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The Terminator of Social Welfare?

The Economic Consequences of Algorithmic Discrimination

Kevin Bauer1, Nicolas Pfeu�er,2 Benjamin M. Abdel-Karim,2

Oliver Hinz,2 Michael Kosfeld,3

Abstract

Using experimental data from a comprehensive field study, we explore the causal e�ects

of algorithmic discrimination on economic e�ciency and social welfare. We harness

economic, game-theoretic, and state-of-the-art machine learning concepts allowing us

to overcome the central challenge of missing counterfactuals, which generally impedes

assessing economic downstream consequences of algorithmic discrimination. This way,

we are able to precisely quantify downstream e�ciency and welfare ramifications,

which provides us a unique opportunity to assess whether the introduction of an

AI system is actually desirable. Our results highlight that AI systems’ capabilities

in enhancing welfare critically depends on the degree of inherent algorithmic biases.

While an unbiased system in our setting outperforms humans and creates substantial

welfare gains, the positive impact steadily decreases and ultimately reverses the more

biased an AI system becomes. We show that this relation is particularly concerning

in selective-labels environments, i.e., settings where outcomes are only observed if

decision-makers take a particular action so that the data is selectively labeled, because

commonly used technical performance metrics like the precision measure are prone to

be deceptive. Finally, our results depict that continued learning, by creating feedback

loops, can remedy algorithmic discrimination and associated negative e�ects over time.
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Introduction

The field of Artificial Intelligence (AI), especially in the area of machine learning (ML),

has seen dramatic progress in the last decade (LeCun et al., 2015). Today, the use of AI

systems to augment human decision-making, or even replace the human decision-maker

at all, has become an integral part of daily work. At its core, the majority of current

systems comprises ML algorithms that revolve around learning representations. This

is done by deriving flexible mathematical functions from training data that comprises

examples of input-output pairs. In that sense, ML methods can be interpreted as a

very powerful tool for data-driven model selection (Domingos, 2012). Thereby models

are intended to generate accurate predictions about a variable of interest (label) using

available data (features) not included in the training data (Mullainathan & Spiess, 2017).

Generated predictions can then be used to inform decision-making under uncertainty and

environments of asymmetric information (Agrawal et al., 2019).

Against the background that their predictions are faster, cheaper, (most of the time)

more reliable and scalable than human ones, AI technologies have found their way into

businesses in virtually all areas of industry (McAfee et al., 2012). In the financial sec-

tor, where credit card fraud is a profound problem creating substantial economic harm

(Nilson, 2016), credit card providers use ML models to predict the legitimacy of a transac-

tion using its characteristics and data of previous transactions. Based on the prediction,

an information system subsequently permits or rejects the transaction (see for example

Bhattacharyya et al., 2011; Adewumi & Akinyelu, 2017).

Relatedly, there is increasing use of ML algorithms in the banking sector, where AI

systems enable the accurate detection and management of risks (Leo et al., 2019). On an

individual level, for instance, ML algorithms make use of historic customer data to predict

applicants’ risk of credit default, classify them as good or bad, and ultimately decide about

granting a credit (Wang et al., 2015).

AI applications also frequently augment or automate hiring and promotion decisions in

organizations by identifying individuals who are most capable of filling specific vacancies
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(Ho�man et al., 2018). In this context, algorithms use available data, such as people’s

personal information, to produce predictions about their future performance and job fit,

for both, new applicants or current employees. By informing central HR decisions with

accurate individual-level predictions, AI systems promise increases in organizations’ labor

productivity as candidates are more likely to be matched with suitable jobs.

Other examples of AI systems augmenting or automating human decision making

include algorithmic trading (Hendershott et al., 2011; Chaboud et al., 2014), predictive

policing (Ensign et al., 2017), bail decisions (Kleinberg, Lakkaraju, et al., 2018), medical

diagnosis (Esteva et al., 2019), and even online dating (Hitsch et al., 2010). Taken together

these examples illustrate the broad adoption of and reliance on algorithmic decision making

in business practice.

While all these instances foreshadow that AI systems may substantially enhance eco-

nomic e�ciency and social welfare, there is also the risk that algorithmic decision making

may unintentionally and unexpectedly shape societal outcomes for the worse (for a com-

prehensive discussion see Rahwan et al., 2019). There already exists ample empirical

evidence showing how the broad use of algorithms can ine�ciently impose less favorable

treatment to already disadvantaged groups creating societal tensions and welfare losses

(Sweeney, 2013; Ensign et al., 2017; Obermeyer et al., 2019; Lambrecht & Tucker, 2019).

When deciding upon the deployment of AI systems to augment or automate human de-

cisions, we need to consider the entire range of complex consequences, both positive and

negative ones and balance them. It is therefore crucial to further our understanding of

how the use of AI systems scales into society-wide consequences.

With the paper at hand, we intend to contribute to this necessity. Specifically, using

a controlled experimental setting we test whether letting an AI system make decisions

in a strategic setting under asymmetric information leads to better individual and social

outcomes compared to a human benchmark. We are mainly interested in identifying how

inherent algorithmic biases shape these outcomes. Therefore, we vary the degree of bias

the AI system exhibits against women and measure corresponding e�ciency and welfare

3
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changes. The central challenge when it comes to evaluating economic ramifications of

using AI systems lies mainly in assessing whether the AI system’s decisions are better

than the alternative, i.e., whether they outperform those taken by humans. One of the

main problems is that one virtually never observes the consequences of an alternative

decision that had not been made, i.e., there is a lack of counterfactual observations. As

a consequence, it is almost impossible to assess the welfare ramifications of letting an AI

system decide instead of a human when they opt for di�erent choices. For instance, if

a human decision-maker chose not to hire an applicant while a corresponding AI system

would have done so, it is not possible to measure whether the algorithmic decision would

have been better simply because there is no data on the applicant’s performance had he

been hired.

In our study, we overcome the problem of missing counterfactuals by making use of

experimental data that we collected in a controlled and incentivized field study. Partici-

pants in our study answered a broad set of survey items on demographics, socio-economic

background, cognitive abilities, and personality traits. Most important, participants also

engaged in an incentivized sequential prisoners’ dilemma, an experimental and game-

theoretic paradigm mimicking the fundamental structure of many real-life situations where

people make strategic decisions under uncertainty due to asymmetric information. Exam-

ples include employer-employee relations (Akerlof, 1982), principal-agent exchanges (Fehr

et al., 1997), or market transactions (Fehr et al., 1993; Brown et al., 2004). The basic

structure of the experimental game is as follows. There are two players - a trustor and

a trustee. Both are initially endowed with 10 monetary units. First, the trustor decides

whether or not to transfer his endowment to the trustee. The trustee learns about the

trustor’s choice and subsequently decides about a transfer of her initial endowment as well.

In case of a transfer, the monetary units sent from one player to the other are doubled.

This abstract setting mirrors the essence of any sequential economic exchange that takes

place in the absence of perfect enforcement mechanisms. We elicited subjects’ prisoners’

dilemma choices using the strategy method, i.e., in the role of the trustee participants

4

Electronic copy available at: https://ssrn.com/abstract=3675313



make conditional decisions for both possible decisions of the trustor. Hence, the strategy

method gives us the unique opportunity to observe consequences of counterfactual choices

that trustors did not make.

Using the data from our field study, we build an AI system that makes initial trustor de-

cisions on behalf of human stakeholders who, instead of playing as the trustor themselves,

delegate the decision authority to the machine. The AI system comprises two central

components. First, a ML algorithm trained to predict a trustee’s likelihood of recipro-

cating a transfer of endowment by transferring the personal endowment as well. Second,

an algorithm that uses the prediction in combination with the human stakeholder’s esti-

mated preferences to make the utility-maximizing trustor decision. With the AI system,

we study whether a population of subjects is better o� in case an AI instead of a human

makes strategic trustor choices. Given that we observe counterfactual trustee decisions, we

are able to precisely measure performance di�erences between the AI system and human

trustors in terms of individual and population-wide economic e�ciency and welfare. We

first study how an unbiased AI system performs relative to the human benchmark. Subse-

quently, we study how these results change in response to introducing di�erent degrees of

an algorithmic bias against women. We induce biases by using non-representative training

data, a problem very relevant in practice. Finally, inspired by notions from papers that

study ML in non-stationary environments (Elwell & Polikar, 2011), we examine whether

continued learning - the ongoing updating of ML models using newly collected training

examples - can help counteracting originally learned biases over time.

There are three main insights from our study. First, we provide causal evidence that

AI systems’ capabilities to improve economic e�ciency and social welfare (on both an

individual and a population-wide level) critically depends on the absence of inherent al-

gorithmic biases against specific subgroups. The more biased an AI system is, the more it

fosters the occurrence of ine�cient outcomes and reduces welfare on both, the individual

and the social level. The size of negative ramifications increases with inherent biases.

Notably, even the group against which the AI system does not discriminate is better o�
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if the predictive ML component did not inherit a bias from non-representative training

data. Second, we depict that in settings prone to selective labels issues (Lakkaraju et al.,

2017) the observed algorithmically shaped outcomes only allow to construct poor tech-

nical performance measures for the employment of the machines. Independent of their

inherent biases and welfare consequences, the selectively observed outcomes suggest that

all AI systems perform equally well with respect to technical performance metrics. This is

the case even though strongly biased systems create considerable welfare losses which we

can only observe in our study because we have access to counterfactuals that are usually

not accessible in business practice and most of real life settings. These insights suggest

that algorithmically created welfare losses in selective labels environments may remain

undetected for a long time and emphasizes the importance of consulting non-technical

performance measures when assessing the e�cacy of AI systems. Finally, we demonstrate

that continued learning in a stable environment where there is no discrimination can, at

least to some extent, repair originally biased algorithms. The introduction of an updat-

ing apparatus creates feedback e�ects through which initially distortions in the training

data increasingly vanish. Retraining the ML algorithm on more and more representative

training data increases its predictive performance considerably over time. This findings

indicates that there can be a benefit to ensuring the continued maintenance and controlled

updating of AI systems in practice.

The paper proceeds as follows. In section 2, we summarize related literature. Section 3

develops a game-theoretic framework that serves as a formal illustration of how the use of

an AI system may shape population-wide outcomes in terms of e�ciency and welfare. We

explain details of the conducted field study, the structure of the data, and the simulation

exercises in section 4. Section 5 presents our results. Finally, section 6 discusses findings

and concludes.
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Related Literature

Our study aims to document causal e�ciency and welfare consequences from letting dif-

ferently biased AI systems instead of humans make strategic decisions under uncertainty.

To this end we choose an intentionally abstract sequential exchange setting enabling us

to observe ramifications of counterfactual choices. This is, consequences of choices that

have not actually been made. We measure economic ramifications of introducing biased

systems on both individual and social levels. In our setting, AI systems possess di�erent

degrees of a bias against women. We use gender as an example for a broad class of char-

acteristics that algorithms can base discrimination on (e.g. ethnic background, religion,

sexual orientation), but we have no access to in our data. With this objective, the article

at hand contributes to three distinct streams of literature.

The first and most closely related line of work is a nascent literature concerned with the

consequences of employing AI systems to augment or automate human decision-making.

