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Abstract 
 
While many puzzles in static choices under risk can be explained by a preference for positive and 
an aversion toward negative skewness, little is known about the implications of such skewness 
preferences for decision making in dynamic problems. Indeed, skewness preferences might play 
an even bigger role in dynamic environments because, even if the underlying stochastic process 
is symmetric, the agent can endogenously create a skewed distribution of returns through the 
choice of her stopping strategy. Guided by salience theory, we theoretically and experimentally 
analyze the implications of skewness preferences for optimal stopping problems. We find strong 
support for all salience-based predictions in a laboratory experiment, and we verify that salience 
theory coherently explains skewness preferences revealed in static and dynamic decisions. Based 
on these findings we conclude that the static salience model—unlike (static) cumulative prospect 
theory—can be reasonably applied to dynamic decision problems. Our results have important 
implications for common optimal stopping problems such as when to sell an asset, when to stop 
gambling, when to enter the job market or to retire, and when to stop searching for a house or a 
spouse. 
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1 Introduction

1.1 Overview and Contribution

Dynamic decisions under risk are ubiquitous. Examples include the decisions when to sell an
asset, when to stop gambling, when to enter the job market or to retire, when to buy a flight
ticket or a durable good, and when to stop searching for a house or a spouse. While most puz-
zles regarding static choices under risk (e.g., the Allais paradoxes or the simultaneous demand
for insurance and gambling) can be explained by a preference for positive and an aversion to-
ward negative skewness, little is known about the implications of such skewness preferences for
dynamic decision making. Indeed, skewness preferences might play an even bigger role in
dynamic environments because, even if the underlying stochastic process is symmetric, the de-
cision maker can create a skewed distribution of returns through the choice of her stopping
strategy (see, e.g., Barberis, 2012; Ebert and Strack, 2015). By adapting a static model of skew-
ness preferences to an otherwise standard optimal stopping problem, we study theoretically
and experimentally the implications of endogenously created skewness for stopping behavior.

Skewness preferences revealed in static decisions are typically rationalized via models of
non-linear probability weighting such as cumulative prospect theory (CPT; Tversky and Kah-
neman, 1992) or salience theory of choice under risk (ST; Bordalo et al., 2012). Ebert and Strack
(2015, 2018) show, however, that skewness preferences asmodelled by CPT result in unrealistic,
as too extreme, predictions for optimal stopping problems: as long as the available strategies
enable the agent to create a sufficiently skewed return distribution, a naïve1 CPT agent will
never stop and instead gamble until the bitter end, independent of how unprofitable the gamble
is in expectation. Salience theory, in contrast to CPT, imposes natural limits on the strength of
skewness preferences in static settings (see Dertwinkel-Kalt and Köster, forthcoming), and, as
we will show in this paper, therefore predicts also more sensible stopping behavior.

We study the problem of when to stop an Arithmetic Brownian Motion (ABM) with a non-
positive drift and a finite expiration date. By allowing for a finite expiration date, wemodify the
setup in Ebert and Strack (2015, 2018) in a way that makes our predictions testable in an incen-
tivized lab experiment. Here, a naïve CPT agent will, independent of the drift of the process,
never stop gambling before bankruptcy, since at every point in time, he can find a stop-loss and
take-profit strategy2 that induces a sufficiently right-skewed distribution of returns to be more
attractive than stopping immediately. Our main theoretical result shows that a naïve salient
thinker does not exhibit the same extreme stopping behavior as a CPT agent, namely, a naïve
salient thinker immediately stops any ABM with a drift below some threshold. As a corollary

1Non-linear probability weighting implies that an agent’s optimal strategy at time tmight no longer be optimal
at some later point in time (e.g., Machina, 1989). Optimal stopping behavior under salience theory and CPT, thus,
depends on whether the agent is aware of this time-inconsistency (i.e., the agent is sophisticated) or not (i.e., the
agent is naïve). We assume that the agent is naïve, which is also supported by our experimental results.

2A stop-loss and take-profit strategy is characterized by a stop-loss threshold below the current value of the
process and a take-profit threshold above the current value of the process at which the process will be stopped.
These strategies are often proposed by retail banks to their customers (see., e.g., the brokerage data by Heimer et al.,
2020) and have attracted much attention in the related literature (e.g., Xu and Zhou, 2013; Ebert and Strack, 2015;
Fischbacher et al., 2017; Heimer et al., 2020). Moreover, these strategies allow agents to create skewness in the return
distribution and they therefore allow us to study the effect of endogenously created skewness on stopping behavior.
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to our main result, we further show that salience theory is consistent with (excessive) gambling
for “fair” processes with a drift of zero, but does not predict that people will necessarily hold
such a fair process until the expiration date. Our main theoretical result, thus, distinguishes
salience theory not only from CPT-specifications adapted in the literature (as, e.g., by Barberis,
2012; Ebert and Strack, 2015; Heimer et al., 2020), which postulate that subjects will never stop
before the expiration date, but also from expected utility theory (EUT) with a concave utility
function, according to which the agent stops any process with a non-positive drift immediately.

In a next step, we restrict the choice set to all stop-loss and take-profit strategies to learnmore
about how a näive salient thinker plans to stop and how hewill revise this plan over time. These
additional predictions allow for a more powerful experimental test of salience theory against
alternative models of skewness preferences. First, a salient thinker chooses a particular subset
of stop-loss and take-profit strategies, which give rise to a right-skewed distribution of returns,
so-called loss-exit strategies (see, e.g., Barberis, 2012; Heimer et al., 2020): a loss-exit strategy is
defined as a stop-loss and take-profit strategy for which the stop-loss threshold is closer to the
current value of the process than the take-profit threshold. Second, a naïve salient thinker does
not necessarily follow his initial plan, but may instead revise his strategy over time. Salience
theory can rationalize, in particular, stopping behavior that is consistent with the well-known
disposition effect (e.g., Shefrin and Statman, 1985; Odean, 1998; Barberis, 2012; Imas, 2016).

We test the predictions of salience theory in a lab experiment inwhich subjects have to decide
when to stop ABMs with different non-positive drifts. Using a within-subjects design, we vali-
date our approach of adapting the static salience model to a dynamic setting by further eliciting
skewness preferences in static choices. For that, building on Dertwinkel-Kalt and Köster (forth-
coming), we first show that, for a fixed expected value and variance, a salient thinker chooses
a binary lottery over the safe option paying its expected value with certainty if and only if the
lottery’s skewness exceeds some threshold. To test for this non-parametric salience prediction,
we let subjects choose repeatedly between a binary lottery with a fixed expected value and a
fixed variance, but varying skewness, and a safe payoff equal to the lottery’s expected value. If
salience is the psychological mechanism driving skewness preferences in general, it should co-
herently explain revealed attitudes toward skewness in both the static and the dynamic choices.

Our experimental results strongly support all salience-based predictions on stopping be-
havior. First, most subjects start gambling the fair process with a drift of zero, but then stop
before the expiration date. Second, subjects stop the earlier, the more negative is the drift of
the process. Third, for the median subject, more than 70% of all chosen strategies are loss-exit
strategies. Fourth, 93% of the subjects revise their initial strategy at least once, and actual behav-
ior is reminiscent of the disposition effect. Finally, we find a positive correlation between static
and dynamic gambling behavior, which is both, statistically and economically, significant: sub-
jects that reveal a stronger preference for positive skewness in static choices also have a larger
propensity to choose loss-exit strategies in the dynamic ones. In sum, not only do our results
suggest that endogenously created skewness plays an important role for stopping behavior, but
also that the static salience model can be reasonably applied to a dynamic context. We con-
clude that it is not the non-linear probability weighting per se, but the specificities of common
CPT-specifications that produce implausible dynamic predictions (see also Duraj, 2020).
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1.2 Related Literature

We contribute to four strands of the literature: to (i) the literature on skewness preferences
(which has, so far, mostly focused on static choices), to (ii) the theoretical and (iii) the experi-
mental literature on behavioral stopping as well as to (iv) the literature on the testable implica-
tions of salience theory of choice under risk.

The fact that people have a preference for right-skewed (or positively skewed) risks and an
aversion toward left-skewed (or negatively skewed) risks is one of the central findings by Kah-
neman and Tversky (1979). Such skewness preferences allow us to explain, for instance, simulta-
neous purchases of insurance and lottery tickets or the Allais paradoxes (Dertwinkel-Kalt and
Köster, forthcoming). In a laboratory experiment, Dertwinkel-Kalt and Köster (forthcoming)
have established a causal link between the attractiveness of a binary lottery and its skewness:
fixing both, the lottery’s expected value and its variance, they find that the share of subjects
choosing the lottery over its expected value monotonically increases in the lottery’s skewness.
Besides replicating their findings, we establish in this paper a positive relationship between
static and dynamic skewness preferences.

Second, we contribute to the theoretical literature on behavioral stopping, which has so far
mainly analyzed the implications of non-linear probability weighting for dynamic gambling,
with a focus on the behavior predicted by CPT (e.g. Machina, 1989; Karni and Safra, 1990;
Barberis, 2012; Xu and Zhou, 2013; Ebert and Strack, 2015, 2018; Henderson et al., 2017, 2018;
He et al., 2019). This focus can be explained by the fact that non-linearities in the probability
weights imply time-inconsistent preferences (e.g., Machina, 1989), which makes the analysis of
stopping behavior both interesting and challenging. Predicted behavior depends, in particular,
on whether the agent is naïve about his time-inconsistency or not. A naïve agent will revise his
strategy throughout time, while a (fully) sophisticated agent foresees her intention to adjust
certain strategies and chooses only strategies she will actually follow through with (e.g., Karni
and Safra, 1990). With time-inconsistent preferences also the question of whether the agent can
commit to a given strategy becomes important. The literature has studied the stopping behavior
of naïve agents without commitment (e.g., Barberis, 2012; Ebert and Strack, 2015)3 as well as
with partial or full commitment (e.g., Xu and Zhou, 2013; Henderson et al., 2017; He et al., 2019).
Duraj (2020) discusses further models (such as disappointment aversion) that produce less ex-
treme predictions than CPT, all of which we discuss in Section 6, when reviewing alternative
models. We add to the theoretical literature on behavioral stopping by proposing a dynamic
version of salience theory of choice under risk (Bordalo et al., 2012), and we describe stopping
behavior of naïve (and briefly that of sophisticated) salient thinkers without commitment.

Our main theoretical result contrasts the non-parametric predictions of salience theory on
the stopping behavior of a naïve agent with those of CPT. For an infinite process, Ebert and
Strack (2015) show that, independent of the drift of the process, a naïve CPT agent will never
stop gambling before bankruptcy, since at every point in time, he can find a sufficiently right-

3Barberis (2012) investigates numerically how, in a series of symmetric gambles, suitable stopping strategies
allow to create skewness in the return distribution, thereby inducing time-inconsistent gambling behavior of a naïve
CPT-agent. As Barberis (2012) builds on a discrete-time setup with a short expiration date, close to which the agent
runs out of skewness, he does not find the never-stopping result that Ebert and Strack (2015) derive.
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skewed stop-loss and take-profit strategy that is more attractive than stopping immediately.
In contrast, our salience model predicts that gambling behavior is sensitive to the drift of the
process: a naïve salient thinker gambles if and only if the drift of the process is not too negative.
We further show that these predictions carry over to the case of a finite expiration date, which
makes our theory testable in the context of an incentivized lab experiment.

The reason why salience theory predicts more plausible stopping behavior than CPT lies
in the different mechanism that induces a preference for right-skewed and an aversion toward
left-skewed risks. Salience theory builds on the idea of the contrast effect (e.g., Schkade and
Kahneman, 1998), which implies that states of theworld inwhich the attainable outcomes differ
a lot, attract a great deal of attention and are perceived as more likely than they actually are.
Thus, in contrast to CPT, it is not the probability of a given state of the world that mechanically
determines the size of the “probability distortion,” but the contrast in attainable payoffs in this
state. As a consequence, an attractive stop-loss and take-profit strategy under salience theory is
very different froman attractive stop-loss and take-profit strategy underCPT.While aCPT-agent
is attracted by a stopping strategy with thresholds arbitrarily close to the current wealth level,
according to salience theory the take-profit threshold has to be much larger than the current
wealth level in order to attract a salient thinker’s attention. But, since salience distortions are
bounded, a stopping strategy with a large take-profit threshold can only be attractive as long as
the returns to gambling are not too negative. Thus, salience theory imposes natural bounds on
the strength of skewness preferences, both in static and in dynamic setups.

Third, by testing our salience predictions in a lab experiment, we also contribute to the small,
but growing experimental literature on behavioral stopping (e.g., Imas, 2016; Imas et al., 2017;
Strack and Viefers, forthcoming; Heimer et al., 2020). Existing papers have focused on the ques-
tion in how far stopping decisions are path-dependent, and in particular in how far the real-
ization of previous gains and losses affects behavior. Closest related to our paper is Heimer
et al. (2020), who study optimal stopping behavior with an underlying process consisting of
repeated (fair) coin tosses. Similarly to us, they focus on stop-loss and take-profit strategies,
and they find, both in laboratory experiments as well as in observational brokerage data, that
subjects ex ante choose loss-exit strategies, but then deviate by revealing disposition-effect-like
behavior, which is also reflected in our data. We regard the study byHeimer et al. (2020) as com-
plementary to ours, as their study is purely experimental and, therefore, less suited to precisely
test different models of skewness preferences against each other, and as it does not investigate
drift-effects—the key feature of our paper—, which turn out to be of first-order importance.

More generally, we contribute to the theoretical and experimental literature on salience the-
ory of choice under risk (Bordalo et al., 2012), which has been axiomatized by Lanzani (2020).
Köster (2020) extends the axioms introduced in Lanzani (2020) to capture the choice between
multi-dimensional risks, thereby unifying the applications of salience theory to choice under
risk and consumer choice in one general framework. The predictions of salience theory for
static decisions under risk have been confirmed in several lab experiments. Frydman and Mor-
mann (2018) show, for instance, that the salience-based explanation of the Allais paradoxes fits
subjects’ behavior much better than the CPT-based explanation. We add to the theoretical liter-
ature on salience theory by extending the model from static to dynamic decision problems and
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to the experimental literature by testing the model’s predictions in a controlled lab experiment.
Finally, basic stopping problems also play a crucial role in the classical literature, including

the optimal stopping literature followingRust (1987) and the search literature in industrial orga-
nization (for reviews of the search literature see Armstrong, 2017; Anderson and Renault, 2018;
Gonzales, 2018). These papers completely abstract from any non-linear probability weighting
and skewness effects despite the fact that they have been shown to be important in static set-
tings. Integrating models of non-linear probability weighting into these setups thus offers a
novel behavioral perspective on the classical problems of optimal stopping.

2 A Dynamic Version of Salience Theory of Choice under Risk

2.1 Static Model

Consider an agent who has to choose from a choice set C that contains exactly two non-negative
random variables (or lotteries), X and Y , with a joint cumulative distribution function (CDF)
F : R2

≥0 → [0, 1]. A state of the world here refers to a tuple of outcomes, (x, y) ∈ R2
≥0. We denote

the state space by S ⊆ R2
≥0. If a random variable is degenerate, we call it a safe option.

According to salience theory of choice under risk (Bordalo et al., 2012), the agent is a salient
thinker, who evaluates a random variable by assigning a subjective probability to each state of
theworld s ∈ S that depends on the state’s objective probability and on its salience. The salience
of a state is assessed by a so-called salience function, which is defined as follows:

Definition 1 (Salience Function). We say that a symmetric, bounded, and twice differentiable function
σ : R2

≥0 → R>0 is a salience function if and only if it satisfies the following two properties:4

1. Ordering. Let x ≥ y. Then, for any ε, ε′ ≥ 0 with ε+ ε′ > 0, we have

σ(x+ ε, y − ε′) > σ(x, y).

2. Diminishing sensitivity. For any ε > 0, we have

σ(x+ ε, y + ε) < σ(x, y).

We say that a given state of the world (x, y) ∈ S is the more salient the larger its salience
value is. The ordering property implies that a state is the more salient the more the attainable
outcomes in this state differ. In this sense, ordering captures the well-known contrast effect (e.g.,
Schkade and Kahneman, 1998), whereby large contrasts (in outcomes) attract a great deal of at-
tention. Diminishing sensitivity reflectsWeber’s law of perception and it implies that the salience
of a state decreases if the outcomes in this state uniformly increase. Hence, diminishing sensi-
tivity describes a level effect, according to which a given contrast in outcomes is less salient at
higher outcome levels, thereby qualifying the contrast effect.

4Bordalo et al. (2012) also allow for random variables with negative outcomes and add a third property to ensure
that diminishing sensitivity (with respect to zero) reflects to the negative domain: by the reflection property, for any
w, x, y, z ≥ 0, it holds that σ(x, y) > σ(w, z) if and only if σ(−x,−y) > σ(−w,−z).
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Intrinsically, a salient thinker is (weakly) risk-averse, as he evaluates monetary outcomes
via some strictly increasing and (weakly) concave value function v : R≥0 → R≥0 that is twice
differentiable. But, depending on the salience of outcomes, which, in turn, depends on the
composition of the choice set C = {X,Y }, a salient thinkermight behave as if being risk-seeking.
More specifically, a salient thinker maximizes a salience-weighted utility defined as follows:

Definition 2. The salience-weighted utility of a random variable X evaluated in C = {X,Y } equals

U s(X|C) =

∫
R2
≥0

v(x) ·
σ
(
v(x), v(y)

)∫
R2
≥0
σ
(
v(s), v(t)

)
dF (s, t)

dF (x, y),

where σ : R2
≥0 → R>0 is a salience function that is bounded away from zero.5

Notice that the salience-weighted probabilities are normalized so that they sum to one (see,
e.g., Bordalo et al., 2012; Dertwinkel-Kalt and Köster, forthcoming). This implies, in particular,
that a salient thinker’s valuation of a safe option x ∈ R≥0 is undistorted and given by v(x),
irrespective of the properties of the alternative option.

2.2 Dynamic Model

Stochastic process. We build on the setup by Ebert and Strack (2015, 2018), who assume that
the wealth of an agent, who steadily participates in a gamble, evolves according to a Markov
diffusion. Specifically, we consider an Arithmetic Brownian Motion (ABM),

dXt = µdt+ νdWt, with X0 = x,

with a constant drift µ ∈ R and volatility ν ∈ R>0, and a standard Brownian Motion (Wt)t∈R≥0
.

