization model for the problem described, we first introduce the

notation that will be used hereafter.

3.1 Notation

We start by defining the sets used in our model.
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I Set of fields to be harvested.

J Set of sugar mills.

K Set of different types of cane transport vehicles.

L Set of different types of harvesting machines.

T Set of time periods along the planning horizon.

HTi Subset of time periods during which field i ∈ I can be harvested; HTi = {ai, ai +

1, . . . , bi − 1, bi}, with ai (bi) denoting the earliest (latest) time period harvesting

can begin (be completed) in field i.

It Subset of fields that can be harvested in time period t ∈ T ; It = {i ∈ I : t ∈

HTi} ⊆ I.

The following parameters are defined for fields and sugar mills.

Ai Area of field i ∈ I (in ha).

Pi Productivity of field i ∈ I (in tonnes/ha).

djt Demand for sugarcane (in tonnes) at mill j ∈ J in time period t ∈ T .

δ A sufficiently small, positive number.

For cane transport vehicles, the following parameters are introduced:

V max
kt Number of vehicles of type k ∈ K available at time period t ∈ T .

Cmax
k Maximum capacity (in tonnes) of a vehicle of type k ∈ K.

sek, s
f
k Average empty, resp. loaded, travel speed (in km/h) of a vehicle of type k ∈ K.

stk Service time (in hours) of a vehicle of type k ∈ K. It includes the amount of

time required to load a vehicle in a field and unload it at a mill.

hvmax
t Maximum transport time (in hours) of a vehicle in time period t ∈ T .

Dij Travel distance (in km) between field i ∈ I and mill j ∈ J .

D0
i Travel distance (in km) between the depot where harvesting machines are kept

and field i ∈ I.

nijkt Proportion of period t ∈ HTi required by a round trip of a vehicle of type k ∈ K

between field i ∈ I and mill j ∈ J .

Following a similar approach to the one adopted by López-Milán and Plà-Aragonés (2014), the

last parameter takes into account the distance traveled by a vehicle, the service time of a

vehicle, and its round trip travel time. The latter includes an empty journey from the mill to
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the field and a return journey with a full load. Hence, nijkt is defined as:

nijkt =

Dij

(

(sek)
−1 +

(

sfk

)−1
)

+ stk

hvmax
t

i ∈ I, j ∈ J, k ∈ K, t ∈ HTi.

Regarding the harvesting machines, the following parameters are introduced:

Mmax
ℓt Number of harvesting machines of type ℓ ∈ L available at time period t ∈ T .

Qℓ Quantity of sugarcane (in tonnes/h) that can be harvested by a machine of type

ℓ ∈ L.

hmin
t , hmax

t Minimum and maximum operating time (in h) of a harvesting machine in time

period t ∈ T .

Finally, cost parameters are expressed in monetary units (m.u.) and defined as follows:

pkt Transport cost (in m.u./km) of a vehicle of type k ∈ K in time period t ∈ T .

hdt Driver’s wage rate (in m.u./h) in time period t ∈ T .

mcℓt Cost (in m.u./h) of operating a machine of type ℓ ∈ L in time period t ∈ T .

hmt Machine operator’s wage rate (in m.u./h) in time period t ∈ T .

p0t Cost (in m.u./km) of moving a harvesting machine between the depot and a

sugarcane field in time period t ∈ T .

c1ijkt Total transport cost (in m.u.) of a round trip traveled by a vehicle of type k ∈ K

between field i ∈ I and mill j ∈ J in time period t ∈ HTi, with

c1ijkt = 2 pktDij + hdt

[

Dij

(

(sek)
−1 +

(

sfk

)−1
)

+ stk

]

.

c2ℓt Total operating cost (in m.u./h) of a harvesting machine of type ℓ ∈ L in time

period t ∈ T , with c2ℓt = mcℓt + hmt.

c3it Total cost (in m.u.) of moving a harvesting machine from the depot to field

i ∈ I in time period t ∈ T , and returning the machine when the harvest activity

is finished, with c3it = 2 p0t D
0
i .

Observe that transport costs are incurred on vehicle round trips and not on the volume
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of cargo carried by the vehicles since they always travel with full-loads to the mills and return

empty to the fields. Specifically, travel costs and driver’s wages set the values of parameters c1ijkt.

Moreover, machine operating costs (c2ℓt) are not affected by the quantity harvested but on the

number of hours worked. Harvesters are transported by special vehicles to the fields and returned

to the depot for cleaning, inspection and maintenance, before they are assigned to new tasks.

We assume that the cost of transporting a machine is twice the cost of an outward journey,

regardless of the period at which the return journey takes place (cf. c3it).

3.2 Bi-objective mixed-integer non-linear programming formu-

lation

The bi-objective MINLP formulation to be presented next uses binary variables to represent

the assignment of harvest operations to fields, integer variables associated with the number of

harvesting machines used and the number of round trips performed by the different vehicles,

and continuous variables for measuring the time dedicated to harvesting.

sit =

{

1 if field i ∈ I is harvested in time period t ∈ T

0 otherwise.

xijkt : number of round trips traveled by a vehicle of type k ∈ K between field i ∈ I

and mill j ∈ J in time period t ∈ HTi.

ziℓt : number of harvesting machines of type ℓ ∈ L assigned to field i ∈ I in time

period t ∈ HTi.

hit : number of hours dedicated to harvesting field i ∈ I in time period t ∈ HTi.

In addition, the following slack variables are introduced:

eit : total surplus quantity of sugarcane (in tonnes) transported from field i ∈ I to

the mills in time period t ∈ T .

The bi-objective MINLP formulation is as follows:

Min w1 =
∑

i∈I

∑

j∈J

∑

k∈K

∑

t∈HTi

c1ijkt xijkt +
∑

i∈I

∑

ℓ∈L

∑

t∈HTi

c2ℓt hit ziℓt +
∑

i∈I

∑

ℓ∈L

c3i,ai zi,ℓ,ai +
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∑

i∈I

∑

ℓ∈L

∑

t∈HTi\{bi}

c3i,t+1 (zi,ℓ,t+1 − ziℓt) si,t+1 (1)

Min w2 =
∑

i∈I

∑

t∈HTi

hit (2)

subject to
∑

ℓ∈L

∑

t∈HTi

Qℓ hit ziℓt = AiPi i ∈ I (3)

∑

j∈J

∑

k∈K

Cmax
k xijkt − eit =

∑

ℓ∈L

Qℓ hit ziℓt i ∈ I, t ∈ HTi (4)

∑

i∈It

∑

k∈K

Cmax
k xijkt ≥ djt j ∈ J, t ∈ T (5)

∑

i∈It

∑

j∈J

⌈nijkt xijkt⌉ ≤ V max
kt k ∈ K, t ∈ T (6)

∑

i∈It

ziℓt ≤ Mmax
ℓt ℓ ∈ L, t ∈ T (7)

⌈nijkt xijkt⌉ + ziℓt ≤ (V max
kt + Mmax

ℓt ) sit i ∈ I, j ∈ J, k ∈ K,

ℓ ∈ L, t ∈ HTi (8)
∑

j∈J

∑

k∈K

⌈nijkt xijkt⌉ ≥ sit i ∈ I, t ∈ HTi (9)

∑

ℓ∈L

ziℓt ≥ sit i ∈ I, t ∈ HTi (10)

hmin
t sit ≤ hit ≤ hmax

t sit i ∈ I, t ∈ HTi (11)

sit + si,t+n+1 − 1 ≤
1

n

n
∑

j=1

si,t+j i ∈ I, n ∈ {1, . . . , bi − ai − 1},

t ∈ HTi \ {bi − n, . . . , bi} (12)

ziℓt ≤ zi,ℓ,t+1 + Mmax
ℓt (1− si,t+1) i ∈ I, ℓ ∈ L,

t ∈ HTi \ {bi} (13)

sit ∈ {0, 1} i ∈ I, t ∈ HTi (14)

xijkt ≥ 0 and integer i ∈ I, j ∈ J, k ∈ K,

t ∈ HTi (15)

ziℓt ≥ 0 and integer i ∈ I, ℓ ∈ L, t ∈ HTi (16)

hit ≥ 0 i ∈ I, t ∈ HTi (17)

0 ≤ eit ≤ min
k∈K
{Cmax

k } − δ i ∈ I, t ∈ HTi (18)
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The first objective function (1) minimizes the total estimated cost of harvesting the sugar-

cane and transporting it to the mills. Specifically, the first component represents the total cost

incurred by the round trips made by the vehicles, while the second component accounts for the

total cost for operating harvesting machines. The last two components are associated with the

cost of moving harvesters between the depot and the fields. We note that for practical reasons,

the number of harvesters operating in a particular field is non-decreasing over consecutive har-

vesting periods (cf. constraints (13)). Hence, the term (zi,ℓ,t+1 − ziℓt) in the last component

of (1) is non-negative. The second objective function (2) aims at minimizing the total harvest

time.

