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Abstract

This paper constructs a normative framework to quantify the difference (distance) between

outcomes of market mechanisms in matching markets. We investigate the “cost of transforma-

tion” from one market mechanism to another, based on the differences in the outputs of these

mechanisms, i.e., the matchings. Several conditions are introduced to ensure that this cost re-

flects the welfare effect of the transformation on individuals. We find a class of measures called

scaled Borda measures, which is characterized by these conditions. Several possible applications

of these measures in different markets are also discussed, such as measuring how unstable, how

unfair, or how inefficient a mechanism (or a matching) is.
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1 Introduction

Matching theory analyzes markets where agents, e.g., buyers and sellers, hospitals and interns,

high schools and students, are matched according to their preferences, and thereby conduct some

transactions within the relevant context. Some of the well-known mechanisms are the deferred

acceptance (introduced by Gale and Shapley (1962), characterized by Kojima and Manea (2010) and

Morrill (2013a)), the Boston mechanism (characterized by Afacan (2013) and Kojima and Ünver

(2014)), and the top trading cycle (introduced by Shapley and Scarf (1974) and characterized

by Morrill (2013b) and Pycia and Ünver (2017)). These mechanisms produce matchings with

various normative features1, e.g., stability, Pareto efficiency, fairness, etc. They also have different

computational complexity2.

Given two mechanisms with different features and complexity, a measure on matchings can be

used to compare the outcomes of the mechanisms and hence quantify the cost of transformation

from one mechanism to the other. Such a measure can be interpreted in various ways. For instance,

it can be interpreted as the cost of stability if one mechanism is not stable and the other is, or as the

cost of simplicity if one mechanism is complex and the other is not, e.g., in terms of computation.

The most intuitive way to compare two matchings is by simply looking at the number of indi-

viduals who are matched differently. This measure3 would assign zero if the matchings are identical

in all pairs, and would be maximal if they have nothing in common, i.e., the matchings are disjoint.

However, this method neglects individuals’ preferences in the market. That is, it does not matter

how individuals rank their partners in the corresponding matchings. Therefore, it is not sensible to

use it as a measure with the interpretation of the cost of transformation in relation to individual

preferences.

This paper explores metric (distance) functions4 on matchings. We introduce intuitive condi-

tions and endogenize individual preferences in quantifying the dissimilarity (distance) between two

matchings, and hence between two mechanisms in roommate markets5. The conditions characterize

an intuitive class of positional measures that behave like Borda scoring rules in the context of voting.

Since roommate markets are very generic one-to-one matching problems, the results apply to the

marriage markets as well. We show how the results can further be extended to object allocation

1For comparisons of some of these methods, see Abdulkadiroglu and Sönmez (2003); Abdulkadiroğlu et al. (2005);

Ergin and Sönmez (2006); Chen and Sönmez (2006); Erdil and Ergin (2008); Kesten (2010); Abdulkadiroğlu et al.

(2011); Kesten and Ünver (2015).
2See Irving (1985), Irving et al. (2000), Manlove et al. (2002)
3To the best of our knowledge, the first reference to such measures can be found in Klaus et al. (2010) for stochastic

markets.
4A metric is a function which satisfies non-negativity, identity of indiscernibles, symmetry, and triangular inequality.
5A roommate market is a one-sided one-to-one matching market.
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problems in a much easier fashion. In addition, we also show how the measures can further be

generalized to many-to-one markets, such as the school choice problems.

Our first condition Betweenness is a well-known additivity condition which requires that if every

individual ranks a matching between two other matchings then the measure must be additive on

these three matchings6. This allows for an additive treatment of welfare analysis, in case matchings

are ordered properly and the transformation from one market mechanism (matching) to another

implies welfare improvement. Monotonicity implies that if from one market to another, the set

of agents ranked between two matchings weakly expand, the distance should be responsive to

this and should also weakly increase. Anonymity requires that relabelling of individuals must

not effect the measure. Independence of irrelevant newcomers, implies that when an “irrelevant”

newcomer7 joins the market (like a dummy variable), the measure is unchanged if he or she remains

single in both matchings. This typical invariance condition allows the measures to be applicable to

variable population settings and brings about comparability across markets of varying sizes. Finally,

standardization sets the minimal possible distance for any two disjoint matchings, i.e., matchings

that have nothing in common, to be standard (fixed) across all markets with the same set of agents.

We investigate the behavior of measures that satisfy these conditions. We find that the measures

are positional, in the sense that they assign distances based on ranks of agents’ partners. Having

this intuition in mind, we introduce a class of Borda-like measures, which we call scaled Borda

measures. Given a market, these measures scale the sum of absolute differences in Borda scores8 of

agents’ partners in two matchings. We find that a measure satisfies the aforementioned conditions,

if and only if it belongs to this class, i.e., it is a scalar of the Borda measure9. We formulate

our result on the domain of roommate markets since we are also interested in markets that are

not necessarily solvable, i.e., markets in which there are no stable matchings. In fact, the measures

work on the full domain, i.e., they can compare any two matchings. This creates richness in the way

these measures can be employed under different interpretations10. In case the measure is applied on

the set of stable matchings only, it can serve as a utility to find a “fair” compromise among stable

matchings, e.g., between men-optimal and women-optimal stable matchings in a marriage market.

6This is a standard method for strengthening the triangular inequality for cases where the weak inequality becomes

equality, e.g., when three points are “on a line” in the Euclidian sense (see Kemeny (1959)).
7We consider a newcomer irrelevant if the market expands such that the incumbents preference does not change

and they prefer being matched among themselves to being matched with the newcomer.
8The Borda score of a matching for an individual is the number of alternatives that are ranked strictly below the

partner of the individual in that matching.
9Note that this class comprises only of measures with scoring vectors that are a scalar of Borda scores, and not

linear transformations thereof.
10Note however that certain restricted domains lead to very natural interpretations of the measures. For instance,

in markets where where all matchings are individually rational, i.e., being single is the worst option for everyone, the

measures have a very straightforward interpretation as social welfare attained by any given matching. This could

simply be done by comparing this matching with the matching wherein all agents are single.

3



Furthermore, it can also be used to quantify the level of positive discrimination or favorism in the

choice of stable matchings in a marriage market.

The paper proceeds as follows. In Section 2, we present the basic notation for the model.

Section 3 introduces the model; a metric framework and the conditions on measures. Section 4

is devoted to the analysis of the structure of measures satisfying those conditions and eventually

bringing forth a complete characterization. Section 5 concludes the paper with discussion and

possible applications, while most proofs and the logical independence of the characterizing conditions

are presented in the appendix.

2 Notation

We consider a countable and infinite set of potential individuals, denoted by N , with a non-empty

and finite subsetN ( N interpreted as a set of agents. For each i ∈ N , letRi denote the preference of

agent i, that is a complete, transitive and antisymmetric binary relation over N , while R ≡ (Ri)i∈N

is the preference profile. We say agent j is “at least as good as” agent k for agent i whenever j Ri k.

We denote the position of agent j in the preference Ri, by rank(j, Ri) = |{k ∈ N : k Ri j}|. A

generic market (also referred to as a roommate problem) is denoted by P = (N,R), and the set of

all possible roommate problems over a particular set of agents N by P(N). We denote the domain

of all roommate problems by D = 〈P(N)〉N(N , i.e., the set of all possible roommate problems over

all possible sets of agents.

A matching µ is a permutation on N such that for all i, j ∈ N , µ(i) = j if and only if µ(j) = i.

We refer to j as the partner (roommate) of i at matching µ, and in case µ(i) = i, i is said to

be single at matching µ. A matching in which every agent is single is referred to as the identity

matching and is denoted by µI . We denote the set of all possible matchings on N byM(N). Given

any problem P = (N,R) and any two matchings µ, µ̄ ∈M(N), the set of agents that are preferred

(nested) between µ(i) and µ̄(i) according to Ri forms an interval denoted by [µ, µ̄]Ri . Formally,

[µ, µ̄]Ri = {j ∈ N : µ(i)Ri j Ri µ̄(i) or µ̄(i)Ri j Ri µ(i)}.

The length of an interval is denoted by |µ, µ̄|Ri = #[µ1, µ2]Ri − 1, i.e., the cardinality of the interval

minus 1. As an example in Figure 4, [µ1, µ3]R1 = {2, 4, 3} and |µ1, µ3|R1 = 2.

We say a matching µ̄ is between matchings µ and ¯̄µ, if µ̄(i) ∈ [µ, ¯̄µ]Ri for all i ∈ N . Given any

sequence of matchings µ1, . . . , µt inM(N) we say µ1, . . . , µt are “on a line”, denoted by [µ1− µ2−
· · ·−µt], if µj is between µi and µk for all 1 6 i 6 j 6 k 6 t. We say a matching µ is weakly above µ̄

whenever µ(i)Ri µ̄(i) for all i ∈ N . In addition, we say µ and µ̄ are adjacent whenever |µ, µ̄|Ri = 1

for all i ∈ N , we say µ and µ̄ are disjoint whenever µ(i) 6= µ̄(i) for all i ∈ N .
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Consider problem P = (N,R). Let π be a permutation over the set of agents N . We denote

the permuted preference profile by Rπ where for all i, j, k ∈ N , j Ri k if and only if π(j)Rππ(i) π(k).

Define the permuted problem P π = (N,Rπ) accordingly. Given a matching µ ∈ M(N), we denote

the permuted matching by µπ where for all i, j ∈ N , µ(i) = j if and only if µπ(π(i)) = π(j).11 The

permutations are denoted by the cycle notation, e.g., π = (123)(45) denotes π(1) = 2, π(2) = 3,

π(3) = 1, π(4) = 5, π(5) = 4 and π(i) = i for all i ∈ N \ {1, 2, 3, 4, 5}.

Let N be a set of agents and consider a newcomer a ∈ N \N . A problem P ∗ = (N ∪ {a}, R∗)
is called an extension of the problem P = (N,R) by a whenever preferences of agents’ in N over

agents in N does not change from R to R∗, and the newcomer is ranked at the bottom in R∗ by

everyone in N . Formally:

1. rank(j, Ri) = rank(j, R∗i ), for all i, j ∈ N ,

2. rank(j, R∗i ) = #N + 1, for all i, j ∈ N .

Similarly, we say µ̄ ∈M(N∪{a}), is the extension of a matching µ ∈M(N) by agent a ∈ N \N ,

whenever µ̄(i) = µ(i) for all i ∈ N , and µ̄(a) = a. In such extensions, we call a ∈ N \N , an irrelevant

newcomer.

Finally, let A = {a1, a2, . . . , ak}, be a set of agents such that N ∩A = ∅. Consider the sequence

P 0, P 1, P 2, . . . , P k of problems such that P 0 = P and P t is an extension of P t−1 by agent at ∈ A.

Then we say P k is an extension of P by the set of agents A. Similarly, we can define the extension

of a matching with a set of agents. It should be noted that, the order of adding agents in the set

results in different problems.

3 Model

We use metric functions as our main framework for comparing matchings. Given a set of agents

N , and a problem P ∈ P(N), a function on matchings δP :M(N)×M(N)→ R is called a metric

(or a distance function) function if and only if it satisfies the regular metric conditions12. Hence,

a distance function δP assigns every pair of matchings µ, µ̄ ∈ M(N) a non-negative real number

depending on the structure of the problem P . We consider measures on matchings, i.e., collections

of distance functions on all possible problems in the domain, denoted by

δ = 〈δP 〉P∈D.
11This is a typical definition for permutations in roommate markets, as examples of this see Klaus (2017); Özkal-

Sanver (2010); Sasaki and Toda (1992).
12i) Non-negativity: δP (µ, µ̄) > 0, ii) identity of indiscernibles: δP (µ, µ̄) = 0 if and only if µ = µ̄ , iii) symmetry:

δP (µ, µ̄) = δP (µ̄, µ), and iv) triangular inequality: δP (µ, ¯̄µ) ≤ δP (µ, µ̄) + δP (µ̄, ¯̄µ).
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The first condition requires that if three matchings are ordered “on a line” then the measure

should be additive on these matchings.

