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Abstract 
 
We propose that multinational firms learn about their profitability in a particular market by 
observing their performance in nearby markets. We first develop a model of firm expectations 
formation with noisy signals from multiple markets and derive predictions on expectations 
formation and market entries. Using a dataset of Japanese multinational corporations that 
includes sales expectations of each affiliate, we provide evidence supporting the model’s 
predictions. We find that a positive signal about demand inferred from nearby markets raises the 
probability of entry into a new market, or raises the firm’s sales expectation in an existing 
(focal) market. The latter effect is stronger when (1) the firm is less experienced in the focal 
market (2) the signals from the focal market are noisier and (3) the firm is more experienced in 
markets where signals are extracted. 

JEL-Codes: F100, F200, D830. 
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1 Introduction

Firms face substantial uncertainty when doing businesses, and this is particularly true

for multinational corporations (MNCs) that produce and sell in multiple locations.

Before a MNC enters a particular market, it may have limited information about con-

sumers’ tastes and the costs of production there. Given the large sunk entry costs,

MNCs’ entry decisions into new markets can be costly when information is imperfect.

Naturally, a MNC may learn about a new market from its experience in nearby markets

in order to alleviate the information problem. In this paper, we propose “cross-market”

learning as a mechanism to resolve MNCs’ uncertainty about new markets and im-

plement a systematical empirical study of such behavior using a dataset of Japanese

MNCs. In this dataset, we observe not only MNCs’ entries into each market but also

their affiliates’ sales expectations post entry. Thanks to this feature, we are able to

show that MNCs learn about the destination markets not only from their’ local ex-

perience, but also from their experience in nearby markets. In short, we find that

multinational production (MP) generates information value and information generated

by MP is transmitted within the firm boundary. As how the agent forms expectations

is a central component of learning models, our study provides new and direct evidence

on learning and information transmission across geographic locations within the firm

boundary.1

In order to guide our empirical analysis, we first build a model in which a firm

learns about its demand conditions in multiple markets for three purposes. 2 First, it

informs us of ways to estimate key parameters of the model, which we use to validate

model assumptions and further test model predictions. Second, it generates testable

predictions regarding market entry and expectations formation. Importantly, the model

shows that theoretical predictions regarding how the learning parameters affect a firm’s

probability of entry into a new market are ambiguous, while the model has unambiguous

predictions on how the firm forms its sales expectations.3 Therefore, it is crucial to use

1This is true for a large class of models of learning in the international context. See Akhmetova
and Mitaritonna (2013); Aeberhardt et al. (2014); Egger et al. (2014); Timoshenko (2015a,b); Conconi
et al. (2016); Cebreros (2016); Berman et al. (2017).

2We focus on learning about demand in our model. However, one can also recast our model and
interpret it as one in which firms learn about location-specific supply conditions.

3One example is that our learning model has an ambiguous prediction on how the precision of
signals affects the probability of market entry (into the destination market), although it unambiguously
predicts that the weight of these signals used in the expectations formation formula increases with the
their precision.



direct measures of firm-level expectations to test predictions of the learning model.

In the model, the firm’s demand shifter in a particular market and period is the

sum of a time-invariant component and a transitory shock. The firm does not know the

exact value of the time-invariant component, but has to infer it based on its prior and

observed signals (demand shifters) in the past. Without loss of generality, we assume

that the firm operates in two other markets besides the focal market. One is close to the

focal market, and its time-invariant component is positively correlated with that in the

focal market. The positive correlation can be caused by similar consumer preferences

over the characteristics of the products or services that the firm provides. The third

market is remote from the first two markets, so its time-invariant demand component

is assumed to be uncorrelated with those in the first two.4

Several key testable predictions emerge from the model. First, the firm uses the

average signal from the nearby market to forecast its expected profit in a new market

and ignores signals from the remote market. Thanks to the positive correlation in

the time-invariant demand, information from the nearby market is transmitted within

the MNC and used to inform its decision to enter the new market. Moreover, although

better signals from nearby markets increase the entry probability (into the new market),

how the precision of such signals affects this positive effect depends on distributional

assumptions and accordingly are ambiguous.5 Therefore, we focus on testing predictions

of comparative statics exercises regarding firms’ expectations formation, as the model

yields unambiguous predictions along this dimension.

After the firm enters the new market, it continues to update the expectation of future

sales given the signals observed, which include the signals from the new market now.

Thanks to the positive correlation in the time-invariant demand, the model predicts

that the sales expectation depends on the signals from both this new market and the

nearby market. Importantly, the model also yields other testable predictions related to

the key mechanism of the life-cycle learning model (e.g., Jovanovic (1982), Jovanovic

and Nyarko (1997)) extended to incorporate information transmission within the firm.

We show that the firm’s expectation in the new market relies more on the average signal

4These assumptions are motivated by our empirical finding that only past sales in the same industry
and region can predict entry and sales expectation in a particular market. In Online Appendix 1.5,
we show the model predictions are robust even if we allow the demand in the third market to have a
positive but weaker correlation with those in the first two markets.

5 Online Appendix 1.4 discusses this point in details. We show that this is the case even if we
assume a log normal distribution for the entry cost. Despite this theoretical ambiguity, previous works
rely heavily on the entry margin to establish the existence of firm learning.
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from the nearby market and less on the signal from the new market when (1) the firm

is less experienced in the new market, (2) the signals from the new market are noisier

(with higher variance of the transitory shocks), and (3) the firm is more experienced

in the nearby market. The intuition is that signals from the nearby market are more

precise relative to those from the new market under these conditions.

Using a 22-year panel dataset of Japanese MNCs that contains affiliate-level sales

expectations, we provide empirical evidence for the theoretical predictions derived in our

model. First, we show that the strong average past sales (average “signal”) of affiliates in

markets within the same region (referred to as “nearby siblings”) raises the probability

of entry into a new market.6 By contrast, the average past signal of affiliates outside

the region (referred to as “remote siblings”) has a weak and statistically insignificant

impact on entry. Our baseline estimate suggests that a one-standard-deviation increase

in the average nearby siblings’ signal leads to an increase in entry probability by 0.028%,

which is about 25% of the average entry rate.

Similar to the “extended gravity” documented by Morales et al. (2019), the cross-

market learning highlighted here indicates interdependence across markets when firms

make market entry decisions. However, there is an important distinction between cross-

market learning and “extended gravity”, which we show empirically. In Morales et al.

(2019), “extended gravity” implies that a firm’s presence in a nearby market unambigu-

ously increases its entry probability into a new market.7 In contrast, we find that the

sign of such an impact depends crucially on the performance of the existing affiliates

in the nearby markets. In particular, firms with prior presence in nearby markets ac-

tually have lower probabilities of entering a new market compared to those without, if

their existing affiliates’ signals are sufficiently bad. This fact distinguishes the learning

mechanism from mechanisms that lead to the “extended gravity”. It also distinguishes

the transmission of information about market profitability from transferring other in-

tangibles such as production or management know-how inside the firm: having more

information does not necessarily imply more entries and higher sales. It has a positive

impact on these variables, only when the signal is good enough.8

6To ensure the information spillover within MNCs concerns an individual firm’s demand or supply
conditions, we use average past sales net of aggregate components, taking out the destination-industry-
year fixed effects.

7In their structural model, Morales et al. (2019) assume a firm’s presence in a nearby market may
reduce the entry cost into new markets.

8Note that, in our framework as well as many others featuring imperfect information, having more
(precise) information is always beneficial to the firm, as the firm’s expected profit increases with the
precision of the information, taking entry costs into account.
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Second, we explore our measure of affiliates’ sales expectations after market en-

try and provide empirical support for additional theoretical predictions. We start by

showing that the sales expectations in our dataset are reliable and contain relevant in-

formation that is used in actual firm-level decisions. We then proceed to regressions and

find that the strong average signal of nearby siblings raises the expectation for the next

year’s sales, while the average signal of remote siblings has no significant impact. The

elasticity of sales expectations with respect to the strength of nearby siblings’ signal is

0.024.

The average effect of nearby siblings’ signal on sales expectations hides rich under-

lying heterogeneity. Following the model’s predictions, we further examine how market

and affiliate characteristics affect the strength of the learning effect. We find the elas-

ticity of expected sales with respect to the nearby siblings’ signal is larger if the affiliate

in the focal market is younger and/or the siblings in the nearby markets are older.

We also construct two model-consistent measures of signal noisiness and show that the

learning effect from the nearby markets is stronger if the signals are noisier in the focal

market. These findings are consistent with the model predictions. One may worry

that the average learning effect regarding entry and expectations formation is driven

by correlated shocks within the firm and across markets, despite that we control for

market-year and firm (or firm-year) fixed effects in all our regressions. However, we find

it difficult to rationalize the heterogeneous learning effects using an explanation based

on correlated shocks. Therefore, we argue that the learning mechanism is present, even

if the temporary demand/supply shocks are indeed correlated across markets.

Our study contributes to three strands of the literature. First, our paper is related to

the literature on the flow of intangibles within the firm boundary. Using the commodity

flow data of the U.S., Atalay et al. (2014) find that vertical ownership is not primarily

used to facilitate transfers of goods. Instead, they argue that the flow of intangibles

is a crucial factor for us to understand intra-firm relationships. Echoing their finding,

Ramondo et al. (2016) document a similar pattern for U.S. MNCs. Several papers have

investigated various channels through which intangibles are transferred within the firm

boundary (Keller and Yeaple, 2013; Fan, 2017; Bilir and Morales, 2018). Using the

same data of U.S. MNCs, Bilir and Morales (2018) find that headquarters’ innovations

increase affiliate performance, although affiliates’ innovations do not affect performance

at other firm sites. We complement this literature by substantiating the existence of

information sharing within the firm boundary and across geographic locations.
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Second, our study contributes to the literature on MNCs’ location choices. 9 We

document that multinational affiliates in different markets are linked via the information

channel. In a recent study, Garetto et al. (2019) provide evidence that, for U.S. MNCs,

their presence in a country only has a slightly positive and sometimes insignificant

effect on subsequent entries into similar countries. As we discussed above, we find

that the MNC’s prior presence in a market has a positive impact on subsequent entries

in similar markets only when it receives a sufficiently good signal from the existing

market. Therefore, the lack of the “extended gravity” in the entry patterns of U.S.