Constraints (3) ensure that all sugarcane grown in a field is harvested over the associated

harvest time window. Constraints (4) guarantee that the total amount of sugarcane transported

from a field to the mills in a given time period is not less than the quantity harvested. Since it

is assumed that vehicles always travel with a full-load on their journeys to the mills, the total

quantity transported from a field may exceed the actual quantity of sugarcane grown in that

field. The slack variables eit account for this difference, and as it will be explained below, a

meaningful upper bound on the values they can take is imposed (cf. constraints (18)). This

type of approach for resource allocation at the tactical planning level has also been adopted in

other contexts, e.g., Schilling and Georgiadis (2002) and Westerlund et al. (1998) for a one-

dimensional cutting stock problem.

The demands of the mills must be satisfied according to constraints (5). In each time period,

the total number of used cane transport vehicles of a given type is limited by inequalities (6).

Similar conditions are enforced by inequalities (7) on the number of operating harvesters. Con-

straints (8) ensure that vehicles and harvesters are not assigned to a field in a given period

unless harvest operations take place in that field. According to constraints (9) and (10), at

least one vehicle and at least one machine must be used when a field is harvested. Inequali-

ties (11) set lower and upper limits on the time dedicated to harvest operations in a field over

each period. For practical reasons, constraints (12) require consecutive time periods to be

selected for harvesting a field. If harvest operations take place in field i in time periods t and

t + n + 1 (i.e., sit = si,t+n+1 = 1 for n ≥ 1) then these constraints make sure that all inter-

mediate periods t + 1, . . . , t + n also have harvest operations (i.e., si,t+1 = . . . = si,t+n = 1).

Figure 1 illustrates these conditions. Also for practical reasons, constraints (13) state that a

non-decreasing number of machines must be used in consecutive periods dedicated to harvest-
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ing a field. Hence, if field i is harvested in periods t and t+ 1 (i.e., sit = si,t+1 = 1), it follows

from (13) that the inequality ziℓt ≤ zi,ℓ,t+1 holds, and as a result, this requirement is satisfied.

Finally, non-negativity, integrality, and binary conditions are given by (14)–(18).

ai · · · t t+ 1 · · · t + n t + n + 1 · · · bi

sit
↓

si,t+1

↑
si,t+n

↑

si,t+n+1
↓

1 1 · · · 1 1

Intermediate periods
from t+ 1 to t+ n

Figure 1: Consecutive periods dedicated to harvesting a field (cf. constraints (12)).

We illustrate the usefulness of bounding the slack variables eit in (18) by means of an

example. Let us consider two types of vehicles with capacities Cmax
1 = 60 tonnes and Cmax

2 =

75 tonnes, respectively. A sufficiently large number of vehicles of each type are assumed to

be available. Moreover, let the total quantity of sugarcane harvested in field i be 650 tonnes

(=
∑

ℓ∈LQℓ hit ziℓt) in some period t. Under the assumption that a vehicle always travels with a

full-load to a mill, there is no combination of vehicles whose total capacity is exactly 650 tonnes.

The upper bound in (18) restricts the amount transported in excess to less than the capacity of

the smallest vehicle available (i.e., eit < 60). For this particular case, Table 2 lists all possible

alternatives for organizing the transport of sugarcane. Columns 2 and 3 give the total number

of vehicles of each type used. The last column indicates the value of eit associated with each

option, which is obtained according to (4). Further combinations of vehicles yield a too large

excess load and are, therefore, inefficient. Hence, the upper bound set on the slack variables

limits the number of feasible solutions without excluding any optimal solution.

Option No. of vehicles No. of vehicles Total quantity Excess sugarcane
of type 1 used of type 2 used transported transported

1 0 9 675 25
2 1 8 660 10
3 11 0 660 10
4 10 1 675 25
5 9 2 690 40
6 8 3 705 55

Table 2: Example illustrating alternative choices for vehicles to transport sugarcane.
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3.3 Linearization techniques and an equivalent formulation

The mathematical formulation (1)–(18) includes several non-linear terms, namely in the objec-

tive function (1) and in constraints (3), (4), (6), (8), and (9). In this section, we propose a

reformulation as a bi-objective MILP model by using three linearization techniques.

To linearize the product of a non-negative integer variable with a binary variable that appears

in the last component of the objective function (1), we define a new variable γiℓt such that

γiℓt = (zi,ℓ,t+1 − ziℓt) si,t+1 for every i ∈ I, ℓ ∈ L, and t ∈ HTi \ {bi}. In addition, considering

that the variables ziℓt are bounded by the number of available harvesting machines, Mmax
ℓt , the

variable substitution is described by the following linear constraints:

γiℓt ≤ Mmax
ℓt si,t+1 i ∈ I, ℓ ∈ L, t ∈ HTi \ {bi} (19)

γiℓt ≤ zi,ℓ,t+1 − ziℓt i ∈ I, ℓ ∈ L, t ∈ HTi \ {bi} (20)

γiℓt ≥ zi,ℓ,t+1 − ziℓt − Mmax
ℓt (1− si,t+1) i ∈ I, ℓ ∈ L, t ∈ HTi \ {bi} (21)

Regarding the bilinear terms involving non-negative continuous variables and non-negative

integer variables in constraints (3), (4), and in the second component of the objective func-

tion (1), we replace them by the new set of continuous variables yiℓt (i ∈ I, ℓ ∈ L, t ∈ HTi).

Furthermore, we model the binary expansion of the integer variables ziℓt, which involves defining

a new set of binary variables, αiℓtr, and enforcing

ziℓt =
∑

r∈Rℓt

2r−1 αiℓtr i ∈ I, ℓ ∈ L, t ∈ HTi, (22)

with Rℓt = {1, . . . , ⌊log2 (Mmax
ℓt )⌋ + 1}. Hence, the bilinear terms in (1), (3), and (4) can be

replaced by:

yiℓt = hit ziℓt = hit

∑

r∈Rℓt

2r−1 αiℓtr =
∑

r∈Rℓt

2r−1 (hit αiℓtr) i ∈ I, ℓ ∈ L, t ∈ HTi

We now introduce a new set of non-negative continuous variables βiℓtr = hit αiℓtr (i ∈ I, ℓ ∈ L,

t ∈ HTi, r ∈ Rℓt), and derive the following linear constraints:

yiℓt =
∑

r∈Rℓt

2r−1 βiℓtr i ∈ I, ℓ ∈ L, t ∈ HTi (23)
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Considering that the continuous variables hit are bounded by hmax
t , the linearization of the term

hit αiℓtr follows along the same lines as those presented in (19)–(21), namely

βiℓtr ≤ hmax
t αiℓtr i ∈ I, ℓ ∈ L, t ∈ HTi, r ∈ Rℓt (24)

βiℓtr ≤ hit i ∈ I, ℓ ∈ L, t ∈ HTi, r ∈ Rℓt (25)

βiℓtr ≥ hit − hmax
t (1− αiℓtr) i ∈ I, ℓ ∈ L, t ∈ HTi, r ∈ Rℓt (26)

The technique used to develop the constraints (22)–(26) along with yilt ≥ 0, αiℓtr ∈ {0, 1},

and βiℓtr ≥ 0, for every i ∈ I, ℓ ∈ L, t ∈ HTi, and r ∈ Rℓt, yields an exact linearization of the

original bilinear terms as shown by Gupte et al. (2013).

Finally, the ceiling function on the left-hand side of constraints (6), (8), and (9) is linearized

by defining a new set of non-negative integer variables, xc
ijkt (i ∈ I, j ∈ J , k ∈ K, t ∈ HTi),

that replace the term ⌈nijkt xijkt⌉, and by adding the following constraints:

xc
ijkt ≥ nijkt xijkt i ∈ I, j ∈ J, k ∈ K, t ∈ HTi (27)

xc
ijkt ≤ nijkt xijkt + (1− δ) i ∈ I, j ∈ J, k ∈ K, t ∈ HTi (28)

The reformulation of the MINLP model defined by (1)–(18) into an equivalent MILP model

is given by:

Min w1 =
∑

i∈I

∑

j∈J

∑

k∈K

∑

t∈HTi

c1ijkt xijkt +
∑

i∈I

∑

ℓ∈L

∑

t∈HTi

c2ℓt yiℓt+

∑

i∈I

∑

ℓ∈L

c3i,ai zi,ℓ,ai +
∑

i∈I

∑

ℓ∈L

∑

t∈HTi\{bi}

c3i,t+1 γiℓt (29)

Min w2 =
∑

i∈I

∑

t∈HTi

hit (2)

subject to

(5), (7), (10)− (28)
∑

ℓ∈L

∑

t∈HTi

Qℓ yiℓt = AiPi i ∈ I (30)

∑

j∈J

∑

k∈K

Cmax
k xijkt − eit =

∑

ℓ∈L

Qℓ yiℓt i ∈ I, t ∈ HTi (31)

∑

i∈It

∑

j∈J

xcijkt ≤ V max
kt k ∈ K, t ∈ T (32)

xcijkt + ziℓt ≤ (V max
kt + Mmax

ℓt ) sit i ∈ I, j ∈ J, k ∈ K,
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ℓ ∈ L, t ∈ HTi (33)
∑

j∈J

∑

k∈K

xcijkt ≥ sit i ∈ I, t ∈ HTi (34)

αiℓtr ∈ {0, 1} i ∈ I, ℓ ∈ L, t ∈ HTi, r ∈ Rℓt (35)

xcijkt ≥ 0 and integer i ∈ I, j ∈ J, k ∈ K, t ∈ HTi (36)

γiℓt ≥ 0 i ∈ I, ℓ ∈ L, t ∈ HTi \ {bi} (37)

yiℓt ≥ 0 i ∈ I, ℓ ∈ L, t ∈ HTi (38)

βiℓtr ≥ 0 i ∈ I, ℓ ∈ L, t ∈ HTi, r ∈ Rℓt (39)

Observe that it is not necessary to explicitly enforce integrality constraints on the new variables

γiℓt as they satisfy this property due to constraints (14) and (16).