Condition 1 (Betweenness): δ satisfies betweenness if for all problems P = (N,R) ∈ D and for

all matchings µ, µ̄, ¯̄µ ∈M(N) such that µ̄ is between µ, ¯̄µ

δP (µ, ¯̄µ) = δP (µ, µ̄) + δP (µ̄, ¯̄µ).

Anonymity condition is straightforward and requires that the relabeling of the agents should

not matter.

Condition 2 (Anonymity): δ satisfies anonymity if for all problems P = (N,R) ∈ D and for all

matchings µ, µ̄ ∈M(N) and permutation π : N → N

δP (µ, µ̄) = δPπ(µπ, µ̄π).

Monotonicity condition requires that if from one problem to another, the two matchings fall

further apart from one another, then the measure should reflect that by an increase in the distance.

Condition 3 (Monotonicity): δ satisfies monotonicity if for all problems P = (N,R) ∈ D and

P̂ = (N, R̂) ∈ D and all matchings µ, µ̄ ∈M(N) such that [µ, µ̄]Ri ⊆ [µ, µ̄]
R̂i

for all i ∈ N

δP (µ, µ̄) ≤ δ
P̂

(µ, µ̄).

Remark 1. Immediate implication of monotonicity is that if for two matchings µ and µ̄, the

intervals remain the same across two problems on the same set of agents, then the distance should

not change. Furthermore changing the relative order of µ, µ̄ in individual preferences, does not alter

the distance as long as the intervals remain the same.

The next condition is an invariance axiom which states that if a problem and two matchings

are extended by a dummy agent which essentially does not change the matchings, then the distance

between these matchings should be the same in the extended problem.

Condition 4 (Independence of irrelevant newcomers): δ satisfies independence of irrelevant

newcomers if for all problem P = (N,R) ∈ D and any extension P ∗ = (N∗, R∗) ∈ D and all

matchings µ, µ̄ ∈M(N) with the extension µ∗, µ̄∗ ∈M(N̂) by some agent a ∈ N \N

δP (µ, µ̄) = δP ∗(µ
∗, µ̄∗).

Remark 2. An immediate implication of independence of irrelevant newcomers is that if P ∗, µ∗, µ̄∗

are an extension of the P, µ, µ̄, by a set of agents A, then δP (µ, µ̄) = δP ∗(µ
∗, µ̄∗).
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Our final condition, standardization, requires that given a set of agents, the minimal distance

must be the same across all pairs of disjoint matchings.

Condition 5 (Standardization): δ satisfies standardization if there exists a function κ : 2N → R
such that for all N and for all disjoint matchings µ, µ̄ ∈M(N),

min
P∈P(N)

δP (µ, µ̄) = κ(N).

4 Results

In what follows, we restrict our attention only to measures that satisfy the five conditions laid out

in Section 3, i.e., Betweenness, Anonymity, Monotonicity, Independence of irrelevant newcomers

and Standardization. We first introduce Lemma 1 (Decomposition lemma) which proves that the

measures we seek, decompose the distance into sums of distances between pairs of matchings that

look like components of the original matchings (see Figure 1). Thereafter, the results are presented

in two subsections. In Section 4.1 we analyze the behavior of these measures specifically when they

compare a matching with the identity matching, i.e., the matching where every agent is single, and

in Section 4.2, the results are extended to cases where any two matchings are compared.

In Section 4.1, we first use Lemmas 2, 3, and 4 to show the distances between one-couple

matchings (matchings in which everyone is single except one couple) and the identity matching

is the same across all problems so long as the interval lengths are the same. These lemmas also

quantify how different interval lengths relate to one another. Proposition 1 shows that the distances

of such one-couple matchings to the identity matching should be based on positions of the partners.

Finally, Theorem 1 combines the aforementioned results and extends Proposition 1 to conclude that

the measure we seek is equivalent to a class of positional measures.

In Section 4.2, we extend the findings of Section 4.1 to any two matchings using two more

building blocks, i.e., Propositions 2 and 3, to generalize Theorem 1 for any two matchings. Hence,

Theorem 2 provides a complete characterization of a class of positional measures which we call as

scaled Borda measures. We also show, in Appendix C, that the conditions in the characterization

results are indeed logically independent.

To state the first lemma, let µ, µ̄ ∈ M(N) be two matchings and S ⊆ N be a subset of agents

that are matched among themselves in µ and µ̄, i.e., µ(i), µ̄(i) ∈ S for all i ∈ S. Based on the set

S, we define two matchings, µS and µS̄ , as follows:

1. for all i ∈ S, let µS(i) = µ(i) and for all i ∈ N \ S, let µS(i) = µ̄(i),

2. for all i ∈ S, let µS̄(i) = µ̄(i) and for all i ∈ N \ S, let µS̄(i) = µ(i).
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In the following lemma, we show that the distance between µ, µ̄ can be decomposed into the sum of

the distances from µS and µS̄ to µ (or µ̄). Figure 1 shows a demonstration of this decomposition.

1 2 . . . n
P

SS̄

µ̄

µ

µS

µS̄

Figure 1: The general view of the Decomposition Lemma.

Lemma 1. (Decomposition Lemma) Let µ, µ̄ ∈ M(N). Then, for all S ⊆ N such that

µ(i), µ̄(i) ∈ S for all i ∈ S, we have

δP (µ, µ̄) = δP (µ, µS̄) + δP (µ, µS) = δP (µS̄ , µ̄) + δP (µS , µ̄).

Proof. By definition of µS̄ and µS , both are between µ and µ̄, hence betweenness yields

δP (µ, µ̄) = δP (µ, µS̄) + δP (µS̄ , µ̄) and, (1)

δP (µ, µ̄) = δP (µ, µS) + δP (µS , µ̄). (2)

Since µ and µ̄ are both between µS and µS̄ betweenness results in

δP (µS , µS̄) = δP (µS , µ) + δP (µ, µS̄) and,

δP (µS , µS̄) = δP (µS , µ̄) + δP (µ̄, µS̄).

The four equations above yield

δP (µ, µS̄) + δP (µS̄ , µ̄) = δP (µ, µS) + δP (µS , µ̄) and,

δP (µS , µ) + δP (µ, µS̄) = δP (µS , µ̄) + δP (µ̄, µS̄).

Subtracting the latter equation from the former we have δP (µS̄ , µ̄) − δP (µS , µ) = δP (µ, µS) −
δP (µ̄, µS̄) which reduces to

δP (µS̄ , µ̄) = δP (µS , µ). (3)

Plugging Equation 3 into Equation 1, and as δ is a symmetric function, yields δP (µ, µ̄) = δP (µ, µS̄)+

δP (µ, µS), and plugging Equation 3 into Equation 2 results in δP (µ, µ̄) = δP (µS̄ , µ̄) + δP (µS , µ̄). �

4.1 Comparing any matching with the identity matching

We now focus on the distance between any matching and the identity matching. By monotonicity,

as long as the intervals between the two matchings remain the same the distance will be unchanged.
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Therefore, in order to keep the figures simple, we draw the identity matching below the other

matchings and we often denote the matchings as straight lines whenever possible.

Consider a matching in which everyone is single except one couple, say µ(i) = j with i 6= j. We

call such a matching a one-couple matching (see Figure 3) and denote it by µij . Given a problem P =

(N,R), we say a one-couple matching µij is of length (x, y) whenever (|µij(i), i|Ri , |µij(j), j|Rj ) =

(x, y).

Remark 3. Consider any matching µ with k distinct couples. Then, by Decomposition Lemma,

and letting S = {i, j} and S̄ = N \ S for each couple of µ, the distance between µ and µI can

be decomposed as the sum of distances of each of these k one-couple matchings, and the identity

matching.

According to Remark 3, to compute the distance between any matching and the identity match-

ing, we only need to focus on the distance between a one-couple matching and the identity matching.

Then the total distance equals the sum of each of these one-couple matchings. In the sequel, we

show that the distance between a one-couple matching and identity matching is the same for all

problems whenever the interval lengths are the same. In Lemma 2, we show this for the case where

the interval length is (x, 1), see Figure 2. Then in Lemma 3, we extend this to any interval length

(x, y), see Figure 3.

1 . . . i . . . j . . . n
P

x-1

j

i
1 . . . i . . . j . . . n
...

...
...

...
...

...
...

µij µI

Figure 2: A one-couple matching µij of

length (x, 1).

1 . . . i . . . j . . . n
P

x-1

j
i

1 . . . i . . . j . . . n
...

...
...

...
...

...
...

µij µI

y-1

Figure 3: A one-couple matching µij of

length (x, y).

Lemma 2. Consider any N,N ′ ( N and a strictly positive integer x. Consider any one-couple

matching µij ∈M(N), and any P ∈ P(N) such that µij is of length (x, 1) in P . Similarly consider

any one-couple matching µi
′j′ ∈ M(N ′), and any P ′ ∈ P(N ′) such that µi

′j′ is of length (x, 1) in

P ′. Let µI and µI
′

denote the identity matchings in corresponding problems, then

δP (µij , µI) = δP ′(µ
i′j′ , µI

′
).

Proof. See Appendix A.1. �
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Lemma 2, shows that the distance between the identity matching and any one-couple matching

of length (x, 1) is the same across all the problems in the domain, i.e., regardless of the set of agents.

To simplify notation we denote this distance by αx1. The next lemma extends Lemma 2 to any

one-couple matching of length (x, y).

Lemma 3. Consider any N,N ′ ( N and two strictly positive integers x and y. Consider any one-

couple matching µij ∈ M(N), and any P ∈ P(N) such that µij is of length (x, y) in P . Similarly

consider any one-couple matching µi
′j′ ∈ M(N ′), and any P ′ ∈ P(N ′) such that µi

′j′ is of length

(x, y) in P ′. Let µI and µI
′

denote the identity matchings in corresponding problems, then

δP (µij , µI) = δP ′(µ
i′j′ , µI

′
) = αx1 + αy1 − α11.

Proof. See Appendix A.2. �

Lemma 3, shows that the distance between the identity matching and any one-couple matching

of length (x, y) is the same across all the problems in the domain, i.e., regardless of the set of agents.

To simplify notation we denote this distance by αxy. Next as a particular case of Lemma 3, we show

that for any strictly positive integer x, αxx = xα11, i.e., a one-couple matching of length (x, x) has

x times the distance that a one-couple matching of length (1, 1) has (to the identity matching).

Lemma 4. Consider any N ( N and a strictly positive integer x. Consider any one-couple

matching µij ∈ M(N), and any problem P ∈ P(N) such that µij is of length (x, x) in P . Let µI

denote the identity matching, then

δP (µij , µI) = x× α11.

Proof. See Appendix A.3. �

Now we introduce Proposition 1. When all five conditions in Section 3 are imposed on a distance

function δ, Proposition 1 states that the distance between the identity matching and a one-couple

matching µij must equal to a scalar function of the sum of absolute changes in the position of each

agents’ partners in these matchings.

Proposition 1. For any problem P = (N,R) and any one-couple matching µij ∈M(N) we have

δP (µij , µI) = αxy =
1

2
α11

∑
k∈{i,j}

∣∣rank(µij(k), Rk)− rank(µI(k), Rk)
∣∣.