To make the theory testable in the context of an incentivized lab experiment, we deviate
from Ebert and Strack (2015) in two ways: First, we assume that the process is non-negative,
Xt ≥ 0, and absorbing in zero. Second, we allow for a finite expiration date T ∈ R>0 ∪ {∞}. The
latter is necessary,6 but substantially complicates the theoretical analysis of stopping behavior.

Stopping strategies. As in Ebert and Strack (2015), we represent the set of stopping strategies
by the set of stopping times, where each stopping time τ refers to a potentially random plan of
when to stop the process. The central feature of a stopping time is that it is based on past infor-
mation only, that is, any τ is adapted to the natural filtration (Ft)t∈R≥0

of the process (Xt)t∈R≥0
.

For a fixed expiration date T ∈ R>0 ∪ {∞}, choosing a stopping time τ ≤ T then implements a
random wealth level Xτ with a cumulative distribution function denoted by Fτ .

5Alternatively, we could assume that the arguments of the salience function are not utils, but the numerical
outcomes of the random variables (see Dertwinkel-Kalt andWenner, 2020, for a discussion). This would not change
any of the results derived in this paper, but would simply make the exposition of the arguments a bit more clumsy.

6As we discuss in more detail in Section 4, the only alternative to such a deterministic termination rule would
be to implement a random termination rule, according to which, at time t, the process is automatically stopped with
some probability ωt ∈ [0, 1]. The problem with a random termination rule is, however, that the theoretical analysis
of stopping behavior, under the assumption of non-linear probability weighting, becomes completely intractable.
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For our main result, we do not impose any restrictions on the set of stopping times that
the agent can choose from. In particular, we also allow for randomized strategies as analyzed in
Henderson et al. (2017) orDuraj (2020). But, to learnmore about the strategies that are attractive
to a salient thinker and the role of skewness for stopping behavior, we derive additional results
under the assumption that the agent is restricted to choose a threshold stopping time τa,b, which
is defined as the first leaving time of the interval (a, b) and which implements a random wealth
level XT∧τa,b . Notably, the set of threshold stopping times represents the set of stop-loss and
take-profit strategies, which are often proposed by retail banks to their customers (see., e.g., the
brokerage data byHeimer et al., 2020) and have attractedmuch attention in the related literature
(e.g., Xu and Zhou, 2013; Ebert and Strack, 2015; Fischbacher et al., 2017; Heimer et al., 2020).

Solution concept under salience theory. Non-linear probability weighting, whether it is en-
dogenous as in salience theory or not, implies that an agent’s optimal strategy at time t might
no longer be optimal at some later point in time (e.g., Machina, 1989). Optimal stopping behav-
ior under salience theory thus depends on whether or not the salient thinker is aware of this
time-inconsistency. We follow Ebert and Strack (2015) in assuming that the agent is naïve about
his time-inconsistency. As we think of salience effects as unconscious distortions of perception,
we regard the assumption of naïvete as sensible. But, in Section 4 and Appendix B, we further
discuss how to experimentally test this assumption within the salience framework.

As in Ebert and Strack (2015), we assume that “at every point in time the naïve [salient
thinker] looks for a [...] strategy τ that brings [him] higher [salience-weighted utility] than
stopping immediately. If such a strategy exists, [he] holds on to the investment—irrespective
of [his] earlier plan.” Assuming that the naïve salient thinker continues to gamble if and only
if he strictly prefers to do so, the decision rule then reads as follows.

Definition 3 (Naïve Decision Rule). Let xt ∈ R≥0 be the current wealth level at time t ∈ [0, T ).
A naïve salient thinker continues at time t if there exists a stopping time τ , such that he chooses the
random variable Xτ from the set {Xτ , xt}. Otherwise, the naïve salient thinker stops at time t.

Our decision rule imposes the additional assumption that a naïve salient thinker evaluates
each stopping strategy in isolation, meaning that he compares it only to the alternative of stop-
ping immediately. Since salience theory is about context-dependent behavior, it is necessary
to impose some assumption on the consideration set—that is, the set of strategies that the agent
takes into account when making the stopping decision—to derive testable predictions. We re-
gard this specification as plausible, especially in the context of our experiment, where subjects
can observe only a single strategy at a time (see Section 4 for details). To tie our hands, we
pre-registered our assumptions on the consideration set before running the experiment.

3 Stopping Behavior of a Naïve Salient Thinker

3.1 Motivating Example

As an illustration of the salience mechanism, consider an agent with a linear value function,
v(x) = x, who decides when to stop a “fair” process with a drift of zero. Suppose that the agent
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only considers stop-loss and take-profit strategies, which can be represented by a threshold stop-
ping time τa,b. For the sake of illustration, we abstract from a finite expiration date and assume
T = ∞. Then, any threshold stopping time τa,b, induces a binary lottery Xτa,b = (a, p; b, 1− p),
which has—as the process has a drift of zero—an expected value of E[Xτa,b ] = xt at time t.

When does this salient thinker prefer to gamble according to the stopping time τa,b over
stopping at a current wealth level of xt? By construction, if the upside and the downside of
the binary lottery Xτa,b are equally salient, then a salient thinker with a linear value function
behaves as if he was risk-neutral; that is, he is indifferent between the lottery Xτa,b and the safe
option xt. Precisely, the salient thinker strictly prefers the binary lottery Xτa,b over the current
wealth level xt if and only if the lottery’s upside, b, is more salient than its downside, a; that is,
if and only if σ(b, xt) > σ(a, xt) holds. Since σ(b, xt) > σ(xt, xt) due to ordering, and since the
salience function is continuous, we can find, for any xt, stopping thresholds a and b, such that a
salient thinker with a linear value function strictly prefers the binary lottery Xτa,b over the safe
option xt. Hence, at any positive level of wealth, the naïve salient thinker finds some stopping
time τa,b that he strictly prefers to stopping immediately and he, therefore, never stops a process
with zero drift. It is easily verified that the result still holds for a finite expiration date. This and
all the other missing proofs are provided in Appendix A.

Proposition 1. Fix an initial wealth level x ∈ R>0 and expiration date T ∈ R>0∪{∞}. A naïve salient
thinker with a linear value function does not stop a process with zero drift at any positive level of wealth.

Outlook. We have seen that a naïve salient thinker with a linear value function never stops a
fair process, since at any point in time he finds a threshold stopping time that induces a binary
lottery with a salient upside, which is more attractive than stopping immediately. But how
general is this result? And how sensitive is a salient thinker’s behavior to the drift of the process?

As we will work out in the next subsection, there are two reasons for why a salient thinker
would stop the process before the expiration date: either the drift of the process is sufficiently
negative or the salient thinker is intrinsically risk-averse (i.e., he has a sufficiently concave value
function). More precisely, while a naïve salient thinker with a linear value function holds
also processes with a slightly negative drift until the expiration date, a salient thinker with a
sufficiently concave value function stops even a fair process. But, irrespective of his intrinsic
risk-aversion, any salient thinker immediately stops processes with a sufficiently negative drift,
which distinguishes salience theory from models like CPT and constitutes our main result.

3.2 Main Theoretical Result

Motivated by the stark never-stopping result, which Ebert and Strack (2015) have derived for
naïve agents with CPT-preferences, we ask whether the stopping behavior of a naïve salient
thinker is sensitive to the drift of the process. The prediction that a naïve CPT-agent never stops,
irrespective of the drift of the process, relies on the fact that CPT induces a strong preference for
right-skewed lotteries in static settings (Ebert and Strack, 2015, Theorem 1). Salience theory, in
contrast, imposes limits on the strength of skewness preferences in static choices (Dertwinkel-
Kalt and Köster, forthcoming, Corollary 2): the premium that a salient thinker is willing to pay
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for taking up a right-skewed binary risk approaches zero, as the lottery’s skewness becomes
arbitrarily large. In other words, more skewness is not necessarily attractive to a salient thinker.
As a consequence, salience theory implies less extreme behavior in optimal stopping problems:
precisely, as we will show in the following, any naïve salient thinker immediately stops any
process with a sufficiently negative drift.

Consider a general stopping time τ ≤ T , which induces a random wealth level Xτ with a
cumulative distribution function denoted by Fτ . A naïve salient thinker then stops immediately
at time t = 0 if and only if, for any such stopping time τ , we have∫

R≥0

(
v(z)− v(x)

)
σ
(
v(z), v(x)

)
dFτ (z) ≤ 0. (1)

For an initial value X0 = x, we define an auxiliary function ũ(z) :=
(
v(z)− v(x)

)
σ
(
v(z), v(x)

)
,

which constitutes a classical utility function that is strictly increasing and continuous in z ∈ R≥0.
By construction, the condition derived in Eq. (1) is equivalent to∫

R≥0

ũ(z) dFτ (z) ≤ ũ(x).

In words, for a fixed initial value X0 = x, a naïve salient thinker stops the process immediately
if and only if an EUT-agent with a utility function ũ(·) stops it immediately.

The main step, in proving that a salient thinker immediately stops any process with a suf-
ficiently negative drift, is to derive a bound on how risk-seeking a salient thinker can ever be,
which is in a sense reminiscent of the limit on skewness preferences derived in Dertwinkel-Kalt
and Köster (forthcoming). Our first result thus approximates a salient thinker’s willingness to
take risk by that of an EUT-agent with an exponential utility. Roughly, an EUT-agent is themore
risk-seeking at a given wealth level the more convex his utility function is at this point. Since
the salience function is differentiable and bounded, the corresponding auxiliary utility function
ũ(·) is of exponential growth at z = x, which means that, in this point, it is not more convex than
all exponential functions. Precisely, there exists an EUT-agent with an exponential utility who,
because of his more convex utility function, takes up some risks that a salient thinker would
certainly avoid, thereby imposing a bound on the salient thinker’s willingness to take risk.

Lemma 1. The auxiliary utility function ũ : R≥0 → R is of exponential growth at z = x.

Given that we can approximate a salient thinker’s willingness to take risk by that of an EUT-
agentwith an exponential utility function, we can apply Proposition 1 in Ebert and Strack (2015)
to show that a naïve salient thinker does not start any process with a sufficiently negative drift.

Theorem 1. For any initial wealth level x ∈ R>0 and any volatility ν ∈ R>0, there exists some µ̃ ∈ R,
such that a naïve salient thinker immediately stops any process with a drift µ < µ̃.

Theorem 1, which constitutes our main theoretical result, provides a clear-cut and testable
distinction between our salience model and those models of exogenous probability-weighting,
such as CPT, which yield the stark never-stopping result. Any naïve salient thinker, irrespective
of his intrinsic risk-aversion, immediately stops any process with a sufficiently negative drift.
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As a corollary to our main result, we observe that an intrinsically risk-averse salient thinker
does not necessarily hold even a fair process until the expiration date. Depending on how con-
cave a salient thinker’s value function is, he stops a process with a drift of zero earlier or later.
While a naïve salient thinker with a linear value function never stops a fair process, a naïve
salient thinker with a sufficiently concave value function stops it immediately. A naïve salient
thinker with a mildly concave value function, in contrast, starts to gamble fair processes with a
drift of zero, but might then stop before reaching the expiration date.

Corollary 1. A naïve salient thinker might stop a process with zero drift before the expiration date.

3.3 Additional Results on Stop-Loss and Take-Profit Strategies

Next, in order to learn more about the stopping behavior of a naïve salient thinker, we restrict
the agent’s choice set to all stop-loss and take-profit strategies. First, we derive a stronger result
on the limits of naïve gambling, which states that stopping behavior is monotonic in the drift of
the process. Second, we characterize the type of stop-loss and take-profit strategies that are at-
tractive to a salient thinker. Finally, we show that salience theory can rationalize the disposition
effect; that is, the tendency to rather stop processes that have increased in value than those that
have decreased in value (see, e.g., Shefrin and Statman, 1985; Odean, 1998;Weber and Camerer,
1998; Imas, 2016; Heimer et al., 2020, for empirical and experimental evidence).

A stronger result on the limits of naïve gambling. If we restrict the agent’s choice set to all
stop-loss and take-profit strategies and assume that the expiration date is sufficiently large, our
model predicts that the agent’s stopping behavior depends on the drift in a monotonic way.

To fix ideas, let us get back to the example of no expiration date. In this case, any stop-loss
and take-profit strategy is associated with a threshold stopping time τa,b and therefore induces
a binary lottery Xτa,b = (a, p; b, 1 − p) over wealth. For any such stopping time, the proba-
bility p = p(a, b, µ), with which the downside of the corresponding binary lottery is realized,
monotonically decreases in the drift of the process. Hence, an increase in the drift µ improves
the distribution over wealth induced by the stopping time τa,b in terms of first-order stochastic
dominance. By Proposition 1 in Dertwinkel-Kalt and Köster (forthcoming), a salient thinker’s
certainty equivalent is monotonic with respect to first-order stochastic dominance shifts. This
implies that, if a salient thinker is willing to gamble according to stopping time τa,b for a drift µ′,
then this stopping time is still more attractive than stopping immediately for any drift µ > µ′. In
sum, a naïve salient thinker stops immediately if and only if the drift falls below some threshold.

What happens if we allow for a finite expiration date instead? Still, for any threshold stop-
ping time τa,b, an increase in the drift of the process makes it less likely to stop a and more
likely to stop at b. But it is not clear, in general, that the distribution of the corresponding ran-
dom variable, XT∧τa,b , improves in terms of first-order stochastic dominance. Thus, we cannot
simply invoke Proposition 1 in Dertwinkel-Kalt and Köster (forthcoming) to establish a mono-
tonic relationship between the drift of the process and a salient thinker’s stopping behavior. The
following proposition provides a sufficient condition for such a monotonic relationship to exist:
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Proposition 2. Suppose that the agent can only choose stop-loss and take-profit strategies, and fix an
initial wealth level x ∈ R>0 as well as a volatility ν ∈ R>0. For any two drifts µ and µ′ with 0 ≥ µ′ > µ,
there exists some threshold value T̂ ∈ R≥0 such that, for any expiration date T > T̂ , a naïve salient
thinker immediately stops the process with drift µ if he does so for the process with drift µ′.

While a large expiration date is sufficient for a salient thinker to react to changes in the
drift in a monotonic way, it is by no means necessary for this result to hold. For a rather short
expiration date, it is simply the case that, for some threshold stopping times, τa,b, the CDF of the
corresponding random variable, XT∧τa,b , might not shift downwards in all, but only in some,
points as the drift increases. The fact that theremight exist stopping times, forwhich an increase
in the drift does not improve the corresponding distribution in terms of first-order stochastic
dominance, makes it hard to derive general results. But, using the functional forms typically
assumed in the literature, it is easily verified that the sufficient condition derived in Proposition
2 is very weak in the sense that T̂ is (close to) zero in most cases.

The role of skewness in naïve gambling. By the contrast effect, a salient thinker may choose
a positively skewed risk over its expected value, but certainly avoids any negatively skewed
risk (see Appendix D for a formal analysis of static skewness preferences). A preference for
positive skewness is also what drives a salient thinker’s stopping behavior. To make this point
precisely, we introduce the notion of a loss-exit strategy, which not only induces a right-skewed
distribution of returns for processes with a non-positive drift, but also looks right-skewed.

Definition 4 (Loss-Exit Strategy). A stop-loss and take-profit strategy is a loss-exit strategy at time
t if and only if the thresholds of the corresponding stopping time τa,b satisfy b− xt > xt − a.7

Ordering and diminishing sensitivity together imply that a salient thinker gambles accord-
ing to a stop-loss and take-profit strategy only if it is a loss-exit strategy. Consider again the case
without an expiration date and assume a zero drift. If b−xt ≤ xt−a, then not only is the payoff
level lower in the state (a, xt) compared to the state (b, xt), but also the contrast in outcomes is
weakly larger in the former state. Hence, as the value function is weakly concave, the downside
a is more salient than the upside b, which makes this stopping strategy unattractive to a salient
thinker. Conversely, due to diminishing sensitivity of the salience function and concavity of the
value function, b− xt > xt − a does not imply that the upside b is more salient than the down-
side a, so that a salient thinker does not find every loss-exit strategy attractive. The argument
extends to processes with a negative drift as well as to a setup with a finite expiration date.

Proposition 3. A naïve salient thinker chooses a stop-loss and take-profit strategy only if it is a loss-exit
strategy.

7Not any stopping strategy that induces a right-skewed distribution over wealth is also a loss-exit strategy. Let
T =∞ and µ < 0. Suppose that the current wealth level is x, and consider the stopping time τa,b with a = x− ε− ε′
and b = x + ε for ε, ε′ > 0, which gives rise to a binary lottery Xτa,b . As shown by Ebert (2015), a binary lottery is
(unambiguously) right-skewed if and only if its lower payoff is strictly more likely than its higher payoff. Thus, for
ε′ sufficiently close to zero, the binary lottery Xτa,b is right-skewed, as P[Xτa,b = a] > 1

2
due to the negative drift.

But obviously the corresponding stopping strategy is not a loss-exit strategy. Only in the special case of zero drift, a
stop-loss and take-profit strategy is a loss-exit strategy if and only if the corresponding binary lottery is right-skewed.
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Can salience theory explain the disposition effect? Even if we restrict the agent to choose
stop-loss and take-profit strategies, so that planned behavior is path-independent, salience the-
ory can explain actual behavior consistent with the so-called disposition effect; i.e., the tendency
to rather stop processes that have increased in value than those that have decreased in value
(e.g., Odean, 1998; Heimer et al., 2020). Our salience-based explanation of the disposition effect
is similar in spirit to the one proposed by Barberis (2012) based on CPT: it is not the exact path
of the process, but the current wealth level that affects a salient thinker’s disposition to stop.

To establish an intuition for why salience theory can explain disposition-effect-like behavior,
it is again sufficient to think through the extreme case without an expiration date. At any point
in time t, with a current wealth level xt, the set of stop-loss and take-profit strategies can be
represented by the set of threshold stopping times {τxt−ε,xt+ε′ : ε, ε′ ≥ 0}. A naïve salient
thinker thus stops at time t if and only if, for any ε, ε′ > 0, it holds that

p
(
v(xt − ε)− v(xt)

)
σ
(
v(xt − ε), v(xt)

)
+ (1− p)

(
v(xt + ε′)− v(xt)

)
σ
(
v(xt + ε′), v(xt)

)
≤ 0,

where p = p(ε, ε′, µ) denotes the probability of stopping at the stop-loss threshold. We can
re-write the preceding inequality as follows,

σ
(
v(xt − ε), v(xt)

)
σ
(
v(xt + ε′), v(xt)

) × v(xt)− v(xt − ε)
v(xt + ε′)− v(xt)

≥ 1− p
p

. (2)

Studying this inequality shows us that, depending on the exact functional forms of salience
and value function, salience theory can indeed rationalize disposition-effect-like behavior. The
right-hand side of (2) is independent of the current wealth level xt due to the assumption of
a constant drift (see Lemma 2 in Appendix A). If the left-hand side of (2) is increasing in xt,
the salience model thus predicts a disposition effect, because in this case stopping becomes more
likely after the process has increased in value and less likely after a decrease in value. If the
left-hand side of (2) is decreasing in xt, however, salience theory predicts the exact opposite
behavior. In sum, salience theory can rationalize, but does not predict the disposition effect.