Finally, we remark that the linearization techniques result in a significant increase in the total

number of variables and constraints. This aspect will be highlighted in Section 5 by comparing

the sizes of the MINLP and MILP formulations for the instances considered in our numerical

study.

3.4 An illustrative example

In this section, we present a small example problem and display the main features of two Pareto-

optimal solutions. The latter are obtained through lexicographical ordering (see (40)–(43) in

Section 4) for the purpose of highlighting the trade-offs between the two conflicting objectives.

We have used the optimization solver IBM ILOG CPLEX 12.8 to identify these solutions.

We consider |T | = 2 time periods, |I| = 4 fields, |J | = 2 sugar mills, and |K| = |L| = 2

types of transport vehicles as well as two types of mechanical harvesters. The time window for

harvesting each field spans the whole planning horizon, i.e., HTi = {1, 2} for every i = 1, . . . , 4.

Moreover, within this time frame, AiPi = 1,680 tonnes of sugarcane need to be harvested in

each field i and transported to the mills. In the first (second) time period, both mills have a

demand for dj1 = 1,500 (dj2 = 1,700) tonnes of cane (j = 1, 2). Hence, total supply exceeds

total demand by 320 tonnes. We assume that there is enough harvest and transport equipment

available to complete all the operations over the planning horizon. The operating time of a

harvester ranges from hmin
t = 4 hours to hmax

t = 16 hours per period (t = 1, 2). Regarding

the hourly capacity of the harvest equipment, we take Q1 = 20 tonnes and Q2 = 30 tonnes.

Vehicles of type 1, resp. type 2, can transport up to Cmax
1 = 60 tonnes, resp. Cmax

2 = 75 tonnes
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of sugarcane. Their working hours coincide with the operating hours of the harvesters. Further

relevant data are reported in Appendix A which are also used in the larger test instances in the

numerical experiments presented in Section 5.

Figure 2 displays the optimal values of the variables in the lexicographic solution that

corresponds to assigning higher priority to the total cost over the total harvest time (w1 >lex
w2). This solution is denoted hereafter ‘lex. sol. 1’. Figure 3 shows the optimal values of the

variables in the second lexicographic solution (henceforth called ‘lex. sol. 2’). In this case, the

total harvest time is given higher preference over the total cost (w2 >lex w1). We note that

the values of the continuous variables hit displayed in Figure 3 were rounded up.

d1,1

Mill 1

d2,1

Mill 2

Field 1

h1,1 = 12
z1,2,1 = 2

Field 2

h2,1 = 12
z2,2,1 = 2

Field 3

h3,1 = 13
z3,2,1 = 2

Field 4

h4,1 = 13
z4,2,1 = 2

x1,1,1,1 = 12 x2,2,1,1 = 12

x3,2,1,1 = 13x4,1,1,1 = 13

(a) Structure of lex. sol. 1 in t = 1

d1,1

Mill 1

d2,1

Mill 2

Field 1

h1,2 = 16
z1,2,2 = 2

Field 2

h2,2 = 16
z2,2,2 = 2

Field 3

h3,2 = 15
z3,2,2 = 2

Field 4

h4,2 = 15
z4,2,2 = 2

x1,1,1,2 = 16 x2,2,1,2 = 16

x3,2,1,2 = 10
x3,2,2,2 = 2

x3,1,2,2 = 2

x4,1,1,2 = 15

(b) Structure of lex. sol. 1 in t = 2

Figure 2: Time dedicated to harvesting each field (hit), number of machines of each type
assigned per field (ziℓt), and number of vehicle round trips planned between the fields and
the mills (xijkt) when the objective function w1 is given the highest preference.

Table 3 reports the time dedicated to harvesting the individual fields in each time period

(columns 3-4) according to each lexicographic solution. The associated total quantity of sug-

arcane harvested is shown in columns 5-6 and is given by
∑2

ℓ=1Qℓ hit ziℓt for i = 1, 2 and

t = 1, 2. Columns 7-10 display the quantities of sugarcane delivered to the mills over the

planning horizon. Unsurprisingly, there is a striking difference between the number of hours

allocated to harvest operations in each solution, which, in turn, impact the tactical planning

of vehicle deployment and utilization. Specifically, mechanical harvesters are operated longer

when highest preference is given to minimizing the total cost (12 to 16 hours per period or

75-100 percent of the maximum time available).

Table 4 summarizes the type and amount of equipment prescribed by each lexicographic
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d1,1
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Mill 2
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h1,1 = 4.286
z1,1,1 = 7
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(a) Structure of lex. sol. 2 in t = 1
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Mill 1

d2,1

Mill 2

Field 1

h1,2 = 7.714
z1,1,2 = 7

Field 2

h2,2 = 5.143
z2,1,2 = 1
z2,2,2 = 4

Field 3

h3,2 = 8.769
z3,1,2 = 2
z3,2,2 = 3
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h4,2 = 4.154
z4,1,2 = 2
z4,2,2 = 3

x1,1,1,2 = 18
x2,2,1,2 = 7
x2,2,2,2 = 2

x2,1,2,2 = 2

x3,2,1,2 = 19x4,1,1,2 = 9

(b) Structure of lex. sol. 2 in t = 2

Figure 3: Time dedicated to harvesting each field (hit), number of machines of each type
assigned per field (ziℓt), and number of vehicle round trips planned between the fields and
the mills (xijkt) when the objective function w2 is given the highest preference.

Lex. Field Harvest time (h) Quantity harvested (t) Quantity transported (t)

sol. t = 1 t = 2 t = 1 t = 2 Mill 1 Mill 2

t = 1 t = 2 t = 1 t = 2

1 1 12.000 16.000 720 960 720 960 - -
2 12.000 16.000 720 960 - - 720 960
3 13.000 15.000 780 900 - 150 780 750
4 13.000 15.000 780 900 780 900 - -

2 1 4.286 7.714 600 1,080 600 1,080 - -
2 6.857 5.143 960 720 - 150 960 570
3 4.154 8.769 540 1,140 - - 540 1,140
4 8.769 4.154 1,140 540 1,140 540 - -

Table 3: Harvest time and quantity of sugarcane harvested and transported to the mills
according to the lexicographic solutions.

solution along with their deployment. Columns 2–3 indicate the total number of harvesting

machines of each type that are operated across all fields over the two time periods. Columns 4–

5 report the total time the harvesters of each type are operated, i.e.,
∑4

i=1

∑2
t=1 hit ziℓt for

ℓ = 1, 2. Column 6 gives the average operating time per harvester and per period. The total

number of vehicles of type 1 and type 2 used are presented in columns 7 and 8, respectively,
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which are determined by
∑4

i=1

∑2
j=1

∑2
t=1⌈nijkt xijkt⌉ (k = 1, 2). Columns 9–10 show the

total number of round trips made by the vehicles of each type. Finally, columns 11–12 display

the total time engaged by the vehicles to commute between the mills and the sugarcane fields.

As expected from the results reported in Table 3 and Figures 2–3, the deployment of the

mechanical harvesters differs significantly between the two lexicographic solutions. In order to

finish harvesting sooner, a significantly larger number of machines are used in the lex. sol. 2.

Specifically, in total 12 harvesters of type 1 (seven in field 1, one in field 2, two in field 3,

and two in field 4) and 10 harvesters of type 2 (four in field 2, three in field 3, and three in

field 4) are operated. Together, these 22 machines have a total operating time of 273.24 hours

(147.7+125.54) over the two periods, which is about 22% higher than the working time of the

harvest equipment selected in the lex. sol. 1 (224 h). In the latter solution, each field is harvested

by two large machines in every period. Concurrently, the average operating time of a machine

per period is 55.6% lower in the lex. sol. 2. This feature has practical relevance because a lower

utilization rate results in reduced maintenance and repair costs for an individual machine. On

the other hand, the workforce needed to operate the harvest equipment increases. Regarding the

choice of road vehicles, there is no striking difference between the two lexicographic solutions.

For example, two large vehicles (k = 2) are operated in both solutions in period 2, but they

are allocated to different fields. In the lex. sol. 1, each large vehicle makes two round trips

between field 3 and one of the mills, while in the lex. sol. 2, the same number of round trips

are completed but between field 2 and the mills.

Lex. No. of harvesters Operating time (h) Avg. oper. time No. of vehicles No. of round trips Total travel &

sol. ℓ = 1 ℓ = 2 ℓ = 1 ℓ = 2 per harvester k = 1 k = 2 k = 1 k = 2 service time (h)

& period (h) k = 1 k = 2

1 - 8 - 224.00 14.00 29 2 107 4 379.84 19.51
2 12 10 147.70 125.54 6.21 27 2 107 4 363.33 18.84

Table 4: Deployment of harvest and transport resources in the lexicographic solutions.