In the context of medical diagnosing, Mullainathan and Obermeyer (2017) argue that

the use of predictive ML algorithms as a decision aid can amplify existing moral haz-

ard and policy problems in the health system, in case they are naively trained on data

prone to measurement errors. Therefore, the e�cacy of employing algorithmic decision

support systems depends case-by-case on the design and structure of algorithms and may

not generally augment social welfare. In a forward-looking assessment of the potential

impact of AI systems on economics, Athey (2018) argues that ML-powered technologies

not only possess the potential to create immediate e�ciency gains but that their use

may also entail more complex downstream ramifications. Illustrating the complexity in

assessing the total welfare consequences, Athey conjectures that considerable decreases

in transportation costs caused by the use of autonomous vehicles may also decrease the

housing costs for people who live in commuting distance of cities. Kleinberg, Lakkaraju,

et al. (2018) studies whether an algorithmic decision aid can improve judges’ bail decisions

by providing a prediction about a defendant’s recidivism risk. Using a data set on pre-

trial bail decisions of di�erent judges and econometric proxies to circumvent the missing
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counterfactuals problem, the authors produce evidence that machine learning applications

can lead to considerable improvements in judicial decisions and thereby enhance societal

welfare. Simulations indicate that the use of ML-powered decision support systems may

reduce jailing rates by more than 40 percent with no increase in crime rates. Chalfin

et al. (2016) outline that machine learning applications can potentially enhance welfare

by providing predictions about workers’ productivity. They find evidence suggesting that

replacing currently used hiring and promotion systems with automated AI systems can

be highly e�ective in increasing organizational e�ciency. The authors estimate the ben-

efits of switching to a ML-powered system by replacing the hired (promoted) subjects

in the bottom productivity decile with average productive ones and compare the overall

productivity of this new distribution with the original one.

In contrast to the limited number of related studies, we do not use a highly specific

setting and econometric techniques to approximate causal welfare consequences. We pre-

cisely quantify the causal e�ects of replacing current human-made decisions with those of

di�erently biased AI systems in an abstract setting that mimics the fundamental struc-

ture of numerous areas where such machines are already employed today. To the best of

our knowledge, we are the first to combine an abstract experimental paradigm with ML

applications to produce novel insights into the broad systemic consequences of integrating

AI systems into societies. In particular, our unique approach allows us to isolate and

showcase downstream e�ects of algorithmic biases on economic e�ciency, which has not

been done so far. Finally, our study extends this literature by providing causal evidence on

how unrepresentative training data and the ongoing maintenance of algorithms constitute

a source of variation in AI systems’ potential to benefit social welfare.

The second strand of literature we contribute to are studies on algorithmic fairness,

biases, and discrimination. This literature broadly examines how ML algorithms may

unintentionally reproduce human stereotypes, biases, and outcomes considered as unfair,

e.g., by learning encoded patterns from training data (e.g. Barocas & Selbst, 2016). Over

the last couple of years, there has been a steady stream of empirical work documenting
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how AI systems may impose less favorable treatment on already disadvantaged groups.

Examples include racial biases in the recidivism risk assessment (Angwin et al., 2016),

predictive policing (Ensign et al., 2017), and health risk assessment (Obermeyer et al.,

2019), as well as gender biases in the delivery of ads (Sweeney, 2013; Lambrecht & Tucker,

2019), and in facial recognition tasks (Buolamwini & Gebru, 2018). Because of existing

correlations in the data, ML algorithms may even learn to discriminate based on sensitive

features, such as gender or race, even if these attributes have been explicitly excluded

from the training process (Kleinberg, Ludwig, et al., 2018). Recently, there are also some

theoretical contributions outlining that under certain conditions, biased training data may

not always be as detrimental to algorithms’ performance as one might assume (Cowgill,

2018a; Rambachan & Roth, 2019). Our article contributes to this line of previous work by

illustrating how the degree of an AI system’s initial bias determines whether or not its use

leads to welfare gains or losses. More specifically, we produce causal empirical evidence

how non-randomly missing observations in the training data may cause ML algorithms

to learn biases and thereby create detrimental consequences for both discriminated and

non-discriminated groups.

Finally, we relate to a limited number of articles that are concerned with algorithmic

feedback loops. Feedback loops can occur when algorithms shape decisions whose observed

outcomes supplement the training data that is fed to the machine in the future, e.g.

in the pace of an updating process. Once these outcomes are used as training data to

improve existing or develop new algorithms, the contaminated data may reinforce inherent

biases (Cowgill & Tucker, 2019). In other words, through feedback loops, algorithms

may causally a�ect the outcomes they are designed to improve. Cowgill (2018b) shows

the occurrence of an algorithmic feedback loop in the context of bail decisions. The

author uses a regression discontinuity design to show that algorithmic predictions causally

a�ect defendants’ re-arrest likelihood - the outcome the algorithm is designed to predict

- and thereby endogenously shape the training data used to develop future algorithms.

This way, the algorithm’s prediction eventually becomes a self-fulfilling prophecy altering

9
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the ground truth, in this case for the worse. Even if feedback loops can not change

the ground truth, they may cause training data to become increasingly unrepresentative

when there exists a selective-labels problem (Lakkaraju et al., 2017). This issue occurs,

whenever observations for the training data can only be collected if a decision-maker takes

a particular action, e.g., we only learn about a person’s creditworthiness if this person

receives a loan and thus has the option to pay the loan back at an agreed point in time.

Over time, an algorithm may increasingly distort training data by causing a selective

enrichment of the data, lowering future predictive performance for underrepresented types

(see for example Heckman, 1979). Our results depict that in a stable environment where

there is no discrimination, continued updating can create feedback loops that increasingly

rectify unrepresentative training data. By repeatedly retraining algorithms on the more

and more representative data, even strongly discriminatory AI systems debias themselves

over time without exogenous intervention.

Theoretical Framework

To be able to study the causal impact and precisely quantify downstream consequences of

letting an AI system instead of a human make decisions in a strategic setting, we choose

a controlled, abstract setting. More specifically, we make use of the sequential prisoners’

dilemma that reflects the essence of any sequential economic exchange that takes place in

the absence of perfect enforcement mechanisms, e.g., because they are prohibitively costly

(Fehr & Fischbacher, 2003; Dufwenberg & Kirchsteiger, 2004). Broadly, one may conceive

these sequential exchanges as employer-employee exchanges (Akerlof, 1982), principal-

agent exchanges (Fehr et al., 1997), or market exchanges (Fehr et al., 1993; Brown et al.,

2004).

The basic structure of the game is as follows. A trustor and a trustee are matched in

pairs of two. Both players are initially endowed with 10 monetary units (MU). The trustor

starts to decide whether to transfer her 10 MU to the trustee - cooperate (C) - or to keep

the endowment for herself - defect (D). The trustee observes the trustor’s initial decision
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Figure 1. A sequential prisoners’ dilemma

and then chooses to cooperate or defect as well. Any MU transferred from one player

to the other is doubled (see figure 1 for an illustration). In this structure, two aspects

are noteworthy. First, trustors make their initial strategic decision under uncertainty, not

knowing how trustees will respond, while trustees possess full information about trustors’

choices when deciding. Second, social welfare is maximized in case both players exchange

their endowment, i.e., carry out the exchange, while individually there exists a strong

incentive for the trustee to cheat and not to behave reciprocally. This is because the

trustee’s material payo� is maximized when receiving a transfer from the trustor while

keeping his initial endowment for himself.

This abstract strategic setting with asymmetric information mimics the fundamental

structure of many real-life situations. Examples include, a manager (trustor) who decides

upon promoting an employee (trustee) to a supervisor position, who in turn can respond

to a promotion by exerting high or low e�ort, or a loan o�cer (trustor) managing risk

and determining whether to charge high or low interest to an applicant (trustee), who can

subsequently choose to repay the credit or default. In these and many more situations,

social e�ciency dictates the trustor to cooperate (i.e. promote, charge a low interest rate)

whenever the trustee, in turn, would reciprocate by cooperating as well (i.e., exert high

e�ort, repay the loan).

Given the lack of information, the trustor needs to assess the likelihood that her coun-

terpart behaves reciprocally. This is where ML algorithms, often as part of a broader in-

formation system, come in. Using available information about the trustee, ML algorithms
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can produce a prediction about the trustee’s likelihood to reciprocate initial cooperation

by cooperating as well. The prediction as such e�ectively reduces the asymmetry of infor-

mation between the trustor and the trustee. Generated algorithmic predictions can then

be used, either by humans themselves or another machine, to make an optimal decision.

This way, assessments are not based on population averages, intuition, or subjective ex-

perience, which is prone to mental errors (see for example Tversky & Kahneman, 1974;

Kahneman & Tversky, 1977).

While on an individual level, the use of an ML application to enhance e�ciency

appears intuitive, the downstream consequences on broad equilibrium outcomes, are more

complex and demand a closer analytic contemplation. In the following, we, therefore, de-

rive a simple theoretical framework to illustrate the structure of the setting more formally

and show how the deployment of an AI system may a�ect broad population-wide outcomes.

Assume there is a continuous population of individuals with a total mass normalized

to one. This population can be interpreted as a society into which the AI system will

be integrated. We model people’s engagement in sequential exchanges as follows. The

entire population is randomly split up in equal shares of trustors and trustees. Each

trustor is randomly matched with one trustee to play a sequential prisoners’ dilemma

that follows the structure explained before (see figure 1). Let the set of available pure-

strategies for trustors be given by A1 = {C, D}, where the pure strategies respectively

refer to cooperation (C) and defection (D). The pure-strategy set for trustees is denoted

as A2 = {CC, CD, DD, DC}. The two letters from left to right respectively indicate a

trustee’s conditional response to the trustor initially choosing to cooperate and defect. For

example, a trustee choosing strategy CC always cooperates independent of the trustor’s

initial choice, while a trustee choosing CD cooperates if the trustor initially cooperated

and defects in case the trustor initially defected.

The material payo� an individual i in the role k = 1, 2 receives when choosing strategy

ai,k œ Ak depends on the strategy aj,≠k œ A≠k that the matched opponent j in role ≠k
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plays.1 We denote individual i’s payo� as fii(ai,k, aj,≠k). Following the structure used

in our field study, payo�s conditional on the chosen strategies, i.e., game outcomes, are

defined as depicted in figure 1.

Let every individual i be described by (◊i, xi), with ◊i œ {s, r} denoting individual

i’s type and xi being a vector representing this individual’s personal characteristics. We

assume that s-types, are only concerned with their personal material payo� (selfish-types).

In the role of a trustee in a one-shot sequential prisoners’ dilemma their optimal strategy

is always to defect aú
i,2(s) = DD. r-types in the role of a trustee, on the other hand, are

assumed to behave reciprocally, i.e., aú
i,2(r) = CD. The population shares of reciprocal

and selfish types are respectively denoted as µr and µs = 1 ≠ µr.

While a person’s type ◊i is private information, we assume that the characteristics xi

of an individual are observed. Notably, we assume that individuals themselves can not

infer someone else’s type ◊i, and thus trustee behavior, from observing xi. This could for

example be because the relationship is highly non-linear and imposes prohibitively high

costs. This implies that there exists a strong asymmetry in information between trustors

and trustees.