4 An Experiment on Dynamic Gambling Behavior

In this section we present and discuss our experimental design. You can also click through the
translated experiment via the following link: https://stopping.herokuapp.com/demo/.

4.1 Experimental Design

We conducted a pre-registered lab experiment in which subjects had to repeatedly decide at
which price to sell an asset. Subjectsmade their selling decisions in (approximately) continuous
time and they could hold each asset for a maximum duration of 10 seconds. If a subject did not
sell an asset within 10 seconds, it was automatically sold at the price reached at the expiration
date. The selling price followed an Arithmetic Brownian Motion (ABM) with a drift parameter
µ ∈ {0,−0.1,−0.3,−0.5,−1,−2} and a volatility ν = 5. The process was updated every tenth of
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a second, which implies T = 100.8 The asset’s initial price was x = 100 Taler, an experimental
currency that was converted into Euro at a ratio of 10:1 at the end of the experiment.

Figure 1: Screenshots of the decision screen for the process with zero drift (in German). The red lines
indicate the upper and lower stopping thresholds. The blue button in the upper left panel says "Sell
Immediately". The button in the upper right panel allows subjects to pause the process. The buttons in
the lower left panel say "Sell" or "Adjust the bounds". The lower right panel shows the final selling price.

We restricted the choice set at any given point in time to all stop-loss and take-profit strate-
gies, as it is illustrated in Figure 1: at every point in time, subjects could choose an upper and a
lower stopping threshold. Once the price of the asset reached either threshold, subjects could
decide whether to sell the asset at this price or to adjust the thresholds and continue the pro-
cess (see the lower left panel); that is, the strategies were non-binding to rule out any form
of commitment. In addition, subjects could pause the process at any point in time to adjust
the thresholds (see the upper right panel). But, importantly, subjects could set only one upper
threshold and one lower threshold at a time, and thus observed a stopping strategy in isolation.
Before starting the process, subjects could further decide to sell the asset immediately (see the
upper left panel). At the beginning, the upper and lower threshold were centered symmetri-
cally around the initial price (see also the upper left panel). In order to start the process, subjects
had to move each threshold at least once.

Overall, subjects made six selling decisions, one decision for each of the drift parameters.
The order of drifts was randomized at the subject level. To explain the drift of an ABM to
the subjects, they were subsequently shown three sample paths from the underlying process
and they observed an overview of ten additional sample paths of this process before making

8Notice that the drift of an ABM is additive over time. To help subjects understand what the drift of a process
is, we thus presented them aggregated drifts per second (i.e., 10 µ) in the experiment.
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a decision (see Figure 2). The sample paths were randomly drawn at the subject level; that is,
different subjects saw different sample paths of the same underlying process.

Figure 2: Screenshots of the sampling screens for the process with zero drift (in German).

After completing the six stopping problems, subjects faced a series of static choices under
risk. Precisely, subjects made twelve choices between a binary lottery and a safe option paying
the lottery’s expected value. For an overview of the lotteries, which are exactly those of Exper-
iment 1 in Dertwinkel-Kalt and Köster (forthcoming), see Table 1 in Appendix C. Specifically,
we used two sets of lotteries with the same expected value and the same variance, but different
levels of skewness. Half of the lotteries have an expected value of E = 30 Euro and the other
half have an expected value of E = 50 Euro. The order of the lotteries was randomized at the
subject level. Finally, subjects answered five questions of a modified cognitive reflection test
(CRT; closely aligned to Primi et al., 2016), and the five financial literacy questions proposed by
Lusardi and Mitchell (2011). All additional questions are listed in Appendix C.

At the end of the experiment, one of the six selling decisions was randomly drawn by the
computer to be payoff-relevant. We further randomly selected one subject in each session for
whom, in addition, one of the twelve binary choices was randomly chosen to be payoff-relevant.
Subjects were further rewarded for correctly answered CRT and financial literacy questions (1
Taler per question), and they received an additional 4 Euros for their participation.

We conducted 5 sessions with a total number of n = 158 subjects. The sessions took place in
January 2020 at the experimental laboratory of the University of Cologne. The experiment was
conducted using oTree (Chen et al., 2016) and participants were invited via ORSEE (Greiner,
2015). The experiment lasted around 45minutes on average. Subjects earned on average slightly
less than 15 Euro, with earnings ranging from 4 Euro to 117 Euro.

4.2 Implementation and Discussion of the Design

In this subsection, we provide additional information on the implementation of the experiment,
and we discuss in how far our design choices are essential for the objectives of our study.

Explanation of the process. Tomake the definition of the process easily accessible for subjects,
we followed a mostly visual approach. In particular, we did not confront subjects with the
differential equation that defines an ABM. Instead we simply told subjects the following:
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“In this experiment you will see assets of varying profitability. How profitable an asset is in
the long run is described by the drift of the asset. The drift denotes the average change in the
value of the process per second.

A positive drift implies that the asset will increase in value in the long run, while a negative
drift implies that the asset will decrease in value in the long run. Notice that the value of the
asset varies. Hence, even an asset with a negative drift sometimes increases in value.”

To get some understanding of the process and its drift, subjects were presented with ex-
emplary sample paths from three processes with different drifts.9 Subjects were told that the
processes they would see in the experiment differ only in their drift. In particular, we told sub-
jects that all processes have in common that they are non-negative:

“The asset does never take a negative value. Once the asset’s value reaches zero, it does not
rise again, but will stay at zero permanently.”

This statement was accompanied by a graph illustrating that the process is non-negative and
absorbing in zero (see Figure 3).

Figure 3: The figure illustrates that the process cannot take negative values (in German).

Finally, to make sure that subjects really understood the stochasticity of an ABM (without
confusing them by introducing a formal notion of variance), we told them that

“Independent of the drift, the value of the asset can, in principle, become arbitrarily large.
The probability that the asset’s value indeed becomes very large is the smaller the more neg-
ative the drift is. But even an asset with a very negative drift can attain a very large value.”

We regard this part of the instructions as particularly important since the predictions of salience
theory rely on the assumption that subjects understand the potential skewness induced by stop-
loss and take-profit strategies with a large upper stopping threshold. A translation of the full
screen-by-screen instructions is provided in Appendix C.

9The sample paths are exemplary for these processes in the sense that the final values after 10 seconds are 120
(for µ = 2), 100 (for µ = 0), and 80 (for µ = −2), respectively. All subjects saw the exact same sample paths.
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Features of the process. To make our theory testable, we deviate from the setup proposed by
Ebert and Strack (2015) in two ways: First, we introduce a finite expiration date. Second, we
restrict ourselves to non-negative processes. In addition, we are only interested in processes
with a non-positive drift, as processes with a positive drift do not allow us to separate between
the predictions of different models such as EUT, CPT, and salience theory.

Since it is impossible to implement in practice a process that can run forever with probability
one, we implemented—similar as Heimer et al. (2020)—a finite expiration date. Alternatively,
we could have implemented a random termination rule, according to which, at any point in
time t, the asset is automatically sold with probability ωt ∈ [0, 1]. A finite expiration date makes
a theoretical analysis of stopping behavior feasible, while with a random termination rule the
probability distribution associated with a given stop-loss and take-profit strategy would not be
tractable anymore.10 In particular, when using a random termination rule, the stop-loss and
take-profit strategies lose their intuitive properties regarding the induced skewness, because
the thresholds themselves affect the shape of the probability distribution much less than in the
case of a finite expiration date. Hence, a random termination rule is less suited to study the role
of skewness for dynamic gambling behavior. Finally, a finite expiration date is easier to explain
to subjects, which we regard—given the complexity of the experiment—as a major advantage.

To ensure incentive-compatibility, we restrict the processes to be non-negative, as we cannot
credibly implement losses in a laboratory experiment. In principle, we could have implemented
losses up to the size of an endowment that subjects received at the beginning of the experiment.
But even then we would have needed to bound the process from below. Moreover, given the
framing of the experiment (as selling an asset at a certain price), it feels more natural to restrict
the processes to take only non-negative values (or prices).

Restriction of the choice set. We restricted the subjects’ choice set at any point in time to all
stop-loss and take-profit strategies, which can be represented by a stop-loss and a take-profit
threshold. This design choice was made based on both practical and theoretical considerations.

First, since we are interested in the role of endogenously created skewness for stopping be-
havior, we need an experimental design that allows us to learn something about the actual
strategies that subjects choose. So, while we could have allowed subjects to adopt completely
general strategies by just providing themwith a STOP-button, thiswaywewould not have learnt
anything about their stopping strategies and, consequently, about the role of endogenous skew-

10Suppose, for instance, that we impose a random termination rule with ωt = ω ∈ (0, 1) for any t ∈ N and ωt = 0
otherwise. Then, the CDF induced by the threshold stopping time τa,b is given by

Pω0 [Xτa,b ≤ z] =

{∑∞
k=1(1− ω)

k−1P0[τa,b ≤ k]P0[Xτa,b = a] + (1− ω)k−1ωP0[τa,b > k]P0[Xk ≤ z|τa,b > k] if z < b,

1 if z = b,

where P0[Xτa,b = a] is defined in Lemma 2 and where P0[τa,b ≤ k] as well as P0[Xk ≤ z|τa,b > k] are defined in
Lemma 3, both of which can be found in Appendix A. To put this into perspective, notice that, under the assumption
of a finite expiration date T <∞, the CDF induced by the same stopping time τa,b equals

P0[XT∧τa,b ≤ z] =

{
P0[τa,b ≤ T ] · P0[Xτa,b = a] + P0[τa,b > T ] · P0[XT ≤ z|τa,b > T ] if z < b,

1 if z = b.
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ness. Obviously, we could have restricted the choice set in a differentway, for instance, by asking
subjects to simply state for how long theywould like to hold the asset. While these deterministic
stopping strategies could be easily elicited as well, they do not allow subjects to systematically
add skewness to the return distribution, which makes them ill-suited to study the role of en-
dogenous skewness for stopping behavior.11 Stop-loss and take-profit strategies, in contrast,
are not only easy to elicit, but also allow subjects to create a substantial amount of skewness in
returns via the choice of the thresholds, thereby meeting all necessary criteria to address our
research question. Second, as demonstrated in contemporaneous work by Heimer et al. (2020),
stop-loss and take-profit strategies are highly relevant in practice, which is further reflected in
the large interest that this type of stopping strategy has attracted in the economics literature
(e.g., Xu and Zhou, 2013; Ebert and Strack, 2015; Fischbacher et al., 2017).

A potential concern that remains to be addressed is whether we succeeded in restricting the
choice set to all stop-loss and take-profit strategies. In otherwords, whatwe assume is that at any
point in time, a subject sets a single stop-loss threshold and a single take-profit threshold, and
believes to only stop at either of these two thresholds or at the expiration date. We intentionally
designed the decision screen, where subjects set a single upper and a single lower threshold (see
Figure 1), in a way that makes it hard for subjects to visualize a strategy that does not fall into
the class of stop-loss and take-profit strategies. While, in principle, a subject could, already at
time t = 0, come up with the plan to adjust the initial strategy later on, the red lines indicating
the upper and lower threshold stick out on the screen, making this stop-loss and take-profit
strategy particularly salient. Most importantly, even if subjects adopted strategies other than
stop-loss and take-profit strategies, the test of our main theoretical result, namely, Theorem 1,
would still be valid, as here we did not impose any restriction on the choice set.

Non-binding strategies and costless adjustments. Weallowed the subjects to costlessly adjust
the stop-loss and take-profit thresholds at any point in time during a selling decision. Precisely,
the subjects could stop the process at any time, adjust one or both thresholds, and then continue
the process. Moreover, the chosen strategies were non-binding in the sense that, once the price
of the asset reached either threshold, subjects could decide whether to really sell the asset at
this price or whether to adjust the thresholds again and to continue the process. Again we
made both design choices for practical and theoretical reasons.

First, if either strategy adjustments were costly or if the strategies were binding, subjects
could partially commit to a strategy. While the commitment effect of costly strategy adjustments
is obvious, binding strategies could introduce partial commitment when subjects anticipate that
they will not be able to adjust their strategy fast enough, namely, before the process hits either
threshold. In any case, the ability to (partially) commit to a strategy would make the problem
less interesting from a theoretical perspective. As argued inHenderson et al. (2017) andHe et al.
(2019), with partial commitment, the never-stopping result derived by Ebert and Strack (2015)
for subjects with CPT-preferences breaks down. Thus, to experimentally differentiate between
salience theory and other models of skewness preferences, such as CPT, we need to rule out

11It is easily verified that, due to the lack skewness in the return distribution, any naïve salient thinker who is
restricted to choose from the set of deterministic stopping times stops the process before the expiration date.
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any commitment power (see Section 6 for a thorough discussion of alternative models), which
is why we made the strategies non-binding and adjustments of the thresholds costless. Second,
in our main real-world examples, such as selling an asset and gambling in a casino, investors
or gamblers have (at best) very limited commitment power, as also demonstrated by Heimer
et al. (2020) using brokerage data. Third, since subjects have a non-zero reaction time, non-
binding strategies reduce the noise in measuring the intended stopping time. We regard this
last argument as particularly important, as this noise would be asymmetric (making stopping
disproportionally more likely than non-stopping) and hard to model.

Importantly, even though strategy adjustments are costless, the exact thresholds are impor-
tant and should be carefully set by the subject right from the beginning. The stop-loss threshold,
for instance, gives a lower bound on the value that the process can reach and therefore should
not be set below the level that the subject would not want to undercut. Likewise, the take-profit
threshold should not be set too high, as otherwise moderate gains cannot be cashed in.

Indicators of naïvete. When assuming a fixed expiration date and restricting the choice set to
all stop-loss and take-profit strategies, we cannot interpret adjustments of the initial strategy as
time-inconsistent behavior and thus as an indication of naïvete, since the remaining time until
the expiration date conveys payoff-relevant information.12 Looking at processes with a non-
positive drift, however, allows us to test the naïvete assumption within the salience framework.

A sophisticated salient thinker differs from her naïve counterpart in that she anticipates her
future selves to act in a different way than her present self does, which she takes into account
when making her stopping decision. A sophisticated salient thinker who lacks commitment
behaves as if she is playing a game with her future selves (e.g., Karni and Safra, 1990). To solve
this game, we adopt the equilibrium concept of Ebert and Strack (2018), according to which
a given stopping strategy constitutes an equilibrium if and only if at every point in time it is
optimal to follow this strategy, taking as given that all future selves will do so.

As we show in Appendix B, a sophisticated salient thinker, who lacks commitment and
chooses from the set of all stop-loss and take-profit strategies, never gambles any process with
a non-positive drift. Consequently, (partial) naïvete is a necessary assumption to rationalize
gambling in the context of our experiment within the salience framework.

4.3 Experimental Predictions

Wenow state the precise predictions of salience theory that guided our experimental design. We
thereby slightly deviate fromour pre-registration, whichwas based on the saliencemodelwith a
linear value function: due to the weakly concave value function, the first prediction differs from
what was pre-registered, while the remaining predictions are identical to the pre-registered
ones. Notably, the last prediction on the relationship between static and dynamic skewness

12In contrast, under the random termination rule described in Footnote 10, any adjustment of the initial stop-loss
and take-profit strategy could have been interpreted as time-inconsistent behavior. Beside the fact that the theoretical
analysis under a random termination rule is intractable, we decided to implement a finite expiration date, as we are
interested in the implications of skewness preferences for dynamic gambling behavior and not so much in time-
inconsistency per-se.
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preferences is motivated by our presumption that salience is the psychological mechanism that
drives skewness preferences in general, that is, in both static and dynamic choices.

Our first prediction builds on the observation that, by Corollary 1, for the process with a
zero drift our salience model is consistent with stopping immediately as well as with stopping
before or at the expiration date. Investigating this prediction is still interesting, as it shows that
salience theory is consistent with behavior ruled out by other models such as EUT or CPT.

Prediction 1. If µ = 0, subjects might start to gamble and they might stop before the expiration date.

Our second prediction is derived from ourmain theoretical result, which allows us to clearly
distinguish between salience theory andmodels, such asCPT, that yield the stark never-stopping
result. More precisely, by Proposition 2, we expect a monotonic relationship between the drift
of the process and a subject’s stopping behavior.

Prediction 2. The share of subjects selling the asset immediately monotonically decreases in the drift.

Based on Proposition 3, we further predict that subjects choose loss-exit strategies.

Prediction 3. Conditional on not selling the asset, subjects choose a loss-exit strategy.

Sincewe extend a theory of static choice under risk to a dynamic setup, we are also interested
in the empirical relationship between a subject’s attitude toward static and dynamic risks. If
salience is indeed the psychological mechanism that drives skewness preferences in general, it
should coherently explain skewness preferences revealed in static and dynamic choices. To test
this hypothesis, we classify both static and dynamic choices into being skewness-seeking or not.
We say that one of the twelve static choices is skewness-seeking if the subject chooses a right-
skewed lottery over a safe option or a safe option over a left-skewed or symmetric lottery (see
Table 1 in Appendix C for the exact lotteries and the classification). As we show in Appendix D,
a salient thinker chooses a binary lottery, with a fixed expected value and a fixed variance, over
the safe option paying its expected value if and only if the lottery’s skewness exceeds a certain
threshold. In particular, the stronger is the contrast effect (relative to the level effect) the closer
this threshold is to zero, such that a larger share of skewness-seeking choices indicates that a
subject is more susceptible to salience effects. In the dynamic decisions, we classify a chosen
stopping strategy as being skewness-seeking if it is a loss-exit strategy and, therefore, induces
a right-skewed return distribution. Based on Prediction 3, we then expect a positive correlation
between the share of skewness-seeking choices in the static and dynamic decisions.

Prediction 4. The share of skewness-seeking choices by a subject in the static decisions is positively
correlated with the share of loss-exit strategies this subject chooses in the dynamic decisions.