Table 5 gives information about the two objective functions. Columns 2–7 report the values

of the individual components of the cost function, and column 8 presents the total cost, w1.

The last column displays the total harvest time, w2. The trade-offs that are achieved by the

two lexicographic solutions are again noticeable in this table. When the economic objective is

given the highest importance, the total cost incurred by the harvest and transport operations

is 5.6% lower, but at the same time, it takes considerably longer to harvest all the fields (the

total harvest time increases by a factor of 2.5). As mentioned earlier, these differences are
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attributed to the choice of harvest equipment. Using more harvesters (of both types) results in

higher operating costs and most of all, in more expensive transports of the machines between

the depot and the fields.

Lex. Harvest cost (m.u.) Transport cost (m.u.) Total cost Total

sol. Machine operation Machine transfer k = 1 k = 2 (m.u.) harvest

ℓ = 1 ℓ = 2 ℓ = 1 ℓ = 2 time (h)

1 - 55,104.0 - 755.4 46,657.0 2,383.0 104,899.4 112.0
2 31,899.0 30,879.0 1,755.0 2,188.0 42,200.0 2,183.0 111,104.0 49.8

Table 5: Harvest costs and harvest times associated with the lexicographic solutions.

4 Solution methodology

In this section, we describe an exact method to find Pareto-optimal solutions to the problem

introduced in Section 3.3. Our solution approach extends the Progressive Bounded Constraint

(PBC) method proposed by Gonçalves et al. (2019) for a bi-objective optimization problem

arising in the generation of electricity, where total fuel cost and greenhouse gas emissions are

minimized while satisfying various operational constraints. Next, we outline this method, adapt

it to our problem, and motivate its extension.

Let us consider the following general form of a bi-objective optimization problem:

Min w1 = f1(x)

Min w2 = f2(x)

subject to

x ∈ Ω ⊆ R
n,

where x is a decision vector with n variables, fi : Rn 7−→ R is the i-th objective function

(i = 1, 2), and Ω denotes the feasible region defined by a given set of constraints. Moreover,

let W = {w = (f1(x), f2(x)) ∈ R
2 : x ∈ Ω} be the objective space represented by the set

of points in R
2 that result from mapping Ω onto the functions f1 and f2. Any point w ∈ W

is associated with at least a specific feasible solution to the original problem. In our case, f1

and f2 are represented by (29) and (2), respectively, and Ω is given by (5), (7), (10)-(28),

(30)-(39).
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The general idea of the PBC method is to divide the objective spaceW into a fixed number of

non-overlapping subregions called bands, and identify non-dominated points in each subregion.

The latter are associated with Pareto-optimal solutions to the original bi-objective problem.

The objective space W can be divided either into horizontal or vertical bands. For our specific

problem, we have opted to generate horizontal bands as illustrated in Figure 4 (we note that

the procedure to be detailed next can be easily adapted to a vertical decomposition of W ).

For this purpose, the subproblem that minimizes f1(x) is selected and extended with so-called

band constraints that impose a lower and an upper bound on the second objective function,

f2(x). These bounds are related to the subregion that is inspected. In this way, a sequence

of independent single-objective subproblems are solved that allow us to gradually construct (an

approximation of) the Pareto front, depending on the number of subregions the objective space

is partitioned.

We start by identifying the extreme points in the Pareto front associated with the lexi-

cographic solutions. The so-called left lexicographic solution x∗
1 is determined by solving the

following subproblems (40) and (41) sequentially, which correspond to taking f1 >lex f2.

x1 = argmin{f1(x)} (40)

subject to

x ∈ Ω.

x∗
1 = argmin{f2(x)} (41)

subject to

f1(x) ≤ f1(x1)

x ∈ Ω.

The counterpart of x∗
1 is the right lexicographic solution x∗

2, which is obtained in a similar way

by imposing f2 >lex f1.

x2 = argmin{f2(x)} (42)

subject to

x ∈ Ω.

x∗
2 = argmin{f1(x)} (43)

subject to

f2(x) ≤ f2(x2)

x ∈ Ω.

The images of x∗
1 and x∗

2 in W are denoted w∗
1 and w∗

2, respectively. The determination of

solutions x∗
1 and x

∗
2 allows the elimination of weakly non-dominated solutions, and consequently,
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of weakly non-dominated points in the objective space. The latter are illustrated in Figure 4 by

w1 and w2.

w∗
2

w∗
1

w1

w2
wmin

2

wmax
2

w1

w2

wmin
2 + (λ− 1) ∆

µ

∆
∆
µ

W

original
objective space

Wλ

restricted
objective space

wλ

wmin
2 + η λ ∆

µw∗
λ

Figure 4: Extended PBC method with horizontal bands.

Next, we define the interval I = [wmin
2 , wmax

2 ], with length ∆, and whose boundaries are the

projection of the images of the left and right lexicographic solutions on the w2-axis, as shown

in Figure 4. The interval I is then divided into a pre-specified number µ ∈ Z+ of subintervals

of equal length ∆/µ. The λ-th subinterval (λ = 1, 2, · · · , µ) is associated with a horizontal

band whose boundaries are given by

wmin
2 + (λ− 1)

∆

µ
≤ f2(x) ≤ wmin

2 + η λ
∆

µ
, (44)

with η a parameter such that (λ− 1)/λ < η < 1. Hence, the objective space W is partitioned

into µ horizontal, non-overlapping bands, W1,W2, · · · ,Wµ, where Wλ = {w ∈ R
2 : W ∩ (44)}

for every λ = 1, 2, · · · , µ.

For a given λ, let w∗
λ be a non-dominated point in the restricted objective spaceWλ (see Fig-

ure 4), whose pre-image is associated with a Pareto-optimal solution to the original bi-objective

problem. To find w∗
λ, it is necessary to solve two single-objective subproblems sequentially.

First, subproblem (45) is solved. Its optimal solution xλ is mapped into the associated band

Wλ. As illustrated in Figure 4, this point is located as left as possible in the λ-th subregion,

corresponding to the minimum value for f1(x). Next, we solve subproblem (46) and obtain
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its optimal solution x∗
λ, whose image is the point w∗

λ in the restricted objective space Wλ. As

displayed in Figure 4, the position of w∗
λ is the lowest in the direction of the w2-axis for the

value of w1 = f1(xλ) determined by (45).

xλ = argmin{f1(x)} (45)

subject to

(44)

x ∈ Ω.

x∗
λ = argmin{f2(x)} (46)

subject to

(44)

f1(x) ≤ f1(xλ)

x ∈ Ω.

Observe that small values of λ contribute to finding a solution x∗
λ that gives more relevance

to the minimization of w2. As the value of λ increases, the minimization of w1 gradually becomes

more important. Parameter µ controls the maximum number of non-dominated solutions that

are identified. The larger the value of µ, the more subregions are inspected, and the more

points can be determined. In total, 2µ single-objective subproblems need to be solved, i.e., µ

subproblems of type (45) and µ subproblems of type (46). Moreover, the distance between non-

dominated points is controlled by parameter η in (44), which extends the boundaries proposed by

Gonçalves et al. (2019) for the λ-th subinterval. In fact, the original PBC method corresponds

to the special case of imposing η = 1. Parameter η reduces the upper bound on f2(x) and

ensures that Wλ ∩Wλ′ = ∅ for λ 6= λ′. If Wλ 6= ∅ for a given λ then a new Pareto-optimal

solution can be identified which differs from the one found in the previous subregion λ − 1.

This is achieved by solving the single-objective subproblem (46) which allows us to eliminate

all weakly non-dominated solutions that could be found when subproblem (45) was solved.

By contrast, in the original PBC method the same Pareto-optimal solution could be obtained

in adjacent bands because by construction, the intersection of the restricted objective spaces

Wλ−1 and Wλ could be non-empty. Hence, the introduction of parameter η into the upper

bound in (44) results in an improvement over the original version of the PBC method.