The observed characteristics xi, however, can be used as an input for a trained machine

learning algorithm that generates a prediction ◊̂i œ (0, 1) that a person will reciprocate

cooperation as a trustee, i.e. that a person is of type ◊i = r. The ML algorithm is trained

on a historic data set D comprising a large number of observational pairs (◊, x) drawn

from the distribution P (◊, x). For simplicity we abstract from the estimation problem and

denote the trained algorithm as fD(x) = ◊̂. We assume that the trained algorithm is part

of a broader AI system that uses the prediction to make utility-maximizing choices on

behalf of trustors.

As a representation of individual i’s personal preferences, we use a simplified version

of the model by Charness and Rabin (2002), which allows for conditional social welfare

concerns and has been shown to explain empirical observations of sequential prisoners’
1Note: ≠k reflects that individual j takes on the opposite role of individual i, i.e., ≠k = 2 if k = 1, and

≠k = 1 if k = 2.
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dilemmas extremely well (see Miettinen et al., 2020). We denote an individual i’s utility

function Ui(fii, fij , ◊i) as

Ui(fii, fij , ◊i) =

Y
__]

__[

(1 ≠ fl(◊i))fii + fl(◊i)fij if fii Ø fij

(1 ≠ ‡(◊i))fii + ‡(◊i)fij if fii < fij

, (1)

where fl(.) and ‡(.) are type-dependent non-negative parameters with ‡(.) Æ fl(.) < 1
2 ,

indicating the conditional weights individual i puts on her opponent j’s material payo�

fij . The AI system that makes decisions on behalf of trustor is individually calibrated to

know the stakeholder’s utility function.

We model individuals (and the AI system) to act as expected utility maximizers so

that the chosen strategy aú ultimately reflects the solution to the optimization problem

aú
i,k = argmax

ai,kœAk

ÿ

aj,≠kœA≠k

p(aj,≠k) · Ui(fii(ai,k, aj,≠k), fij(aj,≠k, ai,k), ◊i). (2)

p(aj,≠k) œ (0, 1) denotes individual’s i’s belief that her opponent j will choose strategy

aj,≠k œ A≠k, at the moment when i is making her decision.2 Given the sequential structure,

trustees, when choosing their strategy, observe their opponent’s actual choice. Hence,

trustees do not face uncertainty about the trustor’s behavior and assign the probability

of one to the observed choice.

With the outlined maximization problem and the payo� structure defined in 1, we

can derive conditions for fl(◊i)) and ‡(◊i)) for both types ◊ œ (s, r). Substituting the

payo�s into the utility function, it is trivial to derive that trustees always choose to defect

if fl(s), ‡(s) Æ 1
3 while they choose to reciprocate the trustor’s strategy if fl(r) Ø 1

3 and

‡(r) Æ 1
3 .

For simplicity, let fl(s) = ‡(s) = ‡(r) = 0 and fl(r) = 1
2 so that we can rewrite utility

2Note: For simplicity we do not allow for type-dependent beliefs.
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function (1) as

Ui(fii, fij , ◊i) =

Y
__]

__[

1
2 (fii + fij) if fii Ø fij , ◊i = r

fii otherwise
. (3)

We now solve the outlined sequential game with imperfect information using perfect

Bayesian Nash equilibrium as equilibrium concept. The focus lies on symmetric equilibria

in which all individuals possess the same prior concerning the distribution of types in the

population and use the same type-dependent strategy. In the following, we, therefore,

dispense individual indexation. Equilibrium strategies aú(◊) maximize expected utility

given a belief about the opponent’s strategy p.

The utility function (3) dictates that, independent of their type, it is optimal for

trustors to cooperate if 20 · p(C|C) Ø 10, where p(C|C) denotes trustors common belief

that the trustee will cooperate conditional on her own prior cooperation. Since it is

common knowledge that there exist only two types in the population, of which merely r-

types reciprocate cooperation, we can substitute p(C|C) for the belief µ̂r that the trustee

is of type r. A trustor, independent of her type, will prefer to cooperate if

µ̂r Ø 1
2 (4)

This result enables us to derive equilibrium predictions for scenarios where trustors

either make the decision on their own or use ML algorithm as an aid to make the choice.

We first consider the case, in which trustors make decisions on their own and do not

use an AI system making decisions on their behalf. In this scenario, there are two possible

equilibrium outcomes, depending on individuals prior about the share of reciprocal types

in the population µ̂r. Whenever µ̂r < 1
2 , no trustor acting as an expected utility maximizer

will choose to cooperate. Given trustees’ type-dependent optimal strategies aú(s) = DD

15

Electronic copy available at: https://ssrn.com/abstract=3675313



and aú(s) = CD, every single game outcome will be mutual defection, i.e., the socially

most ine�cient outcome. Notably, this outcome constitutes an equilibrium even if the

actual share of reciprocal types µr = 1, as the inaccurate prior leads to a miscoordination.

All proofs can be found in the appendix.

Proposition 1 Suppose the trustor’s belief about the matched trustee’s type is µ̂r < 1
2 .

There exists a unique perfect Bayesian Nash equilibria in which

aú(s) = aú(r) = D (5)

describe trustors’ equilibrium strategies, and

aú(s) = DD (6)

aú(r) = CD (7)

describe trustees’ equilibrium strategies given the belief about the trustors’ chosen strategy

p(D) = 1. In this equilibrium the shares of outcomes on the equilibrium path Ê (aú
1, aú

2(aú
1))

are given by

Ê (C, C) = 0 (8)

Ê (C, D) = 0 (9)

Ê (D, D) = 1 (10)

Whenever µ̂r Ø 1
2 , both types of trustors will always choose to cooperate in order to

maximize expected utility. Given the trustee’s type-dependent equilibrium strategies, the

share of the socially most e�cient outcome is at its maximum. This, however, comes at
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the expense of trustors who are randomly matched with selfish trustees, since they are

able to free-ride on trustors’ cooperative behavior leaving them with no surplus.

Proposition 2 Suppose the trustor’s belief about the matched trustee’s type is µ̂r Ø 1
2 .

There exists a unique perfect Bayesian Nash equilibria in which

aú(s) = aú(r) = C (11)

describe trustors’ equilibrium strategies, and

aú(s) = DD (12)

aú(r) = CD (13)

describe trustees’ equilibrium strategies given the belief about the trustors’ chosen strategy

p(C) = 1. In this equilibrium the shares of outcomes on the equilibrium path Ê (aú
1, aú

2(aú
1))

are given by

Ê (C, C) = µr (14)

Ê (C, D) = (1 ≠ µr) (15)

Ê (D, D) = 0 (16)

Overall, propositions 1 and 2 emphasize the role individual beliefs play for coordi-

nation and equilibrium selection and how distinct subjective assessments about trustees’

propensity to reciprocate cooperation shape social-welfare. Even for large shares of recip-

rocal types among the population, it is possible that no e�cient sequential exchanges take

place due to miscoordination under asymmetric information. ML-generated, individual
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level predictions can ultimately influence the welfare and e�ciency of societies in these

settings, because they reduce the asymmetry of information between trustors and trustees.

Next, we consider how equilibrium outcomes change when introducing an AI system

that makes decisions on behalf of human trustors. The AI system comprises the predictive

ML algorithm fD(.) and the codified preferences of the trustor on whose behalf the system

decides. Using the prediction and the preferences, the AI system always chooses the utility-

maximizing strategy. As explained before, the ML algorithm uses a trustee’s observable

characteristics to produce an individual level prediction fD(x) = ◊̂ about the trustee’s

propensity to reciprocate cooperation. Since the AI system is designed to make an optimal

decision given the preferences and the algorithmic prediction, we can simply substitute

the common prior for the algorithm’s predictions µ̂r = ◊̂ to model the rule according to

which the system decides. According to condition (4), there exists a unique equilibrium

in which the AI system will independent of her human stakeholders type cooperate if the

individual prediction ◊̂ Ø 1
2 and defect otherwise. Hence, 1

2 e�ectively serves as the lower

threshold for classifying a trustee as being reciprocal. Together this threshold and the

type-dependent probability distribution of algorithmic predictions q(◊̂|◊) determine the

algorithm’s predictive performance and thereby welfare consequences.

Proposition 3 Suppose an AI system uses an individual-level algorithmic prediction

about the matched trustee’s type ◊̂ to make a utility maximizing choice on behalf of a

human trustor. There exists a unique perfect Bayesian Nash equilibrium in which

aú(s) = aú(r) =

Y
__]

__[

C if ◊̂ Ø 1
2

D otherwise
. (17)

describe the AI system’s equilibrium strategies, and

aú(s) = DD (18)
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aú(r) = CD (19)

describe trustees’ equilibrium strategies given the unity belief about the AI system’s chosen

strategy. Conditional on the type-dependent probability distribution of algorithmic predic-

tions q(◊̂|◊), the shares of outcomes on the equilibrium path Ê (aú
1, aú

2(aú
1)) are given by

Ê (C, C) = µr

1⁄

0.5

q(◊̂|r)d◊̂ (20)

Ê (C, D) = (1 ≠ µr)
1⁄

0.5

q(◊̂|s)d◊̂ (21)

Ê (D, D) = (1 ≠ µr)
0.5⁄

0

q(◊̂|s)d◊̂ + µr

0.5⁄

0

q(◊̂|r)d◊̂ (22)

Proposition 3 depicts the potential gains but also dangers associated with letting an AI

system decide on behalf of human trustors. Whether such a machine ultimately improves

social welfare depends on its ability to correctly classify trustees’ types. Any ML algorithm

fD(x) that correctly classifies at least one reciprocal-type will prevent the occurrence of

the most ine�cient equilibrium described under proposition 1. The more reciprocal sub-

jects are correctly classified as such, i.e., the higher
s 1

0.5 q(◊̂|r)d◊̂, the more socially e�cient

outcomes occur. In other words, the recall value of the AI systems predictive ML com-

ponent indicates how useful the system is in terms of facilitating mutual cooperation.

Conversely, when the predictive algorithm exhibits a low performance in correctly classi-

fying reciprocal types, it can steer the population into a less e�cient state by fostering the

occurrence of welfare minimizing outcomes of mutual defection. A strongly biased system

which systematically produces overly pessimistic predictions that individuals with a spe-

cific characteristic in xi are reciprocal, i.e., incorrectly low values of ◊̂, will thus enhance

ine�ciencies.
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Data collection and simulation design

Our analyses are based on a rich data set that has been collected in a voluntary field

study between 2016 and 2019. Participants in this study were first-semester economics

students from a large German University. The study was conducted online on LimeSurvey

and comprises a broad set of survey items on students’ demographics, socio-economic

background, cognitive abilities, personality traits, and experimental tasks. Overall there

are 49 distinct questions.3 Most important for this work, the study additionally includes an

incentivized one-shot sequential prisoners’ dilemma. The version used in the field study

is identical to the one explained in the previous section (see figure 1 for an overview).