5 Experimental Results

We first present our main results that allow us to test Predictions 1-4. Subsequently, we present
further results on strategy adjustments, and we discuss in how far they speak to the salience
mechanism that drives our stopping predictions. Finally, we present additional, exploratory
results on disposition-effect-like behavior, and on how cognitive skills affect stopping decisions.
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5.1 Main Test of the Salience Predictions

Our central experimental result—as depicted in Figure 4—addresses our main theoretical pre-
diction that there should be a monotonic relationship between the drift of the process and a
subject’s stopping behavior. At the hand of this figure we will successively discuss the results
corresponding to Predictions 1 and 2.
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Figure 4: The figure depicts the smoothed empirical cumulative distribution functions of stopping times.

To address Prediction 1, we look into stopping behavior for the fair process with a zero drift.
Around a fifth of all subjects hold the asset with a drift of zero until the expiration date, while
only about 5% of all subjects sell the asset with a drift of zero immediately. Moreover, 65% of
the subjects hold this asset for more than 5 of the maximal 10 seconds (see Figure 4).

Result 1. For the process with µ = 0, the median subject holds the asset for 7.65 out of 10 seconds, and
around 19% of the subjects hold the asset until the expiration date.

While salience theory does notmake a precise prediction onwhen subjects stop a fair process
(see Prediction 1), Result 1 is inconsistent both with EUT with a concave utility function—
which predicts that subjects sell the asset immediately—as well as with CPT—which predicts
that subjects will hold the asset until the expiration date.

Next, we investigate the effect of the drift on a subject’s decision whether to start a process
and—if it is started—when to stop it. The share of subjects stopping immediatelymonotonically
decreases in the drift of the process (see Figure 4 and the right panel of Figure 9 in Appendix E).
This revealed sensitivity to the drift of the process is consistent with Prediction 2: regressing a
binary indicator of whether a subject stops immediately or not on the drift of the process yields
a point estimate of −0.171 (p-value < 0.001, standard errors clustered at the subject level).

Result 2 (a). The share of subjects selling immediately monotonically decreases in the drift of the process.
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Also this result is clearly inconsistent with EUT and CPT, both of which predict that the
share of subjects who sell the asset immediately is constant in the drift, either because subjects
should always stop immediately (EUT) or always gamble until the expiration date (CPT).

Figure 4 further shows that not only the share of subjects selling the asset immediately is
monotonic in the drift, but that the whole distribution of stopping times shifts upward in the
sense of first-order stochastic dominance as the drift increases.13

Result 2 (b). Subjects stop earlier for processes with more negative drifts.

We now turn to the subjects’ strategy choices. Consistent with Prediction 3, a majority of
subjects chooses loss-exit strategies initially, and this result on initial strategies holds across all
the different drifts that we considered (see Figure 11 in Appendix E).

Result 3 (a). Conditional on not selling immediately, 65% of initial strategies are loss-exit strategies.

When we aggregate all the strategies that a subject has chosen throughout the experiment
(including both initial and revised strategies), we observe that a majority of the subjects pre-
dominantly chooses loss-exit strategies and that 17% of the subjects pick exclusively loss-exit
strategies (see Figure 5). This gives the second part of our third result:

Result 3 (b). For themedian subject, 73% of all strategies chosen throughout the experiment are loss-exit
strategies.
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Figure 5: This figure gives the empirical distribution of the share of loss-exit strategies across subjects.

Finally, as depicted in Figure 6, subjects behave quite consistently in the static and the dy-
namic decision problems. To test for the link between static and dynamic skewness preferences,

13This is only violated for the processes with a drift of µ = −0.1 and µ = −0.3 in very few points, so that these
violations are not even visible in the smoothed CDFs depicted in Figure 4.
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we regress the share of loss-exit strategies amongst all strategies chosen throughout the six asset-
selling tasks on the share of skewness-seeking choices in the static problems. We find a positive
and statistically significant correlation, which gives our fourth result:

Result 4. The share of skewness-seeking choices by a subject in the twelve static decisions is positively
correlated with the share of loss-exit strategies this subject chooses in the six selling decisions.

β = 0.39, p < 0.001
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Figure 6: The figure depicts the relationship between static and dynamic gambling behavior. We provide
the estimated slope-coefficient of the depicted linear regression, which is significantly larger than zero.

One might be concerned that Result 4 conflicts with the “discrepancy” between static and
dynamic risk taking documented in Heimer et al. (2020). Heimer et al. (2020), however, com-
pare the willingness to take risk when a fair coin is flipped once (i.e., in a static choice), which
induces a symmetric distribution of returns, and when a fair coin is flipped repeatedly (i.e., in a
dynamic choice), in which case the right stopping strategies allow to create pretty right-skewed
distributions of returns. In other words, while we study the relationship between skewness
preferences in static and dynamic decisions, Heimer et al. (2020) look at the difference between
static and dynamic problems that results from the fact that the latter enables subjects to endoge-
nously create a skewed distribution of returns.

5.2 On the Salience-Mechanism: Frequency andDirection of StrategyAdjustments

Consistent with our model, strategy revisions are ubiquitous and follow precise patterns. Al-
together, (i) more than 93% of the subjects (147 out of 158) revised their initial strategy for at
least one of the six processes, (ii) subjects adjust, on average, their strategy more than once per
selling-task, and (iii) about 70% of the strategy adjustments happen in an attempt to prolong
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gambling after the process has hit one of the previously chosen bounds. Moreover, if a subject
chooses a loss-exit strategy and the process hits a bound, the subject is—conditional on not stop-
ping the process—more than six times as likely to again choose a loss-exit instead of a gain-exit
strategy (see the left table of Figure 12 in Appendix E),14 which is consistent with Prediction 3.

Conditional on not selling the asset immediately, around 45% of the processes are stopped
“later” than when the subject initially planned to stop the process; that is, 45% of the processes
pass (at least) one of the initial thresholds without being stopped. Notably, the share of pro-
cesses being stopped later than initially planned monotonically increases in the drift of the pro-
cess, from 20% (for the most negative drift) to around 54% (for zero drift). This indicates that
subjects are time-inconsistent in their strategy choices, as predicted by our model, and the fact
that this behavior is more pronounced for processes with a less negative drift is again in line
with our main salience prediction that subjects are sensitive to the drift in a “reasonable” way.

Digging deeper into the results on stopping later than initially planned shows that 35% of
the processes fall below the initial lower bound, but only 12% of the processes rise above the
initial upper bound. Taken together these results indicate exactly the type of time-inconsistency
that our model (and also the model by Ebert and Strack, 2015, in an extreme form) builds on
in order to explain excessive gambling: subjects choose loss-exit strategies in order to create
positive skewness in the return distribution, and they then adjust their strategy as soon as the
loss-exit threshold is hit, thereby continuing to gamble with a newly chosen loss-exit strategy.
In sum, the findings on strategy adjustments indicate that our model gives a quite accurate
description of the mechanism underlying our main experimental results.

5.3 Additional Findings

Subjects reveal a disposition effect. To test for disposition-effect-like behavior, it is insightful
to split up the share of processes that are stopped later than initially planned into those that fall
below the lower bound (namely, 35%) and those that rise above the upper bound (namely, 12%).
Keeping the asset “too long” (compared to the subject’s initial strategy) when the process has
decreased in value rather than when it has increased in value is reminiscent of the disposition
effect, whereby processes are rather sold in the gain and rather held in the loss domain.

Another test for the disposition effect is to compare the tendency to sell assets that have
gained a particular amount to that of selling assets that have lost exactly the same amount: by
the disposition effect, the former assets should be more likely to be sold than the latter, which
is precisely what we find. The subjects, who have revised their initial strategy for a respective
process at least once, are, on average, more likely to sell a process of value 100 + x than one of
value 100 − x (see Figure 7). To make selling decisions comparable, we have here considered
only processes with a drift of zero, for which gains and losses are equally likely.15

14Strategy adjustments conditional on not hitting a bound follow a similar pattern: Suppose that in the moment
of pausing the process the currently played strategy is a loss-exit strategy. Then, all of our subjects have selected
another loss-exit strategy and no one has switched to a gain-exit strategy (right table in Figure 12 in Appendix E).

15A similar picture also arises if all selling decisions including those for processes with a negative drift are taken
into account; due to losses beingmore likely for negative drifts, however, the interpretation of the respective findings
is less clear, which is why we focus here on the fair processes.

23



0.
00

0.
25

0.
50

0.
75

1.
00

0 30 60 90
Absolute difference in initial and stopping value

E
m

pi
ric

al
 c

um
ul

at
iv

e 
de

ns
ity

Loss Domain Gain Domain

Figure 7: The figure depicts the smoothed empirical cumulative distribution function of stopping at a
given distance to the initial value of the process, separately for processes that have gained and that have
lost in value. We consider only fair processes with a drift of zero for which the initial strategy was adjusted
at least once.

Cognitive skills matter. Below-median subjects in terms of cognitive skills are particularly
likely to gamble in our experiment, whereby cognitive skills are measured by the sum of correct
answers to the modified CRT and the financial literacy questions. For instance, for the process
with a drift of zero, the share of below-median subjects holding the asset until the expiration
date is twice as large as the share of above-median subjects doing so (Figure 10 in Appendix E).
Notably, below- and above-median subjects in terms of cognitive skills behave both consistently
with our main prediction: both are responsive to a change in the drift of the process.

6 Discussion of Alternative Models

6.1 Expected Utility Theory

In order to explain basic findings in choice under risk—such as an aversion toward symmetric
mean-preserving spreads—EUT needs to assume a strictly concave utility function (see, e.g.,
Bernoulli, 1738; Rothschild and Stiglitz, 1970). Under this assumption, however, EUT predicts
that all assets with a non-positive drift will be immediately sold, and it, thus, cannot explain
why subjects start to gamble in our experiment (see Result 1 in Section 5).

In order to rationalize Result 1 via EUT, we would need to assume that the utility function is
convex over at least some range around the initial value of the asset. But, even if wewould allow
for a completely flexible utility function, which switches back-and-forth from being concave
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to being convex, EUT cannot explain the skewness-dependence of risk attitudes, as elicited in
the static choices between a binary risk and its expected value: here, subjects seek, for different
outcome levels, sufficiently right-skewed risks, but avoid left-skewed risks (see Figure 13 in
Appendix E). While EUT could, in principle, rationalize this behavior for one outcome level via
a utility function that is concave first and then becomes convex, it cannot do so for multiple
outcome levels, as the turning point from concave to convex would have to change with the
outcome level. Salience theory, in contrast, predicts skewness-dependent risk attitudes for any
outcome level (see Appendix D and Dertwinkel-Kalt and Köster, forthcoming), and is thus
consistent with the data. Moreover, EUT, in contrast to salience theory, does in general not
explain why subjects prefer loss-exit strategies over gain-exit strategies (Result 3 in Section 5).
In sum, EUT cannot coherently explain our findings on static and dynamic risk attitudes.

6.2 Cumulative Prospect Theory

Abstracting from a finite expiration date, Ebert and Strack (2015) have shown that, under em-
pirically weak assumptions on the probability weighting function, a CPT-agent will never stop
an ABM, irrespective of how negative its drift is. This stark never-stopping result follows from
the fact that the preference for positive skewness induced by common CPT-specifications is so
strong that the naïve CPT-agent can always find a stop-loss and take-profit strategy that is more
attractive than stopping immediately. Aswe numerically show inAppendix F, at the example of
the representative CPT-agent proposed by Tversky and Kahneman (1992),16 the never-stopping
result extends to processes with a finite expiration date. Consequently, common specifications
of CPT can neither rationalize the fact that subjects stop a process with zero drift before the
expiration date (i.e., Result 1) nor that stopping behavior is sensitive to the drift of the process
(i.e., Result 2).17 As a consequence of this never-stopping result, CPT is also inconsistent with
the disposition effect in a setting like ours (or the one by Ebert and Strack, 2015, as they argue).
CPT can, however, also account for Result 3: as a CPT-agent overweights the tails of a proba-
bility distribution, he likes the right-skewed distribution generated by loss-exit strategies (this
has been also shown in Barberis, 2012; Ebert and Strack, 2015; Heimer et al., 2020).

6.3 Reference-Dependent Preferences without Probability Weighting

Barberis and Xiong (2009, 2012) propose an explanation of the disposition effect based on a
version of prospect theory without probability weighting, according to which gains and losses
are experienced at the level of an individual asset in the moment of selling it.18 Moreover,
Barberis and Xiong (2012) derive results that are seemingly similar to the drift-sensitivity of a

16It is easily verified that the stark never-stopping result extends to finite expiration dates also for other common
CPT-specifications. But, for expositional convenience and in line with the related literature (Barberis, 2012; Heimer
et al., 2020) we focus on the representative CPT-agent estimated by Tversky and Kahneman (1992).

17CPT belongs to the class of rank-dependent utility models (see, e.g., Quiggin, 1982), which do not assume in
general, however, that behavior is reference-dependent and affected by loss aversion. As the never-stopping result
of CPT does not rely on either reference-dependence or loss aversion, it extends to a larger class of models within
the RDU-family (as shown by Duraj, 2020). But, due to the flexibility of rank-dependent utility models, we do not
obtain general predictions regarding the stopping behavior of an RDU-agent in our setup.

18Barberis and Xiong (2009) show that other, more common reference point specifications (such as annual gains
and losses) do not allow CPT to explain the disposition effect.
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naïve salient thinker that we establish in this paper. This apparent similarity, however, is driven
by the different setup that they analyze: to establish their result, Barberis and Xiong assume,
in particular, that (1) upon selling an asset the agent can immediately reinvest his wealth in
another asset, (2) when selling an asset the agent pays positive transaction costs, and (3) the
time-horizon is sufficiently long for discounting to play an important role. Our experimental
design shares neither of these features, so that their results cannot be applied to our setting.
But, using a stylized version of the model by Barberis and Xiong (2012), we demonstrate in the
following that their realization-utility approach, which has found some experimental support
(e.g. Frydman et al., 2014; Imas, 2016), cannot account for our experimental findings.

Without loss of generality, we abstract from a finite expiration date and from discounting.
Adapting the model in Barberis and Xiong (2012) to our setup, we assume that the agent’s
utility is given by the sum of an asset’s net present value and her realization utility from selling
the asset, where the latter is given by a (piece-wise) linear function u(·) defined as follows:
u(x) = x− r if x ≥ r and u(x) = λ(x− r) if x < r for some loss-aversion parameter λ ≥ 1 and a
reference point r = x0.19 The agent’s utility derived from selling the asset at time t is equal to

Xt︸︷︷︸
net present value

+ u(Xt).︸ ︷︷ ︸
realization utility

Now consider a threshold stopping time τa,b with a < x0 < b and denote by p = p(a, b, x0)

the probability that the process is stopped at the stop-loss threshold a. The agent sells the asset
immediately if and only if, for any such threshold stopping time, it holds that

pa+ (1− p)b︸ ︷︷ ︸
expected net present value

+ pλ(a− x0) + (1− p)(b− x0)︸ ︷︷ ︸
expected realization utility

≤ x0,

or, equivalently,

2(1− p)(b− x0) ≤ (1 + λ)p(x0 − a). (3)

A sufficient condition for Eq. (3) to hold is that (1 − p)(b − x0) ≤ p(x0 − a) or, equivalently,
E[Xτa,b ] ≤ x0, which is satisfied for any process with a non-positive drift. We conclude that an
agent with realization utility à la Barberis and Xiong (2012) would immediately sell any asset
in our experiment; that is, their model cannot account for our Result 1.

More generally, the preceding analysis highlights that some form of non-linear probability
weighting is necessary to explain our results on skewness preferences, not only in the dynamic
selling decisions, but also in the static choices, which we analyze in Appendix E (see Figure 13).
The former point is made in an informal way also in Heimer et al. (2020). Adding non-linear
probability weighting to the model by Barberis and Xiong (2012) would yield a model that is
essentially equivalent to the ones studied in Barberis (2012) or Ebert and Strack (2015), which
we have already discussed in detail in the previous subsection.

19Precisely, the case of λ = 1 refers to Eq. (7) in Barberis and Xiong (2012), while λ > 1 corresponds to Eq. (18)
in their paper.
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6.4 Disappointment Aversion

Gul (1991) proposes a theory of disappointment aversion to explain the Allais paradox, in par-
ticular, the certainty effect.20 The model can, in principle, rationalize a preference for positive
skewness and thereby gambling in the context of our experiment (Duraj, 2020, Proposition 4).
But, as we will formally argue in the following, under the assumptions necessary to explain a
preference for positive skewness, it also predicts that subjects will not stop a process with zero
drift before the expiration date, which is inconsistent with Result 1. Moreover, just like EUT and
CPT, disappointment aversion cannot account for context-dependent behavior, thereby conflict-
ing with existing evidence from static settings (e.g, Dertwinkel-Kalt and Köster, forthcoming).

If we abstract from a finite expiration date (i.e., if T = ∞ holds), a disappointment-averse
agent evaluates the random variable induced by a threshold stopping time τa,b at

V (Xτa,b) =
p(1 + β)

1− p+ pβ
u(a) +

1− p
1− p+ pβ

u(b),

where u is a classical utility function and β > −1 captures the agent’s disappointment aversion.
As illustrated in Gul (1991), we need to assume β > 0 in order to rationalize puzzling

behavior like the Allais paradox. But, given that β > 0, the only way to rationalize a preference
for sufficiently right-skewed risks is to assume a convex utility function u(·). Precisely, with a
concave utility function, the disappointment-averse agent would reject any fairly priced risk,
and he would thus sell any asset with a non-positive drift immediately, which contradicts both
our results on dynamic (i.e., Result 1) and static choices (see Figure 13 in Appendix E).

So, let us assume that not only β > 0, but also that u(·) is convex. As in our experiment, we
assume that the agent can only choose stop-loss and take-profit strategies. A disappointment-
averse agent stops a process with zero drift at time t, if and only if, for any stopping time τa,b,

u(b)−u(xt)
b−xt

u(xt)−u(a)
xt−a

≤ 1 + β.

Since u(·) is convex by assumption, the left-hand side of the preceding inequality is strictly
increasing in b (and strictly decreasing in a). Again since u(·) is convex, for any fixed a ≥ 0,
the left-hand side approaches infinity, as b approaches infinity. But this implies that, for any
fixed β > 0, we can find a finite b, such that the above inequality is violated. Consequently,
a disappointment-averse agent with a convex utility function never stops a process with zero
drift, which contradicts the fact that a large majority of subjects stop the process with zero drift
before the expiration date (i.e., Result 1). All the preceding arguments carry over to the case of
a finite expiration date. In sum, we conclude that a model of disappointment aversion cannot
coherently explain the findings on skewness preferences in static and dynamic settings.