MNCs does not necessarily imply the MNC makes entry decisions in different markets

independently. There may be heterogeneous effects of current presence on subsequent

entries, depending on the MNC’s performance in existing markets.

Finally, our study is related to a growing literature on learning and exporter/MNC

dynamics. Existing studies have documented the role of learning and self-discovery in

exporter dynamics, as well as the inter-market linkages through information acquisition

or sunk cost reduction.10 Studies of MNC dynamics are relatively scant, with the

exceptions of recent works such as Garetto et al. (2019), Gumpert et al. (2016), Bilir

and Morales (2018), and Chen et al. (2020). Egger et al. (2014) show that the dynamic

entry patterns of German MNCs are consistent with a two-period model featuring

cross-market learning. We complement the existing work by showing that cross-market

learning not only exists prior to entry, but also after market entry. Moreover, the

coefficients that we estimate map directly to the expectations formation formula under

the assumption of Bayesian updating. As a result, we can quantify how the firm absorbs

new information in forming its belief, which is crucial if one wants to quantify how the

arrival of new information affects market entries and firm growth.11 Our empirical

approach of detecting firm learning can be extended further in future research, as firm-

level expectations data (concerning firm-specific variables) are becoming increasingly

available.12

9For example, see Egger et al. (2014); Tintelnot (2017); Wang (2017); Arkolakis et al. (2018a);
Alviarez (2019); and Head and Mayer (2019).

10See Akhmetova and Mitaritonna (2013); Aeberhardt et al. (2014); Timoshenko (2015a,b); Cebreros
(2016); Berman et al. (2017) for studies on exporter self-discovery. Albornoz et al. (2012) examine
cross-market learning among exporters, and Morales et al. (2019) use a novel moment inequality
approach to quantify reductions in entry costs into a new market if the firm has already exported
to similar markets. Fernandes and Tang (2014) document between-firm information spillovers in the
export market, which we do not study in this paper.

11In Appendix A.5, we perform a simple calibration and show that the coefficients in the expectations
formation formula implied by the model are in line with those estimated from the data.

12Papers that use firm-level expectations include Gennaioli et al. (2016), Bloom et al. (2017), and
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The remainder of the paper is organized as follows. In the next section, we presents

a learning model, from which we derive testable predictions concerning market entries

and expectations formation. In Section 3, we describe our data and construct key

variables used in our empirical analysis. We test empirical predictions of the model in

Section 4 and conclude in Section 5. We present additional empirical analysis in the

paper appendix, and relegate proofs, extensions of the model and various robustness

checks to the online appendix.

2 Model

In this section, we develop a simple model of firm learning that features both self-

discovery in a particular market (Jovanovic, 1982; Arkolakis et al., 2018b) and learning

about the focal market from other markets (Albornoz et al., 2012). As the firm’s

information on market-level demand conditions is imperfect, the firm has to form an

expectation of these conditions in the destination market both before and after market

entry. Before entering the foreign market, the firm learns its demand conditions in the

destination market imperfectly from the performance of its affiliates in nearby markets.

After observing the performance of nearby siblings, the firm decides whether to enter

the destination market and is more likely to enter when its nearby affiliates have better

past sales performance.

The key feature of our model rests on the expectations formation after market

entry. If the firm enters the foreign market, its affiliate in that market updates its

expectation of demand conditions over the life-cycle. Different from previous studies

(e.g., Timoshenko (2015b), Berman et al. (2017)), we allow the affiliate to learn its

demand conditions both from its own performance (i.e., average past sales) and from

the performance of its nearby siblings.

2.1 Setup

We study a partial equilibrium model with a single firm. Suppose there are three foreign

markets: markets 1 and 2 are in the same region, and market 3 is in another region.

We focus on the firm’s expectation in market 1, and refer to markets 2 and 3 as the

Altig et al. (2019) for American firms, Bachmann et al. (2013), Bachmann and Elstner (2015), and
Enders et al. (2019) for German firms, Boneva et al. (2018) for firms in the U.K., and Ma et al. (2019)
for Italian firms.
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“nearby” and “remote” markets, respectively. We first study the case in which the firm

is considering entering market 1 and then the problem of expectations formation after

it has entered market 1.

We assume that consumers in all foreign markets have CES preferences. The firm’s

demand function in market j is

qjt = Ajte
ajtp−σ

jt , (1)

where t denotes time and σ is the elasticity of substitution. The variable Ajt is the

aggregate demand shifter and ajt is firm-specific demand in market j. For each market

j, the firm faces demand uncertainty, which comes from demand shifter ajt. We assume

that ajt is the sum of a time-invariant market-specific demand draw θj and a transitory

shock εjt:

ajt = θj + εjt, εjt
i.i.d.
∼ N

(
0, σ2

εj

)
. (2)

The firm understands that θj is drawn from a normal distribution N
(
θ̄j , σ

2
θj

)
, and the

independent and identically distributed (i.i.d.) transitory shock, εjt, is drawn from

another normal distribution N
(
0, σ2

εj

)
. On the supply side, we assume that to produce

q units of output in market j, all firms have to employ one unit of labor at the wage

rate wjt.
13

The timing of the model is stated as follows. After a firm enters market j, its

affiliate in that market makes its output choice after observing the demand shifter, ajt,

in period t. As a result, realized sales are

Rjt = Ajte
ajt

(
σwjt

σ − 1

)1−σ

. (3)

The above equation shows that the logarithm of realized sales is the sum of ajt and a

term that only consists of aggregate variables. Therefore, we construct a measure of

ajt in our empirical analysis by taking out the market-year fixed effects in log sales.

Before the firm enters market 1, it forms an expectation of θ1 based on the realized

sales in the other markets. To enter, the firm has to pay a one-time entry cost F , where

the cumulative distribution function of F is G(∙). We use π1t to denote the discounted

13We only allow firm heterogeneity on the demand side but not on the supply side for simplicity.
One can allow firm heterogeneity on the supply side and reinterpret our model as MNCs learning about
their productivity in different markets. Given that we do not separately observe prices and quantities,
we do not attempt to distinguish between learning about demand and learning about supply.
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future profit flows in market 1 and G(π1t) is thus the probability of entering market

1, which increases in π1t. After the firm enters market 1, the affiliate there forms an

expectation of its sales in the next period using its own past sales as well as the those

of its siblings.

The fundamental assumption of the model is that the firm does not know the value

of θj and therefore has to form a belief about its distribution to make its entry decision.

After entry, the firm updates its belief about θj over time. Naturally, the sources of

information the firm uses to form its expectations in market j are the key predictions

of the model. These are determined by the extent to which demand shocks θj are

correlated across markets.

We introduce the interdependence of demand shocks across markets as follows. The

variance-covariance matrix of the firm’s demand draws in this three-country world is

denoted as

V











θ1

θ2

θ3









 =






σ2
θ1 σ2

12 σ2
13

σ2
12 σ2

θ2 σ2
23

σ2
13 σ2

23 σ2
θ3




 .

We further define ρij ≡ σ2
ij/σθiσθj as the correlation between θi and θj . We make the

following assumption on these correlation coefficients:

Assumption 1 ρ12 > ρ13 = ρ23 = 0.

In Appendix A.2, we provide a model-consistent method of estimating within- and

cross-region correlations in θ (i.e., ρ12 and ρ13). Within-region correlation is always

higher than cross-region correlation, but the latter is also positive. We assume that

the cross-region correlation is zero in our model for simplicity. As shown in Online

Appendix 1.5, our model predictions continue to hold even if we allow the cross-region

correlation to be positive but smaller than the within-region correlation although the

mathematical derivations are more complicated.

2.2 Determinants of Market Entry

According to the assumption of a random market entry cost, the probability of entering

market 1 in period t is G(π1t), where π1t is the discounted expected profit from this

market in all future periods and G(∙) is the cumulative distribution function of the

entry cost. To understand how siblings’ signals affect the entry probability, we need to

8



know how they affect π1t. In particular, π1t can be written as

π1t = Et−1

∞∑

τ=t

A1τ

(
σw1t

σ − 1

)1−σ

ητ−tea1τ , (4)

where the expectation is taken given the information up to period t−1 and η denotes the

discount factor. Further assuming that the firm-specific demand draws are independent

of the aggregate variables and taking into account the fact that a1t = θ1 + ε1t, where

ε1t is i.i.d. normal, we have

π1t = eσ2
ε1/2Et−1

(
eθ1
)
× Et−1

∞∑

τ=t

A1τ

(
σw1t

σ − 1

)1−σ

ητ−t.

Therefore, it is sufficient to examine how Et−1

(
eθ1
)

responds to siblings’ signals.

Assuming that the sibling has received t2 signals from market 2, we can prove the

following proposition:

Proposition 1 Under Assumption 1, the firm only uses signals from market 2 to fore-

cast its “would-be” demand in market 1 and ignores signals from market 3. The firm’s

expected profit and entry probability in market 1 increase with the average past signals

in market 2, ā2 ≡
∑t−1

τ=t−t2
a2τ/t2.

Proof. See Online Appendix 1.2.

The intuition behind this result is that a firm’s demand conditions across markets

within the same region are correlated. Therefore, nearby siblings’ past sales contain

information value, when the firm forecasts its demand in the market that it may enter in

the future. Naturally, when the forecast is above a certain threshold, the MNC chooses

to enter market 1.

In the next subsection, we will examine how various parameters such as t2 affect

the expectations formation post entry. However, how t2 affects the positive effect of

an increase in ā2 on the entry probability depends on distributional assumptions and

accordingly are ambiguous. This is true, even if we assume a log normal distribution for

the entry cost.14 On the contrary, we will show that our learning model has unambiguous

predictions regarding how the firm forms sales expectations over its life cycle (post

entry). Therefore, we argue that the best way to provide evidence on learning over the

14We prove that the cross derivative of the entry probability with respect to t2 and ā2 is ambiguous.
See Online Appendix 1.4 for details.
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life cycle is to derive and test theoretical predictions regarding expectations formation

directly.