Participants’ trustee choices were elicited using the strategy method, i.e., they had to

indicate whether or not to cooperate for both possible decisions an anonymous trustor

could have made. For every participant in the study, we observe the unconditional trustor

and both conditional trustee choices. We randomly drew 5 percent of all participants and

split them into equal shares of trustors and trustees. Subsequently, we randomly matched

them in pairs of two and paid them according to the game outcome that resulted from

combining the trustor’s unconditional choice with the corresponding conditional decision

of the trustee. For each MU earned in the game, chosen participants received 1 Euro. On

average participants earned 13.16 Euro.

Overall, we collected 3,624 individual observations that make up our raw data set. The

raw data set required considerable preprocessing due to fragmentation. After cleansing

the raw data, we are left with 1051 observations.4 Each observation represents the actual

and materially consequential choices of a real person together with information about

this person’s characteristics. Specifically, each observation comprises this person’s trustor

decision, both conditional trustee decisions, and answers to 16 questionnaire items. We

selected these 16 items because comprehensive empirical testing in regards to feature
3We show an overview of all items in the Appendix B in figure 11
4Note: To simplify the analyses and facilitate the interpretability of our results, we only use subjects

who as trustees always defect, or behave reciprocally. These two types make up for 93% of our usable
post-cleansing observations.
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engineering and selection revealed that they jointly constitute a set of strong features

allowing us to create a high performing ML model. Table 1 shows these items, together

with descriptive statistics.

Item Scale Mean Std. deviation
1. Big 5: Openness (0,1) 0.625 0.208
2. Big 5: Conscientiousness (0,1) 0.669 0.171
3. Big 5: Extraversion (0,1) 0.639 0.221
4. Big 5: Agreeableness (0,1) 0.715 0.165
5. Big 5: Neuroticism (0,1) 0.522 0.215
6. Risk aversion (0,1) 0.542 0.205
7. Competitiveness score (0,1) 0.617 0.218
8. Trust in choice of study (0,1) 0.711 0.248
9. Current happiness with choice of study (0,1) 0.729 0.225
10. Likelihood of finishing studies (0,1) 0.822 0.22
11. Volunteer social year prior to studies Yes=1, No=0 0.075 0.263
12. Subject related internship prior to studies Yes=1, No=0 0.148 0.355
13. Non-Subject related internship prior to studies Yes=1, No=0 0.169 0.375
14. Apprenticeship prior to studies Yes=1, No=0 0.149 0.356
15. Foreign language spoken at parental home Yes=1, No=0 0.287 0.453
16. Gender Male=1, Female=0 0.509 0.5

Table 1. Items from field study used as features to train the ML algorithm. Note that
we normalized the scale of numeric items 1 to 10.

The objective of this paper is to study individual and population-wide e�ciency and

welfare e�ects of integrating di�erent AI systems into human societies. To do so, we use

our cleaned data as a basis for distinct simulation exercises. Simulations only di�er with

respect to the design of the AI system’s predictive ML component.

Simulations have the following basic structure, which mirrors our outlined theoretical

framework. At the beginning, we randomly split our cleaned data into a training set

(75% of observations, i.e., 795 observations) and a population set (25% of observations,

i.e., 256 observations). The training set is further preprocessed and then used to train,

validate, and test, a ML algorithm that uses a person’s 16 characteristics as input features

to predict her likelihood to reciprocate cooperation in the role of a trustee. We use an

Adaptive Boosted Random Forest method. The forest comprises 100 individual trees with

a depth of 5. Adaptive boosting refers to the sequential learning process where each new

predictor corrects the predecessor by putting more weight on training instances that were

previously underfitted. The Adaptive Boosting method is among the most popular and

most powerful ensemble methods (Freund & Schapire, 1997). Our trained algorithms
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exhibit a high performance on all relevant technical performance measures. Table 4 in the

Appendix B shows a performance overview of our algorithms after validation and training

on a test set.
Algorithm 1: Sequence of simulation exercises

Result: Game outcomes and utilities in sequential prisoners’ dilemma games

Cleaning of raw data;

while counter Æ 10 do

1. Random partition of cleaned data - 25% population set, 75% training set;

2. Preparation of training set for training of ML algorithm;

3. Training, validation, testing of ML algorithm on training set;

4. Estimation of individual utility functions for subjects in population set;

while counter Æ 100 do

5. Random draw of 50% of individuals in population set;

6. Random partition of selected individuals in trustors and trustees;

7. Random matching of trustors and trustees in pairs of two;

8. Matching of human / AI system trustor decisions with trustees conditional choices,

determination of game outcomes and utilities.;

9. Compute diverse performance metrics
end

end

The population set, on the other hand, is used to simulate sequential prisoners’

dilemma games. This is done in three steps which are repeated 100 times. First, we

randomly select half of the individuals from the population set. Second, the drawn indi-

viduals are randomly split in equal shares of trustors and trustees. Third, to determine

the outcome and utilities if human trustors make the decisions, we match the original

choices of the trustors from the field study with the corresponding conditional response

of the trustee. To establish what the AI system does, the trained ML component makes

a prediction about the matched trustee’s likelihood to reciprocate cooperation. The de-

cision making component subsequently uses this prediction and the trustor’s previously

estimated utility function5 to compute whether cooperation or defection yields a larger

expected utility. The AI system’s decision is the utility-maximizing strategy, which is
5We use subjects’ trustee decisions from the field study, to estimate individual level parameters of a

simplified version of the social preference model by Charness and Rabin (2002), which we explained in
detail in the section where we presented our theoretical framework. Utility functions have the form of
equation (3), where r-types are subjects from the field study who mirrored the trustor’s choices, i.e. are
reciprocators.
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then matched with the corresponding conditional response of the trustee, to determine

outcomes and utilities. Every simulation is replicated 10 times. Overall, each simulation

comprises 64,000 distinct games. An overview of this simulation process can be found in

the depicted pseudo code 1.

Across di�erent simulations, we vary the AI system’s algorithmic bias against female

trustees. More specifically, we deliberately manipulate the predictive ML component of

AI systems so that it systematically underestimates the probability that a female trustee,

relate to a male trustee, will reciprocate cooperation. This is the case even though female

individuals in our data set are on average significantly more likely to reciprocate than men

(75.4% vs. 68.1%, Wilcoxon rank-sum test p < 0.000). We introduce biases by means of

imbalancing the training set (in step 2 in pseudo code 1), while holding the overall number

of observations fixed. This way we control for the overall amount of training instances.

We vary the share of reciprocal examples among women from 0 (no reciprocal women at

all) to 0.5 (balanced share of reciprocal and non-reciprocal women) with a step-size of

0.05. With less examples of reciprocal women to learn from, the likelihood of correctly

classifying reciprocal (selfish) women will decreases (increase). Male observations in the

training data set were perfectly balanced with regards to the label. This is, in the course

of preprocessing the data, we ensure that for male observations, there is an equal share of

reciprocal and selfish examples in the training set, so that the classification of reciprocal

and selfish men works equally well.

We choose the gender attribute as an example of algorithmic discrimination to pin down

the consequences of biased systems for two reasons.6 First, there exists ample scientific

and anecdotal evidence showing that algorithmic discrimination against women, e.g. due

to previous discriminatory practices encoded in training data, is an actual, considerable

societal problem (see for example Sweeney, 2013; Buolamwini & Gebru, 2018; O’Neil,

2018; Lambrecht & Tucker, 2019). Second, male and female participants in our field study
6Note: One should understand the use of the gender attribute as a representative example of a broad

range of characteristics that algorithms may discriminate on.
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exhibit a statistically significant di�erence in their propensity to reciprocate cooperation in

the role of the trustee (respectively 75.4% and 69.1%, ‰2-test: p<0.000). As a consequence,

from a technical perspective, the variable gender possesses explanatory power concerning

a person’s likelihood to behave reciprocally, allowing us to introduce biases in the first

place.

Finally, to examine interaction e�ects between algorithmic biases and continued up-

dating, specifically retraining of the algorithm, as well as algorithmic feedback loops, we

deploy a slightly adapted simulation sequence. This sequence di�ers from the previously

explained one (see pseudo code 1) only with regards to the inclusion of two additional

steps at the end. In each iteration, after determining game outcomes, the previous train-

ing data set is supplemented by trustees (their 16 personal characteristics and their choice

when the trustor cooperates) whose matched trustor initially cooperated. Subsequently,

we retrain the AI system’s predictive ML component on the appended training data. The

retrained ML component then makes predictions in the next iteration. With this proce-

dure, the algorithmic prediction endogenously shapes the structure of the training data

on which we retrain the algorithm in the next iteration and thus future predictions. As a

consequence, our setting allows the occurrence of data-driven feedback loops. An overview

of this slightly adapted simulation process can be found in the depicted pseudo-code 2 in

the appendix.

Results

The results of our simulation exercises are presented in three parts. First, we examine

how well an unbiased AI system, relative to humans, performs in making trustor decisions.

Our objective is to answer the question of whether an unbiased AI system can enhance

welfare and e�ciency on both an individual and population-wide level. These findings

serve as a benchmark to map out the potential of an unbiased system. Subsequently, we

go over to our main endeavor and outline how results change in case the underlying ML

algorithm becomes increasingly biased against women. By doing so we show in detail the
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role algorithmic biases play regarding AI systems’ potential to augment social welfare.

Finally, we study to what extent continued learning may, over time, enable a strongly

biased ML algorithm to recover itself.

Unbiased AI system

We start our analyses with comparing the performance between human trustors and an

unbiased AI system making decisions on behalf of these human trustors.7 We initially focus

on performance di�erences from the perspective of human stakeholders. We will consider

two distinct measures. First, we compare the share of decisions that are optimal from the

human trustor’s point of view. A decision is individually optimal, i.e., utility-maximizing,

whenever (i) the trustor defects in case the trustee would not reciprocate cooperation, or

(ii) the trustor cooperates in case the trustee would reciprocate cooperation. Subsequently,

we consider di�erences in average trustor utility across the two scenarios.8

Figure 2. For human and AI system scenarios, panel (a) represents the shares
of optimal trustor decisions, while panel (b) shows average trustor utility. trustor
utility is depicted in normalized units.

7Unbiased refers to the fact that in comparison to other AI systems, we did not intentionally introduce
an algorithmic bias in the form of systematically inaccurate predictions against women. A Wilcoxon rank-
sum test reveals that the prediction errors between women and men are not significant, despite the large
sample size (p < 0.12)

8Note: Given the structure of the field study, human trustors were not able to observe trustees’ char-
acteristics. However, we assume that human trustors, on average, do not exhibit systematic behavioral
biases with regards to the 16 characteristics of trustees which the AI system uses as input features to make
a prediction. Following this assumption, the law of large numbers suggests that the average human trustor
decision should not considerably di�er even if trustors would have observed the trustees’ characteristics
before making their decisions.
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Figure 2 depicts the shares of optimal decisions (panel (a)) and the average trustor

utility (panel (b)) that human trustors themselves and the AI system on their behalf are

able to achieve.

We observe that the AI system significantly outperforms human decision-makers re-

garding the optimality of individual choices and hence the utility gained for the trustor.