Proof. Let µij be any one-couple matching of length (x, y). By Lemma 3, αxy = αx1 + αy1 − α11.

On the other hand by Lemma 3, αxx = αx1 +αx1−α11 = 2αx1−α11, and by Lemma 4, αxx = xα11.

10



Combining the two implies αx1 = (x+1)
2 α11. Setting αx1 = (x+1)

2 α11 and αy1 = (y+1)
2 α11 into

αxy = αx1 + αy1 − α11 simplifies to

αxy =
1

2
α11(x+ y).

Note that x = |µij , µI |Ri and y = |µij , µI |Rj . Then we have αxy = 1
2α11(|µij , µI |Ri + |µij , µI |Rj )

which can be rearranged as

αxy =
1

2
α11

∑
k∈{i,j}

∣∣rank(µij(k), Rk)− rank(µI(k), Rk)
∣∣. (4)

�

Proposition 1 is fundamental in that it compares one-couple matchings and their distance to

identity matching, also draws a clear picture of how the class of measures we are looking for should

behave. In fact, the right hand side of Equation 4 in the proof above is very similar to a positional

voting concept known as the Borda rule in voting literature13. For each candidate in a voting

problem, Borda rule defines a score that candidates gets from each voter as follows:

BordaScore(j, Ri) = |N | − rank(j, Ri) (5)

which is interpreted as the score candidate j gets from voter i. A very straightforward application

of this scoring concept to comparing two matchings, is one where we compare the Borda scores of

partners of an agent i, in these two matchings (in absolute value):

∣∣BordaScore(µ(i), Ri)−BordaScore(µ̄(i), Ri)
∣∣

Finally, summing all the Borda score differentials for each individual’s partners in the two

matchings would properly define a new measure which we call the Borda measure.

Borda Measure: A measure is called the Borda Measure, denoted by δBorda, if for all P = (N,R) ∈
D, and for all matchings µ, µ̄ ∈M(N)

δBordaP (µ, µ̄) =
∑

i∈N
∣∣BordaScore(µ(i), Ri)−BordaScore(µ̄(i), Ri)

∣∣. (6)

=
∑

i∈N
∣∣rank(µ(i), Ri)− rank(µ̄(i), Ri)

∣∣. (7)

13See Borda (1781); Saari (1990).

11



Remark that Equation 7 shows a clear resemblance to Equation 4 in Proposition 1. In fact, the

latter is just a scalar transformation of the former with some constant. In what follows, we formally

define these scalar transformations of the Borda measure, and call them scaled Borda measures.

Formally:

Scaled Borda Measures: A measure is called a Scaled Borda Measures, denoted by δσ−Borda, if

for some σ ∈ R++, for all P = (N,R) ∈ D, and for all matchings µ, µ̄ ∈M(N)

δσ−BordaP (µ, µ̄) = σ × δBordaP (µ, µ̄) (8)

The reader can verify that the Borda measure and all the scalar transformations of it satisfy the

conditions introduced in Section 3, and therefore the lemmata in this section. We can now introduce

our first theorem which expands Proposition 1. Theorem 1 states that when all five conditions in

Section 3 are imposed on a distance function δ, the distance between the identity matching and any

other matching must equal to a scaled Borda measure for some positive constant σ. Formally:

Theorem 1. For any problem P = (N,R) and any µ ∈M(N) we have

δP (µ, µI) = σ × δBordaP (µ, µI) for some σ ∈ R++.

Proof. Considering the distance between any one-couple matching µij of any length (x, y) and the

identity matching µI , we can plug Equation 7 into Proposition 1 which yields:

δP (µij , µI) = αxy =
1

2
α11 × δBordaP (µij , µI).

Note that by the Decomposition Lemma, both for δP and δBordaP , the distance between any µ and

the identity matching µI is the sum of distances between the identity matching and all one-couple

matchings induced by µ. Therefore:

δP (µ, µI) =
1

2
α11 × δBordaP (µ, µI)

Finally, as δP is a metric function, α11 > 0 (nonnegativity and identity of indiscernibles). Setting

σ = 1
2α11 > 0, we conclude the distance is a scaled Borda measure with σ = 1

2α11.

δP (µ, µI) = σ × δBordaP (µ, µI) = δσ−BordaP (µ, µI).

�

Theorem 1 proves that a measure satisfying the desired conditions must behave like a scaled

Borda measure when comparing the distance between a matching and the identity matching. Next

12



section shows that this is in fact the case for any two matchings, hence providing a complete

characterization.

4.2 Comparing any two non-identity matching

In this section, we generalize Theorem 1 to any two matchings. That is, under the imposed condi-

tions, given any problem and any two matchings, a measure which compares these two matchings

must be equivalent to a scalar Borda measure. To do so, first we propose two propositions for

four-agents problems, and use these two propositions as building blocks to construct Theorem 2.

Proposition 2. Consider a problem P over four agents with the preference profile and the matchings

shown in Figure 4. Note that one singleton is nested between µ1 and µ2 and another is nested between

µ2 and µ3. In such specific cases,

1. δP (µ1, µ2) = σ × δBordaP (µ1, µ2) for σ = 1
2α11,

2. δP (µ2, µ3) = σ × δBordaP (µ2, µ3) for σ = 1
2α11.

1 2 3 4
P

1 1 4 4

2 2 2 3

4 3 3 1

3 4 1 2

µ1

µ2

µ3

Figure 4: A problem over four agent with one singleton agent between the matchings.

Proof. See Appendix B.1. �

Proposition 3. Consider a problem P over four agents with the preference profile and the matchings

shown in Figure 5. Note that two singletons are nested between µ1 and µ2 and another two are nested

between µ2 and µ3. In such specific cases,

1. δP (µ2, µ3) = σ × δBordaP (µ2, µ3) for σ = 1
2α11,

2. δP (µ1, µ2) = σ × δBordaP (µ1, µ2) for σ = 1
2α11.

13



1 2 3 4
P

4 3 2 1

1 2 1 2

3 4 3 4

2 1 4 3

µ1

µ2

µ3

Figure 5: Problem P over four agents with two singleton agents between the matchings.

Proof. See Appendix B.2. �

Next we propose our main characterization. A measure satisfies Betweenness, Anonymity, Mono-

tonicity, Independence of irrelevant newcomers and Standardization if and only if it is a scalar Borda

measure for some σ > 0.

Theorem 2. For any problem P = (N,R) and µ, µ̃ ∈M(N), we have

δP (µ, µ̃) = σ × δBordaP (µ, µ̃) for some σ ∈ R++.

Proof. meWe leave the “if” part to the reader and provide the “only if” part of the theorem.

Without loss of generality, let N = {1, 2, . . . , n} be the set of agents and consider any P ∈ P(N). In

case µ = µ̃, as δ is a metric function we have δP (µ, µ̃) = 0 which equals σ×δBordaP (µ, µ̃) for any σ > 0.

In case µ = µI (or µ̃ = µI), by Theorem 1, we have δP (µ, µ̃) = σ × δBordaP (µ, µ̃) for σ = 1
2α11. Next

we shall prove that for any other possible pairs of matchings µ, µ̃ ∈M(N) \ {µI} such that µ 6= µ̃,

the measure also equals a scaled Borda measure with σ = 1
2α11, i.e., δP (µ, µ̃) = σ× δBordaP (µ, µ̃) for

σ = 1
2α11.

Note that if the number of agents is odd, we can use extensions of P, µ, and µ̃ by one irrele-

vant newcomer. By independence of irrelevant newcomers, the distance would be unchanged. So

without loss of generality we can assume that the number of agents to be even. Furthermore, by

monotonicity, we can assume that µ is weakly above µ̃.

Let N ′ = {1′, 2′, . . . , n′} be a set of agents such that |N | = |N ′| and N∩N ′ = ∅. Let N̄ = N∪N ′.
Let P ∗, µ∗, µ̃∗ be an extension of P, µ, µ̃ by the set N ′. By Remark 2, δP (µ, µ̃) = δP ∗(µ

∗, µ̃∗). For

simplicity, we abuse the notation and write P , µ and µ̃ instead of writing P ∗, µ∗ and µ̃∗, respectively.

Let us define two additional matchings µB, µT ∈M(N̄) such that: (1) for all i ∈ N , µB(i) = i′ ∈ N ′,
and (2) for all odd i ∈ N , µT (i) = (i+ 1)′ ∈ N ′ and for all even i ∈ N , µT (i) = (i− 1)′ ∈ N ′.

Next we construct another problem P̄ = (N̄ , R̄) on the same set of agents N̄ (see Figure 6 for

a general view of the structure of this problem) such that
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1. [µ, µ̃]Ri = [µ, µ̃]R̄i for all i ∈ N̄ , i.e., the intervals of µ and µ̃ in P̄ are the same as those in P ,

2. µT is weakly above µB, µB is weakly above µ (and they are adjacent), and µ is weakly above

µ̃,

3. if i ∈ [µ, µ̃]R̄i then [µT , µB]R̄i = {µT (i), µB(i)}, i.e., if i is nested between µ(i) and µ̃(i) then

no other agent is nested between µT (i) and µB(i),

4. if i 6∈ [µ, µ̃]R̄i then [µT , µB]R̄i = {µT (i), i, µB(i)}, i.e., if i is not nested between µ(i) and µ̃(i)

then i is the only other agent nested between µT (i) and µB(i).

1 2 3 4 n 1′ 2′ 3′ 4′ n′
P̄

2′

1′

1

1′

2

2′

4′

3

3′
3′

4′

4

1 2 3 4 n

2 1 4 3 n-1

1′ 2′ 3′ 4′ n′

µ̃

µ

µB
µT

Figure 6: General structure for P̄ .

Note that by monotonicity for problems P and P̄ , we have δP (µ, µ̃) = δP̄ (µ, µ̃). Also, δBordaP (µ, µ̃) =

δBorda
P̄

(µ, µ̃). Hence it is sufficient to show δP̄ (µ, µ̃) = σ × δBorda
P̄

(µ, µ̃) for σ = 1
2α11.

Note that [µT−µB−µ−µ̃] are on a line in problem P̄ , therefore betweenness implies δP̄ (µT , µ̃) =

δP̄ (µT , µB) + δP̄ (µB, µ) + δP̄ (µ, µ̃) and hence

δP̄ (µ, µ̃) = δP̄ (µT , µ̃)− δP̄ (µT , µB)− δP̄ (µB, µ). (9)

In the next three steps we show that the distance between each of the three pairs of matchings on

the right-hand side of Equation 9 equals the scaled Borda measure for some σ > 0. By betweenness

of scaled Borda measures, this in return shall imply δP̄ (µ, µ̃) = σ × δBorda
P̄

(µ, µ̃) for some σ > 0.

Step 1. (Proving that δP̄ (µT , µ̃) equals the scaled Borda measure for some σ > 0.) By

construction of P̄ , [µT − µI − µ̃] are on a line. Then by betweenness and Theorem 1, δP̄ (µT , µ̃) =

σ × δBorda
P̄

(µT , µ̃) for σ = 1
2α11.

Step 2. (Proving that δP̄ (µB, µ) equals the scaled Borda measure for some σ > 0.) By

construction of P̄ we can consider any problem ¯̄P where [µB−µ−µI ] are on a line, and the intervals
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of µB and µ are unchanged, i.e., [µB, µ]R̄i = [µB, µ] ¯̄Ri
for all i ∈ N̄ , therefore by monotonicity the

distance is unchanged. Then by betweenness and Theorem 1, δP̄ (µB, µ) = σ × δBorda
P̄

(µB, µ) for

σ = 1
2α11.