2.3 Expectations Formation after Market Entry

After the firm enters market 1, it continues to update its belief for θ1. Now the firm can

use signals from both markets 1 and 2 to update its posterior. The following proposition

characterizes the firm’s (or equivalently, the affiliate’s) forecasting rule for its sales in

market 1.

Proposition 2 Under Assumption 1, an affiliate in market 1 uses its own average

past signal and the average past signal of its siblings in market 2 to form its expectation

of future sales, with positive weights put on both average signals. All else equal, the

weights it places on the average signals of itself and its nearby siblings have the following

properties:

1. The weight it places on the average signal of itself (its nearby sibling) increases

(decreases) with self age.

2. The weight it places on the average signal of itself (its nearby sibling) decreases

(increases) with the standard deviation of the transitory shocks in its market.

3. The weight it places on the average signal of itself (its nearby sibling) decreases

(increases) with the total number of signals in market 2.

Why do diverging age profiles for the two weights show up in the expectations

formation formula? When the number of signals from market i (i ∈ 1, 2) increases

(while fixing the number of signals from the other market), the precision of signals

increases both in absolute terms and in relative terms (compared with the signals from

the other market). As a result, the affiliate’s expectation of sales in market i relies

more on signals from market i. On the contrary, the precision of signals from the other

market stays unchanged in absolute terms and decreases in relative terms (compared

with the signals from market i) when the number of signals from market i increases.

This results in the affiliate placing a lower weight on the signals from the other market in

the expectations formation process. Similarly, when the affiliate’s own signal becomes

less precise, its forecast depends more on nearby siblings’ signals and less on its own

signals, all other things being equal.

10



It is worth discussing how the results would change if we allow the signals from

market 3 to be informative as well. In Online Appendix 1.5, we derive model predictions

under a weaker assumption ρ12 > ρ13 = ρ23 ≥ 0. In this more general setting, we find

that the average past signal from market 3 is also used to predict the would-be profit

before the firm enters market 1 and to predict future sales thereafter. However, when

ρ12 is sufficiently larger than ρ13 and ρ23, the firm places higher weights on the signals

from market 2 than those from market 3 when forming its expectations. Finally, we

also derive the effects of the other model parameters on learning as in Proposition 2.

We can thus show that all the results hold under the weaker assumption.

3 Data

In this section, we describe our data and discuss how we construct the key variables

in our main empirical specifications. Given our emphasis on the direct measure of

affiliate-level sales expectations, we also devote a subsection to discuss the credibility

of this measure.

3.1 Basic Description and the Definition of Markets

We draw our data from the Basic Survey on Overseas Business Activities (Kaigai Jigyo

Katsudo Kihon Chosa) conducted by the Ministry of Economy, Trade and Industry

(METI) of the Japanese government (“the survey” hereafter). This survey is mandatory

and conducted annually via self-declaration survey forms (one for the parent firm and

another for each foreign affiliate) sent to the parent firm at the end of each fiscal

year. The survey form for parent firms includes variables on the firm’s domestic sales,

employment, industry classifications, and so on, while the survey for foreign affiliates

collects information on their sales, employment, location, and industry.

Based on the annual survey, we construct a panel dataset of parent–affiliate pairs

from 1995 to 2016 that includes both manufacturing and non-manufacturing firms. Each

parent–affiliate pair is traced throughout the period using time-consistent identification

codes. Compared with other standard multinational datasets such as the U.S. BEA

survey, our data is novel in that it contains information on affiliate-level expectations.

Specifically, the affiliates of Japanese MNCs are asked to report their forecasted sales

for the next year. This enables us to provide evidence of learning that directly uses

affiliate-level expectations. Since this measure is rare in firm-level datasets, we examine
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its credibility in Section A.1.

In our data, affiliates are classified into 29 industries, including 16 manufacturing

and 9 services sectors. In terms of the total number of affiliates abroad, wholesale and

retail is the largest industry in services, and “transportation equipment” is the largest

in manufacturing. Regarding geographic distribution, Table 1 shows the number of

firms with presence in the most popular destinations in 2016, after dropping affiliates

in tax haven countries listed in Gravelle (2009). China and the United States are

the largest markets for Japanese multinationals. Interestingly, for firms that operate

in two destinations the top combination is China-Thailand, which may be seen as

suggestive evidence that geographic closeness between host countries is important for

understanding multinational location choices. In Section 4, we examine the dynamic

patterns of entry and the impact of siblings’ signals formally.

Table 1: Most Popular Destinations in 2016

Destination # Firms Destinations # Firms Destinations # Firms

CHN 2784 CHN-THA 230 CHN-THA-USA 73
USA 679 CHN-USA 179 CHN-IDN-THA 38
THA 526 CHN-VNM 115 CHN-KOR-TWN 24
VNM 258 CHN-TWN 86 CHN-THA-VNM 24
TWN 183 CHN-KOR 83 CHN-DEU-USA 21

Notes: The tables shows the most popular destinations or destination combinations for firms operate in
one, two and three destinations. Destination abbreviations: CHN (China), USA (the United States),
THA (Thailand), VNM (Vietnam), TWN (Taiwan), KOR (South Korea), IDN (Indonesia), DEU
(Germany).

We define markets at the destination-industry level. For a (potential) market of a

Japanese firm, we define “nearby” and “remote” markets by first grouping all destina-

tions into seven geographic regions: North America, Latin America, Asia (excluding

the Middle East), the Middle East, Europe, Oceania, and Africa. A nearby market is

a destination-industry pair that satisfies two conditions: (1) the destination is in the

same region as the focal market and (2) the two markets belong to the same industry. 15

Similarly, a “remote” market is in the same industry but located in a different region.

“Nearby” and “remote” siblings are existing affiliates of the same firm in nearby and

remote markets, respectively. Consistent with our model setup, we require the firm to

15We focus on within-industry learning for two reasons. First, firms in our sample do not typically
set up foreign affiliates in multiple industries (average number of industries is 1.6). Second, as we show
in Section 4.1, signals from different industries do not significantly affect entry probabilities.
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have at least one nearby and one remote siblings.

We focus on horizontal FDI by defining an entry only when a firm first sets up an

affiliate in a market and this affiliate has high local sales shares. We calculate the local-

to-total-sales ratio for each affiliate-year and use the average ratio of each affiliate over

time to determine the nature of FDI. In our baseline regressions, we define affiliates to

be “horizontal” only when this ratio is above 85%. We define entry when a firm sets

up its first horizontal affiliate in the destination market. Our main empirical results

are robust to more strict definitions of horizontal FDI, as discussed in Online Appendix

2.3.

3.2 Construction of Siblings’ Signals

Consistent with our theory, we focus on firm learning about their idiosyncratic de-

mand/supply conditions in particular markets. We therefore tease out the aggregate

components in affiliates’ performance by regressing the affiliate’s log local sales on the

destination–industry-year fixed effects. Suppose we denote the log local sales of affiliate

i in year t as rit; we then run the following regression:

rit = δ̂skt + r̃it, (5)

where δ̂skt denotes the estimated destination-industry-year fixed effects. Destinations

and industries are denoted by k and s, respectively. We use the residual from this

regression (denoted as r̃it) as a measure of the affiliate’s exceptional performance rela-

tive to its peers in the same market. Similarly, we project firms’ domestic sales on the

domestic-industry-year fixed effects and use the residual sales as a control for produc-

tivity shocks common across all affiliates of the same firm.

We are now ready to define the two key regressors in our empirical analyses. The

model in Section 2 suggests that firms infer their market-specific demand using all past

signals. Therefore, we construct the cumulative average of the past sales of existing

affiliates as follows:

rnearby
fskt ≡

1

N(τ ≤ t, i ∈ Ifsk)

∑

τ≤t,i∈Ifsk

r̃iτ , rremote
fskt ≡

1

N(τ ≤ t, i ∈ Ic
fsk)

∑

τ≤t,i∈Ic
fsk

r̃iτ ,

(6)

where Ifsk denotes the set of firm f ’s affiliates in industry s and in other countries

that are in the same region as destination k. The set Ic
fsk includes the affiliates of the
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same firm in industry s but in other regions. The N(∙) function denotes the number of

signals observed until time t. In the following analysis, we refer to rnearby
fskt and rremote

fskt

as nearby and remote siblings’ signals. We use both variables as regressors in our main

specifications, therefore requiring the observation to have at least one nearby and one

remote siblings.

3.3 Validation of Affiliate-level Forecasts

One unique feature of our dataset is that each affiliate reports its expected sales for

the next year, when it fills out the survey of the current year. As such information

is rarely available in firm-level datasets, we discuss why this measure is reliable and

contains useful information that matters for actual firm decisions. Additional statistics

and results are presented in Appendix A.1.

First, in our sample, it is very rare for firms to use a naive rule to make their sales

forecasts. For example, as is shown in Appendix A.1, only 1.59% of the observations

have a forecast for year t + 1 that is exactly the same as sales in year t. Our main

regression results are basically unchanged after dropping these observations (See Online

Appendix 2.2). Second, we show that the sales forecasts have statistically significant and

economically strong impacts on realized sales and employment in the future, even when

we control for previous sales and employment. Finally, the MNC survey is mandated

by METI under the Statistics Law, so the information in the survey is confidential and

cannot be applied for purposes beyond the scope of the survey, such as tax collection.

Firms therefore do not have incentives to misreport to avoid taxes or to manage stock

market expectations.

4 Empirical Evidence

We now examine the empirical predictions of the model (Propositions 1 and 2).

4.1 Market Entries

In this subsection, we study how the past sales of existing affiliates affect the probability

of Japanese firms’ entering new markets in order to provide empirical evidence for

Proposition 1. We first transform our affiliate-year-level dataset into a firm-market-year-

level dataset, where a “market” refers to a destination-industry pair. In principle, each
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firm can enter a potential market in any year. We keep the market-year combinations

in which the firm has not yet established any affiliates in that market (not restricted to

horizontal affiliates) and study the probability of setting up a horizontal affiliate there

in the next year. Since we include nearby and remote siblings’ signals as regressors,

our sample also requires the focal market to have at least one nearby and one remote

siblings. For instance, suppose firm A has set up affiliates in industry s and regions r1,

r2 and r3. We consider firm A’s entries into any of the remaining destination markets in

these three regions (in industry s).16 We do not consider its entries into other regions or

industries since it does not have operations in those markets and thus does not receive

signals. For new markets in r1, signals from existing affiliates in r1 are “nearby signals”

while signals from r2 and r3 are “remote signals”.