On average, a human trustor, depending on the trustee’s conditional responses, makes a

utility-maximizing choice in 50.3% of the games.9 The AI system, in contrast, is able to

do so in 58.4%. This di�erence is equal to an increase by 16.1%-points and is statistically

highly significant (‰2-test: p < 0.000). The gained utility significantly increases from 12.2

to 13 units (+6.6%) in case the AI system instead of the human makes the initial decisions

(Wilcoxon signed-rank test: p < 0.000).10

Looking at individual choices, we find the AI system to make a di�erent decision than

its human stakeholder in 49.9% of the games. Conditional on making a di�erent choice, the

AI system improves the stakeholder’s position in 29% of the cases. More specifically, the

AI system optimally chooses to cooperate (defect) while the human trustor suboptimally

defects (cooperates) in 24.3% (4.7%) of the cases. However, in about 21 out of 100 games

(20.9%), the system renders the human worse o� when making a di�erent decision, either

by defecting while cooperation would have been reciprocated (11.4%) or cooperating even

though defection would have been the utility-maximizing choice (9.5%). On average,

letting the AI system make a di�erent decision than the human trustor pays o�. The

average utility increases from 11.3 units (human) to 12.9 units (AI system), which is an

economically considerable increment of 14%.

Next, we look at the population-wide consequences. Figure 3 shows the shares of

overall game outcomes. Panel (a) depicts outcomes for human trustors, while panel (b)

illustrates the AI system scenario. CC, DD, and CD respectively refer to outcomes where

trustors and trustees both cooperate, where trustors and trustees both defect, and where
9Note: If the trustee reciprocates cooperation, the utility-maximizing trustor decision is to initially

cooperate; if the trustee does not reciprocate cooperation, the utility-maximizing trustor decision is to
initially defect.

10Summary statistics on trustor utility are provided in table 2
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Figure 3. Relative frequencies with which di�erent game outcomes, i.e., mutually
cooperative (CC), mutually defective (DD), and free-riding (CD) outcomes, occur.
Panel (a) represents results for human decision-makers; panel (b) represents results
for an unbiased AI system.

trustors cooperate while trustees defect.

Panel (a) depicts that population-wide, about half of human trustors initially defect

(49.2%), causing the socially most ine�cient outcome to occur. Notably, in 71.6% of

the instances where the trustor initially defects, thereby inevitably evoking the mutually

defective outcome, the trustee would have reciprocated initial cooperation, so that the

socially optimal outcome could have been reached. On the other hand, human trustors

cooperate in 50.8% of the games. This initial cooperation, however, is only reciprocated in

36.4% of the games, while trustees free-ride, and thus prevent the occurrence of the socially

most e�cient outcome, in 14.4%. Out of all the cases where mutual cooperation would

have been feasible, humans are only able to reach this socially most desirable outcome in

50.7%. Overall, these observations illustrate that there is considerable miscoordination

and thereby social ine�ciencies, raising the question of whether the use of an AI system

can overcome this issue.

Observations in panel (b) suggest that the AI system can at least mitigate social ine�-

ciencies, even though not entirely overcome them. The AI system initially defects in 31.5%

of the games, which is 17.6% less often relative to humans. While this shows that the most

ine�cient outcome can be avoided more often, still 70.9% of initial defection remains inef-
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ficient, because the trustee would have reciprocated cooperation. Hence, in relative terms,

initial machine defection is only marginally more e�cient than initial human defection

(71.6%). The AI system chooses to cooperate in 68.5% of the games. Thereby, the so-

cially most e�cient outcome is reached about half of the time (49.3%). Compared to the

human benchmark, this is an increase by 12.9%, or 35.4%-points, and thus economically

highly considerable. Mutual cooperation can be implemented in 68.8% of all the cases

where it is possible (human benchmark: 50.7%).

Figure 4. For human and AI system scenarios, panel (a) represents average welfare,
while panel (b) shows average trustee utility.

Naturally, the AI system’s higher performance in reaching the socially most e�cient

outcome translates into enhanced social welfare. Figure 4 shows the average population

welfare and trustee utility for the two scenarios. We observe a statistically significant

and economically relevant increase in welfare from 28.7 to 31.8 units (+10.7 %) when the

AI system makes trustor decisions instead of humans themselves (Wilcoxon signed rank

test: p < 0.000). Note that if we only consider cases where the AI system’s decision has

led to a Pareto improvement, i.e., exclude games where the human reaches the mutually

defective outcome while the AI ends up in the free-riding outcome, the increase is equal to

6.9% (Wilcoxon signed rank test: p < 0.000). Hence, even when excluding the outcomes

where social welfare increases at the expense of the trustor, the overall increase in social

welfare remains economically and statistically significant.
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Welfare Utility trustor Utility trustee
Human trustor 28.7 12.2 16.5

(9.162) (6.777) (7.177)

AI system 31.8 13 18.8
(8.813) (7.708) (7.014)

Table 2. Summary statistics on welfare and utility levels. Displayed
measures are mean values. Standard errors are reported in parenthe-
ses. The number of observations equals N = 64000.

Depicted measures further show that the observed increase in social welfare does not

only result from higher trustor utility, but also enhanced trustee utility. Trustees’ average

utility increases by 13.9% (from 16.5 to 18.8 units; Wilcoxon signed rank test: p < 0.000).

In comparison to the trustors, this increase is relatively larger (13.9% vs. 6.6%). This

finding can be explained by the observation that non-reciprocal trustees can free-ride on

initial cooperation more often, which benefits trustees but reduces the utility of trustors to

0. In other words, due to their informational advantage from moving second, all trustees

benefit from the higher rate of initial cooperation, even if it is not optimal from the

trustor’s perspective.

Result 1 An unbiased AI system significantly outperforms its human stakeholder when

making decisions in the role of the trustor. On average, the share of individually optimal

decisions increases by 8.1%, leading to an increase in utility by 6.6%. On a population-

wide level, the AI system increases social welfare by 10.7 % (6.9% when considering Pareto

improvements only). The increase in welfare results from both, increases in trustors’ and

trustees’ utility.

Biased AI systems

After we have seen that an unbiased AI system outperforms human trustors to the benefit

of the entire population, we now go over to study how algorithmic biases a�ect these

results. When we talk about an AI system exhibiting an algorithmic bias, we refer to the

predictive ML component of an AI system producing systematically incorrect predictions

for a specific group of individuals, which leads to wrongfully unequal treatment.

29

Electronic copy available at: https://ssrn.com/abstract=3675313



We intentionally introduce an algorithmic bias of the AI system against women by

training ML algorithms that, ceteris paribus, estimate women to be less likely to re-

ciprocate cooperation than men, despite them being more likely to do so. AI systems

comprising these biased ML algorithms are more likely to defect when interacting with a

female trustee, compared to male.

We create biases by imbalancing the training set. In imbalanced sets, the share of

non-reciprocal female observations exceeds the fraction of reciprocal ones for a fixed level

of female observations. The data available to train the ML algorithm is therefore a non-

representative subsample for women. We vary the share of reciprocal examples among

women in the training set from 0 (no reciprocal women at all) to 0.5 (fully balanced shares

of reciprocal and non-reciprocal women) with a step-size of 0.05. The balanced case is the

benchmark that we analyzed in the previous section.

To see that we successfully bias the ML algorithm by imbalancing the training set,

consider table 3. The table depicts the average predicted probabilities that women

and men cooperate, conditional on the degree of imbalance. The table shows that the

ML algorithm increasingly underestimates the likelihood that women in the player set

reciprocate cooperation when the relative share of reciprocal female examples decreases.

For men, the average predicted probabilities are about the same across di�erent degrees

of imbalance. Wilcoxon rank-sum tests reveal that, except for the 50% case (p < 0.12),

the average predictive errors are significantly di�erent for women and men (p < 0.000 for

all other cases). The ML algorithm thus learns an incorrect representation of women’s

trustee behavior, while the representation for men is more precise so that the system

produces systematically less favorable predictions for women.

Probability of True Share of reciprocal examples among female observations in the training set
being reciprocal measure 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Women 0.75 0.03 0.15 0.25 0.36 0.42 0.5 0.56 0.59 0.64 0.64 0.69

(0.435) (0.107) (0.257) (0.314) (0.344) (0.364) (.0358) (0.357) (0.35) (0.339) (0.33) (0.318)

Men 0.69 0.58 0.58 0.58 0.58 0.58 58 0.59 0.6 0.61 0.63 0.62
(0.462) (0.389) (0.375) (0.371) (0.362) (0.356) (0.352) (0.35) (0.354) (0.342) (0.339) (0.34)

Table 3. The true share of reciprocal individuals in the player set and the mean predicted
probabilities of di�erent ML algorithms are displayed. Standard errors are reported in parentheses.
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Given that we have successfully introduced algorithmic discrimination in our frame-

work, we now examine to what extent our previous results depend on the degree of this

algorithmic bias against women. We start examining how biases influence the AI sys-

tem’s performance relative to human decision-makers from the perspective of the trustor.

Subsequently, we outline population-wide e�ciency and welfare ramifications.

Figure 5. Di�erences in shares of optimal trustor decisions and trustor utility relative
to human baseline, conditional on the degree of algorithmic bias against women. From
left to right panels show results for (a) the entire sample of games, (b) the sumsample of
games with female trustees, and (c) the subsample of game with male trustees.

Figure 5 depicts the performance of AI systems, relative to human decision-makers,

conditional on the degree of bias. Depicted plots show the di�erence in the share of

optimal trustor decisions and the average utility of trustors. Positive values on the Y-axes

indicates that the machine outperforms human trustors, while negative ones indicate the

reverse. Panels (a), (b), and (c) respectively show results for all games, the subsample of

games where trustees are women, and the subsample of game where trustees are men.

The figure portrays that an AI system’s capability to outperform its human stakeholder

in making trustor decisions critically depends on the presence of an algorithmic bias against

specific groups. The more inaccurate algorithmic prediction against women, the worse are

the decisions made by the AI system. Whenever the share of reciprocal examples among

females in the training set is smaller than 20%, the share of utility-maximizing trustor

decisions made by the AI system is smaller than the measure for human decision-makers.

Only for a share of 25% of reciprocal females, or more, an AI system, on average, makes
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better choices than human trustors. Naturally, worse decisions translate into lower utility,

so that a trustor who lets a strongly biased AI system make decisions on her behalf is

worse o� in comparison to deciding herself. The system with the most potent bias leads

to a considerable reduction in trustors’ average utility of 7% (from 12.2 to 11.3).

Intuitively, the negative e�ects of algorithmic biases for trustors are driven by instances

where the trustee is a woman (see panel (b)) since the predictive performance is low for

this group of individuals. In our framework, if the most biased system (0% of reciprocal

observations among females) makes trustor decisions instead of humans, the average utility

of trustors drops by 2.5 units when the trustee is a woman. This is equivalent to a decrease

of 20% and economically substantial. With regards to male trustees (panel (c)), the AI

system outperforms and increases the utility for their human stakeholders, independent of

the degree of the bias. Notably, the relative performance of an AI system when a trustee

is a man even increases slightly when the training set becomes more balanced for women.

A possible explanation for this observation is that a more balanced subset of female data

points implies that the training data at large also becomes more balanced.

Overall, these observations illustrate that it is in the interest of trustors that the AI

system that decides on their behalf is unbiased, in particular, if they are likely to interact

with the algorithmically discriminated group. This is because the bias implies that the AI

system’s performance in making optimal decisions for the trustor is systematically worse

when the trustee belongs to the algorithmically discriminated group.