Step 3. (Proving that δP̄ (µT , µB) equals the scaled Borda measure for some σ > 0.) Consider

the partition of N̄ into the following subsets of agents T1 = {1, 2, 1′, 2′}, T2 = {3, 4, 3′, 4′}, . . . ,

Tn
2

= {n− 1, n, (n− 1)′, n′} where N̄ =

n
2⋃
l=1

Tl. Let µTl denote a matching where µTl(i) = µT (i) for

all i ∈ Tl, and µTl(i) = µB(i) for all i ∈ N̄ \Tl. By construction for all l ∈ {1, . . . , n2 }, µ
Tl is between

µT and µB. By Decomposition Lemma, we have:

δP̄ (µT , µB) =

n
2∑
l=1

δP̄ (µTl , µB). (10)

To simplify notation, we denote a generic µTl simply by µS . Based on the construction of µT and

µB, each of these matchings, µS , will have one of the following three structures: (1) no singleton

is nested between µS and µB (see Figure 7), or (2) one singleton is nested between µS and µB

(see Figure 8 and 11), or (3) two singletons are nested between µS and µB (see Figure 12). In the

sequel, we shall show that for each of the three possible structures, δP̄ (µS , µB) = σ×δBorda
P̄

(µS , µB)

for σ = 1
2α11, i.e., the distance is a scaled Borda measure.

• Case 1. (no singleton) Consider the case in which no singleton is nested between µS and

µB (Figure 7).

. . . i i+ 1 i′ (i+ 1)′ . . .
P̄

. . . i′ (i+ 1)′ i (i+ 1) . . .

. . . (i+ 1)′ i′ (i+ 1) i . . .

µS µB

Figure 7: The no singleton structure.

By construction of P̄ we can consider any problem ¯̄P where [µS − µB − µI ] are on a line,

and the intervals of µS and µB are unchanged, i.e., [µS , µB]R̄i = [µS , µB] ¯̄Ri
for all i ∈ N̄ ,

therefore by monotonicity the distance is unchanged. Then by betweenness and Theorem 1,

δP̄ (µS , µB) = σ × δBorda
P̄

(µS , µB) for σ = 1
2α11.

• Case 2. (one singleton) Consider the case in which one singleton is nested between µS and

µB. By construction of µT and µB the singleton is either i or i+ 1. Therefore, two situations

are plausible,

I. i is the singleton nested (see Figure 8).
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. . . i i+ 1 i′ (i+ 1)′ . . .
P̄

. . . i (i+ 1)′ i (i+ 1) . . .

. . . (i+ 1)′ i′ (i+ 1) i . . .

i′
µS µB

Figure 8: The one singleton structure with i as the singleton.

Consider the four agent problem P in Proposition 2, and rename the agents as 2 = i, 4 =

i + 1, 3 = i′ and 1 = (i + 1)′. Let P̂ be an extension of this problem P , by the set of

agents A = N̄ \ {i, i′, (i + 1), (i + 1)′}, and µ̂1 and µ̂2 be the extension of µ1 and µ2 by

the set A, respectively (see Figure 9). By Remark 2,

δP (µ1, µ2) = δ
P̂

(µ̂1, µ̂2). (11)

1 . . . i i+ 1 i′ (i+ 1)′ . . . n′
P̂

1

. . . i (i+ 1)′ i (i+ 1) . . .

. . . (i+ 1)′ i′ (i+ 1) i . . . n′

i′

µ̂1
µ̂2

Figure 9: The four agents problem P of Proposition 2 after adding the set of

agents A = N̄ \ {i, i′, (i+ 1), (i+ 1)′}, as irrelevant newcomers.

Now, consider another problem P ′ shown in Figure 10. Monotonicity implies

δ
P̂

(µ̂1, µ̂2) = δP ′(µ̂
1, µ̂2). (12)

1 . . . i i+ 1 i′ (i+ 1)′ . . . n′
P ′

1

. . . i (i+ 1)′ i (i+ 1) . . .

n′. . . (i+ 1)′ i′ (i+ 1) i . . .

i′

µ̂1
µ̂2

µS µB

Figure 10: The problem P ′.

Note that the structure of the four matchings, µ̂1, µ̂2, µSµ, in problem P ′ corresponds to

the four matchings in Figure 1 (to µ̄, µS̄ , µS , µB respectively). Therefore by Equation 3

in Decomposition Lemma we have

δP ′(µ̂
1, µ̂2) = δP ′(µ

S , µB). (13)
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Putting Equations 11, 12, and 13 together results in δP (µ1, µ2) = δP ′(µ
S , µB). Note that

by monotonicity for problems P ′ and P̄ , we have δP ′(µ
S , µB) = δP̄ (µS , µB). Combining

these two equations yields

δP (µ1, µ2) = δP̄ (µS , µB). (14)

By Proposition 2, we have δP (µ1, µ2) = σ×δBordaP (µ1, µ2) for σ = 1
2α11, which also equals

σ × δBorda
P̄

(µS , µB) for σ = 1
2α11. Plugging the last term back into the left-hand side of

Equation 14 yields δP̄ (µS , µB) = σ × δBorda
P̄

(µS , µB) for σ = 1
2α11.

II. (i+ 1) is the singleton nested (see Figure 11).

. . . i i+ 1 i′ (i+ 1)′ . . .
P̄

. . . (i+ 1)′ i′ (i+ 1) i . . .

. . . i′ (i+ 1)

(i+ 1)′

i (i+ 1) . . . µBµS

Figure 11: The one singleton structure with i+ 1 as the singleton.

Renaming the agents in Proposition 2 as 4 = i, 2 = i + 1, 1 = i′ and 3 = (i + 1)′ and

using a similar argument as above yields δP̄ (µS , µB) = σ × δBorda
P̄

(µS , µB) for σ = 1
2α11.

• Case 3. (two singleton) Consider the case in which two singletons are nested between

µS and µB. By the construction of µT and µB only i and i + 1 can be the singletons (see

Figure 12).

. . . i i+ 1 i′ (i+ 1)′ . . .
P̄

. . . (i+ 1)′ i′ (i+ 1) i . . .

. . . i

i′

i+ 1

(i+ 1)′
i (i+ 1) . . . µBµS

Figure 12: The two singleton structure with both i and i+ 1 as the singleton agents.

Renaming the agents in Proposition 3 as 1 = i, 2 = i + 1, 3 = i′, 4 = (i + 1)′ and using a

similar argument as above, where only i was single, yields δP̄ (µS , µB) = σ × δBorda
P̄

(µS , µB)

for σ = 1
2α11.

Plugging the results of the three cases above into Equation 10 yields:

δP̄ (µT , µB) = σ ×

n
2∑
l=1

δBordaP̄ (µTl , µB) for σ =
1

2
α11. (15)
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As Borda measure satisfies the conditions, and by Decomposition Lemma, the right-hand side of

Equation 15 can be rearranged as:

δP̄ (µT , µB) = σ × δBordaP̄ (µT , µB) for σ =
1

2
α11.

Finally, combining all the three steps for δP̄ (µT , µ̃), δP̄ (µT , µB), and δP̄ (µB, µ) into Equation 9

yields:

δP̄ (µ, µ̃) = σ ×
(
δBordaP̄ (µT , µ̃)− δBordaP̄ (µT , µB)− δBordaP̄ (µB, µ)

)
for σ =

1

2
α11.

By betweenness of scaled Borda measures and symmetry, the right-hand side of the equation

above reduces to σ × δBorda
P̄

(µ, µ̃) and hence δP̄ (µ, µ̃) = σ × δBorda
P̄

(µ, µ̃) for σ = 1
2α11.

Note that by monotonicity for problems P and P̄ , we have δP (µ, µ̃) = δP̄ (µ, µ̃). Also, δBordaP (µ, µ̃) =

δBorda
P̄

(µ, µ̃). Therefore, with respect to the previous equation we have δP (µ, µ̃) = σ × δBordaP (µ, µ̃)

for σ = 1
2α11. �

5 Conclusion

Different mechanisms exhibit various desirable (or undesirable) features. In case a social planner

decides to transform the design of a system by changing the mechanism employed, the question is

how much change this will mean for the entire society. This paper proposes a way to quantify this

difference based on the outputs mechanisms produce, i.e., matchings. We interpret this difference

as the cost of transformation in general. We quantify the cost of transformation by introducing

normative conditions on functions, which are shown to be logically independent. These conditions

mostly address the effect of the transformation on individuals from one matching to another, instead

of merely looking at the number of disjoint matches. We introduce the class of scaled Borda measures

and show this class to be the only one satisfying these conditions on the domain of roommate

markets.

There are multiple ways these measures can be extended. For instance, our framework assumes

no indifference in preferences, i.e., there are no ties. The measures could possibly be extended to

to domains where ties are allowed. In such cases, one may end up with multiple disjoint matchings

in which all agents are indifferent between their partners in these matchings. Then, in terms of

positions these matchings are identical, and one approach is to assign zero value to the distance

between such matchings. This, however, violates the metric condition, in particular the identity
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of indiscernibles. So the metric condition must be modified into a pseudometric14 condition to

accomodate this violation.

Another direction to extend the measures could be differentiating on the relative importance

of the positions. In the proposed framework, we assume the weight across the matching partners

of each agent is the same and hence the difference in being matched to the last two partners at

the bottom of the preferences is the same as that of being matched to the two partners at top of

the preferences. Therefore, one might be looking for measures in which there is a weight on the

position of each agent, similar to that of Kemeny distance as it is characterized in Can (2014). In

Can (2014) It is shown that by milding the betweenness condition one can achieve such a measure.

However in our case, as it is shown in example C.3 the only condition that restricts these weighted

measures is the monotonicity condition. Hence, to define such measures one need to come up with

an alternative or weaker version of the monotonicity condition.

Lastly, one can consider extending these measures to other interesting markets/domains in

matching theory. After all, scaled Borda measures are attempts to answer “how much?” and

depending on the context, the measures can be interpreted as parameters that quantify different

concepts. Next we discuss, in detail, some of these possible applications and interpretations. Al-

though the conditions may need minor modifications for different domains, the measures themselves

are straightforward to implement on each of these domains.

5.1 Applications and Interpretations

Consider cases when a designer needs a refinement from a set of matchings, perhaps induced by

a solution concept for a market. A scaled Borda measure can act as a mechanism to refine this

set. In many two sided markets, the interpretation is very exciting. For instance, the core of the

marriage markets forms a lattice structure with men-optimal and women-optimal matchings as the

two extremes. It is not difficult to see that, within the core, these two matchings are the farthest

pair according to these measures. A mechanism on these markets can pick the matching(s) from

the core with the minimal total distance to all other stable matchings, acting as a tool to find

the “median stable matching(s)”. This mechanism is in fact analogous to the use of the Kemeny

distance15 in Kemeny-Young method16 which finds the median ranking(s) for a given ranking profile.

Furthermore, given any choice among the set of stable matchings, one can immediately measure,

14A pseudometric is a function where all metric conditions are satisfied accept the identity of indiscernibles. Instead

a weaker version is applied, i.e., for all µ, µ̄, if µ = µ̄, then δ(µ, µ̄) = 0.
15Kemeny (1959) proposed and characterized this metric, albeit with a redundant axiom. For a recent characteri-

zation with logically independent conditions, see Can and Storcken (2018).
16This aggregation method, a.k.a the maximum likelihood method, was suggested in Kemeny (1959) and charac-

terized in Young and Levenglick (1978).
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how “close” this outcome is to the men-optimal (or women-optimal) stable matchings, leading to a

fairness analysis. Next, we demonstrate some domain specific use cases of scaled Borda measures.