Figure 4 shows geometrically how the extended PBC strategy works and highlights the

elimination of weakly non-dominated points (i.e., w1, w2, and wλ) while solving multiple sub-

problems. Algorithm 1 details the steps that need to be carried out in order to obtain a set χ of

Pareto-optimal solutions to our bi-objective MILP problem. The selection of particular values

for the parameters µ and η will be discussed in Section 5.
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Algorithm 1: Extended progressive bounded constraint method

Input: f1 defined by (29), f2 defined by (2), Ω represented by (5), (7), (10)-(28),
and (30)-(39), µ, η
Output: Set of Pareto-optimal solutions, χ

1 Obtain the left lexicographic solution x∗
1 by solving subproblems (40) and (41),

and determine the associated image w∗
1 along with its projection wmax

2 on the
w2-axis of the objective space W ;

2 Obtain the right lexicographic solution x∗
2 by solving subproblems (42) and (43),

and determine the associated image w∗
2 along with its projection wmin

2 on the
w2-axis of the objective space W ;

3 I ← [wmin
2 , wmax

2 ];
4 ∆← wmax

2 − wmin
2 ;

5 χ← ∅;
6 for λ← 1 to µ do

7 Calculate the lower and upper bounds in (44);
8 Solve subproblems (45) and (46) to obtain a Pareto-optimal solution x∗

λ and
determine its associated image w∗

λ in the restricted objective space Wλ;
9 χ← χ ∪ {x∗

λ}

end

In our computational study, we have used the general-purpose optimization solver CPLEX

to solve the MILP subproblems required by the above algorithm. Preliminary tests have shown

that it can be computationally expensive to solve these subproblems to optimality or to even

find feasible solutions satisfying a given optimality gap. In particular, the subproblems involv-

ing the minimization of the total harvest time (w2) proved to be challenging. To reduce the

computational burden, we have adopted the strategy of supplying CPLEX with an initial (fea-

sible) solution whenever a given subproblem needs to be solved. At first, the left lexicographic

solution x∗
1 is obtained by providing to CPLEX the optimal solution x1 to (40) and then solv-

ing (41). Next, solution x∗
1 is supplied to CPLEX and subproblem (42) is solved. Its optimal

solution x2 is used as an initial solution to obtain the right lexicographic solution x∗
2 when

solving (43). Furthermore, for each λ in Algorithm 1 (lines 6–9), the Pareto-optimal solution

identified in the previous step, i.e., x∗
λ−1, is used as an initial solution for solving subprob-

lem (45). For the particular case of λ = 1, x∗
2 is taken as the initial solution. Due to the

band constraints (44), x∗
λ−1 may be infeasible to (45). However, CPLEX is able to repair this

solution and thus restore feasibility within an acceptable computing time. Subproblem (46)

uses xλ as the initial solution. Preliminary numerical experiments have indicated that the linear
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relaxation of the original subproblems provides relatively weak lower bounds, thus justifying the

adoption of the procedure just described. Finally, we observe that other solution approaches

have also been tried, namely the linear weighting procedure, the ε-constraint method, and the

Chebyshev scalarization technique, but all performed rather poorly. As will be shown in the

next section, the extended PBC method proved to be an attractive alternative for identifying

a set of Pareto-optimal solutions. Not only is the method numerically more stable but also the

search for an efficient solution is guided in a more precise way compared to other procedures

such as the ε-constraint method.

5 Computational study

In this section, we present the results of computational experiments performed for a set of

semi-randomly generated instances that capture the characteristics of the sugarcane harvest and

transport operations in Brazil. In Section 5.1, we briefly describe the methodology developed

to obtain these instances, followed by the analysis of the numerical results in Section 5.2. In

addition, relevant managerial insights into the tactical sugarcane harvest and transport planning

problem are discussed in Section 5.3.

5.1 Test instances

Information on harvest and transport logistics was collected through a series of interviews and

discussions with a consulting firm that offers software solutions to a milling company in the

state of São Paulo, Brazil. Figure 5 shows the locations of two mills (|J | = 2) and 30 sugarcane

fields managed by the company. The location of the depot where harvest equipment is stored,

is also displayed. A system of orthogonal coordinates was used whose origin is represented by

the location of mill 1. The values of parameters Dij and D0
i (i ∈ I, j ∈ J) correspond to real

travel distances that take into account the type of roads used by the transport vehicles and

the equipment that carries the mechanical harvesters to the fields. Further parameters were

obtained by randomly selecting their values within ranges that were derived from historical data

provided by our consulting partner and official sources. Details are given in Appendix A.

Three values for the set I were considered that differ in the area covered by the milling

operations. Instances with |I| = 10 include the sugarcane fields located north-west of mill 1,

numbered 1–10 in Figure 5. Instances with |I| = 20 comprise the fields in the north-west and
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Figure 5: Milling area: locations of sugarcane fields, sugar mills, and the depot for storing
mechanical harvesters.

central regions (locations 1 to 20). In the third type of instances, the whole milling area is

covered (|I| = 30). In instances with |I| ∈ {10, 20}, all harvested cane is transported to mill 1,

whereas in the largest instances both mills are operated. As it will be shown in Section 5.2,

the size of these semi-randomly generated instances and the associated computational burden

to obtain Pareto-optimal solutions are greatly affected by these choices.

In all instances, the planning horizon spans one month which is divided into 30 working days

(i.e., |T | = 30). Therefore, in addition to weekdays, harvest operations can also take place

on Saturdays and Sundays. It is assumed that the sugarcane will reach its maturity peak over

this time horizon. Individual time windows for harvesting the fields (HTi, i ∈ I) are selected

according to Table 12 in Appendix A. They reflect the estimated days closest to the maximum

sucrose content, which, in turn, depend on the different cane varieties grown. The areas of the

fields and their expected productivity are obtained according to Table 12, which also indicates

how the demands for sugarcane at the mills are generated.

Three scenarios are considered that differ in the operating time of the harvest and transport

equipment available over the planning horizon. These scenarios will enable a comparative

analysis of the associated tactical plans in terms of economic performance and harvest efficiency.

In the adverse weather (AW) scenario, it is assumed that unfavorable weather conditions (e.g.,

rain) will occur in the first week, thereby strongly limiting the harvest operations. As shown in

29



Table 6, each harvesting machine can work at least one hour and at most four hours in periods

1 to 7. In all other periods, the harvesters’ operating time ranges from four to 16 hours. This

corresponds to working two eight-hour shifts per day, including weekends, to compensate for

the reduced working hours in the first week. The regular schedule (RS) scenario considers a

regular work schedule according to the Brazilian labor legislation for the sugarcane industry, and

also assumes favorable weather conditions during the whole planning horizon. This means that

two eight-hour shifts on weekdays and one eight-hour shift on weekends are operated. Finally,

the third scenario, extended schedule (ES), allows one additional eight-hour shift on Saturdays

and Sundays. In all scenarios, the availability of the transport vehicles is affected by a number

of factors, e.g., road restrictions due to construction works, congestion, and closures, vehicle

breakdown, refueling, stop-and-check operations by the police, etc. As a result, the maximum

transport time of a vehicle is randomly drawn from a normal distribution with expected value µ

and standard deviation σ, denoted N (µ, σ). Table 6 gives the values of µ and σ that are

selected for each scenario, based on historical data.

Parameter Adverse weather scenario Regular schedule scenario Extended schedule scenario

First week Other weeks Weekdays Weekend All days

hmin
t 1 4 4 4 4

hmax
t 4 16 16 8 16

hvmax
t N (4, 1) N (16, 1) N (16, 1) N (8, 1) N (16, 1)

Table 6: Harvest and transport operating times available in the different scenarios and all
periods t ∈ T .

By combining the three scenarios with |I| ∈ {10, 20, 30}, nine test instances are obtained.

All instances share two types of harvesting machines (|L| = 2) and three types of vehicles

(|K| = 3). Their characteristics are given in Tables 13 and 14 in Appendix A, along with the

associated operating costs and hourly wages. In accordance with Brazilian labor laws, the latter

include a 50 percent and a 100 percent premium for hours worked on Saturdays and Sundays,

respectively.

5.2 Numerical results

The bi-objective MILP formulation proposed in Section 3.3 was implemented with the JuMP

modeling language (version v0.20, Dunning et al. (2017)) and embedded in the Julia program-

ming language (version 1.0.4, Bezanson et al. (2017)). All experiments were performed on a
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laptop computer with a 2.5 GHz Intel Core i7-2450M processor, 8 GB RAM, and running a

64-bit operating system. Subproblems (40)-(43) and (45)-(46) in Algorithm 1 were solved with

IBM ILOG CPLEX 12.8. A limit of 3,600 seconds of CPU time and an optimality gap of 0.01%

were set for each solver run.

In all numerical experiments, the objective space W is divided into µ = 3 horizontal bands

with η = 0.95 for bounding each band (44), thus enabling the identification of three Pareto-

optimal solutions for each instance (in addition to the lexicographic solutions). This choice

is supported by the studies of Aliano Filho et al. (2019) and Florentino et al. (2018) for other

multi-objective optimization problems arising in Brazil’s sugarcane industry. From a practical

viewpoint, these solutions are good representatives of the conflicting nature of the objectives

(29) and (2), and therefore, they can assist the decision maker in selecting an appropriate

compromise tactical plan. Naturally, the choice of a higher value for µ would return a larger

number of Pareto-optimal solutions, but at the cost of extensive computational effort and a

lengthy comparative analysis. Observe that when λ = 1, a Pareto-optimal solution is identified

that presents a higher compromise toward the minimization of the objective w2 in (2), i.e.,

the total harvest time. For λ = 3, the associated Pareto-optimal solution has the opposite

attribute, and the compromise is more significant toward minimizing the total cost w1 in (29).

For λ = 2, the associated Pareto-optimal solution exhibits a balanced compromise with respect

to both objectives. Note that for simplicity, we will use the term Pareto optimality regarding the

solutions returned by Algorithm 1, even though the optimality of every solution is not always

guaranteed due to the stopping criteria specified for the optimization solver. Along with the

lexicographic solutions, the resulting subset of (five) alternative Pareto-optimal solutions is large

enough to support the decision maker in understanding the relevant trade-offs between cost

performance and harvest efficiency, thereby supporting a more informed choice of the preferred

solution to be implemented. This aspect will be discussed later in this section and further

details will be provided in Section 5.3.