Table 2 shows the number of observations and next years’ entries by year in the

sample use in our baseline regressions. There are around 41,700 observations (firm-

market combinations) in each year and 47 of them will see a new entry in the next year.

The average entry rate is 0.11%.17

We now introduce our econometric specification. In particular, we run the following

linear probability regression:18

Pr(Enterfsk,t+1 = 1) = b1r
nearby
fskt + b2rremote

fskt + b3r̃ft + δskt + δf + εfk,t+1, (7)

where the dependent variable is a binary variable indicating whether firm f enters desti-

nation k and industry s in year t+1. The independent variables are nearby and remote

siblings’ signals up to year t. We also control for the firms’ domestic performance, r̃ft,

which is the residual of log domestic sales after teasing out the domestic industry-year

fixed effects. We control for various fixed effects in our regressions, such as market-year

fixed effects (δskt) and firm fixed effects (δf ). According to Proposition 1, we expect b1

to be positive while b2 to be zero. Under the less extreme assumption that cross-region

correlation in time-invariant demand is positive but smaller than that within region,

16As discussed in Section 3.2, for a particular focal market, siblings are affiliates of the same firm
operating in the same industry but different countries.

17The entry rate in 1995 is higher than those in the other years. Note that we define entry using
the founding year of each affiliate reported in the survey instead of using their first appearance in the
data, so the higher entry rate in 1995 is not an artifact. In Online Appendix 2.4, we show our main
empirical results are robust if we exclude 1995 from our sample.

18We use the linear probability regression as our main specification since it allows us to control for
a rich set of fixed effects. The results are similar, both qualitatively and quantitatively, to alternative
non-linear specifications (e.g., the Cox regression model used by Conconi et al. (2016)). We report
these results in Appendix A.3.
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Table 2: Number of observations and entries by year

(1) (2) (3)
Year # of obs. # of next year’s entries entry rate (%)

1995 21919 68 0.31
1996 27100 50 0.18
1997 27736 46 0.17
1998 30772 42 0.14
1999 36426 39 0.11
2000 36101 50 0.14
2001 33531 48 0.14
2002 38926 42 0.11
2003 40303 58 0.14
2004 41905 49 0.12
2005 44611 44 0.10
2006 44952 53 0.12
2007 44289 41 0.09
2008 46096 36 0.08
2009 47753 48 0.10
2010 47073 72 0.15
2011 48704 78 0.16
2012 51978 47 0.09
2013 54473 32 0.06
2014 54338 23 0.04
2015 56541 11 0.02
Total 875527 977 0.11

Notes: Column 1 shows the number of observations by year in our baseline regression. Column 2 shows
the number of the next year’s entries among the observations in Column 1. Column 3 calculates the
entry rates (Column 2/Column 1).

we expect b2 to be positive but smaller than b1.

Before we show the regression results, Table 3 presents the summary statistics of

the key regressors and related variables in the same sample as in Table 2. The median

observation has one nearby sibling and two remote siblings, and the average number of

siblings (1.7 and 3.7) is larger than the median, suggesting that their distributions are

right-skewed. Although many firms entered new destinations during our sample period,

they established operations in developed regions (e.g., North America and Europe) long

time ago. This is reflected by the average age of nearby and remote siblings, with

medians of 13.8 and 15.5, respectively. Finally, there is substantial variability in the

siblings’ signals. For example, the 75th percentile of nearby siblings’ signal is 197 log

points higher than the 25th percentile, which translates into a 618% difference in past

sales. The three regressors (nearby siblings’ signal, remote siblings’ signal, and residual

parent sales) are also far from perfectly correlated. The correlation coefficients between

any two of these variables are between 0.38 and 0.45.

Table 4 reports the estimation results of equation (7). In Column 1, we estimate

the equation controlling for the destination-year and industry-year fixed effects but

not the firm fixed effects. Both nearby siblings’ signal and firms’ domestic sales raise
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Table 3: Summary statistics of siblings and parents

Obs. mean std. dev. 25 pct. median 75 pct.

Number of nearby siblings 875,527 1.677 2.247 1 1 2
Average age of nearby siblings 875,478 15.38 9.410 8.750 13.83 20.20
Average nearby signal 875,527 -0.258 1.585 -1.182 -0.157 0.789
Number of remote siblings 875,527 3.695 5.364 1 2 4
Average age of remote siblings 875,510 16.46 7.905 11 15.50 20.91
Average remote signal 875,527 0.0321 1.432 -0.784 0.0824 0.960
Residual sales of parents 875,527 -0.226 1.794 -1.388 -0.122 1.046

Notes: Nearby siblings are affiliates of the same firm in the same region and industry but a different
destination. Remote siblings are affiliates of the same firm in the same industry but other regions. We
calculate the signals as the cumulative average residual sales following the definition in equation (6).

the probability of FDI entry in the next period. A one standard deviation increase in

nearby siblings’ signal raises the entry probability by 1 .59× 0.0174% = 0.028% , which

is around 25% of the average entry probability (0.11%). By contrast, remote siblings’

signal does not have a significant impact on the probability of FDI entry. In Column 2,

we further control for firm fixed effects to tease out time-invariant firm characteristics.

Column 3 shows that the results are robust when we drop firms’ domestic sales but

control for firm-year fixed effects.

Table 4: Impact of siblings’ experience on entry in the next period

Dep. Var: 1(Enterspk,t+1) × 100 (1) (2) (3)

Average nearby signal 0.0174a 0.0180a 0.0172a

(0.00318) (0.00377) (0.00403)
Average remote signal 0.00414 0.00418 0.00179

(0.00405) (0.00536) (0.00566)
Firm domestic sales 0.00660c -0.0142

(0.00350) (0.0108)
Destination-Ind-Year FE X X X
Firm FE X
Firm-Year FE X

N 875527 875527 902527
R2 0.064 0.067 0.088
# of Firms 1922 1922 1931
# of Firm-Markets 113998 113998 115183
# of Entries 977 977 1003

Notes: The dependent variable indicates whether the firm enters a particular destination in the next
year. We calculate the signals as the cumulative average residual sales following the definition in
equation (6). Standard errors are clustered at the firm level. Significance levels: a: 0.01, b: 0.05, c:
0.10.

It is important to note that our evidence does not imply that the existence of

a nearby sibling necessarily increases the likelihood of entry into other countries in

the same region. Such a positive impact is realized only when the nearby siblings’
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signal is good enough. To demonstrate this point, we expand our sample to include

regions which the firm has not entered yet. We then estimate the impact on different

deciles of average nearby siblings’ signal on the probability of market entry, using the

observations without any nearby siblings as the base category, and controlling firm

domestic performance, and destination-industry-year and firm-industry fixed effects. 19

We then plot the coefficients of decile dummies in Figure 1. Consistent with our earlier

evidence, stronger siblings’ signal raises the entry probability. However, compared to

firms without any siblings, having a sibling only significantly raises the probability of

entry when the siblings’ signal is above the fourth decile. When the siblings’ signal is

in the lowest decile, the entry probability is actually significantly lower than that of a

firm without any presence in the region.

We think that this result demonstrates an important distinction between our learn-

ing mechanism and other mechanisms that lead to sequential entries in similar markets.

For example, Morales et al. (2019) construct and estimate an empirical model where an

exporter’s prior entry in nearby markets lowers the sunk entry costs into new markets,

which can explain the “extended gravity” patterns in market entry. Their mechanism

may well exist in our multinational firm data, as the presence of nearby siblings starts

to show a positive impact on subsequent entries into new markets when the siblings’

signal is as low as the third decile. However, this is not the case for the lowest two

deciles. In a recent study, Garetto et al. (2019) provide evidence that the presence of a

U.S. MNC in a country only has a slightly positive and sometimes insignificant effect on

the probability of its entry into another similar country. We conjecture that the effects

of prior presence of subsequent entries may well depend on the historical performance

of the existing affiliates.

We have so far defined markets at destination-industry levels. In Table 5, we perform

horse race regressions and show that signals from other industries cannot predict market

entry, even if those signals come from the same region. In Columns 1-2, we regress the

entry dummy on the average signals of siblings in the same region and industry and of

siblings in the same region but different industries. We see that only the signal of siblings

in the same region and industry has predictive power for the next period’s entry. In

Columns 3-4, we add remote sibling signals, and further separate remote sibling signals

into those in the same industry and those in different industries. The results suggest

19The details of the sample and regression results are presented in Appendix A.4. We also report
the results controlling for firm-industry-year fixed effects instead of firm-industry fixed effects. The
results are similar.
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Figure 1: Impact of Nearby Sibling Signal Deciles on Entry Probability (%)
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Notes: Firm-country-industry cells without any nearby siblings are the base cat-
egory (horizontal line at y = 0). The details of the sample and the regression
results are presented in Table A.5.
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that only signals from siblings in the same region and industry can predict market entry.