5.1.1 Marriage markets (a measure of gender bias)

Marriage markets are well studied two-sided one-to-one matching problems. The domain of marriage

markets are known to be a subdomain of the roommate markets, i.e., a marriage market is a

roommate market with gender wherein preferences are such that each man (woman) prefers to

be single rather than matching with other men (women). Our results, therefore, are immediately

applicable to this subdomain of roommate markets. Consider the following marriage market with

three men m1,m2,m3 and three women w1, w2, w3 with the following preferences:

m1 m2 m3

w1

w2

w3

m1

w2

w3

w1

m2

w3

w1

w2

m3

Figure 13: Men’s preferences.

w1 w2 w3

m2

m3

m1

w1

m3

m1

m2

w2

m1

m2

m3

w3

Figure 14: Women’s preferences.

Consider the men-optimal matching µMO in which µMO(m1) = w1, µMO(m2) = w2, and

µMO(m3) = w3. Additionally, let µWO be the women-optimal matching in which µWO(w1) = m2,

µWO(w2) = m3, and µWO(w3) = m1 (see Figure 15).

m1 m2 m3

w1

w2

w3

m1

w2

w3

w1

m2

w3

w1

w2

m3

w1 w2 w3

m2

m3

m1

w1

m3

m1

m2

w2

m1

m2

m3

w3

µMO

µWO

µA

Figure 15: The preferences of men and women together.

In case a policy designer wants to choose a mechanism which assigns a matching, our measure

can be used as a measure of gender bias which compares the distance of the output to men-optimal

and women-optimal matchings. In such cases, note that, with respect to our measure, the matching

µA has the same distance from both µMO and µWO which can be interpreted as a fair matching

with respect to gender bias.
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5.1.2 Object Allocation (a measure of welfare)

Object allocation is a one-sided market. An interesting example of object allocation is house allo-

cation with existing tenants (Abdulkadiroğlu and Sönmez (1999)). In these markets each agent has

an initial endowment and a preference over all endowments. In case our measure is used to compare

the outcome of any individually rational mechanism and the initial endowment, the result can be

interpreted as the social welfare improvement of implementing that mechanism.

Consider the following example. Let N = {1, 2, . . . , 6} be the set of agents and H = {h1, . . . , h6}
be the set of houses. Let the initial endowments σ of the agents be σ(i) = hi for all i ∈ {1, . . . , 6}.
The preference of each agent is shown in Figure 16. It can be verified that after applying the top

trading cycle algorithm the final allocation µTTC will be as follows: µTTC(1) = h1, µ
TTC(2) =

h3, µ
TTC(3) = h4, µ

TTC(4) = h2, µ
TTC(5) = h5 and µTTC(6) = h6.

1 2 3 4 5 6
P

h2 h2 h1 h3 h3 h1

h1 h3 h4 h1 h1 h2

h3 h1 h2 h5 h6 h3

h4 h5 h3 h4 h4 h4

h5 h4 h6 h2 h5 h6

h6 h6 h5 h6 h2 h5

σ

µTTC

Figure 16: Housing allocation problem.

In case a policy designer wants to investigate the social welfare improvement, our measure can

be used in a straight forward manner. In the example above, the measure can compare the distance

between σ and µTTC , which is the social welfare gain from this mechanism.

5.1.3 College admissions (cost of efficiency)

College admissions problem is also a two-sided market, which is typically many-to-one, i.e., multiple

students can match with a college. The following example is from Roth (1982). Let there be three

student i1, i2, i3 and three schools s1, s2, s3 each of which has only one seat. The preferences of the

colleges and students are as follows:
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s1 s2 s3

i1
i3
i2
∅

i2
i1
i3
∅

i2
i1
i3
∅

Figure 17: University’s priority.

i1 i2 i3
s2

s1

s3

∅

s1

s2

s3

∅

s1

s2

s3

∅

Figure 18: Student’s preferences.

Note that the student proposing deferred acceptance mechanism for the associated college admis-

sions problem is as follows µ(i1) = s1, µ(i2) = s2, and µ(i3) = s3. It can be verified, however, that

this matching is student-Pareto-dominated by µ̄ in which µ̄(i1) = s2, µ̄(i2) = s1, and µ̄(i3) = s3.

s1 s2 s3

i1
i3
i2
∅

i2
i1
i3
∅

i2
i1
i3
∅

i1 i2 i3
s2

s1

s3

∅

s1

s2

s3

∅

s1

s2

s3

∅

µ

µ̄

Figure 19: The preference of students and colleges

In case a policy designer wants to transform the student-proposing deferred acceptance mecha-

nism which produces µ into the student-Pareto efficient mechanism which produces µ̄, our proposed

measure can be interpreted as the cost of efficiency.

5.1.4 School choice (cost of stability)

A similar problem to college admissions is introduced in Abdulkadiroglu and Sönmez (2003) with

the following example. There are eight students i1, . . . , i8, and four schools s1, . . . , s4. Schools s1

and s2 have two seats each while s3 and s4 have three seats each. The priorities of the schools and

the preference of the students are as follow:
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s1 s2 s3 s4

i1
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i3
i4
i5
i6
i7
i8
∅

i3
i5
i4
i8
i7
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∅

i5
i3
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i8
i6
i4
∅
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i8
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i4
i2
i3
i5
i1
∅

Figure 20: Universities priorities.

i1 i2 i3 i4 i5 i6 i7 i8
s2
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s3

s4

s1
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s2

s1

s4

s3

s4

s1

s2
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s3

s4
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s4
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s2

s3

s1

s2

s3

s4

s1

s2

s4

s3

Figure 21: Student’s preferences.

Note that the outcome of the Top Trading Cycle mechanism µTTC for the associated problem

is as follows: µTTC(i1) = s2, µTTC(i2) = s1, µTTC(i3) = s3, µTTC(i4) = s3, µTTC(i5) = s1,

µTTC(i6) = s4, µTTC(i7) = s2, and µTTC(i8) = s4. However, it can be verified that µTTC is not

stable. That is, i8 prefers to be at s2, and s2 prefers i8 to both i1 and i7.

It can be verified that the outcome of the Gale Shapley student optimal stable mechanism µGS ,

is as follows: µGS(i1) = s1, µGS(i2) = s1, µGS(i3) = s3, µGS(i4) = s3, µGS(i5) = s3, µGS(i6) = s4,

µGS(i7) = s2, and µGS(i8) = s2.

In order to use our measure, we clone each university based on its quota. That is, we consider

each quota as a separate university with the same priority as the original university. This is shown

in Figure 22.
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∅
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i7
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∅
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∅

i1 i2 i3 i4 i5 i6 i7 i8
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s1

s3

s4

s1

s2
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s3
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s3

s4

s1

s2
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s3

s4
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s1

s2

s3

s1

s2

s3

s4

s1

s2

s4

s3

µGS

µTTC

Figure 22: Cloning the universities priorities.

In case a policy designer wants to transform the top trading cycle mechanism which produces

µTTC into the Gale Shapley student optimal stable mechanism which produces µGS , our proposed

measure can be interpreted as the cost of stability.
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Appendix

A Proofs of Section 4.1

A.1 Proof of Lemma 2

Lemma 2. Consider any N,N ′ ( N and a strictly positive integer x. Consider any one-couple

matching µij ∈M(N), and any P ∈ P(N) such that µij is of length (x, 1) in P . Similarly consider

any one-couple matching µi
′j′ ∈ M(N ′), and any P ′ ∈ P(N ′) such that µi

′j′ is of length (x, 1) in

P ′. Let µI and µI
′

denote the identity matchings in corresponding problems, then

δP (µij , µI) = δP ′(µ
i′j′ , µI

′
).

Proof. Consider an extension P̄ of P and the extension µ̄ij and µ̄I of matchings µij and µI by

the set of agents N ′ \ N , respectively. By Remark 2, δP (µij , µI) = δP̄ (µ̄ij , µ̄I). For simplicity, we

abuse the notation and write P , µij and µI instead of P̄ , µ̄ij and µ̄I , respectively. Also, consider

an extension P̄ ′ of P ′ and the extension µ̄i
′j′ and µ̄I

′
of matchings µi

′j′ and µI
′

by the set of agents

N \ N ′, respectively. By Remark 2, δP ′(µ
i′j′ , µI

′
) = δP̄ ′(µ̄

i′j′ , µ̄I
′
). For simplicity, we abuse the

notation and write P ′, µi
′j′ , and µI

′
instead of P̄ ′, µ̄i

′j′ and µ̄I
′
, respectively. Note that now both

P and P ′ (as well as the matchings) are defined on the same set of agents N̄ = N ′ ∪N .

Let Z = {z1, . . . , zx−1} be the set of other agents nested between j and i in Ri, and Z ′ =

{z′1, . . . , z′x−1} be the set of other agents nested between j′ and i′ in R′i′ . There are two possible

situations; either Z = Z ′ or Z 6= Z ′.

Case 1. Z = Z ′: Consider permutation π = (ii′)(jj′). Applying this permutation on P , and

using anonymity yields δP (µij , µI) = δPπ((µij)π, (µI)π). Since by this permutation, (µij)π = µi
′j′

and (µI)π = µI
′
, then δPπ((µij)π, (µI)π) = δPπ(µi

′j′ , µI
′
). Since, Z = Z ′ and both problems are

defined on the same set of agents monotonicity implies δPπ(µi
′j′ , µI

′
) = δP ′(µ

i′j′ , µI
′
). Therefore,

δP (µij , µI) = δP ′(µ
i′j′ , µI

′
).

Case 2. Z 6= Z ′: In this case we add the same set of irrelevant newcomers to both problems

P and P ′, and map the agents in Z and Z ′ to these newcomers so that the set of agents that are

nested between the two matchings in these two problems become the same, then part I implies the

result. Formally, let A = {a1, . . . , ax−1}, be a set of agents such that N̄ ∩ A = ∅. Next, let P̂ and

P̂ ′ be an extensions of P and P ′ by the set of agents A, respectively. Also, let µ̂ij and µ̂I be the

extensions of µij and µI , and µ̂i
′j′ and µ̂I

′
be the extensions of µi

′j′ and µI
′
, respectively, all by the

same set of agents A. By Remark 2, δP (µij , µI) = δ
P̂

(µ̂ij , µ̂I) and δP ′(µ
i′j′ , µI

′
) = δ

P̂ ′(µ̂
i′j′ , µ̂I

′
).

For simplicity, we abuse the notation and write P , µij , and µI instead of P̂ , µ̂ij and µ̂I , and we
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write P ′, µi
′j′ and µI

′
instead of P̂ ′, µ̂i

′j′ and µ̂I
′
, respectively.

Consider the permutation π = (ztat) for all t ∈ {1, . . . , x − 1}. Applying π on P permutes the

agents that are nested between j and i in Ri to the agents in A. Also, applying the permutation

π′ = (z′tat) for all t ∈ {1, . . . , x − 1} on P ′ permutes the agents nested between j′ and i′ in R′i′ to

the agents in A. In both problems, anonymity implies the distances to be unchanged. As the set

of agents nested between the two matchings both in P and P ′ are now identical a similar argument

to the one in part I implies the result.

�

A.2 Proof of Lemma 3

Lemma 3. Consider any N,N ′ ( N and two strictly positive integers x and y. Consider any one-

couple matching µij ∈ M(N), and any P ∈ P(N) such that µij is of length (x, y) in P . Similarly

consider any one-couple matching µi
′j′ ∈ M(N ′), and any P ′ ∈ P(N ′) such that µi

′j′ is of length

(x, y) in P ′. Let µI and µI
′

denote the identity matchings in corresponding problems, then

δP (µij , µI) = δP ′(µ
i′j′ , µI

′
) = αx1 + αy1 − α11.