For each number of sugarcane fields considered, Table 7 presents the total number of

variables and constraints in the non-linear formulation (columns 2–4) and in the equivalent

linear formulation (columns 5–7). Furthermore, for each value of λ (column 8), the average

number of branch-and-bound nodes visited by CPLEX, the average optimality gap, and the

average CPU time are reported in columns 9, 10, and 11, respectively. Notice that running

Algorithm 1 for each instance requires solving 10 subproblems. Hence, in total, 90 subproblems

were solved. As expected, the linearization techniques introduced in Section 3.3 greatly affect
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the size of the associated MILP model, yielding formulations with 3-3.5 times more integer

variables and nine times more continuous variables. The total number of constraints grows,

on average, by a factor of 3.3. Despite the very large number of integer-valued variables,

Algorithm 1 enhanced with the procedure described at the end of Section 4 for solving the

subproblems has proved to be very efficient, as demonstrated by the rather small optimality

gaps. Interestingly, the number of nodes and the CPU times reported by CPLEX suggest that

minimizing the total harvest time (w2) is computationally more expensive than minimizing the

total cost (w1).

|I| MINLP formulation MILP formulation λ Performance

# variables # constraints # variables # constraints # nodes Gap (%) CPU (s)

int. cont. int. cont.

10 768 256 2,671 2,688 2,304 8,907
1 25,240 0.00 627.63
2 7,298 0.00 132.73
3 3,391 0.00 81.46

20 1,518 506 5,131 5,313 4,554 17,447
1 29,899 0.02 3,600.00
2 19,151 0.01 3,600.00
3 13,755 < 0.01 2,001.13

30 3,474 772 10,186 10,422 6,948 31,314
1 35,799 0.04 3,600.00
2 23,595 0.02 3,600.00
3 18,059 < 0.01 3,352.00

Table 7: Size of test instances, average optimality gap, and average CPU time.

Table 8 gives the objective function values of the solutions obtained. The total cost and the

total harvest time are reported in columns 4 and 8, respectively, for each combination of the

number of sugarcane fields (column 1), value of λ (column 2), and scenario (column 3). The

best objective values are shown in boldface. Moreover, the relative contribution of the different

cost components to the total cost is given in columns 5–7. The conflicting nature of the two

objectives is clearly reflected in the results obtained, regardless of the scenario. For the smallest

instances with 10 fields, the normal working schedule yields the lowest total cost in all Pareto-

optimal solutions. By contrast, the lowest expenditure is achieved by the extended working

schedule for the largest instances with 30 fields. For the medium-sized instances with 20 fields,

the lowest total cost is affected by the value of λ. In all solutions obtained, the cost of operating

the harvesting machines makes up the largest share, with an average of 65.7 percent, followed

by the cost incurred by the round trips made by the vehicles, which accounts, on average, for

33.4 percent. As expected, moving the harvesters between the depot and the fields has the
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|I| λ Scenario Cost function Total harvest

Total cost % of total cost time (h)

(R$) Vehicle Machine Machine
transports operation transports

10

1
Adverse weather 985,325 31.4 67.5 1.1 534.32

Normal schedule 981,336 31.4 67.7 0.9 609.24
Extended schedule 986,005 31.4 67.7 0.9 573.78

2
Adverse weather 984,396 31.6 67.6 0.8 827.00

Normal schedule 979,019 31.5 67.9 0.6 917.88
Extended schedule 982,584 31.5 67.9 0.6 864.76

3
Adverse weather 983,377 31.5 67.7 0.8 1,017.43

Normal schedule 978,306 31.5 67.9 0.6 1,217.28
Extended schedule 982,130 31.5 68.0 0.5 1,155.13

20

1
Adverse weather 2,142,299 37.3 61.7 1.1 1,847.08

Normal schedule 2,107,159 37.8 61.5 0.8 1,926.33
Extended schedule 2,109,580 37.7 61.5 0.8 1,884.65

2
Adverse weather 2,108,430 37.8 61.3 0.9 1,770.55

Normal schedule 2,093,634 38.0 61.4 0.6 2,221.09
Extended schedule 2,099,935 37.8 61.5 0.7 2,185.66

3
Adverse weather 2,088,971 38.1 61.2 0.7 2,192.56

Normal schedule 2,083,275 38.1 61.4 0.5 2,517.97
Extended schedule 2,079,250 38.2 61.3 0.5 2,486.70

30

1
Adverse weather 3,080,312 32.4 66.5 1.2 3,116.70

Normal schedule 3,089,210 32.4 66.4 1.2 3,118.92
Extended schedule 3,072,366 32.2 66.6 1.2 3,266.54

2
Adverse weather 3,068,912 32.6 66.2 1.1 3,189.83

Normal schedule 3,081,241 32.3 66.6 1.2 3,382.92
Extended schedule 3,062,020 32.4 66.5 1.1 3,359.54

3
Adverse weather 3,062,523 32.5 66.3 1.2 3,210.12

Normal schedule 3,070,048 32.5 66.4 1.2 3,636.23
Extended schedule 3,061,806 32.3 66.6 1.1 3,570.51

Table 8: Objective values of the solutions obtained.

smallest contribution, which ranges from 0.5 to 1.2 percent of the total cost. Regarding the

total time dedicated to harvesting the fields, the adverse weather scenario requires the smallest

number of hours in all instances and for λ = 1. Recall that the availability of the harvesting

equipment is the lowest in this scenario. This feature together with the higher relevance given to

minimizing the total harvest time when λ = 1, explains this outcome. Furthermore, significant
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differences in the harvest time can be observed among the solutions for a fixed value of |I|,

whereas the total cost does not show remarkable variations. Details are provided in the next

section that reveal the main features of the solutions. Table 15 in Appendix B complements

Table 8 by reporting the objective values associated with the lexicographic solutions.

To investigate the impact of partitioning the objective space into more than three regions,

we have also run Algorithm 1 with µ = 10 for one of the instances with 10 sugarcane fields.

Figure 6 depicts the objective values of the 10 solutions obtained for the normal schedule

scenario (marked as squares in the figure). For comparison, the objective values of the Pareto-

optimal solutions returned by the algorithm for µ = 3 are also displayed. These are marked with

dots, and their coordinates are given in Table 8 for |I| = 10, λ = 1, 2, 3, and the NS scenario.

It should be noted that the 10 points are evenly distributed with respect to the objective w2.

Observe that some of these points are associated with unsupported efficient solutions since the

Pareto front does not seem to be convex. The front is steep in the vicinity of the minimum

of w1 (left side) and becomes flatter toward the minimum of w2 (right side). This means that

small changes in total cost (w1) lead to sharp differences in total harvest time (w2), whereas

solutions with relatively low harvest times exhibit noticeably different costs. This suggests that

our choice of identifying three Pareto-optimal solutions between the two lexicographic solutions

provides a reasonably representative, and from a tactical viewpoint, also suitable sample for our

problem.
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Figure 6: Pareto front with 10 non-dominated points for the instance with 10 fields under
the normal schedule scenario.
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5.3 Managerial insights

The aim of this section is to gain a broader insight into the characteristics of the various solutions

identified for each instance. The analysis will help the decision maker to better understand the

trade-offs achieved between the two objectives as well as the impact of the different work

schedules and weather conditions assumed. Key information will be provided on the type of

harvest and transport equipment selected along with its use over the planning horizon.

Table 9 gives the average number of hours driven by a vehicle outside a normal shift per

day (i.e., beyond eight hours) in each solution and for the three scenarios (columns 3, 7, and

11). In addition, the average number of road haulage vehicles operated on each field per day

is also displayed, according to type. It can be seen that the number of additional hours worked

is the greatest in the extended schedule scenario, since this scenario has the largest amount

of transport time available over the whole planning horizon (cf. Table 6). Even though the

availability of the vehicles in the adverse weather scenario is the same as in the ES scenario

in weeks 2–4, the first week offers reduced transport time, thus explaining the smaller average

extra work in the AW scenario. The normal schedule scenario displays an intermediate use

of additional work in all solutions. In general, the solutions obtained for λ = 3 concern

tactical plans with less additional transport time, since these solutions favor cost minimization

as opposed to the solutions for λ = 1, which emphasize the minimization of the total harvest

time.

|I| λ Adverse weather scenario Normal schedule scenario Extended schedule scenario

Extra hours # vehicles Extra hours # vehicles Extra hours # vehicles

per vehicle k = 1 k = 2 k = 3 per vehicle k = 1 k = 2 k = 3 per vehicle k = 1 k = 2 k = 3

10
1 3.88 3.7 0.1 0.0 4.38 2.8 0.1 0.0 5.74 2.5 0.1 0.0
2 3.46 3.8 0.1 0.0 4.07 2.9 0.1 0.0 4.07 2.5 0.1 0.0
3 2.99 3.9 0.1 0.0 3.65 2.9 0.1 0.0 5.21 2.6 0.1 0.0

20
1 4.16 3.0 0.8 0.0 4.49 2.7 0.3 0.0 5.64 2.4 0.3 0.0
2 4.11 2.9 0.9 0.0 4.42 2.7 0.3 0.0 5.48 2.5 0.2 0.0
3 3.92 3.0 0.8 0.0 4.38 2.7 0.2 0.1 5.60 2.5 0.1 0.0

30
1 3.79 2.1 1.3 0.1 3.99 2.0 1.0 0.0 5.16 1.9 0.7 0.1
2 3.53 2.1 1.4 0.2 4.02 2.1 0.9 0.1 5.22 1.9 0.7 0.0
3 3.82 2.1 1.3 0.1 3.96 2.0 0.9 0.1 4.93 1.9 0.7 0.1

Table 9: Average additional hours worked (over 8h/day) by the vehicles and average
number of vehicles per type.