20Disappointment aversion is a special case of cautious expected utility (Cerreia-Vioglio et al., 2015), which is
so flexible, however, that it can explain basically any kind of stopping behavior, including the stark never-stopping
result predicted by CPT (see Proposition 6 in Duraj, 2020).
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6.5 Other Salience Specifications

Adaptive reference point. While in its original formulation salience theory does not incor-
porate a reference point in the value function (see Bordalo et al., 2012), we could, in principle,
adjust our saliencemodel by introducing a reference point, rt, into the value function that might
even evolve over time.21 Depending on the evolution of the reference point this model can po-
tentially explain a lot of different stopping behaviors. Making specific assumptions on the evo-
lution of the reference point would allow us to falsify the model. But, without any guidance on
how the reference point evolves over time, it is impossible to provide a comprehensive analysis.
One natural candidate would be a reference point that instantaneously adapts to the current
wealth level. But this model would predict, for instance, that subjects have the same disposition
to sell assets that have increased or decreased in value, which is clearly inconsistent with our
data on disposition-effect-like behavior.

Adaptive consideration set. So far, we have assumed that the salient thinker compares each
stopping strategy to the alternative of stopping immediately. While we regard this as a plausi-
ble assumption, in particular, in the context of our experiment, one might argue that previously
chosen strategies affect the perception of whatever strategy is considered next. As in the case of
an adaptive reference point, this additional degree of freedom will probably allow us to ratio-
nalize almost any stopping behavior, except for the never-stopping result of CPT. Since a salient
thinker’s drift-sensitivity relies on the boundedness of the salience function and is, therefore,
unaffected by consideration set effects, even with an adaptive consideration set a salient thinker
would stop immediately for a sufficiently negative drift. Again, making specific assumptions
on the evolution of the consideration set would allow us to falsify the model. But also here,
without any guidance on how the consideration set changes over time, it is impossible to pro-
vide a comprehensive analysis. One natural assumption would be that the previously chosen
lower bound ap of a stop-loss and take-profit strategy provides a reference point for the newly
selected lower bound an, and that the previously chosen upper bound bp provides a reference
point for the newly chosen upper bound bn in the sense that the respective salience weights
are σ(v(an), v(ap)) and σ(v(bn), v(bp)). Then, conditional on not stopping the process, subjects
would always adjust the upper threshold by more than the lower threshold, as otherwise the
lower threshold would be salient. This prediction is inconsistent with our data.

7 Conclusion

We theoretically and experimentally investigate the role of endogenously created skewness for
how people make dynamic decisions under risk. We find that, if they can create skewness
through their stopping strategy, people take on gambles that are fair or slightly unfair. More

21Alternatively, one could introduce a reference point, rt = r, that is constant over time. In fact, our model
could be interpreted as a special case of this more the general model with r = 0. Depending on the exact reference
point r and on whether we want to allow for a differently curved value function over gains and losses, more or less
predictions will change. Assuming, for instance, r = x0 and an s-shaped value function as in Barberis (2012), that
is not too convex in the loss domain, gives a much more flexible model, but yields predictions quite similar to those
of our model.
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specifically, gambling with loss-exit strategies is attractive to subjects. These strategies do not
only induce a right-skewed distribution of returns, but they also look right-skewed, as the stop-
loss threshold is closer to the current value of the process than the take-profit threshold. That
subjects are particularly attracted by these loss-exit strategies might indicate that it is rather
the differential contrasts on the up- and downside than the differential probabilities of up- and
downside payoffs that makes subjects gamble. This speaks to the mechanism behind salience
theory, according to which the decision weights assigned to salient outcomes are distorted,
whereas in CPT the decision weights assigned to extreme probabilities are distorted.

While Ebert and Strack (2015) conclude that “probability weighting in combination with
naïvete leads to unrealistic predictions for a wide range of dynamic setups,” we show that this
conclusion relies on the specificities of CPT, but does not hold for models of non-linear proba-
bility weighting in general. In fact, salience-based probability weighting yields more plausible
predictions for dynamic gambling behavior, which we find support for in a laboratory experi-
ment. Our finding that static and dynamic skewness preferences are positively correlated in a
way that is consistentwith salience theory also suggests that at least salience-based staticmodels
of choice under risk can be reasonably applied to a dynamic context.

To account for reasonable stopping behavior, we point to two properties of our salience
model that have not been in the focus of the preceding salience literature: boundedness of the
salience function (as established by Bordalo et al., 2012) and concavity of the value function (as
also put forward by Nielsen et al., 2020). First, boundedness of the salience function is essential
to overcome the never-stopping result of CPT. Second, we point to a qualitative difference be-
tween diminishing sensitivity of the salience function and concavity or diminishing sensitivity
of the value function. Concavity of the value function is the “stronger” concept, meaning that
it allows us to rationalize that subjects do not necessarily gamble even fair processes until the
end. Jointly, these two properties limit skewness preferences to a “reasonable” degree.

Our results point out the importance of skewness preferences in explaining dynamic choices
under risk when the underlying stochastic process is symmetric, but we would expect them to
play an even bigger role when the process is positively skewed itself. A first example refers to
processes underlying many casino gambles (as discussed in Ebert and Strack, 2015, Section V)
andmany asset values, which are not symmetric, but positively skewed. Skewness preferences,
as modelled by salience theory, then suggest that consumers gamble or over-invest all the more,
as the skewness created with their stopping strategies is exacerbated by the skewness of the
process. As an alternative example, we could think of teenagers or young adults who decide
whether to pursue the career of a professional athlete, actor, or musician. While the probability
of actually making it to the professional level is small, it requires substantial investments of
time and other resources to take the shot at becoming a superstar. A teenager who practices
excessively for a particular sport, for instance, might as a result neglect school or studies, thereby
lowering the attainablewage in the likely case that he fails to become a professional athlete. Now
suppose that, as suggested by our model, this teenager adopts the following strategy: each
year, he hopes for a breakthrough, but plans to quit on sports and instead study otherwise.
This strategy is attractive not only due to the skewness created by the stopping strategy, but
also due to the skewness that is inherent to the process of becoming a superstar. After each
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failure, however, the teenager revises his plans and decides to try it for one more year, as this
way he can again experience a right-skewed distribution of returns. This idea of excessively
pursuing a career is not only consistent with our model, but it is also supported by empirical
studies (e.g., Choi et al., 2016; Grove et al., 2018). A similar type of argument applies to the
classical problem of searching for a job, one of our introductory examples from the stopping-
literature. Here, skewness preferences can explain why people pass on too many mediocre
jobs, thereby forgoing pay over a longer time horizon, in the hope of finding one of very few
outstanding jobs with excellent pay. Also in this example the skewness that results from the
chosen stopping strategy is amplified by the skewness of the process itself. In sum, skewness
preferences can explain time-inconsistent behavior in trying to reach an elusive goal. While the
fundamental role that skewness plays for optimal stopping problems has been overlooked by
the classical literature, we show that it can be satisfyingly addressed by incorporating a static
model of skewness preferences, namely that of salience.
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Appendix A: Proofs

A.1: Preliminary Results on Arithmetic Brownian Motions

Fix an initial wealth level x ∈ R>0 and an expiration date T ∈ R>0. Throughout this section, we
take the perspective of period t = 0 and consider a threshold stopping time τa,b with a < x < b.
Our first result describes the distribution XT∧τa,b conditional on stopping before expiration.

Lemma 2. If µ 6= 0, then, for any threshold stopping time τa,b with a < x < b, we have

P0[Xτa,b = a] =
exp(−(2µ/ν2)b)− exp(−(2µ/ν2)x)

exp(−(2µ/ν2)b)− exp(−(2µ/ν2)a)
. (4)

If µ = 0, then P0[Xτa,b = a] = b−x
b−a . In particular, an increase in the drift of the process improves the

distribution of Xτa,b in terms of first-order stochastic dominance.

Proof. Fix some a, b ∈ R≥0 with a < x < b. For any threshold stopping time τa,b, we have

P0[Xτa,b = a] =
Ψ(b)−Ψ(x)

Ψ(b)−Ψ(a)
,

where Ψ : R → R, z 7→ Ψ(z) =
∫ z

0 exp
(
−
∫ y

0 2 µ
ν2
dv
)
dy =

∫ z
0 exp

(
−2 µ

ν2
y
)
dy is a strictly

increasing scale function (e.g., Revuz and Yor, 1999, pp. 302). For any µ 6= 0, we obtain

Ψ(z) =

∫ z

0
exp

(
−2

µ

ν2
y
)
dy =

ν2

2µ

[
1− exp(−(2µ/ν2)z)

]
,

while for µ = 0, we have Ψ(z) =
∫ z

0 1 dy = z, which yields the claim. The last part of the lemma
follows from taking the partial derivative of the right-hand side of Eq. (4) with respect to µ.

Our second result derives the probability of reaching the expiration date and describes sev-
eral properties of the distribution of XT∧τa,b conditional on stopping at the expiration date.

Lemma 3. (a) The probability of stopping at the expiration date equals

P0[τa,b ≥ T |X0 = x] =

∫ b

a
q(y, T |X0 = x) dy,

where the integrand is given by

q(y, T |X0 = x) =
2 exp

(
µ(y−x)
ν2

− T
2
µ2

ν2

)
(b− a)

∞∑
n=1

{
sin

(
πn(x− a)
b− a

)
sin

(
πn(y − a)
b− a

)
exp

(
−T

2

n2π2ν2

(b− a)2

)}
.

(b) lima→x P0[τa,b ≥ T |X0 = x] = 0 and limx→b P0[τa,b ≥ T |X0 = x] = 0.

(c) limT→∞ P0[τa,b ≥ T |X0 = x] = 0.

(d) For any stopping time τa,b with a < x < b, the CDF of XT conditional on τa,b ≥ T equals

P0[XT ≤ z|X0 = x, τa,b ≥ T ] =

∫ z
a
exp

(
µ(y−x)
ν2

)∑∞
n=1

{
sin
(
πn(x−a)
b−a

)
sin
(
πn(y−a)
b−a

)
exp

(
−T

2
n2π2ν2

(b−a)2

)}
dy∫ b

a
exp

(
µ(y−x)
ν2

)∑∞
n=1

{
sin
(
πn(x−a)
b−a

)
sin
(
πn(y−a)
b−a

)
exp

(
−T

2
n2π2ν2

(b−a)2

)}
dy
.
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(e) For any stopping time τa,b with a < x < b and z ∈ [a, b], ∂
∂µP0[XT ≤ z|X0 = x, τa,b ≥ T ] ≤ 0,

holding with a strict inequality for any z < b. Hence, an increase in the drift of the process improves
the distribution of XT conditional on τa,b ≥ T in terms of first-order stochastic dominance.

(f) Let µ < 0. Then, for any T > − (x−a)
µ , we have ∂

∂µP0[τa,b ≥ T |X0 = x] > 0.

(g) Let µ = 0. Then, ∂
∂µP0[τa,b ≥ T |X0 = x] = 0.

Suppose that a = x− ε− ε′ and b = x+ ε for some ε > 0 and ε′ ≥ 0. In addition, let α ∈ (0, ε).

(h) If µ ≤ 0, then P0[XT ≤ x− α|X0 = x, τa,b ≥ T ] ≥ P0[XT > x+ α|X0 = x, τa,b ≥ T ], holding
with a strict inequality whenever µ < 0.

Finally, suppose that a = x− ε and b = x+ ε′ for some ε′ > ε. In addition, let µ = 0.

(i) limε→0 P0[XT ≤ x|X0 = x, τa,b ≥ T ] = 0.

Proof. PART (a). Example 5.1 in Cox and Miller (1977).

PART (b). We prove only the first part here, as the proof of the second part is analogous. To
establish the first part, it is sufficient to show that

lim
a→x

∞∑
n=1

{
sin

(
πn(x− a)

b− a

)
sin

(
πn(y − a)

b− a

)
exp

(
−T

2

n2π2ν2

(b− a)2

)}
= 0. (5)

As | sin
(
πn(x−a)
b−a

)
sin
(
πn(y−a)
b−a

)
| ≤ 1 and as exp

(
−T

2
n2π2ν2

(b−a)2

)
≤ exp

(
−T

2
nπν2

(b−a)2

)
and as

∞∑
n=1

exp

(
− t

2

nπν2

(b− a)2

)
=

1(
exp

(
t
2

πν2

(b−a)2

)
− 1
) <∞,

we can take the limit in (5) inside the summation. The claim follows from the fact that sin(0) = 0.

PART (c). Fix an initial wealth level x ∈ R>0 and a stopping time τa,b. Then, we have

P0[τa,b ≥ T |X0 = x] ∝
∫ b

a

exp
(
µ(y−x)
ν2

)
exp

(
T
2
µ2

ν2

) ∞∑
n=1

{
sin

(
πn(x− a)
b− a

)
sin

(
πn(y − a)
b− a

)
exp

(
−T

2

n2π2ν2

(b− a)2

)}
dy

≤ 1

exp
(
T
2
µ2

ν2

) ∫ b

a

exp

(
µ(y − x)

ν2

) ∞∑
n=1

exp

(
−T

2

n2π2ν2

(b− a)2

)
dy

≤ 1

exp
(
T
2
µ2

ν2

) ∫ b

a

exp

(
µ(y − x)

ν2

) ∞∑
n=1

exp

(
−n · Tπ2ν2

2(b− a)2

)
dy

=
1

exp
(
T
2
µ2

ν2

)(
exp

(
Tπ2ν2

2(b−a)2

)
− 1
) ∫ b

a

exp

(
µ(y − x)

ν2

)
dy

T→∞−−−−→ 0,

where the first inequality follows from the fact that | sin
(
πn(x−a)
b−a

)
sin
(
πn(y−a)
b−a

)
| ≤ 1 and the

second inequality holds as n ≥ 1 and Tπ2ν2

2(b−a)2
> 0.

PART (d). Follows immediately from Part (a).
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PART (e). Denote q(y, T ) = q(y, T |X0 = x). It follows from Part (d) that the claimed
inequality, ∂

∂µP0[XT ≤ z|X0 = x, τa,b ≥ T ] ≤ 0, holds if and only if

(∫ z

a
(y − x)q(y, T ) dy

)
·
(∫ b

a
q(y, T ) dy

)
≤
(∫ b

a
(y − x)q(y, T ) dy

)
·
(∫ z

a
q(y, T ) dy

)
,

or, equivalently, E0[XT |X0 = x, τa,b ≥ T,XT ≤ z] ≤ E0[XT |X0 = x, τa,b ≥ T ], which is true by
the definition of the conditional expectation.

PART (f). Let µ < 0. Then, we have

∂

∂µ
P0[τa,b ≥ T |X0 = x] =

∫ b

a

∂

∂µ
q(y, T |X0 = x) dy

=
1

ν2

∫ b

a
(y − x)q(y, T |X0 = x) dy + T

(−µ)

ν2

∫ b

a
q(y, T |X0 = x) dy

∝ E0[XT |X0 = x, τa,b ≥ T ]− x+ T (−µ)

> a− x+ T (−µ),

where, in the third line, we multiply with ν2 and divide by P0[τa,b ≥ T |X0 = x], and where the
inequality follows from the fact that E0[XT |X0 = x, τa,b ≥ T ] > a by construction.

PART (g). By the proof of Part (f), for µ = 0, we have

∂

∂µ
P0[τa,b ≥ T |X0 = x] ∝ E0[XT |X0 = x, τa,b ≥ T ]− x.

By Doob’s Optional Sampling Theorem, we know that

E0[XT∧τa,b ] = P0[τa,b > T ] · E0[Xτa,b |τa,b < T ] + P0[τa,b ≥ T ] · E0[XT |τa,b ≥ T ]

= P0[τa,b > T ] · E0[Xτa,b ] + P0[τa,b ≥ T ] · E0[XT |τa,b ≥ T ]

= P0[τa,b > T ] · x+ P0[τa,b ≥ T ] · E0[XT |τa,b ≥ T ]

= x,

has to hold. But this implies that E0[XT |X0 = x, τa,b ≥ T ] = x, which proves the claim.

PART (h). To begin with, let ε′ = 0. By Part (d), we have to show that

∫ x−α

a
exp

(
µ(y − x)

ν2

) ∞∑
n=1

{
sin

(
πn(x− a)

b− a

)
sin

(
πn(y − a)

b− a

)
exp

(
−T

2

n2π2ν2

(b− a)2

)}
dy

≥
∫ b

x+α
exp

(
µ(y − x)

ν2
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n=1

{
sin

(
πn(x− a)

b− a

)
sin

(
πn(y − a)

b− a

)
exp

(
−T

2

n2π2ν2

(b− a)2

)}
dy

for any α ∈ (0, ε), with a strict inequality if µ < 0. For any µ ≤ 0, we have exp
(
µ(y−x)
ν2

)
≥ 1 if
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and only if y ≤ x, holding with a strict inequality whenever y < x and µ < 0. This implies that

∫ x−α

a
exp

(
µ(y − x)

ν2

) ∞∑
n=1

{
sin
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πn(x− a)

b− a

)
sin
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exp
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≥
∫ πn

2
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2

∑
n∈N,n odd

sin
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2
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sin
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2
− z
)

exp
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n2π2ν2

4ε2
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dz

=

∫ πn
2

πn
2
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ε
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n∈N,n odd

sin
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2

)
sin
(πn

2
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)

exp
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n2π2ν2

4ε2

)
dz
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x+α
exp

(
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n=1

{
sin

(
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b− a

)
sin

(
πn(y − a)

b− a

)
exp

(
−T

2

n2π2ν2

(b− a)2
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dy,

where the two inequalities follow from the fact that x−a
b−a = 1

2 and sin
(
πn
2

)
= 0 for any even

n ∈ N, while the equality holds since sin
(
πn
2 − z

)
= sin

(
πn
2 + z

)
for any odd n ∈ N and any

z ∈ (0, πn2 ). The claim follows from the fact that the inequalities are strict whenever µ < 0.
Fix some ε > 0 and µ ≤ 0. Now, if ε′ > 0, the probability that XT is weakly below x,

conditional on reaching the expiration date when playing according to the stopping time τa,b,
P0[XT ≤ x|X0 = x, τa,b ≥ T ], increases compared to the case with ε′ = 0. This follows from the
fact that due to ε′ > 0 there is nowmore room below x than above x to reach the expiration date
T and from the continuity of the sample paths.