Proof. Consider an extension P̄ = (N ∪ {a, b}, R̄) of P and extensions µ̄ij , µ̄I ∈ M(N ∪ {a, b})
of µij , µI ∈ M(N), respectively, by the set of agents A = {a, b}. By Remark 2, δP (µij , µI) =

δP̄ (µ̄ij , µ̄I). For simplicity, we abuse the notation and write P , µij , and µI instead of P̄ , µ̄ij and

µ̄I , respectively (see Figure 23).

. . . i . . . j . . . a b
P

a b

j
i

i j
a a
b b

µij

µI

x-1 y-1

Figure 23: Problem P after adding the two newcomers a and b.

Consider any problem P̂ = (N̂ , R̂), shown in Figure 24, with N̂ = N and R̂ such that

• rank(a, R̂i) = 1 and [µij , µI ]Ri = [µij , µI ]
R̂i

,
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• rank(b, R̂j) = 1 and [µij , µI ]Rj = [µij , µI ]
R̂j

,

• rank(i, R̂a) = 1, rank(b, R̂a) = |N̂ |+ 1, and rank(a, R̂a) = |N̂ |+ 2,

• rank(j, R̂b) = 1, rank(a, R̂b) = |N̂ |+ 1, and rank(b, R̂b) = |N̂ |+ 2.

By monotonicity we have

δP (µij , µI) = δ
P̂

(µij , µI). (16)

Therefore it is sufficient to prove that δ
P̂

(µij , µI) = αx1 + αy1 − α11.

Consider the following two matchings in problem P̂ such that µ ∈M(N̂) with µ(i) = j, µ(a) = b

and µ(t) = t for all other agent t and µT ∈ M(N̂) with µT (i) = a, µT (j) = b and µT (t) = t for all

other agent t.

. . . i . . . j . . . a b
P̂

a b

i ja b

j
i

i j
b a

µT

µ
µij µI

x-1 y-1

Figure 24: Problem P̂ = (N̂ , R̂).

Claim. δ
P̂

(µ, µI) = αx1 + αy1.

Proof of claim. Consider a new problem P̂ π shown in Figure 25. Problem P̂ π is the permuted

problem of P̂ with π = (aj). By this permutation the identity matching remains the same, hence

we write µI instead of (µI)π in P̂ π. By anonymity the following equation holds,

δ
P̂

(µT , µ) = δ
P̂π

((µT )π, µπ). (17)

. . . i . . . j . . . a b
P̂ π

j i b a

a

b

i

j

i j a b

(µT )π

µπ = µT

µI = (µI)π

x-1 y-1

Figure 25: Problem P̂ π after permuting problem P̂ in Figure 24 with π = (aj).
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Consider a new problem P̃ shown in Figure 26. Problem P̃ is almost identical to problem P̂ π

except that the position of the partners of each agent in (µT )π and µπ are swapped. By monotonicity

for P̂ π and P̃ , δ
P̂π

((µT )π, µπ) = δ
P̃

((µT )π, µπ). Plugging this into Equation 17 we have,

δ
P̂

(µT , µ) = δ
P̃

((µT )π, µπ). (18)

. . . i . . . j . . . a b
P̃

a b i j

j
b

i a

i j a b

µπ = µT

(µT )π

µI

x-1 y-1

Figure 26: Problem P̃ , after swapping the positions of µπ and (µT )π in problem P̂ π in Figure 25.

Since µ is between µT and µI in problem P̂ , and (µT )π is between µπ and µI in problem P̃ ,

betweenness yields

δ
P̂

(µT , µI) = δ
P̂

(µT , µ) + δ
P̂

(µ, µI) and, (19)

δ
P̃

(µπ, µI) = δ
P̃

(µπ, (µT )π) + δ
P̃

((µT )π, µI). (20)

Note that by permutation π, µπ = µT hence δ
P̃

(µπ, µI) = δ
P̃

(µT , µI). Considering this and the

monotonicity for problems P̃ and P̂ we have δ
P̃

(µT , µI) = δ
P̂

(µT , µI). Therefore the left hand sides

of Equations 19 and 20 are equal which yields

δ
P̂

(µT , µ) + δ
P̂

(µ, µI) = δ
P̃

(µπ, (µT )π) + δ
P̃

((µT )π, µI).

Combining this with Equation 18 results in δ
P̂

(µ, µI) = δ
P̃

((µT )π, µI). Finally, by Decompo-

sition Lemma and Lemma 2, δ
P̃

((µT )π, µI) = αx1 + αy1. Hence δ
P̂

(µ, µI) = αx1 + αy1, which

concludes the claim. �

By Decomposition Lemma, for matching µ in problem P̂ , we have δ
P̂

(µ, µI) = δ
P̂

(µij , µI) +

δ
P̂

(µab, µI). By the claim proven above, δ
P̂

(µ, µI) = αx1 + αy1, and by Lemma 2, we have

δ
P̂

(µab, µI) = α11. So, δ
P̂

(µij , µI) = αx1 + αy1 − α11, and by Equation 16, δP (µij , µI) = αx1 +

αy1 − α11. Finally, by Lemma 2, the right-hand side of this equation is independent of the set

of agents N ( N . Therefore, for all N ( N , for all problems P ∈ P(N) and for all one-couple

matchings µij of length (x, y) we conclude that,

δP (µij , µI) = αx1 + αy1 − α11.

�
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A.3 Proof of Lemma 4

Lemma 4. Consider any N ( N and a strictly positive integer x. Consider any one-couple

matching µij ∈ M(N), and any problem P ∈ P(N) such that µij is of length (x, x) in P . Let µI

denote the identity matching, then

δP (µij , µI) = x× α11.

Proof. By Lemma 3 the distance between the identity matching and any one-couple matching of

length (x, y) is the same across all problems in the domain. Therefore, it suffices to prove that the

lemma holds for some problem P̄ , and some one-couple matching of length (x, x) in P̄ . Consider

the following specific problem P̄ = (N̄ , R̄) with N̄ = {1, 2, . . . , 2x} shown in Figure 27. Let µ̄x,x+1

be the one-couple matching of length (x, x) in P̄ . Note that the structure of matchings µ̄x, . . . , µ̄1

in problem P̄ is such that:

• µ̄x(1) = 2x, µ̄x(2) = 2x− 1, so on and so forth,

• for all k ∈ {2, . . . , x}, and for all i ∈ N̄ , µ̄k−1(i) = µ̄k((i+ 2) mod (2x)), e.g., µ̄x−1(2x− 1) =

µ̄x(1) = 2x,

• for all k ∈ {1, . . . , x}, µ̄k and µ̄k−1 are adjacent.

Next we show that δP̄ (µ̄x,x+1, µ̄I) = x × α11 which in returns shows that αxx = x × α11. To ease

the notation in this problem we denote the identity matching by µ̄0.

1 2 3 . . . x x+1 . . . 2x− 1 2x
P̄...

...
...

...
...

...
...

...
...

2x 2x-1 2x-2 · · · x+1 x · · · 2 1

2x-2 2x-3 2x-4 · · · · · · · · · · · · 2x 2x-1

2x-4 2x-5 2x-6 · · · · · · · · · · · · 2x-2 2x-3
...

...
...

...
...

...
...

...
...

2 1 2x · · · · · · · · · · · · 4 3

1 2 3 · · · · · · · · · · · · 2x-1 2x
...

...
...

...
...

...
...

...
...

µ̄x

µ̄x,x+1

µ̄1

µ̄x−2

µ̄x−1

...

µ̄I = µ̄0

Figure 27: Problem P̄ = (N̄ , R̄).

Claim. δP̄ (µ̄t, µ̄t+1) = |N̄ |
2 α11 for all t ∈ {0, . . . , x− 1}

Proof of claim. Note that by construction, the two matchings µ̄0 and µ̄1 in P̄ are disjoint. By

standardization, for µ̄0, µ̄1, there exists a problem P ′ = (N̄ , R′) ∈ P(N̄) such that δP ′(µ̄
0, µ̄1) =
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κ(N̄) and is minimal. Note that for all i ∈ N̄ , as µ̄0, µ̄1 have the minimal possible intervals, we have

[µ̄0, µ̄1]R̄i ⊆ [µ̄0, µ̄1]R′i . Therefore monotonicity implies that δP̄ (µ̄0, µ̄1) = κ(N̄). By Decomposition

Lemma, the distance between µ̄0 and µ̄1 can be decomposed as the sum of |N̄ |2 one-couple matchings,

each of the same length (1, 1). Hence, δP̄ (µ̄0, µ̄1) = |N̄ |
2 α11. Together with the previous equation

we have κ(N̄) = |N̄ |
2 α11. Note that, by monotonicity the distance between µ̄t, µ̄t+1 for all t ∈

{1, 2, . . . , x − 1}, is also minimal, and by standardization this distance also equals κ(N̄). Hence,

δP̄ (µ̄t, µ̄t+1) = |N̄ |
2 α11 for all t ∈ {0, . . . , x− 1} which completes the proof of the claim. �

Next, we complete the proof of the lemma by showing δP̄ (µ̄x,x+1, µ̄I) = x × α11. Note that by

construction of P̄ , the matchings [µ̄x − µ̄x+1 − · · · − µ̄1 − µ̄0] are on a line. Therefore, betweenness

-together with the claim above- yields

δP̄ (µ̄x, µ̄0) =

x−1∑
t=0

δP̄ (µ̄t, µ̄t+1) = x× |N̄ |
2
α11. (21)

By Decomposition Lemma, the distance between µ̄x and µ̄0 can be decomposed as the sum of
|N̄ |
2 one-couple matchings, each of the same length (x, x). Hence δP̄ (µ̄x, µ̄0) = |N̄ |

2 αxx. Together

with Equation 21, |N̄ |2 αxx = x × |N̄ |2 α11 which results in αxx = x × α11. As αxx is the same across

all problems in the domain Lemma 3, this completes the proof of the lemma.

�

B Proofs of Section 4.2

B.1 Proof of Proposition 2

Proposition 2. Consider a problem P over four agents with the preference profile and the match-

ings shown in Figure 4. Note that one singleton is nested between µ1 and µ2 and another is nested

between µ2 and µ3. In such specific cases,

1. δP (µ1, µ2) = σ × δBordaP (µ1, µ2) for σ = 1
2α11,

2. δP (µ2, µ3) = σ × δBordaP (µ2, µ3) for σ = 1
2α11.

Proof. First we show δP (µ1, µ2) = δP (µ2, µ3), and then using this we prove the proposition. Con-

sider the permutation π = (23). Applying this permutation on P results in the problem P π shown

on the right-hand side of Figure 28.
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1 2 3 4
P

1 1 4 4

2 2 2 3

4 3 3 1

3 4 1 2

µ1

µ2

µ3

1 2 3 4
P π

1 4 1 4

3 3 3 2

4 2 2 1

2 1 4 3

µ3 = (µ1)π

µ2 = (µ2)π

µ1 = (µ3)π

Figure 28: The original problem P in Proposition 2 (on the left) and the permuted problem P π (on

the right) after permuting with π = (23).

Note that by anonymity we have, δP (µ2, µ1) = δPπ((µ2)π, (µ1)π). Furthermore, under the

permutation π, (µ1)π = µ3 and (µ2)π = µ2, which implies δPπ((µ2)π, (µ1)π) = δPπ(µ2, µ3). Note

that by monotonicity for two problems P and P π, we have δPπ(µ2, µ3) = δP (µ2, µ3). Combining

these equations and the fact that δ is a symmetric function, proves that δP (µ1, µ2) = δP (µ2, µ3).