Therefore, learning effect is the strongest for this type of signals.20

Table 5: Impact of siblings’ experience on entry in the next period, horse race between
signals from the same and different industries

Dep. Var: 1(Enterspk,t+1) × 100 (1) (2) (3) (4) (5) (6)

Avg nearby signal (same ind) 0.0166a 0.0157a 0.0167a 0.0168a 0.0154a 0.0114b

(0.00393) (0.00397) (0.00370) (0.00414) (0.00450) (0.00507)
Avg nearby signal (diff ind) 0.000588 -0.00188 0.000871 -0.000621 -0.00204 -0.00554

(0.00495) (0.00717) (0.00528) (0.00736) (0.00630) (0.00835)
Avg remote signal 0.000420 0.0136

(0.00908) (0.0170)
Avg remote signal (same ind) 0.00447 0.00213

(0.00615) (0.00698)
Avg remote signal (diff ind) -0.00142 -0.00107

(0.00991) (0.0131)
Firm domestic sales -0.000523 0.00250 -0.000637 0.00290 0.00481 0.00866

(0.00567) (0.0139) (0.00651) (0.0145) (0.00890) (0.0208)
Destination-Year FE X X X X X X
Industry-Year FE X X X X X X
Firm FE X X X

N 458137 458136 447263 447261 319763 319763
R2 0.014 0.018 0.014 0.017 0.019 0.022
# of Firms 1039 1038 973 971 489 489
# of Firm-Markets 58663 58662 57375 57373 42952 42952
# of Entries 571 571 551 551 406 406

Notes: The dependent variable indicates whether the firm enters a particular destination in the next
year. Standard errors are clustered at the firm level. Significance levels: a: 0.01, b: 0.05, c: 0.10.

4.2 Expectations Formation after Market Entries

In this subsection, we use our measure of affiliates’ sales forecasts to study how past

signals affect the formation of expectations and to test Proposition 2. The baseline

regression specification is as follows:

log Et(Ri,t+1) = b1rit + b2r
nearby
fskt + b3rremote

fskt + b4r̃ft + δskt + δf + εi,t+1, (8)

where we examine how the affiliate’s own signal and its siblings’ signals affect its ex-

pected sales in the next year. The right hand of equation (8) is almost the same as

that of equation (7), except for the addition of the first regressor, rit. This variable is

20A caveat is that, as we add more signals into the horse race regressions, the number of observations
shrinks. For example, Columns 1-2 in Table 5 requires that, for the focal market, the firm has at least
one sibling in the same region-industry and one sibling in the same region but different industry.
Columns 3-4 require an additional sibling in the other regions, whether in the same industry or not,
while the last two columns further require one sibling in the same industry but different region and
one sibling in a different industry and different region.
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a measure of the affiliate’s own signal, which is defined as the cumulative average of

its residual log local sales r̃iτ , τ ≤ t. Proposition 2 predicts that both b1 and b2 are

positive.

Table 6: Impact of siblings’ signal on expected sales in the next year, baseline and by
age group

Dep. Var: log Et(Ri,t+1) (1) (2) (3) (4)
Sample: all ages 1 ≤ age ≤ 3 4 ≤ age ≤ 6 age ≥ 7

Average self signal 0.823a 0.550a 0.805a 0.935a

(0.0111) (0.0242) (0.0263) (0.00912)
Average nearby signal 0.0244b 0.0982a 0.0282 0.0218c

(0.0112) (0.0358) (0.0259) (0.0126)
Average remote signal 0.0140 0.00800 0.00641 0.0198

(0.0171) (0.0573) (0.0459) (0.0187)
Firm domestic sales 0.0524a 0.0878c 0.107a 0.0537b

(0.0191) (0.0498) (0.0308) (0.0216)
Destination-Ind-Year FE X X X X
Firm FE X X X X

N 32881 2182 3778 24160
R2 0.878 0.882 0.894 0.900
# of Firms 989 386 511 858
# of Affiliates 7152 1385 2033 5265

Notes: Dependent variable is the logarithm of expected sales in the next year. We calculate the
signals as the cumulative average residual sales following the definition in equation (6). Standard
errors are clustered at the firm level. Significance levels: a: 0.01, b: 0.05, c: 0.10. The number of
observations in Columns 2–4 does not add up to that in Column 1 because we have excluded the
singletons (observations whose variation is completely absorbed by the fixed effects) when calculating
these numbers, and the set of singletons depends on the subsample.

Column 1 of Table 6 presents the results from the baseline regression. The affiliate’s

own signal is a key determinant of future sales expectation, with a precisely estimated

coefficient of 0.823. Nearby siblings’ signals also positively affect expectations. If the

average past sales of all nearby siblings increase by one log point, the affiliate’s expected

sales increase by 0.024 log points. By contrast, remote siblings’ signals have a positive

but insignificant impact, which is consistent with the evidence we presented for market

entries in the previous subsection. We next explore the heterogeneous effects of the

nearby siblings’ signals and test the additional predictions in Proposition 2.

4.2.1 Siblings’ Signal Matters More when the Affiliate is Younger

We now show that the impact of nearby siblings’ signals on sales expectations is stronger

when the affiliate considered is younger. In Columns 2 to 4 of Table 6, we divide the

sample into affiliates of different ages. We find that the impact of nearby siblings’

signal is higher for younger affiliates, whereas the impact of self-experience is higher for
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older affiliates. When affiliates are no older than three years, the coefficient of nearby

siblings’ signal is four times the average effect in Column 1, while the coefficient of the

affiliate’s own signal is one third smaller. When affiliates are older, the coefficients of the

average nearby siblings’ signal is much smaller and becomes insignificant or marginally

significant. In Appendix A.5, we perform a simple calibration of the model and show

that the magnitude of these coefficients are in line with those implied by the model.

Table 7: Impact of siblings’ signal (interacted with affiliate age) on expected sales in
the next year

Dep. Var: log Et(Ri,t+1) (1) (2) (3) (4)

Average self signal 0.868a 0.596a 0.868a 0.587a

(0.00935) (0.0194) (0.00982) (0.0203)
× log(self age) 0.0907a 0.0917a

(0.00575) (0.00602)
×max{self age, 10} 0.0331a 0.0344a

(0.00212) (0.00221)
Average nearby signal 0.0235b 0.181a 0.0342a 0.200a

(0.0115) (0.0262) (0.0118) (0.0285)
× log(self age) -0.0503a -0.0522a

(0.00850) (0.00923)
×max{self age, 10} -0.0193a -0.0204a

(0.00282) (0.00316)
Average remote signal 0.0179 0.0173 0.0168 0.0159

(0.0175) (0.0173) (0.0250) (0.0254)
Firm domestic sales 0.0534a 0.0561a

(0.0188) (0.0183)
Destination-Ind-Year FE X X X X
Firm FE X X
Firm-Year FE X X
Age FE X X X X

N 32872 32872 31724 31724
R2 0.885 0.885 0.905 0.905

Notes: Dependent variable is the logarithm of expected sales in the next year. We calculate the signals
as the cumulative average residual sales following the definition in equation (6). Standard errors are
clustered at the firm level. Significance levels: a: 0.01, b: 0.05, c: 0.10.

To confirm the increasing (declining) impact of the affiliate’s own (nearby siblings’)

signal on the expectations formation, we interact these two signals with affiliate age in

Table 7. Since some affiliates in our data are old, we create two age measures to capture

the non-linear effects of age: the logarithm of affiliate age and affiliates’ age capped at

10. We further control for the direct impact of age on expected sales using the affiliate

age fixed effects. The logarithm of affiliate age is also standardized to facilitate the

interpretation of the coefficients. Taking the estimates in Column 1 as an example, we

find that a one standard deviation increase in the log affiliate age raises the impact of

the affiliate’s own signals by 0.091 and reduces the impact of nearby siblings’ signals by

0.050. In Columns 3 and 4, we replace firms’ domestic sales and the firm fixed effects
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with the firm-year fixed effects and the patterns are similar.

4.2.2 Siblings’ Signal Matters More in Markets with Noisier Signals

In this subsection, we explore how the relationship between the affiliate’s expectation

and its nearby siblings’ signal varies with proxies of the signal noisiness in the affiliate’s

market. We first construct two measures of σε1 that are consistent with our model.

First, log sales in our model are proportional to θ + εt. Hence, subtracting log sales

in period t − 1 from that in period t can remove the time-invariant component θ. The

variance of the log sales growth rates in the focal market is thus proportional to 2σ2
ε1.

Second, sufficiently old affiliates have almost discovered θ, meaning that the only source

of their forecast errors is the temporary shock εt. Table 6 suggests that learning from

siblings is very weak after seven years in the market. We therefore use the standard

deviation of forecast errors of affiliates with at least seven years of experience as a proxy

for σ2
ε1.

We perform the following regression to examine the impact of σε1:

log Et(Ri,t+1) = b1rit + b2r
nearby
fskt + b3rremote

fskt + b4r̃ft

b5rit × σ̂ε1,k + b6r
nearby
fskt × σ̂ε1,k + δskt + δf + εi,t+1. (9)

Our new estimation equation is equation (8) with the addition of two new terms: the

interaction terms between signal noisiness in destination k and the signals of the affiliate

and of its nearby siblings. The destination-level signal noisiness measure, σ̂ε1,k, is

defined as the standard deviation of the log sales growth of all the Japanese affiliates in

destination k, or the standard deviation of the sales forecast errors of affiliates at least

seven years old. To ensure these measures are precise, we only include countries that

have at least 20 observations of sales growth or forecast errors.21 Proposition 2 predicts

that b5 is negative while b6 is positive.

Table 8 reports the regression results. In Columns 1 and 2, we approximate σ̂ε,k

using the standard deviation of the sales growth rates in destination k, which are further

standardized to facilitate the interpretation of the coefficients. Column 2 replaces the

firms’ domestic sales control and firm fixed effects in Column 1 with firm-year fixed

effects. The results in these two columns show that b5 is negative, while b6 is positive,

21Ideally, one would want to calculate a proxy σε1 at the destination-industry level because it is our
definition of a “market”. However, this causes more measurement errors in σε1 since we have fewer
observations in each cell. We decide to aggregate the sales growth rates at the destination level instead.
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which confirms the model’s prediction. As shown in Column 1, a one standard deviation

increase in σ̂ε1,k lowers the coefficient of the affiliate’s own signals by 0.056 and raises

the coefficient of nearby siblings’ signals by 0.035.

We experiment with alternative measures of σ̂ε1,k in the other columns of Table 8.

Columns 3 and 4 construct this measure using the standard deviation of the forecast

errors for affiliates above seven years, as discussed above. The signs of the two inter-

action terms are the same, but the magnitude of the coefficients falls. Finally, since

sales growth rates and forecast errors may be affected by aggregate shocks (e.g., the

affiliates in a destination tend to overpredict their sales before a recession hits), we

also use measures of residual sales growth and residual forecast errors by removing the

destination-industry-year fixed effects before calculating the standard deviation. The

results shown in Columns 5–8 are almost the same as those in Columns 1–4.