PART (i). By Part (b), we have limε→0

∫ x+ε′

x−ε q(y, T |X0 = x) dy = 0 and, as a consequence,
also limε→0

∫ x
x−ε q(y, T |X0 = x) dy = 0. Now, to determine limε→0 P0[XT ≤ x|X0 = x, τa,b ≥ T ],

we will apply L’Hospital’s rule. For that, we have to make a few preliminary observations.
First, if the partial derivative ∂

∂εq(y, T |X0 = x) exists, then it is given by

∂
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and since we have
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(6)

this partial derivative indeed exists. To apply L’Hospital’s rule, we need to compute the limit of
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∂
∂εq(y, T |X0 = x) for ε approaching zero, which is given by

lim
ε→0

∂

∂ε
q(y, T |X0 = x) =

1

ε′

∞∑
n=1

lim
ε→0

{
πn cos

(
πnε

ε+ ε′

)
sin

(
πn(y − x+ ε)

ε+ ε′

)
exp

(
−T

2

n2π2ν2

(ε+ ε′)2

)}

+
ε′ − (y − x)

ε′2

∞∑
n=1

lim
ε→0

{
πn sin

(
πnε

ε+ ε′

)
cos

(
πn(y − x+ ε)

ε+ ε′

)
exp

(
−T

2

n2π2ν2

(ε+ ε′)2

)}

+
Tν2

ε′3

∞∑
n=1

lim
ε→0

{
π2n2 sin

(
πnε

ε+ ε′

)
sin

(
πn(y − x+ ε)

ε+ ε′

)
exp

(
−T

2

n2π2ν2

(ε+ ε′)2

)}

=
1

ε′

∞∑
n=1

{
πn sin

(
πn(y − x)

ε′

)
exp

(
−T

2

n2π2ν2

ε′2

)}
≥ 0,

(7)

where the first equality follows from the fact that, by the considerations in Eq. (6), we can take
the limits into the summations, the second equality holds as sin(0) = 0 and cos(0) = 1, and
the inequality follows from the fact that q(y, T |X0 = x) ≥ 0 and limε→0 q(y, T |X0 = x) = 0 (as
otherwise q(y, T |X0 = x) would be negative for ε sufficiently close to zero).

Second, we observe that∣∣∣∣ ∫ x

x−ε

∂

∂ε
q(y, T |X0 = x) dy

∣∣∣∣ ≤ ∫ x

x−ε

∣∣∣∣ ∂∂εq(y, T |X0 = x)

∣∣∣∣ dy
≤ ε
[

1

ε′
+
ε′ − 2(y − x)

ε′2

] exp
(
T
2
πν2

ε′2

)
π(

exp
(
T
2
πν2

4ε′2

)
− 1
)2

+ ε
Tν2

ε′3

exp
(
T
2
πν2

ε′2

)(
exp

(
T
2
πν2

ε′2

)
+ 1
)
π2(

exp
(
T
2
πν2

4ε′2

)
− 1
)3

ε→0−−→ 0,

(8)

where the first inequality follows by the triangle inequality, and where the second inequality
follows from Eq. (6). Taking the limit of the final expression is straightforward.

Third, we conclude that

lim
ε→0

∫ x+ε′

x

∂

∂ε
q(y, T |X0 = x) dy =

∫ x+ε′

x
lim
ε→0

∂

∂ε
q(y, T |X0 = x) dy

=
1

ε′

∫ x+ε′

x

∞∑
n=1

{
πn sin

(
πn(y − x)

ε′

)
exp

(
−T

2

n2π2ν2

ε′2

)}
dy

=
1

ε′

∫ 1

0

∞∑
n=1

{
sin (πnz)πn exp

(
−T

2

n2π2ν2

ε′2

)}
dz,

where the first equality holds by the Theorem of Dominated Convergence, the second one holds
by the second to last line in (7), and the third equality follows by substitution. Recall that

∞∑
n=1

{
sin (πnz)πn exp

(
−T

2

n2π2ν2

ε′2

)}
≥ 0 (9)

for any z ∈ (0, 1), and notice that this inequality is strict for any z = 1
k with k ∈ N≥2. The latter

follows from the fact that sin(πn ik ) = − sin(πnk+i
k ) for any i ≤ k, and sin(π ik ) ≥ 0 for any i ≤ k
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with a strict inequality for any i /∈ {0, k}, and πn exp
(
−T

2
n2π2ν2

ε′2

)
being strictly decreasing in n.

Since (9) is continuous in z, we conclude that it is strictly positive on a dense interval around
any z = 1

k with k ∈ N≥2. This, in turn, implies that limε→0

∫ x+ε′

x
∂
∂εq(y, T |X0 = x) dy > 0.

Combining all the considerations above, we finally conclude that

lim
ε→0

P0[XT ≤ x|X0 = x, τa,b ≥ T ] = lim
ε→0

∂
∂ε

∫ x
x−ε q(y, T |X0 = x) dy

∂
∂ε

∫ x+ε′

x−ε q(y, T |X0 = x) dy

= lim
ε→0

∫ x
x−ε

∂
∂εq(y, T |X0 = x) dy∫ x+ε′

x−ε
∂
∂εq(y, T |X0 = x) dy

=
limε→0

∫ x
x−ε

∂
∂εq(y, T |X0 = x) dy

limε→0

∫ x+ε′

x−ε
∂
∂εq(y, T |X0 = x) dy

= 0,

where the first equality follows by L’Hospital’s rule (given that the limit on the right-hand
side exists), the second equality follows by the Theorem of Dominated Convergence and by
Leibniz’s integral rule, the third equality follows from the fact that the limit of the numerator
and the limit of the denominator exist, and the last equality holds by (8) and by the fact that
limε→0

∫ x+ε′

x
∂
∂εq(y, T |X0 = x) dy > 0 and therefore, by limε→0

∂
∂εq(y, T |X0 = x) ≥ 0, also

limε→0

∫ x+ε′

x−ε
∂
∂εq(y, T |X0 = x) dy > 0. This completes the proof.

A.2: Motivating Example

Proof of Proposition 1. Wehave to show that, when the value function is linear, then for any point in
time t < T withXt = xt there exists a stopping time τa,b such that U s

(
XT∧τa,b |C

)
> xt or, equivalently,

P0[τa,b < T − t]·
[
p(a− xt)σ(a, xt) + (1− p)(b− xt)σ(b, xt)

]︸ ︷︷ ︸
(?)

+ P0[τa,b ≥ T − t] ·
∫

(a,b)
(z − xt)σ(z, xt) dΦµ(z)︸ ︷︷ ︸

(??)

> 0,

where the probability p = p(a, b, µ) is defined in Eq. (4) and where P0[τa,b < T − t] as well as the
conditional CDF Φµ(z) := P0[XT ≤ z|X0 = x0, τa,b ≥ T − t] are described in Lemma 3.

Consider a threshold stopping time τa,b with a = xt − ε and b = xt + ε′ for some ε′ > ε > 0.
First, we show that there exists some threshold ε̂ > 0 such that for any ε < ε̂, it holds that (?) > 0.
Since p = b−xt

b−a = ε′

ε+ε′ , it follows that (?) > 0 holds if and only if

εε′

ε+ ε′
[
σ(xt + ε′, xt)− σ(xt − ε, xt)

]
> 0.

The claim then follows from the fact that, due to ordering, σ(xt− ε, xt) monotonically increases
in ε and σ(xt + ε′, xt) > σ(xt, xt) holds.
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Second, we show that there exists some ε̌ > 0, such that for any ε < ε̌, (??) > 0. We have∫
(a,b)

(z − xt)σ(z, xt) dΦµ(z) ≥
∫

(x−ε,x)
(z − xt)σ(z, xt) dΦµ(z) +

∫
(x+ε,x+ε′)

(z − xt)σ(z, xt) dΦµ(z)

> −εσ
∫

(x−ε,x)
dΦµ(z) + εσ

∫
(x+ε,x+ε′)

dΦµ(z)

= ε
[(

1− Φµ(x+ ε)
)
σ − Φµ(x)σ

]
,

where the weak inequality holds as ε > 0 and the strict inequality follows by the definition of
σ := sup(x,y)∈R2

≥0
σ(x, y) and σ := inf(x,y)∈R2

≥0
σ(x, y). Now recall that σ < ∞ and σ > 0 by

assumption. By Lemma 3 (i), we have limε→0 Φµ(x) = 0, which yields the claim.

A.3: Main Theoretical Result

Proof of Lemma 1. We have to find some α, β ∈ R>0, so that
[
ũ(z) +β

]
≤
[
ũ(x) +β

]
exp

(
α(z−x)

)
holds for any z ≥ 0. Set β = σ(v(x),v(x))v′(x)

α for some α > 0. We need to find some α > 0 so that

(
v(z)− v(x)

)
σ
(
v(z), v(x)

)
+ β ≤

[(
v(x)− v(x)

)
σ
(
v(x), v(x)

)
+ β

]
exp

(
α(z − x)

)
holds for all z ≥ 0. This condition is indeed satisfied if and only if

α
v(z)− v(x)

v′(x)

σ
(
v(z), v(x)

)
σ
(
v(x), v(x)

) + 1 ≤ exp
(
α(z − x)

)
or, equivalently,

v(z)− v(x)

v′(x)

σ
(
v(z), v(x)

)
σ
(
v(x), v(x)

) ≤ exp
(
α(z − x)

)
− 1

α
(10)

holds for all z ≥ 0. By construction, (10) holds at z = x. We distinguish two cases:

1. CASE: Let z < x. Divide both sides of (10) by z − x < 0, which gives

v(x)−v(z)
x−z
v′(x)

σ
(
v(z), v(x)

)
σ
(
v(x), v(x)

) ≥ exp
(
α(x−x)

)
−exp

(
α(z−x)

)
x−z
α

. (11)

Since the exponential function is strictly convex, such that, for any z < x, we have

exp
(
α(x− x)

)
− exp

(
α(z − x)

)
x− z

< α exp
(
α(x− x)

)
= α,

the right-hand side of (11) is strictly is less than 1. Since the value function is (weakly) concave,
which implies that, for any z < x, we have

v(x)− v(z)

x− z
≥ v′(x),

and since σ
(
v(z), v(x)

)
> σ

(
v(x), v(x)

)
holds by ordering, the left-hand side of (11) is strictly

larger than 1. In sum, we conclude that, for any z < x, Condition (10) is satisfied for any α > 0.
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2. CASE: Let z > x. Since both sides of (10) are zero at z = x, we can re-write (10) as follows∫ z

x

∂

∂w

[
exp

(
α(w − x)

)
− 1

α

]
− ∂

∂w

[
v(w)− v(x)

v′(x)

σ
(
v(w), v(x)

)
σ
(
v(x), v(x)

) ] dw ≥ 0,

which holds if and only if

∫ z

x
exp

(
α(w − x)

)
−
[
v′(w)

v′(x)

σ
(
v(w), v(x)

)
σ
(
v(x), v(x)

) +
[
v(w)− v(x)

]v′(w)

v′(x)

∂
∂v(w)σ

(
v(w), v(x)

)
σ
(
v(x), v(x)

) ]
dw ≥ 0.

(12)
A sufficient condition for (12) to hold is that

exp
(
α(w − x)

)
≥ v′(w)

v′(x)

σ
(
v(w), v(x)

)
σ
(
v(x), v(x)

) +
[
v(w)− v(x)

]v′(w)

v′(x)

∂
∂v(w)σ

(
v(w), v(x)

)
σ
(
v(x), v(x)

)
for any w ≥ x. When evaluated at w = x, this inequality is tight, since the salience function is
differentiable and thus limw→x

[
v(w)−v(x)

]
∂

∂v(w)σ
(
v(w), v(x)

)
= 0. Also, if the right-hand side

of this inequality is non-positive, the condition is certainly met. So, from now on, consider only
w > x for which the right-hand side is positive. Then, we can re-state the condition as follows

α ≥
ln

(
v′(w)
v′(x)

σ
(
v(w),v(x)

)
σ
(
v(x),v(x)

) +
[
v(w)− v(x)

]v′(w)
v′(x)

∂
∂v(w)

σ
(
v(w),v(x)

)
σ
(
v(x),v(x)

) )
w − x

, (13)

which has to hold for all relevant w > x. The right-hand side of (13) is bounded from above by

h(w) :=

ln

(
σ
(
v(w),v(x)

)
+
[
v(w)−v(x)

]
∂

∂v(w)
σ
(
v(w),v(x)

)
σ
(
v(x),v(x)

) )
w − x

,

since v is (weakly) concave. Hence, a sufficient condition for (13) to hold is given by α ≥
maxw∈(x,∞) h(w). Since we are free to choose any α > 0, it is thus sufficient to show that
maxw∈(x,∞) h(w) <∞. First, sinceh(w) ≥ 0 for anyw ≥ x, we know that, if the limit limw→∞ h(w)

does not exist, then it has to be positive infinity. Then, by L’Hospital’s rule, we conclude that

0 ≤ lim
w→x

h(w) = lim
w→x

2v′(w) ∂
∂v(w)

σ
(
v(w),v(x)

)
+v′(w)

[
v(w)−v(x)

]
∂2

∂v(w)2
σ
(
v(w),v(x)

)
σ
(
v(x),v(x)

)
σ
(
v(w),v(x)

)
+
[
v(w)−v(x)

]
∂

∂v(w)
σ
(
v(w),v(x)

)
σ
(
v(x),v(x)

)
=

limw→x 2v′(w) ∂
∂v(w)σ

(
v(w), v(x)

)
+ v′(w)

[
v(w)− v(x)

]
∂2

∂v(w)2
σ
(
v(w), v(x)

)
limw→x σ

(
v(w), v(x)

)
+
[
v(w)− v(x)

]
∂

∂v(w)σ
(
v(w), v(x)

)
=

2v′(x)

σ
(
v(x), v(x)

) ∂

∂v(w)
σ
(
v(w), v(x)

)∣∣∣∣
w=x

<∞.

where the third equality as well as the inequality follow from the fact that the salience function
is twice differentiable, which implies, in particular, limw→x

[
v(w)− v(x)

]
∂

∂v(w)σ
(
v(w), v(x)

)
= 0
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as well as limw→x
[
v(w) − v(x)

]
∂2

∂v(w)2
σ
(
v(w), v(x)

)
= 0. The fact that the limit exists further

justifies the application of L’Hospital’s rule. Second, again by L’Hospital’s rule, we have

0 ≤ lim
w→∞

h(w) = lim
w→∞

2v′(w) ∂
∂v(w)σ

(
v(w), v(x)

)
+ v′(w)

[
v(w)− v(x)

]
∂2

∂v(w)2
σ
(
v(w), v(x)

)
σ
(
v(w), v(x)

)
+
[
v(w)− v(x)

]
∂

∂v(w)σ
(
v(w), v(x)

)
≤ lim

w→∞

2v′(w) ∂
∂v(w)σ

(
v(w), v(x)

)
+ v′(w)

[
v(w)− v(x)

]
∂2

∂v(w)2
σ
(
v(w), v(x)

)[
v(w)− v(x)

]
∂

∂v(w)σ
(
v(w), v(x)

)
= lim

w→∞

{
2v′(w)

v(w)− v(x)
+ v′(w)

∂2

∂v(w)2
σ
(
v(w), v(x)

)
∂

∂v(w)σ
(
v(w), v(x)

) }
≤ lim

w→∞

2v′(w)

v(w)− v(x)
= 0,

where the second inequality follows from the fact that lim∆→∞
∂2

∂∆2σ(x+∆, x) ≤ 0, as otherwise
σ(x+ ∆, x) could not be strictly increasing in ∆ on (0,∞) and bounded from above.

Since h(z) is continuous on (x,∞), it follows from limw→x h(w) <∞ and limw→∞ h(w) <∞
that maxw∈(x,∞) h(w) exists. This, in turn, implies that there exists a constant α > 0, such that
Condition (12) is satisfied for any z > x, which was to be proven.

Proof of Theorem 1. The statement follows from Proposition 1 in Ebert and Strack (2015). We re-
state their argument here in terms of our notation. By Lemma 1, the auxiliary utility function is
of exponential growth at z = x, so that we can find α, β ∈ R>0 such that, for any z ≥ 0, we have

[
ũ(z) + β

]
≤
[
ũ(x) + β

]
exp

(
α(z − x)

)
. (14)

Recall that the preferences of an EUT agent are invariant under positive affine transformations,
which implies that the utility function û(z) := ũ(z) + β represents the exact same preferences.
We should also keep in mind that û(x) = β > 0.

Consider an EUT agent with a utility function û, and an ABM Xt = x + µt + νWt with an
initial value x and a drift µ < −1

2αν
2 =: µ̃. For any stopping time τ with P0[τ > 0] > 0, we have

E[û(Xτ )] ≤ û(x)E
[

exp
(
α(Xτ − x)

)]
= û(x)E

[
exp

(
αµτ + ανWτ

)]
= û(x)E

[
1 +

∫ τ

0

(
αµ+

1

2
α2ν2

)
exp

(
αµs+ ανWs

)
ds+

∫ τ

0
αν exp

(
αµs+ ανWs

)
dWs

]
= û(x)E

[
1 +

∫ τ

0

(
αµ+

1

2
α2ν2

)
exp

(
αµs+ ανWs

)
ds

]
< û(x),

where the first inequality holds by (14), the second equality holds by Itô’s Lemma, the third
equality holds by Doob’s Optional Sampling Theorem, and the second inequality holds by
û(x) > 0 and the assumption that µ < µ̃ (so that the expectation is less than one). Hence,
an EUT agent with a utility function û and, thus, the naïve salient thinker stop immediately.
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Proof of Corollary 1. Consider anArithmetic BrownianMotionXt = x+µt+νWtwith a negative
drift, which a naïve salient thinker with a linear value function would stop immediately. We
transform the process using the strictly increasing scale function (Revuz and Yor, 1999, pp. 302)

Ψ : R≥0 → R≥0, z 7→
∫ z

0
exp

(
−2

µ

ν2
y
)
dy,

which yields a scaled process (Ψ(Xt))t∈R≥0
with zero drift and an initial value Ψ(x).