Result 2 Strongly biased AI systems perform significantly worse than their human stake-

holders, when making decision as trustors. The more biased the system, the worse o� is

the human stakeholder.

Next, consider how biases against women a�ect the population as a whole. Figures

6 and 7 respectively illustrate population-wide e�ects in terms of how the occurrence of

specific outcomes and welfare as well as trustee utility di�ers from the human benchmark.

We show results for all games (panel (a)), the subsample of games where trustees are

women (panel (b)), and the subsample of games where trustees are men (panel (c)).
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Figure 12 in Appendix B gives an overview of absolute shares of game outcomes for all

di�erent AI systems.

Figure 6. Di�erences in relative frequencies with which specific outcomes occur relative
to human baseline, conditional on the degree of algorithmic bias against women. From
left to right panels show results for (a) the entire sample of games, (b) the sumsample of
games with female trustees, and (c) the subsample of game with male trustees.

Both figures emphasize the detrimental population-wide consequences that the use

of biased AI systems may entail. The more biased a system is, the more it increases

(decreases) the occurrence of the socially most e�cient (ine�cient) outcome relative to

a human decision-maker (see figure 7). In our setting, compared to the human trustor,

the most biased system reaches the mutually defective outcome 19.9% more often, while

the occurrence of mutual cooperation drops by 14.6%. Until the part of female training

instances comprises at least 20% of reciprocal examples, the use of an AI system steers the

entire population into a less e�cient state compared to human decision making. These

negative ramifications are entirely driven by games where trustees are female. In cases

where the trustee is male, the mutually cooperative outcomes increase while the mutually

defective ones decrease independent of the training data distortions. Hence, algorithmic

biases create considerable di�erences in game outcomes, based on gender. In the most

biased case, the AI system only cooperates in 1.5% of the cases where it would have been

optimal to do so in case the trustee is a woman. In contrast, this AI system does so in

60.3% when a trustee is a man.

Due to highly biased systems’ ine�ciently low cooperation with female trustees, social
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Figure 7. Di�erences in welfare and trustee utility relative to human baseline, con-
ditional on the degree of algorithmic bias against women. From left to right panels
show results for (a) the entire sample of games, (b) the sumsample of games with female
trustees, and (c) the subsample of game with male trustees.

welfare decreases substantially. Concerning the most biased system, welfare subsides by

11.8% (from 28.7 to 25.3 units). Highlighting the severely unequal treatment in the most

biased case, it is the group of female trustees who bear the brunt of the welfare loss since

their average drop in utility is even larger than the mean loss experienced by the trustor

(-37.8% vs. -20%). In contrast, the utility of male trustees grows by 6% in this scenario.

This is particularly concerning, considering that algorithmic biases are often the digital

continuation of historical discrimination and less favorable treatment of specific groups,

that has been encoded into training data. Panel (c) in figure 6.2 further suggests that male

trustees also have an interest in interacting with an AI system that does not discriminate

against women, since they benefit more when the AI system is less biased. The utility

of male trustees increases by 10.2% when an unbiased system instead of a human makes

the trustor decision; when interacting with the most biased one only by 4% (Wilcoxon

rank-sum test: p < 0.000).

Result 3 Strongly biased AI systems may steer entire populations into undesirable and

socially highly ine�cient states. The discriminated group bears the brunt of the harm.

The potential to augment social welfare is thus inextricably linked to a system’s resilience

not to inherit discriminatory behavior in the training process.
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Finally, there is one firmly important issue we want to stress. In the setting we consider,

the true label of a trustee, i.e., whether this person reciprocates cooperation or not, is

only observed in case the trustor initially cooperates. Initial defection always leads to a

defective response of the trustee, which does not provide useful information about this

person being a reciprocator or not. This selective labels issue (Lakkaraju et al., 2017),

reflects the fundamental structure of a multitude of real-life situations in which algorithms

are used to automate or augment decisions. Examples include patrolling decisions of the

police (Ensign et al., 2017), bank o�cers issuing loans (Huang et al., 2007), and judges

making bail decisions (Kleinberg, Lakkaraju, et al., 2018), to name only a few.

In our study, we are in an unusual position to observe a trustee’s response even for

trustor choices that did not actually happen. As a consequence, we are able to compute

precise performance metrics. In real-life scenarios, however, one naturally does not observe

the accuracy of a prediction that evokes the decision where no label is produced, e.g.

one does not know whether a negative prediction about a person’s creditworthiness is

accurate if the predictions leads to the decision not to issue a loan. The measurement

and assessment of an algorithm’s performance is thus limited to the selectively generated

outcomes, which may lead to incorrect conclusions.

Figure 8. Predictive performance of the ML algorithm conditional
on the degree of bias. Panel (a) depicts the precision metric. Panel
(b) the recall metric

To illustrate this issue, consider figure 8 which portrays performance metrics for AI
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systems conditional on their inherent algorithmic bias. Panel (a) depicts the share of

optimal trustor decisions given that the system cooperated (i.e. the precision score),

which is the measure that is available in real-life situations. Panel (b), on the other hand,

shows the share of optimal decisions given that cooperation would have been reciprocated

(i.e. the recall score), which is generally not available in real-life scenarios.11

The figure depicts an alarming pattern. Independent of the inherent algorithmic bias,

and thus of the e�ciency and welfare consequences, the precision metric indicates that

about 71% of the decisions to cooperate are correct (see panel (a)). This conveys the

impression that all AI systems perform equally well. Even the most biased, and welfare

reducing, AI system may be incorrectly assessed as performing reasonably well, if one

bases the evaluation on this metric. Panel (b), on the other hand, paints a more accurate

picture of the AI systems’ performance. It shows that the recall score is sensitive to the

algorithm’s bias. The more pronounced the bias, and thereby the negative e�ciency and

welfare consequences, the lower is the value of this performance metric. For instance,

instead of indicating that the most biased system performs about as well as the unbiased

one (respective precision scores: 0.71 vs. 0.72), the recall score shows a considerably lower

performance for the most biased system (recall scores: 0.3 vs. 0.69). Unfortunately, it is

not possible to retrieve the recall measure in cases where labels are generated selectively,

only the precision score. This emphasizes the importance of a careful interpretation and

assessment of available performance metrics on AI systems, especially in environments

where the problem of the selective labels likely occurs. If one uses these measures as a

basis to decide about the continued or enhanced employment of these machines, there

could be detrimental society-wide ramifications without decision-makers even knowing

that a more e�cient outcome would have been feasible.

Result 4 In an environment of selective labels, the accurate evaluation of algorithmic

performance is di�cult and prone to be misleading.
11The accuracy of the AI systems decisions, which is unobservable in real-life, is depicted in figure 5 as

the share of optimal decisions.
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Algorithmic biases and continued learning

So far our results emphasize that AI systems are a two-edged sword. On the one hand,

we map out how an unbiased AI system can create substantial welfare gains for the entire

population. This is mainly because the AI system e�ectively reduces asymmetric infor-

mation and correctly chooses to cooperate more often than its human stakeholders do.

On the other hand, we provide controlled evidence that the integration of biased systems

may not only limit the positive consequences but reverse them to the negative and cre-

ate considerable population-wide welfare losses. The main reason for that appears to be

that based on the systematically incorrect prediction, biased AI systems seize cooperation.

These observations imply that in order to maximize the potential benefits of AI systems

for societies, it is important to further our understanding of how to counteract algorithmic

biases.

We, therefore, devote the final part of our analyses to studying how algorithmic biases

endogenously change if they continue to learn within an environment, where the originally

learned biases are no longer present. The notion of why this may be the case is as follows.

ML algorithms learn from data that is assumed to be drawn from a fixed, unknown distri-

bution. When algorithms learned to make systematically incorrect predictions for unseen

out-of-sample examples, it is from a technical perspective because the distributions from

which the training and out-of-sample examples are drawn from di�er fundamentally. If

we interpret this di�erence as being the result of a change in a non-stationary environ-

ment, algorithmic biases, at least in terms of systematically incorrect predictions, can be

interpreted as an inherent concept drift, i.e., a fundamental change in the representation

to be learned (Widmer & Kubat, 1996). In the domain of learning in non-stationary envi-

ronments, the literature has argued that continued learning may be a natural remedy to

deal with concept drifts by adapting learned representations dynamically over time (see

for example Jordan & Mitchell, 2015; Elwell & Polikar, 2011).

Following this notion, we study the development of algorithmic biases over time, when

the ML component of our AI system is repeatedly retrained using training data that is
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supplemented by previous game outcomes from the population. We consider 100 rounds

of play where we retrain the ML algorithm using the original training set supplemented

by the game outcomes of all previous periods. This setting mirrors a scenario, where a

fixed population of individuals interacts with each other over a certain period. Note that

continued learning in our context technically implies that the original training set is in-

creasingly supplemented by a limited number of distinct observations from the population

set. As a consequence, the predictive ML algorithm will likely overfit after some peri-

ods. The point of the analyses, however, is to document whether continued learning on

a fixed population that systematically di�ers from the original training set, can mitigate

algorithmic discrimination over time. Therefore, the issue of overfitting is of secondary

importance to our endeavor.

To ensure a better overview, we will focus on three AI systems, that di�er with regards

to the intended bias we initially introduce through distorting the original training data.

We consider (i) an unbiased AI system where female examples are balanced with regards to

the labels, (ii) an intermediately biased AI system where the share of reciprocal examples

among female observations equals 20%12 , and (iii) a strongly biased AI system where

there are no reciprocal female examples in the original training data. At this point, it is

important to emphasize the selective labels setting. Given the structure of the game and

the predictive ML algorithm, observed game outcomes can only supplement the training

data, in case the AI system cooperates. As a consequence, a continuous extension of the

training data with selective observations also bears the risk of further distorting the data

used to (re)train the predictive algorithm, so that existing biases are maintained or even

reinforced via feedback loops (Cowgill & Tucker, 2019).

Since the detrimental population-wide consequences of employing biased algorithms

can ultimately be traced back to a systematically incorrect prediction about women’s

likelihood to reciprocate cooperation, we look at the development of predictions by the
12Note: We choose 20% as intermediately biased since previous analyses revealed that for this share of

reciprocal examples among females, the AI system leads to almost the same outcomes as in the human
benchmark.
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ML algorithm over time.

Figure 9. Mean squared errors of predicted probabilities are depicted over time. From
left to right panels show results for (a) the entire sample of games, (b) the sumsample of
games with female trustees, and (c) the subsample of games with male trustees.

Figure 9 shows the development of the mean squared error of the predicted probability

that a trustee is a reciprocator over time under continued learning. We display results

for the overall sample of games (panel (a)) and subsamples of games with female and

male trustees (respectively panel (b) and (c)). Illustrated results indicate that continued

learning in our setting, at least to some extent, provides a remedy for algorithmic biases

over time. By using the response and characteristics of trustees against whom the AI

system cooperated as additional observations to supplement training data and retrain the

algorithm, the predictive performance of all three algorithms increases substantially over

time. Even for the most biased algorithm, the mean squared error for the entire sample

decreases from 0.52 to 0.26 after 25 rounds of play (see panel (a)). After 50 periods, the

error further dropped to 0.1. This decrease is driven by both, improved performance when

the trustee is a woman and a man. Notably, while the predictive error for men is still

smaller than for women (0.04 vs. 0.17), the di�erence has decreased from initially 0.33

(0.37 vs. 0.7) to 0.13. With regards to the intermediately biased algorithm, the initial

di�erence in the performance between men and women even vanishes entirely (from 0.3

vs. 0.43 to 0.04 vs. 0.04). The displayed results further suggest that the degree and speed

with which continued learning can mitigate algorithmic biases does depend on the extent
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of the original bias. The mean squared error curve in panel (b) for the intermediately

biased algorithm is found to be steeper than the one for the strongly biased algorithm.