Table 9 also provides information regarding the most suitable vehicle profile for the trans-

portation of sugarcane to the mills. In all solutions and scenarios, there is a strong preference
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for operating vehicles of type 1. Despite these being the smallest vehicles, they have the ad-

vantage of being fast, taking less time to load and unload the cane, and having a lower cost per

kilometer driven. Therefore, more round trips can be made with these vehicles per day. The

operation of the other two types of vehicles is rather limited, especially the largest type (k = 3)

is occasionally used in the instances with 30 fields. In addition, no noteworthy differences in

the total number of vehicles selected are observed among the solutions obtained. This is due

to the fact that the amount of sugarcane transported to the mills is not affected by the number

of hours worked by the harvesters.

Table 10 gives the average daily number of hours worked by a mechanical harvester on a

field beyond a normal shift, in each solution, and for the three scenarios (columns 3, 6, and

9). Moreover, the average number of machines operated in each field per day is also reported,

according to type. Unsurprisingly, solutions for λ = 3 are associated with more hours worked

beyond a normal shift than solutions for λ = 1. In some cases, the difference is significant (e.g.,

instances with |I| = 10). On average, 40.7, 25.5, and 44.6 percent more extra work is used in

the AW, NS, and ES scenarios, respectively, when λ = 3. Regarding the choice of mechanical

|I| λ Adverse weather scenario Normal schedule scenario Extended schedule scenario

Extra hours # harvesters Extra hours # harvesters Extra hours # harvesters

per harvester ℓ = 1 ℓ = 2 per harvester ℓ = 1 ℓ = 2 per harvester ℓ = 1 ℓ = 2

10
1 2.29 0.0 5.5 2.50 0.0 5.5 2.06 0.0 5.1
2 3.16 0.0 3.9 3.17 0.0 3.1 3.43 0.0 3.8
3 4.17 0.0 3.3 3.40 0.0 2.9 4.52 0.0 2.7

20
1 4.12 0.8 4.0 4.42 0.5 2.9 4.65 0.1 3.0
2 5.42 0.3 3.7 4.43 0.2 2.6 5.02 0.1 2.6
3 5.72 0.2 3.4 5.17 0.0 2.5 4.65 0.0 2.4

30
1 4.81 1.9 2.0 3.83 1.0 2.0 4.73 1.3 2.5
2 5.18 1.4 2.0 4.42 0.9 2.1 5.39 0.7 2.1
3 4.86 1.4 2.1 4.73 1.1 1.8 5.41 1.1 2.0

Table 10: Average additional hours worked (over 8h/day) by the harvesting machines and
average number of machines per type.

harvesters, it can be seen that machines of type 2 are consistently preferred. Although this type

of machinery is more expensive, it has a higher cutting speed, thus achieving more throughput

in a shorter time (cf. Table 13). Furthermore, and as anticipated, more machines of this type

are selected in the compromise solutions for λ = 1 since more relevance is assigned to harvest

efficiency in these solutions. Harvesters of type 1 are only operated in the instances with 20
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and 30 fields. Figures 9–11 in Appendix B complement this analysis by showing the average

proportion of machines available that are selected per period. In particular, in the instances

with 30 fields, 92.4 percent of the most efficient harvesters and 67 percent of the harvesters of

type 1 are operated, on average.

Table 11 provides further insight into the deployment of the harvest equipment. For each

value of |I| and λ (columns 1–2), columns 3, 6, and 9 report the average total number of

harvesters used per field and period in the AW, NS, and ES scenarios, respectively. The

average number of periods required to harvest a field is given in columns 4, 7, and 10 for each

scenario. The remaining columns 5, 8, and 11 display the average number of hours worked on

a field per period. In accordance with the results reported in Table 10 for each machine type,

|I| λ Adverse weather scenario Normal schedule scenario Extended schedule scenario

# harvesters # periods # hours # harvesters # periods # hours # harvesters # periods # hours

10
1 5.3 7.2 7.72 4.5 7.6 8.09 5.3 6.9 8.83
2 4.3 10.1 8.29 3.1 10.7 9.99 3.2 9.1 10.10
3 3.7 10.3 10.60 2.8 11.4 10.70 2.8 11.4 10.50

20
1 4.8 6.4 10.76 3.4 8.0 11.44 3.1 8.6 11.47
2 3.9 7.1 12.53 2.8 9.5 11.44 2.7 9.5 11.93
3 3.5 8.4 12.85 2.5 10.2 12.29 2.5 10.1 12.22

30
1 3.3 9.4 11.64 2.9 10.8 10.68 3.8 8.6 11.85
2 3.2 9.7 12.07 3.1 10.1 11.61 3.3 9.3 12.60
3 3.2 9.1 11.70 2.9 10.0 12.07 3.1 9.6 12.66

Table 11: Averages, per field, of the number of harvesting machines, periods with harvest
operations, and hours worked per period.

we also observe a decline in the average number of harvesters operated across all scenarios as

the value of λ grows. Specifically, solutions that favor cost containment (λ = 3) require, on

average, 20.1, 21.4, and 27.4 percent less harvest equipment in the AW, NS, and ES scenarios,

respectively, compared to solutions that restrict the harvest time (λ = 1). At the same time,

the number of working hours in a field generally increases with the value of λ, leading to a

longer harvest (on average, 50, 46.1, and 45.9 percent increased duration for λ = 3 across the

three scenarios as opposed to λ = 1). These trade-offs are very important from a managerial

perspective. When objective w1 (i.e., cost) is given more relevance, fewer harvesting machines

are operated and higher preference is given to selecting more efficient machines. Since each

harvester is operated, on average, for a longer time this strategy increases the risk of equipment

failure. The opposite effect is observed when more emphasis is placed on objective w2 (i.e.,

time) because in this case the sugarcane is harvested more quickly and each machine is subjected

37



to less wear. However, this policy is more expensive. This analysis also explains the results

given in Table 8.
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Figure 7: Average number of harvesting machines per field for instances with 30 fields.

Figure 7 highlights these findings for the large instances with 30 sugarcane fields. The

average number of mechanical harvesters assigned to a field over the planning horizon is illus-

trated for the three Pareto-optimal solutions in each scenario. Bad weather conditions in the

AW scenario greatly affect the harvest plan in the first week, since the reduced working hours

available compel to deploy more harvest equipment in order to satisfy the demands at the mills.

As shown in Table 10, both types of harvesting machines have to be used, despite harvesters

of type 1 being less efficient than harvesters of type 2. For increasing λ, variations in the

number of harvesting machines operated per period are less perceived as a result of the trade-

offs discussed earlier. This analysis is complemented by Figure 8, which displays the average

daily time worked in each sugarcane field for the same instances with |I| = 30. The weekend

premium rates are reflected in the sharp reduction of the work time on Saturdays and Sundays,

as expected. Otherwise, the daily work schedule does not show significant differences among

the scenarios with the exception of the first week in the AW scenario. Finally, Figures 12–13 in

Appendix B present further characteristics of the solutions obtained.

6 Conclusions

In this paper, we have addressed a tactical planning problem motivated by a Brazilian sugar-

cane milling company. The problem consists of developing a schedule for the deployment of

harvest and transport equipment over a multi-period planning horizon so as to minimize the

total cost incurred by the equipment used and the total time required to complete the har-

vest operations. Due to the conflicting nature of these goals, we have proposed a bi-objective
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Figure 8: Average number of hours worked per field for instances with 30 fields.

mixed-integer program, which includes non-linear constraints and non-linear terms in one of the

objective functions. By integrating the decisions on the deployment of harvest and transport

resources into a single model, we allow for improved logistics coordination, as opposed to plan-

ning these operations separately, a practice that is generally followed at the tactical planning

level. We have used linearization techniques to transform the original formulation into a com-

putationally tractable bi-objective mixed-integer linear program. Pareto-optimal solutions are

identified by the Progressive Bounded Constraint Method, which partitions the objective space

into a sequence of non-overlapping subregions. Our extension of this method avoids the same

Pareto-optimal solution to be returned while investigating two adjacent subregions.

We have performed a computational study on a set of semi-randomly generated instances

that reflect the current harvest and transport practices at a milling company in the state of São

Paulo (Brazil). The instances differ in the number of sugarcane fields that need to be harvested

and the availability of the harvest machinery and road haulage vehicles over the planning horizon.