Table 8: Effect of market noisiness on learning

Proxy constructed using Sales Growth Fore. Err. Res. Sales Growth Res. Fore. Err.

Dep. Var: log Et(Ri,t+1) (1) (2) (3) (4) (5) (6) (7) (8)

Average self signal 0.844a 0.847a 0.838a 0.840a 0.844a 0.847a 0.838a 0.840a

(0.0115) (0.0122) (0.0115) (0.0121) (0.0115) (0.0122) (0.0115) (0.0121)
× proxy of σε1 -0.0560a -0.0537a -0.0286a -0.0284a -0.0560a -0.0537a -0.0286a -0.0284a

(0.00802) (0.00822) (0.00719) (0.00741) (0.00802) (0.00822) (0.00718) (0.00741)
Average nearby signal 0.0277b 0.0391a 0.0262b 0.0360a 0.0277b 0.0391a 0.0262b 0.0359a

(0.0113) (0.0114) (0.0111) (0.0112) (0.0113) (0.0114) (0.0111) (0.0112)
× proxy of σε1 0.0350a 0.0371a 0.0220a 0.0194a 0.0350a 0.0371a 0.0220a 0.0194a

(0.00879) (0.00867) (0.00676) (0.00670) (0.00879) (0.00867) (0.00675) (0.00670)
Average remote signal 0.0181 0.0196 0.0159 0.0173 0.0181 0.0196 0.0160 0.0173

(0.0171) (0.0240) (0.0174) (0.0249) (0.0171) (0.0240) (0.0174) (0.0249)
Firm domestic sales 0.0544a 0.0537a 0.0544a 0.0536a

(0.0185) (0.0191) (0.0185) (0.0191)
Destination-Ind-Year FE X X X X X X X X
Firm FE X X X X
Firm-Year FE X X X X
Age FE X X X X X X X X

N 32858 31708 32841 31691 32858 31708 32839 31688
R2 0.882 0.902 0.881 0.901 0.882 0.902 0.881 0.901

Notes: Dependent variable is the logarithm of expected sales in the next year. We calculate the signals
as the cumulative average residual sales following the definition in equation (6). Market noisiness σε1

is proxied for using the standard deviation of (residual) sales growth rates or (residual) forecast errors,
which are indicated in the column heads. The proxies are standardized. Standard errors are clustered
at the firm level. Significance levels: a: 0.01, b: 0.05, c: 0.10.

4.2.3 Siblings’ Signal Matters More when Siblings are More Experienced

In this subsection, we examine how siblings’ experience affects the strength of learning

and test the last prediction of Proposition 2.
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To perform the statistical test, we first need to construct measures of sibling experi-

ence. Since siblings’ signal is calculated by aggregating all siblings’ past sales in nearby

markets, the correct notion of siblings’ experience is the number of signals observed by

the firm. However, since some siblings entered before 1995, the earliest year of our data,

we cannot observe their performance before 1995 and cannot include them in the sib-

lings’ signal measure. We thus construct two variables to measure siblings’ age. First,

consistent with our notion of average past signals (residual log local sales), we calculate

the number of signals used in this calculation, i.e., N(τ ≤ t, i ∈ Ifsk) in equation (6).

Second, we calculate the sum of nearby siblings’ ages, which assumes that the firm uses

all past signals of the nearby siblings to forecast sales in the focal market. To capture

the non-linear effect, we use the logarithms of both variables in our regressions; they

are also standardized to facilitate interpretation.

We empirically test the model prediction using a variation of equation (8). We

include interaction terms between nearby siblings’ experience and the signals of the

affiliate itself and of its nearby siblings. At the same time, we control for the first-order

terms of nearby siblings’ experience and the signals of the affiliate and of its nearby

siblings. We also control for the interaction terms between the age of the affiliate (i.e.,

self experience) and the signals because the affiliate’s age is positively correlated with

its nearby sibling’s age, whereas it has the opposite effect on learning, as shown in

Section 4.2.1.

Table 9 reports the results. Although the interaction term between the nearby

siblings’ experience and the affiliate’s own signal is significantly negative in only one

specification (Column 1), the interaction term between nearby siblings’ experience and

their own signal is significantly positive in all specifications, suggesting that siblings’

signals matters more if they are older. Depending on the specification, a one standard

deviation increase in the nearby siblings’ experience raises the coefficient of the nearby

siblings’ signal by around 50%. The estimated effects are similar regardless of whether

siblings’ experience is measured by the number of observed signals or total age. Finally,

the coefficients of the interaction terms of the affiliate’s age and the signals are similar

to those in Table 7. The effect of siblings’ experience on learning is in general smaller

than that of the affiliate’s own experience.
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Table 9: Interaction of siblings’ signal with siblings’ experience

Sibling Experience Measure: # Signals Total Age

Dep. Var: log Et(Ri,t+1) (1) (2) (3) (4)

Average self signal 0.869a 0.870a 0.868a 0.869a

(0.00961) (0.0100) (0.00961) (0.00999)
× Self experience 0.0917a 0.0935a 0.0915a 0.0933a

(0.00582) (0.00611) (0.00582) (0.00608)
× Nearby siblings’ experience -0.0110c -0.00474 -0.00379 -0.000190

(0.00649) (0.00682) (0.00737) (0.00767)
Average nearby signal 0.0394a 0.0601a 0.0331b 0.0507a

(0.0146) (0.0161) (0.0135) (0.0142)
× Self experience -0.0514a -0.0530a -0.0518a -0.0534a

(0.00864) (0.00937) (0.00869) (0.00944)
× Nearby siblings’ experience 0.0209b 0.0322a 0.0160b 0.0251a

(0.00853) (0.0109) (0.00815) (0.00972)
Nearby siblings’ experience 0.0229 0.000337 0.0228 0.0150

(0.0177) (0.0219) (0.0167) (0.0203)
Average remote signal 0.0188 0.0204 0.0185 0.0187

(0.0178) (0.0252) (0.0180) (0.0260)
Firm domestic sales 0.0523a 0.0527a

(0.0187) (0.0187)
Destination-Ind-Year FE X X X X
Firm FE X X
Firm-Year FE X X
Age FE X X X X

N 32872 31724 32862 31714
R2 0.886 0.905 0.885 0.905

Notes: Dependent variable is the logarithm of expected sales in the next year. We calculate the signals
as the cumulative average residual sales following the definition in equation (6). Self experience is the
log of self age, while the nearby siblings’ experience is measured by the log of total number of signals
or total age of the nearby siblings, indicated by the column head. Standard errors are clustered at the
firm level. Significance levels: a: 0.01, b: 0.05, c: 0.10.

4.3 Robustness Checks

We discuss two robustness checks of our main empirical results in this subsection and

refer the reader to the online appendix for detailed regression tables.

First, in our expectations formation regressions, we considered several factors that

may affect the weights that affiliates place on the signals of itself and of its nearby

siblings. These factors may be correlated with each other and/or correlated with other

confounding variables. In Table OA.1, we rerun the regressions including the full set of

factors considered above and obtain similar results as before. This suggests that affiliate

age, market noisiness, and siblings’ experience all have separate effects on learning

as predicted by the model. We also show that our results are robust to adding the

interaction of signals and focal market income levels.

The second challenge to our empirical analysis is the presence of regional value

chains. We know from earlier work that Japanese firms may have established regional
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value chains, especially in Asia (Hayakawa and Matsuura, 2011). For example, if the

Thai affiliate of a Japanese firm produces electronic components that are both sold

in Thailand and exported to its Chinese affiliate for final assembly, supply shocks to

the Thai affiliate can cause positive correlations in the local sales in Thailand and

the expected sales of the Chinese affiliate. To address this concern, we perform our

baseline entry and expectations formation regressions restricting our sample to new

entrants that have a small regional or global import shares. As reported in Online

Appendix 2.3, this aggressive strategy reduces our sample size by about one quarter,

and reduces the impact of the nearby siblings’ signal on entry by one third but does

not change its impact on expectation formation. Therefore, our main findings are not

simply driven by regional or global value chains.

5 Conclusion

In this study, we use a novel dataset of Japanese MNCs to provide evidence that MNCs

learn about profitability in the destination market by observing the performance of their

affiliates in similar markets. Specifically, the strong past sales of siblings in nearby

markets raises the probability of the firm entering a particular market. In addition,

after market entry, the strong sales performance of siblings in nearby markets also raises

the expectation of future sales held by the affiliate in the focal market. Importantly,

such an impact declines over the affiliate’s life-cycle, while self-discovery becomes more

important as the affiliate ages. We also show that the effect of learning from nearby

siblings is stronger if the destination market’s signals are noisier and when siblings are

more experienced. We view these findings as evidence of cross-market learning and

information transmission within MNCs. The simple model we provide here rationalizes

all the empirical findings and is thus a good starting point for studying MNC dynamics

and interdependence across markets.

There are at least three fruitful avenues for future research. First, construct-

ing a structural model would be useful to estimate the structural parameters of the

model (e.g., correlations of the time-invariant demand across markets, variances of the

time-invariant demand and the transitory shock) and conduct counterfactual analysis.

Second, incorporating information transmission within MNCs into a quantitative MP

framework (e.g., Helpman et al. (2004) and Ramondo and Rodŕıguez-Clare (2013))

would help quantify the role of learning within MNCs in determining their entry and
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production patterns. Finally, the current study does not consider information spillovers

across MNCs, which may also influence their activities abroad and have strong policy

implications.22 We leave these promising approaches and interesting questions to future

research.

22See, for example, Fernandes and Tang (2014), Kamal and Sundaram (2016), Hamilton (2018) for
evidence in the context of exporting.
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Conconi, Paola, André Sapir, and Maurizio Zanardi, “The internationalization process of firms:
From exports to FDI,” Journal of International Economics, March 2016, 99, 16–30.

Egger, Peter, Matthias Fahn, Valeria Merlo, and Georg Wamser, “On the genesis of multi-
national foreign affiliate networks,” European Economic Review, January 2014, 65, 136–163.