Corresponding curves in panel (c) are virtually identical. This suggests that the algorithm

with the intermediate bias unlearns systematically incorrect predictions for women, in

favor of more accurate ones, faster than the algorithm with the strongest bias. One

explanation, corroborated by our data, is that the less biased system initially cooperates

more with female trustees and thus creates larger amounts of additional training data

which helps to improve the predictive performance.

In general, it appears that feedback loops drive the observed self-correction process. By

increasingly supplementing original training data with observations from the population

set, the original di�erences in the training and population sets disappear. Retraining

the ML algorithm on more and more representative training data, helps increasing its

predictive performance. Thereby the AI system correctly cooperates more often, which

in turn leads to an accelerating enrichment of the training data with new, representative

observations. Given that the most biased system initially barely cooperates with female

trustees (only in about 1% of the cases), it seems that even a few additional observations

can, after some time, invoke the self-correcting feedback loop.

Overall, these observations emphasize that continued learning may lead to considerable

increases in predictive performance, which are associated with a decrease in algorithmic

biases. The improved performance and mitigated biases naturally translate into positive

e�ciency and welfare consequences (see figures 13, 14, and 15 in the appendix).

Result 5 Continued learning can improve ML algorithms predictive performance over

time. Supplementing the training data with a�ected outcomes and retraining the algorithm

mitigates algorithmic biases.

Discussion and Conclusion

With the paper at hand, we contribute to discussions about the broad consequences of

integrating AI systems into human societies. We use a game-theoretic setting that provides
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us the necessary control over potential confounds and allows us to observe counterfactual

outcomes of choices. More specifically, we make use of the sequential prisoners’ dilemma

paradigm, a setting that mirrors the fundamental structure of a multitude of real-life

situations. Our objective is to produce causal evidence on how algorithmic discrimination

influences AI systems’ potential to augment individual and population-wide welfare.

Our results show that the employment AI systems can significantly improve economic

e�ciency and social welfare on an individual and a population-wide level. The change

in e�ciency and welfare associated with letting AI systems instead of humans decide,

however, depends on the extent of inherent algorithmic biases. In our setting, AI sys-

tems that make systematically incorrect choices when interacting with females, can cause

considerable e�ciency losses and decrease social welfare, especially for the discriminated

groups. Considering that algorithmic biases often originate from historic discrimination

that is encoded in data, biased AI systems entail the risk of maintaining and, depending on

their scope of application, scaling discriminatory practices. This is particularly concerning

given that inherent algorithmic biases are frequently hard to detect so that discrimination

may already have been institutionalized and led to considerable social problems for the

disadvantaged group. In that sense, our results emphasize the importance to ensure that

broadly employed AI systems work accurately for all groups. To this end, it is vital to

identify adequate performance metrics. However, as shown, this can be particularly di�-

cult in selective labels settings, where algorithmic performance can only be measured on

a highly endogenous subsample of outcomes, so that even algorithms that do very poorly

convey a false impression of performing well. This emphasizes the danger that algorithmic

discrimination, with its negative ramifications, remains hidden over a long period.

Additional findings in our paper also show a silver lining in this regard. In particular,

our analyses suggest that continued learning can provide a remedy to systematically inac-

curate ML behavior. In that regard, our insights indicate the superiority of continuously

learning AI systems over static ones in domains where there is a strong likelihood that

predictive algorithms are originally trained on data su�ering from non-randomly missing
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observations through past sample-selection. Static algorithms that are not improved over

time and will always exhibit a low performance with regards to discriminated groups. Algo-

rithms that continue to learn may autonomously improve their predictive performance for

underrepresented groups over time due to inherent, data-driven feedback loops. Against

this background, organizations may be well advised to implement a process ensuring the

continued collection of new training examples and updating of employed AI systems.

Finally, we hope to inspire future research on algorithmic feedback loops and their

interaction with algorithmic discrimination. From a policy maker’s perspective, it is im-

portant to understand how interventions intended to ban human discriminatory practices

may interact with biased, continuously learning AI systems in the long run. Especially

when algorithmic discrimination is hard to detect and thus likely to remain unaddressed

explicitly, it is vital to have insights into dynamic relations between regulation and AI

systems so that organizational and political reforms can be better informed.
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Appendix A: Proofs

Let Ui(ai, aj) denote the utility of trustor i given that the trustor chooses strategy ai œ

(C, D) and the assigned trustee chooses to respond aj œ (C, D) conditional on observing

ai. There are two types ◊ œ (r, s) - reciprocal (r) and selfish (s) - whose preferences are

given by

Ui(fii, fij , ◊i) =

Y
__]

__[

1
2 (fii + fij) if fii Ø fij , ◊i = r

fii otherwise
. (23)

fii and fij respectively describe material payo�s earned by the trustor and the trustee. r-

and s-types’ optimal pure strategies in the role of the trustee are respectively given by

aú(r) = (CD) and aú(s) = (DD). The two letters from left to right respectively indicate

a trustee’s conditional response to the trustor initially choosing to cooperate and defect.

µ̂r describes trustors’ common prior that an assigned trustee is a reciprocal type. Given

the population only comprises reciprocal (r) and selfish types (s), initial cooperation is the

utility-maximizing decision for trustor i i�

µ̂r · Ui(C, C) + (1 ≠ µ̂r) · Ui(C, D) Ø Ui(D, D). (24)

The game structure and payo�s given a certain outcome equal the following structure:

Figure 10. A sequential prisoners’ dilemma

Given the depicted payo� structure, it holds for both types that Ui(C, C) = 20, Ui(C, D) =
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0 and Ui(D, D) = 10. As a consequence, we can rewrite condition (24) as

µ̂r · 20 + (1 ≠ µ̂r) · 0 Ø 10. (25)

Proof Proposition 1:

Whenever a trustor’s personal belief is equal to µ̂r < 1
2 , condition 25 can never be

satisfied since µ̂r · 20 < 10 ’µ̂r < 1
2 . As a consequence, trustors always choose to

defect. Given r- and s-types’ optimal decisions in the role of the trustee, initial de-

fection is always responded by defection, so that mutual defection is the ultimate outcome.

Proof Proposition 2:

Whenever a trustor’s personal belief is equal to µ̂r Ø 1
2 , condition 25 is always satisfied

since µ̂r · 20 Ø 10 ’µ̂r Ø 1
2 . As a consequence, trustors always choose to cooperate.

Given r- and s-types’ optimal decisions in the role of the trustee, initial cooperation is

reciprocated by r-types and responded with defection by s-types. Given the popula-

tion shares of r- and s-types µr and µs = 1 ≠ µr, the outcome of mutual cooperation

occurs µr times of the cases, while the free-riding outcome occurs 1≠µr times of the cases.

Proof Proposition 3:

Let an AI system comprise the predictive ML algorithm fD(.) and the codified preferences

of the trustor on whose behalf the system decides. fD(x) = ◊̂ œ (0, 1) denotes an individual

level prediction that a trustee is of type r. The AI system always chooses the strategy

that maximizes the trustor’s utility. Hence, the AI system chooses to cooperate i�

◊̂ · 20 + (1 ≠ ◊̂) · 0 Ø 10 (26)

which is the case whenever ◊̂ Ø 1
2 . Let q(◊̂|◊) be the type-dependent probability dis-

tribution of algorithmic predictions. Given this distribution, the AI system eventually (i)

cooperates given the trustee is an r-type with probability of
s 1

0.5 q(◊̂|r)d◊̂, (ii) defects given
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the trustee is an r-type with probability of 1 ≠
s 1

0.5 q(◊̂|r)d◊̂ =
s 0.5

0 q(◊̂|r)d◊̂, (iii) cooper-

ates given the trustee is an s-type with probability of
s 1

0.5 q(◊̂|s)d◊̂, and (iv) defects given

the trustee is an s-type with probability of 1 ≠
s 1

0.5 q(◊̂|s)d◊̂ =
s 0.5

0 q(◊̂|s)d◊̂. Depending

on the actual population shares of r-types µr and s-types 1 ≠ µr = µs, the outcome of

(i) mutual cooperation occurs µr
s 1

0.5 q(◊̂|r)d◊̂ times of the cases, (ii) mutual defection oc-

curs (1 ≠ µr)
s 0.5

0 q(◊̂|s)d◊̂ + µr
s 0.5

0 q(◊̂|r)d◊̂ times of the cases, and (iii) free-riding occurs

(1 ≠ µr)
s 1

0.5 q(◊̂|s)d◊̂ of the cases.
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Appendix B: Supplementary material

Goethe Study Panel: Survey 

Welcome to the website of the online survey of the Goethe Studies Panel. We would appreciate 
if you could take a few minutes to fill out the questions. This survey is aimed at students of 
economics at Goethe University. The participation is voluntary. However, the significance of 
this survey depends decisively on the cooperation of all students. Therefore, we cordially ask 
you to answer questions carefully and without consultation with other persons.  

 

Questions on family background 

Personal background 

 

How far do you live from your parents?  

Please select only one of the following answers: 

x I live at my parents 
x 1-10 KM away 
x 11-50 KM away 
x 51-150 KM away 
x More than 150 KM away 

 

Have you, due to your studies at the Goethe-University, changed your place of residence 
changed?  

Please select only one of the following answers: 

x Yes 
x No 

 

How many siblings do you have? 

Please enter your answers below: 

x Younger siblings 
x Older siblings 

 

Please indicate with which hand you prefer to perform the following activities: 

 

 Always 
right 

Mostly right Both hands Mostly left Always lfet 

Write      
Throw      

, changed your place of residence?
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Tooth brushing      
Holding a spoon      

 

What languages do you speak at home? (multiple answers are possible) 

Please select all applicable answers: 

x German 
x Another language 

 

What is the highest professional qualification of your parents? (Please indicate the highest 
educational level in each case) 

 

 Father Mother 
University   
University of applied science   
Technical college (former GDR)   
Technician or master craftsman examination   
Apprenticeship   
No educational background   
Unknown   

 

How do you finance yourself? (multiple answers are possible) 

Please select all applicable answers: 

x My parents support me financially 
x BAföG 
x Scholarship 
x Job as student assistant (Hiwi) at the university 
x Job as a tutor at the university 
x Job outside the university 
x Other 

 
Questions about the school 

School education 

At which type of school did you get your university entrance qualification? 

Please select only one of the following answers: 

x Grammar School 
x Comprehensive school 
x Vocational school 
x Other 
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After how many school years did you receive your university entrance qualification? 

Please select only one of the following answers: 

x After less than 12 years 
x After 12 years 
x After 13 years 
x After more than 13 years 

 

In which federal state did you acquire your university entrance qualification? 