The latter is impacted by the projected weather conditions and the work schedules in place on

weekdays and weekends. Our comparative analysis of a subset of Pareto-optimal solutions

identified within reasonable computing time has contributed to a better understanding of the

trade-offs between cost performance and harvest efficiency. When the minimization of the

equipment operating cost is favored, fewer mechanical harvesters are used that are operated

for a longer time. This strategy leads to a longer harvest, higher machine maintenance effort,

and as a result higher risk of equipment failure. By contrast, when more emphasis is given

to minimizing the harvest duration, more harvesting machines are used but for a shorter time.

As a result, the harvest operations can be completed faster at a higher cost and the harvest

equipment is subjected to less wear. Furthermore, in all solutions obtained, preference is placed

on using harvesters that have a larger capacity and therefore achieve more throughput in a
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shorter time even though they are more expensive. In addition, vehicles with small transport

capacity are favored to deliver the sugarcane to the processing facilities. These valuable insights

allow decision makers to make informed value-adding decisions, thereby improving the overall

performance of their harvest and transport operations.

Several further research opportunities can be identified. From a methodological viewpoint,

the development of a specially tailored heuristic method to identify the set of Pareto-optimal

solutions in reasonable computing time would be particularly useful for large problem instances.

Moreover, our modeling framework could be extended to integrate further agricultural opera-

tions such as sowing and growing different sugarcane varieties as they also affect the determi-

nation of a schedule for harvesting and transporting the sugarcane. Another future research

venue would be to examine our problem in a stochastic setting in order to explicitly account

for different sources of uncertainty, e.g., weather conditions and crop yields.

Appendix A: Data generation

In what follows, we denote by U [a, b] the generation of random numbers over the range [a, b]

according to a uniform distribution. Some parameters were drawn from a normal distribution

with expected value µ and standard deviation σ, expressed by N (µ, σ). The parameters of

the uniform and normal distributions were derived from historical data and discussions with our

consulting partner, thus reflecting the real-life settings of harvest and transport logistics at a

Brazilian milling company. All costs are given in Brazilian reals (R$).

Parameter Description Unit Value

HTi = {ai, . . . , bi} time window for harvesting field i ai = ⌈U [1, 14]⌉; bi = ⌈U [15, 30]⌉
Ai area of field i ha N (50, 10)
Pi productivity of field i tonnes/ha N (120, 20)
djt demand of mill j in period t tonne N (2000, 100)

Table 12: Generation of parameters related to sugarcane fields and demands of the mills.

Appendix B. Supplementary results

Table 15 reports the objective values associated with the lexicographic solutions. The best

values are highlighted in boldface. In spite of their limitations, since they reflect ‘extreme’
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Parameter Description Unit Type of harvester

ℓ = 1 ℓ = 2

Model type Case A8810 John Deere CH570
Mmax

ℓt no. of machines ⌈N (15, 2)⌉ ⌈N (15, 2)⌉
Qℓ capacity tonnes/h 20 30
mcℓt operating cost R$/h 200 230
hmt operator’s wages R$/h 10 (weekdays), 15 (Saturdays), 20 (Sundays)
p0t moving cost between R$/km 3.5 (weekdays), 5.25 (Saturdays), 7 (Sundays)

depot and a field

Table 13: Generation of parameters related to mechanical harvesters.

Parameter Description Unit Type of vehicle

k = 1 k = 2 k = 3

Model type Volkswagen 31.280 Mercedes Benz 3344 Volvo FH-540
V max
kt no. of vehicles ⌈N (22, 2)⌉ ⌈N (22, 2)⌉ ⌈N (22, 2)⌉

Cmax
k capacity tonne 60 75 90

sek empty travel speed km/h 70 70 70

sfk loaded travel speed km/h 60 50 40
stk service time h 2 3 3.5
pkt transport cost R$/km 4 5 6
hdt driver’s wages R$/h 16 (weekdays), 24 (Saturdays), 32 (Sundays)

Table 14: Generation of parameters related to road haulage vehicles.

situations due to the predominance of one objective over the other, the lexicographic solutions

facilitate the identification of the ideal values (columns 3 and 6). In turn, the deviation between

the ideal values and the objective values of the Pareto-optimal solutions presented in Table 8

can be determined for the different scenarios. In this way, a decision maker is better informed of

the maximum level of trade-off between the total cost and the total harvest time. For example,

the solution obtained for the instance with 10 fields, λ = 1, and the AW scenario has a total

cost (985,325 R$) that is only 0.2 percent higher than the ‘ideal’ cost (983,396 R$). However,

the planned harvest duration (534.32 h) is 37.7 percent longer than the ‘ideal’ total harvest

time (388 h).

Figures 9–11 illustrate the average proportion of mechanical harvesters available that are

selected per period in each scenario and solution, according to type and number of sugarcane

fields. As the maximum operating time available increases from the AW scenario to the ES sce-

nario, more machines of both types are used. More harvest equipment needs to be deployed

in the instances with 30 fields, as they also have the largest quantity of cane to be harvested.
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|I| Scenario Left lexicographic solution (w1 >lex w2) Right lexicographic solution (w2 >lex w1)

Total cost (R$) Total harvest time (h) Total cost (R$) Total harvest time (h)

10
Adverse weather 983,396 1,123.19 987,381 388.43

Normal schedule 978,103 1,253.23 987,554 413.25
Extended schedule 981,989 1,189.66 991,288 458.11

20
Adverse weather 2,053,898 2,175.34 2,258,669 1,798.42

Normal schedule 2,042,336 2,208.21 2,228,986 1,898.34
Extended schedule 2,039,556 2,153.36 2,236,874 1,856.87

30
Adverse weather 3,058,225 3,228.88 3,102,598 3,058.11

Normal schedule 3,066,998 3,694.03 3,119,587 3,066.65
Extended schedule 3,060,552 3,593.27 3,100,885 3,107.36

Table 15: Objective values associated with the lexicographic solutions in the different
scenarios.

In this case, nearly all the most efficient machines (i.e., type 2) are operated, while more than

half of the harvesters of type 1 are used.
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Figure 9: Average proportion of machines used per period for instances with 10 fields.

The average quantity of sugarcane harvested per hour is also a relevant performance mea-

sure, which is shown in Figure 12. The averages were calculated over all instances for a specific

scenario. It can be seen that the harvest efficiency differs among the scenarios. However, there

is a slight preference for solutions with λ = 2 because they display a balance between the two

objectives, w1 and w2.

Finally, Figure 13 presents the harvest schedules of the three solutions identified under the
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Figure 10: Average proportion of machines used per period for instances with 20 fields.
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Figure 11: Average proportion of machines used per period for instances with 30 fields.

normal schedule scenario for |I| = 10. The numbers to the right of each bar show the average

amount of hours worked daily on each field. The figure highlights the significant differences

between the solutions and underlines the importance of adopting a multi-objective approach to

the problem.
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Figure 12: Average quantity of sugarcane harvested per hour.
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Cana–de–Açúcar (Brazilian Sugarcane Industry Association), 2015.
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M.M. Morales-Chávez, J.A. Soto-Mej́ıa, and W. Sarache. A mixed-integer linear programming model

for harvesting, loading and transporting sugarcane: A case study in Peru. Dyna, 83:173–179, 2016.

R. Pitakaso and K. Sethanan. Adaptive large neighborhood search for scheduling sugarcane inbound

logistics equipment and machinery under a sharing infield resource system. Computers and Elec-

tronics in Agriculture, 158:313–325, 2019.

M.E. Salassi and F.G. Barker. Reducing harvest costs through coordinated sugarcane harvest and

transport operations in Louisiana. Journal of the American Society of Sugar Cane Technologists,

28:32–41, 2008.

E. Santoro, E.M. Soler, and A.C. Cherri. Route optimization in mechanized sugarcane harvesting.

Computers and Electronics in Agriculture, 141:140–146, 2017.

S. Saranwong and C. Likasiri. Bi-level programming model for solving distribution center problem: A

case study in Northern Thailand’s sugarcane management. Computers & Industrial Engineering,

103:26–39, 2016.

G. Schilling and M.C. Georgiadis. An algorithm for the determination of optimal cutting patterns.

Computers & Operations Research, 29:1041–1058, 2002.

K. Sethanan and W. Neungmatcha. Multi-objective particle swarm optimization for mechanical har-

vester route planning of sugarcane field operations. European Journal of Operational Research,

252:969–984, 2016.

A.F. Silva, F.A.S. Marins, and E.X. Dias. Addressing uncertainty in sugarcane harvest planning through

a revised multi-choice goal programming model. Applied Mathematical Modelling, 39:5540–5558,

2015.

Statista. Brazil: sugar production 2009–2019. Available online:

https://www.statista.com/statistics/249677/production-of-sugar-in-brazil/

(last accessed on 26 August 2020), 2020.

49

https://www.statista.com/statistics/249677/production-of-sugar-in-brazil/


B.J. Stray, J.H. van Vuuren, and C.N. Bezuidenhout. An optimisation-based seasonal sugarcane

harvest scheduling decision support system for commercial growers in South Africa. Computers and

Electronics in Agriculture, 83:21–31, 2012.

S. Thuankaewsing, S. Khamjan, K. Piewthongngam, and S. Pathumnakul. Harvest scheduling algo-

rithm to equalize supplier benefits: A case study from the Thai sugar cane industry. Computers

and Electronics in Agriculture, 110:42–55, 2015.
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