Enders, Zeno, Franziska Hünnekes, and Gernot J Müller, “Firm expectations and economic
activity,” CESifo Working Paper 2019. tex.publisher: CESifo Working Paper.

Fan, Jingting, “Talent, Geography, and Offshore R&D,” Working Paper 2017.

Fernandes, Ana P. and Heiwai Tang, “Learning to export from neighbors,” Journal of Interna-
tional Economics, September 2014, 94 (1), 67–84.

Garetto, Stefania, Lindsay Oldenski, and Natalia Ramondo, “Multinational Expansion in
Time and Space,” Working Paper 25804, National Bureau of Economic Research May 2019.

Gennaioli, Nicola, Yueran Ma, and Andrei Shleifer, “Expectations and investment,” NBER
Macroeconomics Annual, 2016, 30 (1), 379–431.

Gravelle, Jane G., “Tax Havens: International Tax Avoidance and Evasion,” National Tax Journal,
2009, 62 (4), 727–753.

Gumpert, Anna, Andreas Moxnes, Natalia Ramondo, and Felix Tintelnot , “Multinational
Firms and Export Dynamics,” Working Paper 2016.

Hamilton, Ben, “Learning, Externalities, and Export Dynamics,” Working Paper 2018.

Hayakawa, Kazunobu and Toshiyuki Matsuura, “Complex vertical FDI and firm heterogeneity:
Evidence from East Asia,” Journal of the Japanese and International Economies, September 2011,
25 (3), 273–289.

Head, Keith and Thierry Mayer, “Brands in motion: How frictions shape multinational produc-
tion,” Working Paper 2019.

Helpman, Elhanan, Marc J. Melitz, and Stephen R. Yeaple, “Export versus FDI with Het-
erogeneous Firms,” The American Economic Review, March 2004, 94 (1), 300–316.

Jovanovic, Boyan, “Selection and the Evolution of Industry,” Econometrica, 1982, 50 (3), 649–670.

and Yaw Nyarko, “Stepping-stone mobility,” Carnegie-Rochester Conference Series on Public
Policy, June 1997, 46, 289–325.

Kamal, Fariha and Asha Sundaram, “Buyer-seller relationships in international trade: Do your
neighbors matter?,” Journal of International Economics, September 2016, 102, 128–140.

Keller, Wolfgang and Stephen Ross Yeaple, “The Gravity of Knowledge,” American Economic
Review, 2013, 103 (4), 1414–44.

Ma, Yueran, Tiziano Ropele, David Sraer, and David Thesmar, “A quantitative analysis of
distortions in managerial forecasts,” Working Paper 2019.

Morales, Eduardo, Gloria Sheu, and Andrés Zahler, “Extended Gravity,” The Review of Eco-
nomic Studies, November 2019, 86 (6), 2668–2712. Publisher: Oxford Academic.

30
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A Appendix

A.1 Validation of Affiliate-level Forecasts

In this section, we show that the variable of expected sales in the MNC survey is reliable

and contains useful information that matters for actual firm decisions.

First, we show that it is very rare for firms to use a naive rule to make their sales

forecasts. In Table A.1, we present the expected growth rates, which is calculated as

the ratio of the affiliate’s forecast for year t +1 to its realized sales in year t minus one.

If an affiliate simply uses its realized sales in year t to predict their sales next year,

the expected growth rate will be zero. As one can see from the table, only 1.59% of

the observations in our sample have a zero expected growth rate. The frequency of the

other top cases are all below 0.1%. For the affiliates reporting zero expected growth

rates, it is difficult to tell whether they are making a naive forecast or making a serious

forecast with the expectation that their sales growth will be very close to zero. We

conduct robustness checks in Online Appendix 2.2 by dropping all observations with

zero expected growth rates. Our main empirical results remain largely unchanged.

Table A.1: The Most Frequent Values of Expected Growth Rates

Top 1-5 Top 6-10

Et(Rt+1)/Rt − 1 Freq. (%) Et(Rt+1)/Rt − 1 Freq. (%)

0.0000 1.59 0.0417 0.06
0.1111 0.09 0.2000 0.06
0.2500 0.09 0.3333 0.05
0.1000 0.08 0.1250 0.05
0.0526 0.07 0.1429 0.05

Notes: This table shows the most frequent values of expected growth rates among all the affiliate-year
observations that are in our baseline regressions using the variable of sales expectations (Column 1
of Table 6 in the paper). Total number of observations is 29,958. It is smaller than that in our
baseline regression because some affiliates do not report their current sales. Our data contains more
observations than those in our baseline regressions since our regressions only include affiliates with at
least one nearby and one remote siblings. However, if we compute the expected growth rates over all
the observations in the dataset, the results are similar. They are available upon request.

Second, we show that the sales forecasts have statistically significant and econom-

ically strong impacts on realized sales and employment in the future. Specifically, we

regress the realized sales in year t + 1 on the sales forecast made in year t and a set of

fixed effects, and the results are reported in Table A.2. The first three columns show
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that the sales forecast in year t positively and significantly predicts the realized sales in

year t+1. Importantly, the effect of the sales forecast is not eliminated after we include

the realized sales in year t as a control in Column 2. Its coefficients is actually much

larger than the realized sales. Further including the realized sales in year t−1 does not

change this pattern (Column 3). Columns 4-6 show that the sales forecasts also have

strong predicative power for future employment, even if we control for the current and

past employment. These findings easily reject the hypothesis that firms fill out this

survey question with random guesses. By contrast, they indicate that firms take these

forecasts seriously and that the forecasts contain more information about the affiliates’

future than typical observables such as past sales and employment.

Table A.2: Sales Forecasts Predict Affiliates’ Future Outcomes

Dep. Var. log total sales log(Ri,t+1) log employment log(Li,t+1)

(1) (2) (3) (4) (5) (6)

log Et(Ri,t+1) 0.619a 0.526a 0.517a 0.291a 0.130a 0.135a

(0.0294) (0.0315) (0.0346) (0.0199) (0.0135) (0.0144)
log Rit 0.121a 0.121a

(0.0189) (0.0364)
log Ri,t−1 0.0380a

(0.0113)
log Lit 0.514a 0.505a

(0.0233) (0.0302)
log Li,t−1 0.0194

(0.0208)
Affiliate FE X X X X X X
Destination-Ind-Year FE X X X X X X

N 26040 26040 22726 25935 25863 22962
# of Firms (cluster) 782 782 706 784 784 711
Within R-squared 0.443 0.456 0.446 0.156 0.372 0.364
R-squared 0.974 0.975 0.977 0.969 0.978 0.979

Notes: The dependent variable is affiliate i’s log total sales or total employment in year t + 1. We use
R to denote sales and L to denote employment. Et(Ri,t+1) refers to the affiliate’s expectation in year
t for its sales in year t + 1. Standard errors are clustered at the firm level. Significance levels: a: 0.01,
b: 0.05, c: 0.10. We restrict our sample to those with at least one nearby and one remote siblings as in
Column 1 of Table 6 in the paper. We have fewer observations here because we require a longer panel
(at least two years for each affiliate). We also run the same regressions using all the observations in
our dataset, and the results are similar. They are available upon request.

Finally, the MNC survey is mandated by METI under the Statistics Law, so the

information in the survey cannot be applied for purposes beyond the scope of the

survey, such as tax collection. Firms do not have incentives to misreport due to tax

purposes. Moreover, unlike earnings forecasts announced by public firms, the sales

forecasts reported to METI are confidential, so firms do not have the incentive to

misreport strategically to manage the expectations of the stock market. In total, the

empirical patterns described above assure us that the sales forecasts contained in the
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MNC survey are reliable and suitable for our empirical analysis.

A.2 Within- and Cross-region Correlations in θ

In this section, we compare the within-region and cross-region correlations of time-

invariant demand θ. To measure such correlations, we first try to extract model-

consistent measures of θ from the data. According to the model, sufficiently old firms

have almost learned the value of θ and the variability in their sales is only caused by

ε. Therefore, if we average over a large number of realized (log) sales of old firms,

we can obtain a proxy for θ. We perform this exercise for each parent-firm-market,

only taking observations when the affiliate is at least seven years old. We then obtain

a parent-firm-market-level dataset. We pair each market in which a parent firm has

entered with all the other markets it has presence. For each pair of markets 1 and

2, we can calculate the correlation in θ1 and θ2 across all firms with presence in both

markets. The correlation can be calculated for two markets within the same region or

in different regions. Row 1 of Table A.3 shows the within-region and cross-region cor-

relations, pooling all within-region pairs and cross-region pairs together, respectively.

The within-region correlation is around 0.41, higher than the cross-region correlation.

One concern about this calculation is that the proxy for θ is contaminated by other

factors such as aggregate shocks and firm-level global shocks that are not firm-market-

specific. To address this issue, we compute two alternative proxies for θ. First, we

remove the country-year and industry-year fixed effects from log sales, so that the

residual ê1(sales) is arguably idiosyncratic demand. We then calculate the average

within a parent-firm-market for the affiliate that are at least seven years old. Second,

we use a different residual ê2(sales) obtained by regressing log sales on log parent firm

domestic sales as well as the above fixed effects. This further removes the firm-level

global shocks that are not firm-market-specific. We use this ê2(sales) to construct a

third proxy for θ. Rows 2 and 3 of Table A.3 show the correlations of θ constructed

in these ways within and across regions, respectively. These correlations are smaller

than that in row 1, whereas the within-region correlation is always larger than the

cross-region correlation, and the differences are around 0.1.
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Table A.3: Correlation of demand within and between regions for affiliates at all ages

Demand Measure Corr. within Region Corr. between Regions

log(sales) 0.414 0.315
[13270] [28639]

ê1(sales) 0.379 0.298
[12574] [25704]

ê2(sales) 0.328 0.230
[13033] [28062]

Notes: Each observation is an HQ-country-country pair (two different countries). For each HQ-country
cell, we take the average of sales for all affiliates at least seven years old. When the demand measure
is log(sales), we simply use the logarithm of local sales for each affiliate. When the demand measure
is ê1(sales), we regress log local sales on the country-year and industry-year fixed effects and use the
residual to measure a firm’s idiosyncratic demand. When the demand measure is ê2(sales), we further
control for parent sales in Japan beyond the fixed effects to obtain residual sales. All the correlation
coefficients are significant at 1%.
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A.3 Cox Regression Results for Market Entry

In the paper, we use a linear probability model to study how previous signals affect

subsequent entries in nearby markets. Here we follow Conconi et al. (2016) to model

the hazard ratio of firm f that enters destination k and industry s between time t and

t + 1 using the Cox regression model:

hfsk(t|X) = hj(t) exp
(
b1r

nearby
fskt + b2rremote

fskt + b3r̃ft

)
, (10)

where hj(t) is the hazard ratio for strata j and the terms in the exponential function

are defined in the same way as in equation (7) in the paper. The key assumption of this

model is that the regressors shift the hazard function hj(t) proportionally. The hazard

functions within each stratum are allowed to differ and do not need to be estimated.