Please select only one of the following answers: 

x Baden-Württemberg 
x Bavaria 
x Berlin 
x Brandenburg 
x Bremen 
x Hamburg 
x Hesse 
x Mecklenburg-Western Pomerania 
x Lower Saxony 
x North Rhine-Westphalia 
x Rhineland-Palatinate 
x Saarland 
x Saxony 
x Saxony-Anhalt 
x Schleswig-Holstein 
x Thuringia 
x Other 

 

Which of the following subjects did you take at school in the upper school and what 
grades (between 1.0 and 4.0) did you have in these subjects in your Abitur certificate? 

Please select a maximum of 4 answers. 

Please select the appropriate items and write a comment: 

x German 
x English 
x Mathematics 
x Physics 
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Which of these subjects did you take as advanced courses at school? 

Please select all applicable answers: 

x German 
x English 
x Math 
x Physics 
x None of these subjects 

 

Questions on the choice of study subject 

I chose my present course of study because... 

On a scale from 1 (completely correct) to 6 (completely incorrect) please indicate the 
accuracy of the following statements.  

I chose my present course of study because... 

x it particularly interested me and I wanted to 
x it corresponds to my inclinations and talents. 
x as a graduate of this course of studies I expect particularly good earning and 

employment opportunities. 
x I didn't know what else to do 
x I was influenced in my decision by my family / friends 

 

Is your current course of study your dream study? 

Please select only one of the following answers: 

x Yes 
x No 

 

On a scale from 1 (completely sure) to 5 (completely unsure) please indicate the 
accuracy of the following statements.  

x How confident are you in your choice of study? 
x How satisfied are you today with your choice of study? 
x How certain are you that you will complete your studies? 
x How certain are you that you will complete your studies at Goethe University? 

 

Did you do one or more of the following activities before starting your current studies? 

Please select all applicable answers: 

x Internship related to your field of study  

this university?
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x Internship not related to the field of study 
x Training 
x Completed studies 
x Aborted studies 
x Voluntary social year, German Armed Forces, Federal Voluntary Service etc. 
x Other: 

 

Questions about studies 

Study 

How many semesters do you estimate you will need in total until you graduate from 
your current course? 

Only numbers may be entered in this field. 

Please enter your answer here: 

 

What are your plans for the time after graduation from your current course of study? 

Please select only one of the following answers: 

x Begin a further study (e.g. Master's degree) 
x go to work 
x Other 

 

Based on my grade point average, I expect to belong to... 

Please select only one of the following answers: 

x ... the top 10% of my class. 
x ... the top 11-20% of my year. 
x ... the top 21 - 30% of my year of study. 
x ... the top 31 - 40% of my year of study. 
x ... the top 41 - 50% of my year of study. 
x ... the top 51 - 60% of my year of study. 
x ... the top 61 - 70% of my year of study. 
x ... the top 71 - 80% of my year of study. 
x ... the top 81 - 90% of my year of study. 
x ... the top 90 - 100% of my year of study. 

 

How important is it to you to maintain your grade point average in your studies or even 
improve? 

Please select only one of the following answers: 
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x Very important 
x Pretty important 
x Indifferent 
x Rather unimportant 
x Very unimportant 

How many hours a week do you think you should invest in your studies? 

Only numbers may be entered in this field. 

Please enter your answer here: 

 

How many hours do you think you will actually invest in your studies each week? 

Only numbers may be entered in this field. 

Please enter your answer here: 

 

How many hours a week do you currently invest in your studies? 

Only numbers may be entered in this field. 

Please enter your answer here: 

 

Do you believe that your future earnings will depend on your final grade in your 
studies? 

Please select only one of the following answers: 

x Completely correct 
x Fully applicable 
x Applies 
x Applies less 
x Not applicable 

 

Risk, Impatience, TC & Narcissism 

We would like to ask you to answer the following truthfully. There are no "real" or "wrong 
answers."  

How do you personally assess yourself? Are you generally a person willing to take risks 
or do you try to avoid risks? Please answer using the following scale, where the value 0 
means: "Not willing to take risks at all", and the value 10: "Very willing to take risks". 
With the values in between you can grade your assessment. Please select the appropriate 
answer: 

x 1 
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x 2 
x 3 
x 4 
x 5 
x 6 
x 7 

 

How do you personally assess yourself? Are you generally a person who is impatient or 
who is always very patient? 

Please answer using the following scale, where the value 0 means "very impatient" and the 
value 10 means "very patient". With the values in between you can grade your assessment. 
Please select the appropriate answer: 

x 1 
x 2 
x 3 
x 4 
x 5 
x 6 
x 7 
x 8 
x 9 
x 10 

To what extent do you agree with the following statement: "I'm a narcissist." (Note: A 
narcissist is selfish, self-centered, vain.)? Please answer using the following scale, where 
a value of 1 means "do not agree at all" and a value of 7 means "agree completely". 
With the values in between you can grade your assessment. Please select the appropriate 
answer:  

x 1 
x 2 
x 3 
x 4 
x 5 
x 6 
x 7 

How would you assess yourself in the context of the following statements? Please answer 
using the following scale, where 1 means "do not agree at all" and 7 means "agree 
completely". The values in between allow you to grade your assessment. Please select 
the appropriate answer: 

x I like to find myself in situations where I am in competition with others. 
x It is important to me to be better than others. 
x I think it is important to win at work and in games. 
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x I exert more effort when competing with others. 

 

Big 5 and Grit 

In the list below are different characteristics a person can have. It is likely that some 
characteristics will apply fully to you personally and others not at all. For others, you may be 
undecided. Please answer using the following scale: 

A score of one means you are not applicable at all. 

The value 7 means: fully applicable. 

With the values between 1 and 7 you can grade your opinion. 

 

I am someone who... 

Please select the appropriate answer: 

x works thoroughly 
x is communicative, talkative 
x is sometimes a little rough on others 
x is original, brings in new ideas 
x is often worried 
x pardon 
x is rather lazy 
x can come out of itself, 
x is sociable 
x appreciates artistic, aesthetic experiences 
x easily nervous 
x Tasks completed effectively and efficiently 
x is reserved 
x is considerate and friendly with others 
x has a vivid imagination, imagination 
x is relaxed, can handle stress well 

To what extent do the following statements apply to you personally? There are no right or 
wrong answers here. Please select only one answer in each line.  

Please answer using the following scale: 

A value of one means they do not apply at all. 

The value 5 means: completely correct. 
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With the values between 1 and 5 you can grade your opinion. Please select only one 
answer in each line. 

x I often set myself a goal, but then decide later to pursue a different goal. 
x New ideas and projects sometimes keep me away from previous ones. 
x I am interested in something new every few months. 
x My interests change from year to year. 
x I was once obsessed with a project or idea for a short time, but later I lost interest. 
x I find it difficult to stay focused on projects if they last several months. 
x I have worked for years towards a goal that I have achieved. 
x To overcome important challenges, I also overcome setbacks. 
x Everything that I start, I also finish. 
x I am not discouraged by setbacks. 
x I am a hard working person. 
x I am a diligent person. 

 

Trust and Reciprocity 

For the following decision situation, another survey participant will be assigned to you 
randomly. You and this other person make different decisions, which then result in 
your payout and the payout of the other person. At the beginning you and the other 
person will each receive 10 Euros from us. You have the following two options to choose 
from: 

Option A: You keep your 10 Euros. 

Option B: You give your 10 euros to the other person. The 10 Euros are doubled, i.e. the 
other person receives 20 Euros.  

The other person also has these two options to choose from. Hence, there are four 
possible outcomes, depending on how you and the other person decide: 

If you and the other person both choose option A, you will both end up with 10 Euros 
each. 

If you and the other person both choose option B, both of you will each have 20 euros. 

If you choose option A and the other person chooses option B, you will have 30 euros 
and the other person 0 euros. And vice versa, if you choose option B and the other 
person chooses option A, you have 0 euros and the other person has 30 euros. In the 
following two situations, please decide whether you would rather choose option A or 
option B. The situations differ in whether you or the other person makes their decision 
first. 

 

Situation 1: You decide first and the other person is informed of your decision. 

Which option do you choose? 
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x A 
x B 

Situation 2: The other person makes their decision first, and you are informed of their 
decision. 

Which option do you choose if the other person has chosen option A? 

x A 
x B 

Which option do you choose if the other person has chosen option B? 

x A 
x B 

Figure 11. Translation of field study question items.
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Share of reciprocal examples among female observations in training set
Performance measure 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Accuracy 0.84 0.82 0.81 0.76 0.76 0.79 0.75 0.74 0.76 0.76 0.75

Precision (Reciprocal) 0.71 0.71 0.74 0.67 0.71 0.74 0.69 0.72 0.76 0.77 0.77

Precision (Selfish) 0.88 0.85 0.83 0.80 0.78 0.80 0.78 0.76 0.77 0.75 0.73

Recall (Reciprocal) 0.61 0.59 0.57 0.57 0.55 0.62 0.63 0.64 0.70 0.71 0.73

Recall (Selfish) 0.91 0.91 0.91 0.86 0.87 0.87 0.82 0.82 0.82 0.80 0.77

Table 4. Algorithmic performance conditional on the share of reciprocal examples among female
observations in the training set. We show precision and recall metrics for both types of predictions.

Algorithm 2: Sequence of simulation exercises with continued learning
Result: Game outcomes and utilities in sequential prisoners’ dilemma games

Cleaning of raw data;

while counter Æ 10 do

1. Random partition of cleaned data - 25% population set, 75% training set;

2. Preparation of training set for training of ML algorithm;

3. Training, validation, testing of ML algorithm on training set;

4. Estimation of individual utility functions for subjects in population set;

while counter Æ 100 do

5. Random draw of 50% of individuals in population set;

6. Random partition of selected individuals in trustors and trustees;

7. Random matching of trustors and trustees in pairs of two;

8. Matching of human / AI system trustor decisions with trustees conditional choices,

determination of game outcomes and utilities.;

9. Compute diverse performance metrics;

10. Append training data by trustees whose matched trustor cooperated;

11. Retrain the AI system’s ML algorithm on the appended training set
end

end
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Figure 12. Relative frequencies with which di�erent game outcomes, i.e., mutually
cooperative (CC), mutually defective (DD), and free-riding (CD) outcomes, occur. Panel
(a) represents results for human decision-makers; panel (b) represents results for an
unbiased AI system.

Figure 13. Shares of optimal trustor decisions, conditional on the degree of algorithmic
bias against women. From left to right panels show results for (a) the entire sample of
games, (b) the sumsample of games with female trustees, and (c) the subsample of game
with male trustees.

57

Electronic copy available at: https://ssrn.com/abstract=3675313



Figure 14. Frequencies with which certain outcomes occur, conditional on the degree
of algorithmic bias against women. From left to right panels show results for (a) the
entire sample of games, (b) the sumsample of games with female trustees, and (c) the
subsample of game with male trustees.

Figure 15. Welfare and trustee utility, conditional on the degree of algorithmic bias
against women. From left to right panels show results for (a) the entire sample of games,
(b) the sumsample of games with female trustees, and (c) the subsample of game with
male trustees.
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