Now consider a salient thinker with the exact same salience function, but a value function
v(z) = ν

2|µ| ln
(
1 + 2|µ|

ν z
)
, which is strictly increasing and concave. Since v(z) = Ψ−1(z), we

conclude that, for any stopping time τ , it has to hold that

E
[(
v
(
Ψ(Xτ )

)
− v
(
Ψ(x)

))
σ
(
v
(
Ψ(Xτ )

)
, v
(
Ψ(x)

)]
= E

[(
Xτ − x

)
σ(Xτ , x)

]
≤ 0,

where the inequality follows from the assumption that the naïve salient thinker with a linear
value function immediately stops the process (Xt)t∈R≥0

. Consequently, the naïve salient thinker
with a value function v(·) immediately stops the scaled process (Ψ(Xt))t∈R≥0

with zero drift.

A.4: Additional Results on Stop-Loss and Take-Profit Strategies

Proof of Proposition 2. Fix an initial wealth level x ∈ R>0 and a volatility ν. Consider the two
processes with drift parameters 0 ≥ µ′ > µ. We have to show that if a naïve salient thinker does
not stop the process with drift µ immediately, then he does not stop the process with drift µ′ immediately.

As before, let Φµ(z) := P0[XT ≤ z|X0 = x, τa,b ≥ T ]. If a naïve salient thinker does not stop
the process with drift µ immediately, there exists a stopping time τa,b such that

P0[τa,b < T ]
[
p
(
v(a)− v(x)

)
σ
(
v(a), v(x)

)
+ (1− p)

(
v(b)− v(x)

)
σ
(
v(b), v(x)

)]︸ ︷︷ ︸
(?)

+ P0[τa,b ≥ T ]

∫
(a,b)

(
v(z)− v(x)

)
σ
(
v(z), v(x)

)
dΦµ(z)︸ ︷︷ ︸

(??)

> 0,

whereby the probability p = p(a, b, µ) is defined in Eq. (4). By Lemma 2, an increase in the drift
of the process improves the distribution of Xτa,b in terms of first-order stochastic dominance,
and by Lemma 3 (e) the same is true for the distribution of XT conditional on reaching the
expiration date. Hence, by Proposition 1 in Dertwinkel-Kalt and Köster (forthcoming), both
(?) and (??) monotonically increase in the drift µ. We have to distinguish three cases.

1. Case: Suppose that, for the process with drift µ, there exists a stopping time τa,b such that
(?) and (??) are non-negative. Since (?) and (??) monotonically increase in µ, the same stopping
strategy is more attractive than stopping immediately also for the process with a drift µ′.

2. Case: Suppose that, for the process with drift µ, any attractive stopping time τa,b implies
that (?) is negative, which in turn implies that (??) is positive.

Ifµ′ < 0, then take an attractive stopping time τa,b and let T ≥ − (x−a)
µ′ =: T̂ . Then, by Lemma

3 (f), we have ∂
∂µP0[τa,b < T ] < 0 for any µ < µ′ and therefore

[
(?)− (??)

]
· ∂∂µP0[τa,b < T ] > 0
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for any µ < µ′. But this, together with the fact that (?) and (??) monotonically increase in µ,
implies that, for any T ≥ T̂ ,

P0[τa,b < T ]
[
p
(
v(a)− v(x)

)
σ
(
v(a), v(x)

)
+ (1− p)

(
v(b)− v(x)

)
σ
(
v(b), v(x)

)]
+ P0[τa,b ≥ T ]

∫
(a,b)

(
v(z)− v(x)

)
σ
(
v(z), v(x)

)
dΦµ(z)

monotonically increases in the drift µ. Obviously, as the drift of the process increases, the sign
of (?) − (??) can change. But, since (?) and (??) monotonically increase in µ, we would need
(?) > 0 for this to happen, which would then bring us back to the first case. Hence, we conclude
that, for any T ≥ T̂ , the same stopping time τa,b is more attractive than stopping immediately
also for the process with a drift µ′.

Now let µ′ = 0. By Lemma 3 (g), at µ = µ′, we have ∂
∂µP0[τa,b < T ] = 0 for any T . Since

(?) and (??) strictly increase in µ and since (?) is independent of T , continuity of the salience-
weighted utility implies that there exists some ε > 0 and T ′ <∞ such that, for T > T ′,

P0[τa,b < T ]
[
p
(
v(a)− v(x)

)
σ
(
v(a), v(x)

)
+ (1− p)

(
v(b)− v(x)

)
σ
(
v(b), v(x)

)]
+ P0[τa,b ≥ T ]

∫
(a,b)

(
v(z)− v(x)

)
σ
(
v(z), v(x)

)
dΦµ(z)

monotonically increases in the drift on [0, ε). The claim follows by setting T̂ := max{T ′,− (x−a)
ε }.

3. Case: Suppose that, for the process with drift µ, any attractive stopping time τa,b implies
that (?) is positive, but (??) is negative. Then, also for the process with a drift µ′, (?) is positive.
Moreover, for a fixed stopping time τa,b, (?) is independent of T . By Lemma 3 (c), it holds that
limT→∞ P0[τa,b < T ] = 1, which then implies that, in the limit of T approaching infinity,

P0[τa,b < T ]
[
p
(
v(a)− v(x)

)
σ
(
v(a), v(x)

)
+ (1− p)

(
v(b)− v(x)

)
σ
(
v(b), v(x)

)]
+ P0[τa,b ≥ T ]

∫
(a,b)

(
v(z)− v(x)

)
σ
(
v(z), v(x)

)
dΦµ(z) > 0.

Since the left-hand side of the above expression is continuous in T , we conclude that the in-
equality already holds for a finite T . More precisely, there exists a T̂ < ∞ such that for any
T ≥ T̂ the same stopping strategy is more attractive than stopping immediately also for µ′.
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Proof of Proposition 3. Consider a stop-loss and take-profit strategy that corresponds to the thresh-
old stopping time τa,b with a := xt− ε− ε′ and b := xt + ε for some ε > 0, ε′ ≥ 0, and ε+ ε′ ≤ xt,
and that is therefore not a loss-exit strategy. Again, we denote as

Φµ(z) := Pt[XT ≤ z|Xt = xt, τa,b ≥ T ]

the CDF of XT conditional on reaching the expiration date. Then, it follows that

U s
(
XT∧τa,b |C

)
− v(xt) ∝ Pt[τa,b < T ]×

[
p
(
v(xt − ε− ε′)− v(xt)

)
σ
(
v(xt − ε− ε′), v(xt)

)
+ (1− p)

(
v(xt + ε)− v(xt)

)
σ
(
v(xt + ε), v(xt)

)]
+ Pt[τa,b ≥ T ]×

∫
(a,b)

(
v(z)− v(xt)

)
σ
(
v(z), v(xt)

)
dΦµ(z)

< Pt[τa,b < T ]× σ
(
v(xt + ε), v(xt)

)
×
[
pv(xt − ε− ε′) + (1− p)v(xt + ε)− v(xt)

]
+ Pt[τa,b ≥ T ]×

∫
(−ε,ε)

(
v(xt + z)− v(xt)

)
σ
(
v(xt + z), v(xt)

)
dΦ̃µ(z)

< Pt[τa,b ≥ T ]×
∫

(−ε,ε)

(
v(xt + z)− v(xt)

)
σ
(
v(xt + |z|), v(xt)

)
dΦ̃µ(z)

≤ Pt[τa,b ≥ T ]×
∫

(0,ε)

([
v(xt + z)− v(xt)

]
−
[
v(xt)− v(xt − z)

])
× σ

(
v(xt + z), v(xt)

)
dΦ̃µ(z)

≤ 0,

where the probability p = p(a, b, µ) is defined as in Eq. (4). The first inequality follows from
ordering, diminishing sensitivity, and the fact that v(xt + ε) − v(xt) ≤ v(xt) − v(xt − ε − ε′)

due to the concavity of the value function as well as the construction of Φ̃µ, which is defined
as Φ̃µ(z) := Φµ(xt + z) for any z ≥ −ε and Φ̃µ(z) := 0 for any z < −ε. The second inequality
follows from the fact that the drift is non-positive in combination with Jensen’s Inequality, and
diminishing sensitivity of the salience function. The weak inequality holds by Lemma 3 (h),
and the last inequality follows again from the concavity of the value function, which implies
v(xt + z)− v(xt) ≤ v(xt)− v(xt − z) for any z > 0.
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Appendix B: Sophisticated Stopping Behavior Without Commitment

B.1: Statement of the result

To solve for a sophisticate’s stopping behavior, we adopt the equilibrium concept of Ebert and
Strack (2018), which says that a stopping time τ constitutes an equilibrium if and only if at any
point in time it is optimal to follow the strategy, taking as given that all future selves will do so.

Definition 5 (Equilibrium). A stopping time τ constitutes an equilibrium if and only if at every point
in time t it is optimal to take the prescribed decision, given that all future selves will follow this strategy.

We find that a sophisticated salient thinker, who is restricted to choose stop-loss and take-
profit strategies, never gambles any processwith a non-positive drift, which implies that naïvete
is a necessary assumption to explain (unfair) casino gambling within the salience framework.

Proposition 4. Suppose that the agent can only choose stop-loss and take-profit strategies. Fix an initial
wealth level x ∈ R>0, and consider only processes with a non-positive drift. Then, in any equilibrium,
the sophisticated salient thinker stops immediately.

To fix ideas, let us assume that T = ∞. For any threshold stopping time τa,b, there exists
some wealth level y′ ∈ (a, b) such that the downside of the binary lottery Xτa,b is salient when
evaluated in the choice set C = {Xτa,b , y

′}. Moreover, if the process has a non-positive drift, then,
at any wealth level y, we have E[Xτa,b ] ≤ y. Since a salient thinker, with a weakly concave value
function, values a binary lottery with a salient downside strictly less than its expected value, the
sophisticated agent anticipates to stop no later than at wealth level y′. Thus, by Definition 5, the
threshold stopping time τa,b cannot constitute an equilibrium. In contrast, at any initial wealth
level x ∈ R>0, stopping immediately can be supported as an equilibrium outcome: given that all
future selveswill stop immediately, the current self is indifferent between stopping immediately
and continuing the process, so that it is indeed optimal to stop at every point in time. As we
prove in the following, the argument extends to processes with a finite expiration date.

B.2: Proof of Proposition 4 for a finite expiration date

Fix an initial wealth level x and a non-positive drift µ ≤ 0. It remains to be shown that the
arguments presented above extend to processes with a finite expiration date T ∈ R>0.

Consider a stop-loss and take-profit strategy, which can be represented by a threshold stop-
ping time τa,b. We now argue that it cannot be an equilibrium to play according to stopping time
τa,b with b ∈ (x,∞). At any time t with a wealth level Xt = y ∈ (a, b), a salient thinker follows
the stop-loss and take-profit strategy that is represented by τa,b if and only if

Pt[τa,b < T ]×
[
p
(
v(a)− v(y)

)
σ
(
v(a), v(y)

)
+ (1− p)

(
v(b)− v(y)

)
σ
(
v(b), v(y)

)]
+ Pt[τa,b ≥ T ]×

∫
(a,b)

(
v(z)− v(y)

)
σ
(
v(z), v(y)

)
dΦµ(z) ≥ 0

holds, where the probability p = (a, b, µ) is defined as in Eq. (4) andwhere the conditional CDF
Φµ(z) := P0[XT ≤ z|X0 = x0, τa,b ≥ T − t] is described in Lemma 3.
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Notice that σ(v(a), v(y)) > σ(v(b), v(y)) holds for any wealth level y sufficiently close to b.
Also, we have Et[Xτa,b |Xt = y] ≤ y due to the non-positive drift. This implies, together with the
concave value function, that, for any wealth level y sufficiently close to b, it holds that

p
(
v(a)− v(y)

)
σ
(
v(a), v(y)

)
+ (1− p)

(
v(b)− v(y)

)
σ
(
v(b), v(y)

)
< 0.

Since, for any fixed t, we have limy→b Pt[τa,b < T ] = 1 by Lemma 3 (b), we thus conclude that
for any τa,b there is some y′ ∈ (a, b) such that

Pt[τa,b < T ]×
[
p
(
v(a)− v(y)

)
σ
(
v(a), v(y)

)
+ (1− p)

(
v(b)− v(y)

)
σ
(
v(b), v(y)

)]
+ Pt[τa,b ≥ T ]×

∫
(a,b)

(
v(z)− v(y)

)
σ
(
v(z), v(y)

)
dΦµ(z) < 0.

Hence, if the agent is restricted to choose from the set of all stop-loss and take-profit strategies,
there exists no equilibrium in which a sophisticated salient thinker does not stop immediately.
By the same arguments as for the case of T =∞, stopping immediately can be supported as an
equilibrium outcome, which proves the claim.
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Appendix C: Additional Experimental Details

This appendix contains supplementary material to the experiment that we conducted.

C.1: Parameters and Layout of the Static Choices

After making the six selling decisions, subjects had to chooses twelve times between a binary
lottery and the safe option payings its expected value. The parameters of the lotteries as well as
the classification of skewness-seeking choices are depicted in Table 1. Figure 8 further illustrates
the layout that we used for these static choices in the experiment.

Lottery Safe Option Skewness Skewness-Seeking Choice
( 37.5, 80%; 0, 20%) 30 -1.5 Safe
(41.25, 64%; 10, 36%) 30 -0.6 Safe
( 45, 50%; 15, 50%) 30 0 Safe
( 60, 20%; 22.5, 80%) 30 1.5 Lottery
( 75, 10%; 25, 90%) 30 2.7 Lottery
( 135, 2%; 27.85, 98%) 30 6.9 Lottery
( 57.5, 80%; 20, 20%) 50 -1.5 Safe
(61.25, 64%; 30, 36%) 50 -0.6 Safe
( 65, 50%; 35, 50%) 50 0 Safe
( 80, 20%; 42.5, 80%) 50 1.5 Lottery
( 95, 10%; 45, 90%) 50 2.7 Lottery
( 155, 2%; 47.85, 98%) 50 6.9 Lottery

Table 1: Lotteries used to elicit skewness preferences in static choices. The safe option is equal to the
lottery’s expected value. In addition, all lotteries have the same variance, so that the first and the second
set of lotteries, respectively, differ only in terms of skewness.

Figure 8: The figure illustrates the layout of the static choices in the experiment (in German).
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C.2: Experiment Instructions

Screen 1—Instructions: Overview of the Experiment
Please note that you are not allowed to use your mobile phone or talk to other participants dur-
ing the experiment. After you have finished the experiment and your payment appears on the
screen, please stay seated and wait for the other participants to finish. At this point you are
allowed to use your phone again. If you have a question, please raise your hand and a lab as-
sistant will come to you.

In this experiment you will make investment decisions. More precisely, you will have to decide
at what time and price you want to sell an asset. The price at which you can sell the asset will
change over time.

In total youwill make 6 such investment decisions. At the end of the experiment, wewill choose
one of your decisions at random and pay you the price at which you sold this asset. Irrespective
of this, you will receive a show up fee of 4 Euro. During the experiment, we will denote all
monetary values in the currency Taler, which will be converted to Euro at an exchange rate of 1
Euro = 10 Taler.

The only thing that changes between the different decisions is the long-term profitability of the
asset. The maximum time for which you can hold the asset will be 10 seconds in all decisions.
If you do not sell the asset in the first 10 seconds, it will automatically be sold at its price after
10 seconds. The initial value of the asset will always be 100 Taler.

In the following, we will explain to you the development of the asset step by step. In particular,
we will show you how the long-term profitability varies across the different assets. Moreover,
we will explain in detail which selling strategies you will be able to choose.

Screen 2—Instructions: Development of the Asset Price
Below you can see a graph, which depicts the development of the price of an asset. As soon as
you press "Start", a line which represents the value of the asset will appear.

Please press "Start" now.

[Subjects are shown a graph of an exemplary price path with a final price of 100 Taler.]

As mentioned previously, you cannot hold the asset for longer than 10 seconds. The final asset
price is 100 Taler.

Screen 3—Instructions: Different Drifts
In this experiment, you will see assets of varying profitability. How profitable an asset is in the
long run is described by the drift of the asset. The drift denotes the average change in the value
of the process per second.

A positive drift implies that the asset will increase in value in the long run, while a negative
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drift implies that the asset will decrease in value in the long run. Notice that the value of the
asset varies over time. Hence, even an asset with a negative drift sometimes increases in value.

In order for you to get a feeling for how the value of an asset changes with the drift, we will
show you a few examples of different drifts on the next screens.

Screens 4-6—Instructions: The Drift of an Asset
The drift of this asset is 0 [or 2 or -2]. Please press "Start" and watch the development of the
asset’s price.

[Subjects are shown a graph of an exemplary price path with a final price of 100 Taler for the
process with drift 0, 120 Taler for the process with drift 2, and 80 for the process with drift -2.]

Screen 7—Instructions: No Negative Prices
The asset does never take a negative value. Once the asset’s value reaches zero, it does not rise
again, but will stay at zero permanently. Please press "Start" and watch the development of the
asset’s price.

[Subjects are shown the graph that is depicted in Figure 3.]

Screen 8—Instructions: The Process is not Bounded from Above
Independent of the drift, the value of the asset can, in principle, become arbitrarily large. The
probability that the asset’s value indeed becomes very large is the smaller the more negative the
drift is. But even an asset with a very negative drift can attain a very large value.

Screen 9—Instructions: Strategies with an Upper and a Lower Bound
In each decision, you will set an upper and a lower bound at which you are willing to sell the
asset. If the price reaches the upper bound, the process will stop and you will be able to sell the
asset. If you sell the asset, you will receive the price that you have set as the upper bound. If
the price reaches the lower bound, you can also sell the asset. In this case you will receive the
price that you have set as the lower bound.

The upper boundmust always be above the current value of the process. The lower boundmust
always be below the current value of the process. You can adjust the bounds by clicking on the
red lines and moving them around. Important: throughout the experiment, you will have to
move the upper and the lower bound at least once, before you can start the process. Pleasemove
the bounds now and then click "Start".

[Subjects are shown a graph similar to the ones depicted in Figure 1. After moving the bounds
and starting the process, subjects cannot pause the process or adjust the bounds anymore.]

Screen 10—Instructions: Pausing the Process
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After you have started the process, you can pause it at any time. While the process is paused,
you can move the upper and the lower bound. While the process is moving, you cannot move
the bounds.

Now you have to complete the following steps in the order listed below:

1. Move the upper and the lower bound.

2. Start the process.

3. Pause the process.

4. Move the upper and the lower bound again.

5. Start the process again.

[Subjects are shown a graph similar to the ones depicted in Figure 1, but without the opportu-
nity to sell the asset immediately.]