1. Proving δP (µ1, µ2) = σ × δBordaP (µ1, µ2) for σ = 1
2α11. Let P̄ , µ̄1, µ̄2, and µ̄3 be extensions

of P, µ1, µ2, and µ3, respectively, by the set of agents A = {1′, 2′, 3′, 4′} (see Figure 29). By

Remark 2, δP (µ1, µ2) = δP̄ (µ̄1, µ̄2), δP (µ2, µ3) = δP̄ (µ̄2, µ̄3), and δP (µ1, µ3) = δP̄ (µ̄1, µ̄3).

For simplicity, we abuse the notation and write P, µ1, µ2, and µ3 instead of P̄ , µ̄1, µ̄2 and µ̄3,

respectively.

1 2 3 4 1′ 2′ 3′ 4′
P

1 1 4 4 1′ 2′ 3′ 4′

2 2 2 3

4 3 3 1

3 4 1 2

1′ 1′ 1′ 1′

2′ 2′ 2′ 2′

3′ 3′ 3′ 3′

4′ 4′ 4′ 4′

µ3

µ2
µ1

Figure 29: An extension of the problem P in Figure 4 by the set of agents A = {1′, 2′, 3′, 4′}.

Consider also another problem P̂ shown in Figure 30.
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1 2 3 4 1′ 2′ 3′ 4′
P̂

1′ 2′ 3′ 4′

1 1 4 4

2 2 2 3

4 3 3 1 1 2 3 4

3 4 1 2 1′ 2′ 3′ 4′
...

...
...

...
...

...
...

...
µ3

µ4

µ2
µ1

Figure 30: Problem P̂ .

Note that by monotonicity for two problems P and P̂ we have δP (µ1, µ2) = δ
P̂

(µ1, µ2), and

δP (µ2, µ3) = δ
P̂

(µ2, µ3). Therefore, using the first part of the proposition, δ
P̂

(µ1, µ2) =

δ
P̂

(µ2, µ3). As in problem P̂ , [µ4 − µ1 − µ2 − µ3] are on a line, by betweenness δ
P̂

(µ4, µ3) =

δ
P̂

(µ4, µ1) + δ
P̂

(µ1, µ2) + δ
P̂

(µ2, µ3). Combining this with the previous equation implies

δ
P̂

(µ4, µ3) = δ
P̂

(µ4, µ1) + 2δ
P̂

(µ1, µ2)

⇒ δ
P̂

(µ1, µ2) =
1

2
(δ
P̂

(µ4, µ3)− δ
P̂

(µ4, µ1)) (22)

Next we show that the right hand side of Equation 22 equals σ× δBorda
P̂

(µ1, µ2) for σ = 1
2α11.

We do this by proving two claims for each of the terms on the right-hand side of Equation 22.

Claim 1. δ
P̂

(µ4, µ3) = σ × δBorda
P̂

(µ4, µ3) for σ = 1
2α11.

Proof of claim 1. As in P̂ , the identity matching is between µ4 and µ3, betweenness implies

δ
P̂

(µ4, µ3) = δ
P̂

(µ4, µI) + δ
P̂

(µI , µ3). Using Theorem 1, δ
P̂

(µ4, µI) = σ × δBorda
P̂

(µ4, µI) for

σ = 1
2α11 and δ

P̂
(µI , µ3) = σ × δBorda

P̂
(µI , µ3) for σ = 1

2α11. With respect to this, and as

δBorda satisfies betweenness, we have δ
P̂

(µ4, µ3) = σ × δBorda
P̂

(µ4, µ3) where σ = 1
2α11. �

Claim 2. δ
P̂

(µ4, µ1) = σ × δBorda
P̂

(µ4, µ1) for σ = 1
2α11.

Proof of claim 2. To show this, consider the problem P̃ shown in Figure 31. Note that, by

monotonicity for two problems P̂ and P̃ we have δ
P̂

(µ4, µ1) = δ
P̃

(µ4, µ1), and δBorda
P̂

(µ4, µ1) =

δBorda
P̃

(µ4, µ1). Hence it is sufficient to show δ
P̃

(µ4, µ1) = σ × δBorda
P̃

(µ4, µ1) for σ = 1
2α11.

To proceed, we show that δ
P̃

(µ4, µ1) = δ
P̃

(µ1, µ5). Applying permutation π = (12)(34), on P̃

results in problem P̃ π which is shown in Figure 32.
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1 2 3 4 1′ 2′ 3′ 4′
P̃...

...
...

...
...

...
...

...
1′ 2′ 3′ 4′ 1 2 3 4

1 1 4 4 1′ 2′ 3′ 4′

2 2 3 3 2 1 4 3

2′ 1′ 4′ 3′
...

...
...

...
...

...
...

...

µ4

µ5

µ1

Figure 31: Problem P̃ .

1 2 3 4 1′ 2′ 3′ 4′
P̃ π...

...
...

...
...

...
...

...
2′ 1′ 4′ 3′ 2 1 4 3

2 2 3 3 1′ 2′ 3′ 4′

1 1 4 4 1 2 3 4

1′ 2′ 3′ 4′
...

...
...

...
...

...
...

...

(µ4)π = µ5

(µ5)π = µ4

(µ1)π = µ1

Figure 32: Problem P̃ π after permuting P̃ in Figure 33 with π = (12)(34).

Note that by anonymity we have, δ
P̃

(µ1, µ4) = δ
P̃π

((µ1)π, (µ4)π). Furthermore, under the

permutation π, (µ1)π = µ1 and (µ4)π = µ5, which implies δ
P̃π

((µ1)π, (µ4)π) = δ
P̃π

(µ1, µ5).

Note that by monotonicity for two problems P̃ and P̃ π we have δ
P̃π

(µ1, µ5) = δ
P̃

(µ1, µ5),

which shows δ
P̃

(µ1, µ4) = δ
P̃

(µ1, µ5). Considering this and as in problem P̃ matching µ1 is

between µ4 and µ5, we have

δ
P̃

(µ4, µ1) = δ
P̃

(µ1, µ5) =
δ
P̃

(µ4, µ5)

2
. (23)

On the other hand, betweenness of µI in problem P̃ yields δ
P̃

(µ4, µ5) = δ
P̃

(µ4, µI)+δ
P̃

(µI , µ5).

By Theorem 1, δ
P̃

(µ4, µI) = σ×δBorda
P̃

(µ4, µI) for σ = 1
2α11 and δ

P̃
(µI , µ5) = σ×δBorda

P̃
(µI , µ5)

for σ = 1
2α11. Therefore, δ

P̃
(µ4, µ5) = 1

2α11(δBorda
P̃

(µ4, µI) + δBorda
P̃

(µI , µ5)). It can be veri-

fied that δBorda
P̃

(µ4, µI) + δBorda
P̃

(µI , µ5) = 2δBorda
P̃

(µ4, µ1), which with the previous equation

implies δ
P̃

(µ4, µ5) = α11δ
Borda
P̃

(µ4, µ1). Plugging this into Equation 23 results in δ
P̃

(µ4, µ1) =
1
2α11δ

Borda
P̃

(µ4, µ1). Note that by monotonicity for two problems P̂ and P̃ we have δ
P̂

(µ4, µ1) =

δ
P̃

(µ4, µ1), and δBorda
P̂

(µ4, µ1) = δBorda
P̃

(µ4, µ1). Hence δ
P̂

(µ4, µ1) = σ × δBorda
P̂

(µ4, µ1) for

σ = 1
2α11, which completes the proof of the claim. �
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Having proven the claims, we plug these back into Equation 22 and,

δ
P̂

(µ1, µ2) =
1

2

(1

2
α11δ

Borda
P̂

(µ4, µ3)− 1

2
α11δ

Bordaδ
P̂

(µ4, µ1)
)

=
1

4
α11

(
δBorda
P̂

(µ4, µ3)− δBordaδ
P̂

(µ4, µ1)
)

=
1

4
α11

(
δBorda
P̂

(µ1, µ3)
)

=
1

4
α11

(
2δBorda
P̂

(µ1, µ2)
)

=
1

2
α11

(
δBorda
P̂

(µ1, µ2)
)

where the third and the fourth equations are due to betweenness of δBorda. Finally, by

monotonicity for two problems P and P̂ we have δP (µ1, µ2) = δ
P̂

(µ1, µ2) and δBordaP (µ1, µ2) =

δBorda
P̂

(µ1, µ2). Therefore, δP (µ1, µ2) = σ × δBordaP (µ1, µ2) for σ = 1
2α11, which completes the

proof of the first part of the proposition.

2. Proving δP (µ2, µ3) = σ × δBordaP (µ2, µ3) for σ = 1
2α11. As we proved δP (µ1, µ2) = δP (µ2, µ3),

and by the first part of this proposition and the fact that δBordaP (µ1, µ2) = δBordaP (µ2, µ3), it

can be easily concluded.

�

B.2 Proof of Proposition 3

Proposition 3. Consider a problem P over four agents with the preference profile and the match-

ings shown in Figure 5. Note that two singletons are nested between µ1 and µ2 and another two

are nested between µ2 and µ3. In such specific cases,

1. δP (µ2, µ3) = σ × δBordaP (µ2, µ3) for σ = 1
2α11,

2. δP (µ1, µ2) = σ × δBordaP (µ1, µ2) for σ = 1
2α11.

Proof. Consider another problem P̄ shown on the right-hand side of Figure 33. Note that by

monotonicity for two problems P and P̄ we have δP (µ2, µ3) = δP̄ (µ2, µ3) and δBordaP (µ2, µ3) =

δBorda
P̄

(µ2, µ3). Next we show that for problem P̄ , δP̄ (µ3, µ2) = σ × δBorda
P̄

(µ3, µ2) for σ = 1
2α11.
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1 2 3 4
P

4 3 2 1

1 2 1 2

3 4 3 4

2 1 4 3

µ1

µ2

µ3

1 2 3 4
P̄

4 3 2 1

1 2 4 3

2 1 3 4

3 4 1 2

µ1

µ3

µ2

Figure 33: The original problem P of Proposition 3 (on the left) and problem P̄ (on the right) after

swapping the positions of µ2 and µ3 in problem P .

Claim. δP̄ (µ3, µ2) = σ × δBorda
P̄

(µ3, µ2) for σ = 1
2α11.

Proof of claim. Consider the permutation π = (1324). Applying this permutation on P̄ results in

the problem P̄ π, which is shown in Figure 34.

1 2 3 4
P̄ π

3 4 1 2

2 1 3 4

1 2 4 3

4 3 2 1

µ2 = (µ1)π

µ3 = (µ3)π

µ1 = (µ2)π

Figure 34: Permuted problem P̄ π after permuting problem P̄ of Figure 33 with π = (1324).