Screen 11—Instructions: Sell Immediately
Before you start the process, you can instead sell the asset immediately by clicking on "Sell Im-
mediately". You can only do this before you start the process for the first time. After you have
started the process, the "Sell Immediately" button will disappear. Afterwards the process will
only stop prematurely if it either hits the upper or the lower bound. You can now either "Sell
Immediately" or—after moving each bound at least once—start the process.

[Subjects are shown a graph similar to the ones depicted in Figure 1.]

Screen 12—Instructions: Change Bounds Before Starting the Process
In the first 10 seconds on each decision screen, you will only be able to move the bounds. After
that you can “Sell Immediately” or start the process.

If the process reaches either bound, it stops and you can sell the asset at the price at which this
bound is set. Alternatively, you can move the bounds and restart the process. Corresponding
buttons for both options will appear once the process reached a bound.

[Subjects are shown a graph similar to the ones depicted in Figure 1.]

Screen 13—The Task is About to Start
Youwill now participate in three practice rounds. Afterwards you will play the decision round.
The drift in the practice rounds will be identical to the one in the decision round. The practice
roundswill give you the opportunity to get an intuition for how the process will develop during
the decision round.

The drift in the practice rounds and the subsequent decision round will be 0 [or -1 or -3 or -5 or
-10 or -20].
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Screen 14—Practice Round
The drift in the practice rounds and the subsequent decision round will be 0 [or -1 or -3 or -5 or
-10 or -20].

[Subjects are shown a graph as depicted in the left panel of Figure 2.]

Screen 15—Instructions: The drift of an asset
On this page you see 10 exemplary paths of an assetwith a drift of 0 [or -1 or -3 or -5 or -10 or -20].

[Subjects are shown a graph as depicted in the right panel of Figure 2.]

Screen 16—Decision
The practice rounds are over— now it is getting serious! Pleasemake your selling decision. The
drift in this round is 0 [or -1 or -3 or -5 or -10 or -20].

[Subjects are shown a graph as depicted in Figure 1.]

Screen 17—Additional Questions I: Instructions
On the next pages you will make 12 choices between a lottery and a safe payoff. From now on
all outcomes will be displayed in Euro.

At the end of the experiment, we will select one participant of this session at random. For this
participant, we will randomly select one of the 12 decisions and determine the outcome of the
chosen lottery. This participant will receive the corresponding payoff from the chosen lottery.

Example
If you select Lottery 1 in the example below, you will receive either 135 Euro or 27.85 Euro. The
probability that you receive 135 Euro is 2% and the probability that you receive 27.85 Euro is
98%. Alternatively, if you select Lottery 2, you will receive 30 Euro for sure.

[Subjects are shown the graph depicted in Figure 8.]

Screen 18: Additional Questions I - Decision 1
Please choose a lottery. As soon as you have chosen a lottery, a button labelled "Next Page" will
appear.

[Subjects are shown the graph as depicted in Figure 8.]

Screen 19—Additional Questions II
Please answer the following questions. For every correct answer, you will receive one Taler.

If 10 machines take 10 minutes to make 10 nails, how many minutes do 100 machines need to
make 100 nails?
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A part of a pond is covered with water lilies. Every day the area covered with water lilies dou-
bles. If it takes 24 days until the whole pond is covered with water lilies, how many days does
it take until half of the pond is covered with water lilies?

If three elves can wrap three presents in one hour, how many elves does it take to wrap six
presents in two hours?

Jerry has both the 15th best and the 15th worst grade in his class. Howmany students are in the
class?

In a sports team tall members are three times as likely to win medals as short members. This
year the team won 60 medals in total. How many medals were won by short team members?

Screen 20—Additional Questions III
Please answer the following questions. For every correct answer, you will receive one Taler.

Suppose you had 100 Euro in a savings account and the interest rate was 2% per year. After 5
years, how much do you think you would have in the account if you left the money to grow?

[Options: “More than 102 Euro”, “Exactly 102 Euro”, “Less than 102 Euro”.]

Suppose you had 100 Euro in a savings account and the interest rate was 20% per year and you
never withdraw money or interest payments. After 5 years, how much would you have on this
account in total?

[Options: “More than 200 Euro”, “Exactly 200 Euro”, “Less than 200 Euro”.]

Imagine that the interest rate on your savings account was 1% per year and the inflation was
2% per year. After 1 year, howmuch would you be able to buy with the money in this account?

[Options: “More than today”, “As much as today”, “Less than today”.]

Assume a friend inherits 10.000 Euro today and his brother inherits 10.000 Euro three years from
now. There is a positive interest rate. Who is richer because of the inheritance?

[Options: “My friend”, “Her brother”, “Both are equally rich”.]

Suppose that your income and all prices double in the next year. Howmuch will you be able to
buy with your income?

[Options: “More than today”, “As much as today”, “Less than today”.]

Screen 21—General Information About You
Please enter your age:

Please choose your gender:
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Screen 22—Enter Station Number
Please enter your station number:

Screen 23—Payment
Your decision from round 2 will be paid.

You sold the asset for 100.00 Taler.

You received 1 Taler from answering the additional questions.

You are the participant whose lottery choice is paid. You receive an additional 80.00 Euro from
the lottery.

Your payment including the show up fee of 4 Euro is 94.10 Euro.
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Appendix D: Salience Predictions on Static Skewness Preferences

In this section, we extend a result from Dertwinkel-Kalt and Köster (forthcoming) on a salient
thinker’s skewness preferences in static settings from the case of a linear value function to the
case of a weakly concave value function. Assuming a linear value function, Dertwinkel-Kalt
andKöster (forthcoming) study, in particular, a salient thinker’s choice between a binary lottery
with an expected value E, a variance V , and a skewness S, which we denote by L(E, V, S), and
the safe option paying the lottery’s expected value E with certainty, and they show that:

Proposition 5 (Dertwinkel-Kalt and Köster, forthcoming). There exists some Ŝ = Ŝ(E, V ) ∈ R,
such that a salient thinker with a linear value function chooses L(E, V, S) over E if and only if S > Ŝ.

The proposition says that a salient thinker with a linear value function chooses a binary
lottery over its expected value if and only if this lottery is sufficiently skewed. In the following,
we will show that the same comparative static holds when assuming a weakly concave value
function. This provides a theoretical foundation for why we look at the empirical relationship
between a subject’s share of skewness-seeking choices in the static choices and the share of loss-
exit strategies this subject has chosen in the stopping problems (see Result 4 and Figure 6).
A positive correlation between the two measures indicates that a subject revealing skewness
preferences consistent with salience theory in static choices does so also in dynamic choices.

To begin with, recall that the parameters of the binary lottery L(E, V, S)—i.e. the outcomes
x1 and x2 as well as the probability p that x1 is realized—are uniquely defined by (Ebert, 2015):

x1 = E −

√
V (1− p)

p
, x2 = E +

√
V p

1− p
, and p =

1

2
+

S

2
√

4 + S2
.

Now consider a salient thinker with a weakly concave value function v(·), who faces the
choice between the lottery L(E, V, S) and the safe option paying its expected value E with cer-
tainty. The salient thinker chooses lottery L(E, V, S) over its expected value E if and only if

p

[
v

(
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√
V (1− p)

p

)
− v(E)

]
σ

(
v

(
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)
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[
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σ

(
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> 0,

or, equivalently,

π

v

(
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√
V
π

)
− v(E)

v(E)− v
(
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√
V π
) > σ

(
v
(
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√
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)
, v(E)

)
σ

(
v

(
E +

√
V
π

)
, v(E)

) , (15)

where π := 1−p
p denotes the relative likelihood of the lottery’s upside. To establish that a salient

thinker chooses the lottery if and only if it is sufficiently skewed, we will show that both the
left-hand side and the right-hand side of (15) are monotonic in the likelihood ratio π; namely,
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that the left-hand side decreases in π, while the right-hand side increases in π.
First, by the ordering property, the right-hand side of (15) monotonically increases in π.

Second, we observe that the left-hand side monotonically decreases in the likelihood ratio π:

∂
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where, after taking the derivative, we first multiply by
[
v(E) − v

(
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√
V π
)]2 and rearrange,

and then divide by v(E)−v
(
E−
√
V π
)
and v

(
E+

√
V
π

)
−v(E) to arrive at the final expression.

Combining these two observations, we conclude that there exists some π̂ ≥ 0, such that (15) is
satisfied if and only if π < π̂. Since π monotonically decreases in the probability p, and since
the probability pmonotonically increases in the skewness S, we arrive at the following result:

Proposition 6. There exists some Ŝ = Ŝ(E, V ) ∈ R ∪ {∞}, such that a salient thinker with a weakly
concave value function chooses L(E, V, S) over E if and only if S > Ŝ.

This proposition confirms that the comparative static on the lottery’s skewness derived in
Dertwinkel-Kalt and Köster (forthcoming), under the assumption of a linear value function, is
robust to allowing for a weakly concave value function. The only difference compared to the
result in Dertwinkel-Kalt and Köster (forthcoming) is that a salient thinker with a sufficiently
concave value function will not choose the binary lottery, irrespective of how skewed it is. For-
mally, it follows that the threshold value Ŝ in Proposition 6 satisfies Ŝ <∞ if and only if

lim
π→0
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)
, v(E)

)
 < 0,

which depends both on the curvature of the value and on the curvature of the salience function.
But, as illustrated in Proposition 5, the above inequality is certainly satisfied for a linear value
function and, by continuity, it will hold for mildly concave value functions as well.

56



Appendix E: Additional Figures
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Figure 9: The left panel depicts the share of subjects holding the asset until the expiration date, separately
for the different drifts. The right panel depicts the share of subjects selling the asset immediately.
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Figure 10: The left panel depicts the share of subjects holding the asset until the expiration date, separately
for the different drifts and below- and above-median subjects in terms of cognitive skills. The right panel
depicts the share of below- and above-median subjects selling the asset immediately.
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Figure 11: The figure depicts the share of initial loss-exit strategies chosen for the different drifts.
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After

Loss-Exit Gain-Exit

Before
Loss-Exit 63.31% 10.31%

Gain-Exit 12.01% 14.37%

After

Loss-Exit Gain-Exit

Loss-Exit 72.65% 0%

Gain-Exit 3.48% 23.87%

Figure 12: The left (right) table gives a categorization of all strategy adjustments that we observe
throughout the experiment when a bound (no bound) is hit. “Before” indicates, in the left table, which
type of strategy the subject has chosen last, and, in the right table, the type of strategy that is played in
the moment in which the process is paused.
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Figure 13: The figure depicts the share of subjects choosing each of the lotteries depicted in Table 1 over
its expected value.
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Appendix F: Stopping Behavior under Cumulative Prospect Theory

In this section, we analyze the stopping behavior of a naïve CPT-agent under the assumption
of a finite expiration date. Ebert and Strack (2015) study the case without an expiration date
and show that, under mild regularity assumptions on the probability weighting function,22 a
naïve CPT-agent never stops an ABM irrespective of its drift. In what follows, we will show
numerically that this strong result still holds for a finite expiration date.

CPT preferences. Let X be a real-valued random variable. A CPT-agent evaluates each out-
come of this random variable relative to a reference point r ∈ R via a strictly increasing value
function U : R → R. All outcomes larger than the reference point are classified as gains, while
outcomes smaller than the reference point are classified as losses. Throughout this section, we
assume a (weakly) S-shaped value function (Ebert and Strack, 2015, Online Appendix W.2),

U(x) =

(x− r)α if x ≥ r,

−λ · (r − x)α if x < r,
(16)

with parameters α ∈ (0, 1] and λ > 1.23 According to Tversky and Kahneman (1992), cumu-
lative probabilities are distorted by a weighting function. More precisely, there are (potentially
different) non-decreasing weighting functions w−, w+ : [0, 1]→ [0, 1] for gains and losses with
w−(0) = w+(0) = 0 and w−(1) = w+(1) = 1. Throughout this section, we use the following
weighting functions, which have been proposed by Tversky and Kahneman (1992):24

w−(p) =
pδ

(pδ + (1− p)δ)1/δ
and w+(p) =

pγ

(pγ + (1− p)γ)1/γ
for 0.279 < δ, γ < 1.

The CPT value of the random variable X can be defined as (see Kothiyal et al., 2011)

CPT (X) :=

∫
R+

w+
(
P[U(X) > y]

)
dy −

∫
R−

w−
(
P[U(X) < y]

)
dy

=

∫
R+

w+
(
P[X > r + y1/α]

)
dy −

∫
R−

w−
(
P[X < r − (−y)1/α/λ]

)
dy,

(17)

where the second equality holds due to a (weakly) S-shaped value function in Eq. (16).

Stopping strategies. Consider a threshold stopping time τa,b and therefore induces a random
wealth levelXT∧τa,b . If the reference point r ∈ R satisfies r ∈ [a, b], then theCPTvalue associated

22In their Online Appendix W.1, Ebert and Strack (2015) verify that common CPT specifications satisfy the suf-
ficient conditions that they impose on the probability weighting function to derive their main result.

23As argued in Wakker (2010, p. 270), the model is ill-specified when taking different α for gains and losses.
24The bounds on the parameters are taken from Dhami (2016, p. 122).

59



with this random variable is given by

CPT (XT∧τa,b) =

∫
(0,(b−r)α)

w+
(
Pt[XT∧τa,b > r + y1/α]

)
dy

−
∫

(−λ(r−a)α,0)
w−
(
Pt[XT∧τa,b < r − (−y)1/α/λ]

)
dy.

(18)

For a ≥ r, in contrast, the CPT value of the random variable XT∧τa,b equals

CPT (XT∧τa,b) =

∫
((a−r)α,(b−r)α)

w+
(
Pt[X > r + y1/α/λ]

)
dy + (a− r)α, (19)

while for b ≤ r it is given by

CPT (XT∧τa,b) = −
∫

(−λ(r−a)α,−λ(r−b)α)
w−
(
Pt[X < r − (−y)1/α/λ]

)
dy − λ(r − b)α. (20)

At time t < T with a current wealth level xt ∈ R>0, we consider the following class of
threshold stopping times:25 for k ∈ R>0 and p ∈ (0, 1

2), define at,k = xt − k · p and bt,k =

xt − k · (1 − p). Notice that, for any drift µ ≤ 0, these threshold stopping times are not only
loss-exit strategies, but also induce a right-skewed distribution of returns.

Numerical analysis of stopping behavior. To ease the illustration of the results, we assume
that the reference point constantly adjusts to the current wealth level (i.e., rt = xt for any t).
This implies, in particular, that the wealth level itself does not matter for a CPT-agent’s stopping
behavior, which makes the numerical analysis much more convenient. Based on the estimates
in Tversky and Kahneman (1992), we set α = 0.88 and λ = 2.25 as well as δ = 0.69 and γ = 0.61.

Assuming a drift of µ = −2 and a volatility of ν = 5, Figure 14 depicts, for a given point in
time t, the CPT value of the random variable XT∧τat,k,bt,k as a function of the remaining time,
T − t, until the expiration date for the (naïvely) right-skewed strategies with k ∈ {2, 4, 6, 8, 10}
and p = 0.01. Since we have rt = xt by assumption, a CPT-agent does not stop at time t as long
as there exists a stopping strategy that yields a strictly positive CPT value. We observe from
Figure 14 that for any remaining time until the expiration date, there indeed exists a threshold
stopping time that yields a strictly positive CPT value. When shifting the stopping thresholds
closer to the current wealth level (by shifting the parameter k closer to zero), we obtain a similar
picture for any arbitrarily negative drift. Hence, at least for the chosen parameter values, a naïve
CPT-agent does not stop before the expiration date or, in other words, the stark never-stopping
result derived by Ebert and Strack (2015) still holds for a finite expiration date.

Figure 14 further highlights a couple of numerical regularities that are suggestive for the
result not to hinge on the exact parameters chosen here: First, the CPT value derived from the
depicted stopping strategies becomes flat in the remaining time until the expiration date rel-
atively quickly and the earlier so the closer the stopping thresholds are to the current wealth
level (i.e., the closer is k to zero). This suggests that the result derived by Ebert and Strack

25These strategies are similar to those used in the proof of Theorem 1 in Ebert and Strack (2015).
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Figure 14: The figure depicts CPT (XT∧τat,k,bt,k ) as a function of the remaining time, T − t, until the
expiration date for time invariant strategies with k ∈ {2, 4, 6, 8, 10} and p = 0.01 as described above. We
assume a drift parameter of µ = −2 and a volatility parameter of ν = 5. The preference parameters are
set to α = 0.88 and λ = 2.25, and the parameters of the weighting function are δ = 0.69 and γ = 0.61.

(2015)—which is proven by the explicit use of strategies with thresholds close to the current
wealth level—does not rely on T being infinity, but should hold already for rather short expi-
ration dates. Second, as the remaining time until the expiration date becomes smaller, the CPT
value of the depicted, loss-exit strategies increases (before it eventually falls toward zero). This
follows from the fact that, for a loss-exit strategy that induces a sufficiently skewed return dis-
tribution, the distribution ofXT∧τak,bk improves in terms of first-order stochastic dominance as
the remaining time until the expiration date decreases. To see why, notice that

∂

∂T
Pt[XT∧τa,b ≤ z] = −p(a, b, xt)

∫ b

z

∂

∂T
q(y, T − t|Xt = xt) dy

+
(
1− p(a, b, xt)

) ∫ z

a

∂

∂T
q(y, T − t|Xt = xt) dy,

where, for any τa,b with a = xt − kp and b = xt + k(1− p) for a fixed p = p(a, b, xt) ∈ (0, 1), we
have ∂

∂T q(y, T |Xt = xt) > 0. As p approaches zero, it follows that ∂
∂T Pt[XT∧τa,b ≤ z] > 0. This

result is illustrated in Figure 15. But notice that the ranking in terms of first-order stochastic
dominance is not perfect since the depicted strategy is not skewed enough.

Importantly, both patterns discussed above are robust to using different CPT specifications
(e.g., a piece-wise linear value function with α = 1 or a reference point of rt = 0). This suggests
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Figure 15: The figure depicts the CDF of XT∧τa,b for the time invariant strategy with a lower bound
a = 99.9 and an upper bound b = 109.9 for a current wealth level of xt = 100 and a remaining time
until the expiration date T − t ∈ {0.5, 1, 10}. We assume a drift of µ = −2 and a volatility of ν = 5.

that the never-stopping result derived by Ebert and Strack (2015) is indeed robust to allowing
for a finite expiration date. All numerical results are available upon request.
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