Note that by anonymity we have, δP̄ (µ1, µ3) = δP̄π((µ1)π, (µ3)π). Furthermore, under the

permutation π, (µ1)π = µ2 and (µ3)π = µ3, which implies δP̄π((µ1)π, (µ3)π) = δP̄π(µ2, µ3). Note

that by monotonicity for two problems P̄ and P̄ π, we have δP̄π(µ2, µ3) = δP̄ (µ2, µ3). Combining

these equations and the fact that δ is a symmetric function proves that δP̄ (µ1, µ3) = δP̄ (µ3, µ2). As

in P̄ , µ3 is between µ1 and µ2, betweenness implies δP̄ (µ1, µ2) = δP̄ (µ1, µ3) + δP̄ (µ3, µ2), this with

the previous equation implies

δP̄ (µ3, µ2) =
δP̄ (µ1,µ2)

2
(24)

Now, as in problem P̄ the identity matching is between µ1 and µ2, betweenness yields δP̄ (µ1, µ2) =

δP̄ (µ1, µI)+δP̄ (µI , µ2). By Theorem 1, δP̄ (µ1, µI) = σ×δBorda
P̄

(µ1, µI) for σ = 1
2α11 and δP̄ (µI , µ2) =

σ × δBorda
P̄

(µI , µ2) for σ = 1
2α11. Therefore,

δP̄ (µ1, µ2) = σ
(
δBordaP̄ (µ1, µI) + δBordaP̄ (µI , µ2)

)
for σ =

1

2
α11. (25)

It can be verified that δBorda
P̄

(µ1, µI) + δBorda
P̄

(µI , µ2) = δBorda
P̄

(µ1, µ3) + δBorda
P̄

(µ3, µ2), and that

δBorda
P̄

(µ1, µ3) = δBorda
P̄

(µ3, µ2). Replacing this into Equation 25 implies δP̄ (µ1, µ2) = 2σ×δBorda
P̄

(µ3, µ2)

37



for σ = 1
2α11. Plugging this into Equation 24 yields δP̄ (µ3, µ2) = σ × δBorda

P̄
(µ3, µ2) for σ = 1

2α11.

This concludes the claim. �

1. Proving that δP (µ2, µ3) = σ× δBordaP (µ2, µ3) for σ = 1
2α11. Note that by monotonicity for two

problems P and P̄ we have δP (µ2, µ3) = δP̄ (µ2, µ3). Replacing the latter using the above claim

we have δP (µ2, µ3) = σ × δBorda
P̄

(µ2, µ3) for σ = 1
2α11. As δBordaP (µ2, µ3) = δBorda

P̄
(µ2, µ3),

we have δP (µ2, µ3) = σ × δBordaP (µ2, µ3) for σ = 1
2α11, which concludes the first part of the

proposition.

2. Proving that δP (µ1, µ2) = σ × δBordaP (µ1, µ2) for σ = 1
2α11. As in problem P the identity

matching is between µ1 and µ3, betweenness implies δP (µ1, µ3) = δP (µ1, µI) + δP (µI , µ3).

Using Theorem 1, δP (µ1, µ3) = σ × δBordaP (µ1, µ3) for σ = 1
2α11. As in problem P , µ2 is

between µ1 and µ3, betweenness implies δP (µ1, µ3) = δP (µ1, µ2) + δP (µ2, µ3). Together with

the previous equation, we have σ × δBordaP (µ1, µ3) = δP (µ1, µ2) + δP (µ2, µ3) for σ = 1
2α11.

Replacing δP (µ2, µ3) with the first part of the proposition results in σ × δBordaP (µ1, µ3) =

δP (µ1, µ2) + σ × δBordaP (µ2, µ3) for σ = 1
2α11. Rearranging, will result in δP (µ1, µ2) = σ ×

δBordaP (µ1, µ3) − σ × δBordaP (µ2, µ3) for σ = 1
2α11 which by betweenness of Borda measure

equals δP (µ1, µ2) = σ × δBordaP (µ1, µ2) for σ = 1
2α11. This concludes the second part of the

proposition.

�

C Logical Independence of the Conditions

In this section we discuss the logical independence of the conditions used in the characterization,

by presenting different measures which satisfy every condition except one of them.

C.1 Betweenness

For any N and for any P ∈ P(N) the following rule satisfies everything except betweenness.

δBP (µ, µ̄) = |{i ∈ N : µ(i) 6= µ̄(i)}|

The following example shows δB violates the betweenness condition.
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1 2 3 4
P

1 2 3 4

2 1 4 3

4 3 2 1

3 4 1 2

µ

µ̄

¯̄µ

It is easy to verify that δBP (µ, µ̄) = 2, δBP (µ̄, ¯̄µ) = 4 and δBP (µ, ¯̄µ) = 4, however according

to betweenness we must have δBP (µ, ¯̄µ) = 6. It is easy to see that this rule satisfies anonymity,

monotonicity, independence of irrelevant newcomers and standardization.

C.2 Anonymity

Let the set of potential agents N equal to natural numbers that is N, then for any N and for any

P ∈ P(N) the following rule satisfies everything except anonymity.

δAP (µ, µ̄) = 2×
∑
i∈O
|µ, µ̄|Ri +

∑
i∈E
|µ, µ̄|Ri

where O denotes the set of odd numbered agents and E denotes the set of even numbered agents.

The following example shows δA violates the anonymity condition.

1 2 3 4
P

4 3 2 1

1 2 3 4

3 4 1 2

2 1 4 3

µ

µ̄

2 1 4 3
P π

3 4 1 2

2 1 4 3

4 3 2 1

1 2 3 4

µπ

µ̄π

It is easy to check that δAP (µ, µ̄) = 2(1+1)+(2+2) = 8, however after applying the permutation

π = (12)(34), we have δAPπ(µ, µ̄) = 2(2 + 2) + (1 + 1) = 10. It is easy to see that this rule satisfies

betweenness, monotonicity, independence of irrelevant newcomers and standardization.

C.3 Monotonicity

For any N and for any P ∈ P(N) the following rule satisfies everything except monotonicity.

δMP (µ, µ̄) =
∑
i∈N

∣∣∣2rank(µ(i),Ri) − 2rank(µ̄(i),Ri)
∣∣∣

The following example shows δA violates the monotonicity condition.
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1 2 3
P

1 3 2

2 1 3

3 2 1

µ

µ̄

1 2 3
P̂

2 1 3

1 2 1

3 2 1

µ

µ̄

It is obvious that [µ, µ̄]Ri ⊆ [µ, µ̄]
R̂i

, for i ∈ {1, 2, 3}, however δMP (µ, µ̄) = 3 × |22 − 23| = 12 and

δM
P̂

(µ, µ̄) = |21 − 23|+ |21 − 22|+ |21 − 22| = 10 which violates monotonicity.

To see that δM satisfies betweenness, let P be a problem and µ̄ be such that it is between µ and

¯̄µ. We have,

δMP (µ, µ̄) + δMP (µ̄, ¯̄µ) =
∑
i∈N

∣∣∣2rank(µ(i),Ri) − 2rank(µ̄(i),Ri)
∣∣∣+
∑
i∈N

∣∣∣2rank(µ̄(i),Ri) − 2rank(¯̄µ(i),Ri)
∣∣∣

=
∑
i∈N

(∣∣∣2rank(µ(i),Ri) − 2rank(µ̄(i),Ri)
∣∣∣+
∣∣∣2rank(µ̄(i),Ri) − 2rank(¯̄µ(i),Ri)

∣∣∣)

=
∑
i∈N

(∣∣∣2rank(µ(i),Ri) − 2rank(¯̄µ(i),Ri)
∣∣∣)

= δMP (µ, ¯̄µ)

Note that the third equality is due to the fact that for each i ∈ N we have either µ(i)Riµ̄(i)

or µ̄(i)Riµ(i). Therefore, rank(µ(i), Ri) ≤ rank(µ̄(i), Ri) ≤ rank(¯̄µ(i), Ri) or rank(µ(i), Ri) ≥
rank(µ̄(i), Ri) ≥ rank(¯̄µ(i), Ri). Hence, in the second equation both absolute values have the same

sign which allows to conclude the third equation. It is easy to see that this rule satisfies anonymity,

independence of irrelevant newcomers and standardization.

C.4 Independence of irrelevant newcomers

To show that the independence of irrelevant newcomers is logically independent from other condi-

tions, we first define the set of matchings that are between two given matchings.

The following rule satisfies everything except independence of irrelevant newcomers.

δIP (µ, µ̄) =

{
3, if |N | = 3 and µ, µ̄ are disjoint and there is no matching between µ, µ̄

δBordaP (µ, µ̄), otherwise

The following example shows δI violates the independence of irrelevant newcomers condition.

1 2 3
P

3 2 1

2 3 3

1 1 2

µ

µ̄
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As |N | = 3, and µ and µ̄ are disjoint and there is no other matching between them we have

δIP (µ, µ̄) = 3. Now assume that an irrelevant newcomer joins and hence |N | = 4, which results in

δIP (µ, µ̄) = δBorda
P (µ, µ̄) = 4. It is easy to verify that the rule satisfies anonymity, monotonicity,

betweenness and standardization.

C.5 Standardization

Let N be any set of agents and P ∈ P(N). First we define the following sets for any two matchings

µ, µ̄ ∈M(N). Let Γ be the set of agents such that they are single in only one of the matchings, that

is Γ(µ, µ̄) = {i ∈ N | [µ(i) = i or µ̄(i) = i] and [µ(i) 6= µ̄(i)]}. Also let Ω be the set of agents that

are single in the strict interval between µ and µ̄. Formally, Ω(µ, µ̄) = {i ∈ N | i ∈ [µ, µ̄]Ri and i 6=
µ(i) and i 6= µ̄(i)}. Consider the following rule

δSP (µ, µ̄) = δBordaP (µ, µ̄)− 1

2
|Γ(µ, µ̄)| − |Ω(µ, µ̄)|.

To show that δS violates standardization, let N = {1, 2, 3, 4} and consider the matchings µ =

{(1, 4), (3, 2)}, µ̄ = {(1, 2), (3, 4)}. By the above measure min
P∈P(N)

δSP (µ, µ̄) = 4 and min
P∈P(N)

δSP (µ, µI) =

2. Hence, standardization fails.

To show that δS satisfies betweenness, let µ, µ̄, ¯̄µ ∈ M(N) be such that µ̄ is between µ and ¯̄µ.

Let s̄ be the number of agents that are single in µ̄ but not in µ or ¯̄µ. Then the following equation

holds

|Ω(µ, ¯̄µ)| = s̄+ |Ω(µ, µ̄)|+ |Ω(µ̄, ¯̄µ)| (26)

That is the number of agents that are single in the strict interval of µ and ¯̄µ equals to the number

of agents that are single in the strict interval of µ and µ̄ plus the number of agents that are single in

the strict interval of µ̄ and ¯̄µ plus those agents that are only single in µ̄. Also it is straight forward

to see that

|Γ(µ, µ̄)|+ |Γ(µ̄, ¯̄µ)| = |Γ(µ, ¯̄µ)|+ 2s̄ (27)
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We have

δSP (µ, µ̄) + δSP (µ̄, ¯̄µ)

= δBorda
P (µ, µ̄)− 1

2
|Γ(µ, µ̄)| − |Ω(µ, µ̄)|+ δBorda

P (µ̄, ¯̄µ)− 1

2
|Γ(µ̄, ¯̄µ)| − |Ω(µ̄, ¯̄µ)|

= δBorda
P (µ, ¯̄µ)− 1

2
|Γ(µ, µ̄)| − 1

2
|Γ(µ̄, ¯̄µ)| − |Ω(µ, µ̄)| − |Ω(µ̄, ¯̄µ)|

by
====
(22)

δBorda
P (µ, ¯̄µ)− 1

2
|Γ(µ, ¯̄µ)| − s̄− |Ω(µ, µ̄)| − |Ω(µ̄, ¯̄µ)|

by
====
(21)

δBorda
P (µ, ¯̄µ)− 1

2
|Γ(µ, ¯̄µ)| − s̄− |Ω(µ, ¯̄µ)|+ s̄

= δBorda
P (µ, ¯̄µ)− 1

2
|Γ(µ, ¯̄µ)| − |Ω(µ, ¯̄µ)|

= δSP (µ, ¯̄µ)

where the second equation is holds as δBorda satisfies betweenness. It is easy to see that δS satisfies

anonymity, monotonicity and independence of irrelevant newcomers.
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