We specify strata at different levels to check the robustness of the results.

Table A.4 shows the results from the Cox regression models, which are qualitatively

similar to those from the linear probability model. When we set the strata at the market

or market-year level, both the nearby siblings’ signal and the firms’ domestic sales have

a positive impact on the hazard of FDI entry. According to the estimates in Column

1, a one standard deviation increase in the average nearby siblings’ signal raises the

hazard ratio by e1.59×0.167 − 1 = 30%. Since the subject of the survival analysis is at

the firm-market-year level, we cannot specify the strata at a level finer than the firm-

market level. In Columns 3 and 4, we set the strata at the firm and firm-year levels,

respectively and obtain slightly larger effects of the average nearby siblings’ signal.

Table A.4: Impact of siblings’ experience on entry in the next period (survival analysis)

(1) (2) (3) (4)

Average nearby signal 0.167a 0.178a 0.241a 0.208a

(0.0274) (0.0306) (0.0425) (0.0498)
Average remote signal 0.0494 0.0261 -0.0378 -0.0460

(0.0309) (0.0357) (0.0588) (0.0610)
Firm domestic sales 0.0624c 0.0492

(0.0320) (0.0341)

N 881049 881049 907868 907868
# of Firms 1923 1923 1932 1932
# of Firm-Markets 114469 114469 115642 115642
# of Entries 1030 1030 1063 1063
Log likelihood -3950.1 -2885.8 -4127.5 -3847.6
Strata Destination-Ind Destination-Ind-Year Firm Firm-Year

Notes: Results of the Cox regression models. Standard errors are clustered at the firm level. Signifi-
cance levels: a: 0.01, b: 0.05, c: 0.10. Note that the sample is exactly the same as those in Table 4
in the paper. The number of observations differs because we do not count singletons due to the fixed
effects in the linear regressions.

36



A.4 The Impact of Nearby Sibling Signal Deciles on Entry

Probability

In this section, we compare the entry probabilities among three types of firms for a

given region r: (1) multinationals that have presence in the region and have received

good signals, (2) multinationals that have presence in the region but have received bad

signals, and (3) multinationals that have no existing affiliates in the region. Note that

our baseline entry regression focuses on firms that already have presence in the region

and excludes multinationals in group (3). To highlight the difference between firms

with and without presence in the region, we expand our sample to include markets

in regions where firms have no presence yet. We also focus on the impact of nearby

siblings’ presence/signals and do not require the firm to have established an affiliate in

a remote market. This increases our sample size substantially.23

If nearby siblings exist, we calculate their signal and group them into ten equally

sized bins (deciles one to ten). We assign the decile to be “zero” if no nearby sibling

exists, and use this group as the base category. Therefore, when we run a linear

probability model of entry on decile dummies, the coefficient indicates the difference in

the entry probability between each decile and the observations with no nearby siblings.

Besides the decile dummies, we also include destination-industry-year and firm-industry

(or firm-industry-year) fixed effects. As Table A.5 shows, receiving signals in a higher

decile tends to increase the entry probability, consistent with our findings in Table 4

in the paper. However, we find that the presence of nearby siblings significantly lowers

the probability of entry, if the signal is sufficiently bad (in the lowest decile). We see

this as a key distinction between the learning mechanism and other mechanisms that

lead to sequential entries into similar markets.

A.5 Coefficients Estimated from the Data and Implied by the

Model

In this section, we perform a simple calibration of our model and show that the weights

that firms put on self and nearby siblings’ signals predicted by the model are similar to

23For each firm, we only include industries in which they eventually enter in at least one destination.
This is to make sure that the firm does have the technological capability of operating in these industries.
We implicitly added the same restriction in our baseline regressions, since we require the firm to have
at least one sibling in the same region and industry (i.e., the nearby sibling). However, we do not
restrict the firm to have operations in a remote market in the current regression, as we are not doing
a horse race between nearby siblings’ and remote siblings’ signals.
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Table A.5: The impact of nearby siblings’ signal on next period entry, using markets
without nearby siblings as the base category

Dep. Var: 1(Enterspk,t+1) × 100 (1) (2)

Average nearby signal Q1 -0.0241a -0.0148b

(0.00614) (0.00623)
Average nearby signal Q2 -0.00421 0.00626

(0.00770) (0.00810)
Average nearby signal Q3 0.00386 0.0123

(0.00777) (0.00779)
Average nearby signal Q4 0.0151c 0.0272a

(0.00828) (0.00861)
Average nearby signal Q5 0.0193b 0.0295a

(0.00861) (0.00883)
Average nearby signal Q6 0.0335a 0.0432a

(0.00926) (0.00929)
Average nearby signal Q7 0.0654a 0.0758a

(0.0104) (0.0107)
Average nearby signal Q8 0.0591a 0.0713a

(0.0102) (0.00999)
Average nearby signal Q9 0.0344a 0.0503a

(0.00934) (0.00968)
Average nearby signal Q10 0.0689a 0.0851a

(0.0115) (0.0121)
Firm domestic sales -0.0000705

(0.000898)
Destination-Ind-Year FE X X
Firm-Ind FE X
Firm-Ind-Year FE X

N 13669307 13669307
R2 0.016 0.025
# of Firms 8363 8363
# of Firm-Markets 1646318 1646318
# of Entries 2724 2724

Notes: Dependent variable is an indicator variable indicating whether the head-
quarters enters a particular destination next year. Standard errors are clustered at
headquarters (HQ) level. Significance levels: a: 0.01, b: 0.05, c: 0.10. The num-
ber of observations is much larger than that in Table 4 of the paper because we
include markets in regions where firms have no presence yet. These observations
are used as the base category.
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those estimated from the data.

In Online Appendix 1.3, we derive closed-form expressions for the coefficients of the

average self and nearby siblings’ signal in the expectation updating formula:

β1 =
(1 − ρ2

12)λ2 + 1/t2
(1 + 1/λ1t1)(λ2 + 1/t2) − ρ2

12λ2

(11)

β2 =
σθ1

σθ2

ρ12/t1
(λ1 + 1/t1)(1 + 1/λ2t2) − ρ2

12λ1

. (12)

To gauge the values of β1 and β2, we first impose symmetry within a region so that

markets 1 and 2 have the same σθ and σε. In Chen et al. (2020), we provide estimates

for these parameters which imply a signal-to-noise ratio of 1.86.24 The average age of

nearby siblings is 15 according to Table 3 in the paper. We estimated ρ12 to be 0.41,

using the model-consistent approach discussed in Appendix A.2 (see the first row of

Table A.3). We then plug λ1 = λ2 = 1.86, t2 = 15 and ρ12 = 0.41 into equations (11)

and (12). The implied coefficients under different values of t1 are presented in Table

A.6, quantitatively similar to those estimated in Table 6 of the paper. For example,

the coefficient of average nearby siblings’ signal is estimated to be 0.098 in the data,

while the model implies this coefficient to be 0.155, 0.097 and 0.070 for age one, two

and three affiliates, respectively.

Table A.6: Model-implied coefficients of average self and nearby siblings’ signals

Self Age t1 1 2 3 4 5 6 7 8 9 10

Coef. of Self Signal 0.608 0.756 0.823 0.861 0.886 0.903 0.916 0.925 0.933 0.939
Coef. of Nearby Signal 0.155 0.097 0.070 0.055 0.045 0.038 0.033 0.030 0.026 0.024

Notes: The coefficients are calculated according to equations (11) and (12), respectively. We choose
the following parameter values in addition to t1: σθ1 = σθ2, ρ12 = 0.41, λ1 = λ2 = 1.86, t2 = 15.

24The estimation relies on the result that the forecast errors of old firms are dominated by ε, while
uncertainty about θ and ε drives the forecast errors of young firms together.
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1 Additional Theoretical Results

In this theory appendix, we first discuss the forecasting problem in the general case in

which ρ12 > ρ13 = ρ23 > 0 and then prove Propositions 1 and 2 as a special case in which

ρ13 = ρ23 = 0.

1.1 Expectation Formation in the General Case

Before we consider the expectation formation before and after entering market 1, we show

that the average past signals in each market are sufficient statistics for the posterior distri-

bution of θ1. To see this, without loss of generality, suppose the firm has entered all three

markets and observed signals a1, a2, a3, where the bold letters represent the entire vector of

the signals from a particular market. Using Bayes’ rule and denoting the density functions

with f(∙), we have

f(θ1|a1, a2, a3) =
f(θ1, a1, a2, a3)

f(a1, a2, a3)
∝ f(θ1, a1, a2, a3)

=

∫

θ2,θ3

f(θ1, θ2, θ3, a1, a2, a3)dθ2dθ3

=

∫

θ2,θ3

f(a1, a2, a3|θ1, θ2, θ3)f(θ1, θ2, θ3)dθ2dθ3

=

∫

θ2,θ3

f(θ1, θ2, θ3)
3∏

i=1

f(ai|θi)dθ2dθ3 (1)

=

∫

θ2,θ3

f(θ1, θ2, θ3)
3∏

i=1

f(θi|ai)f(ai)

f(θi)
dθ2dθ3 (2)

∝
∫

θ2,θ3

f(θ1, θ2, θ3)
3∏

i=1

f(θi|āi)f(āi)

f(θi)
dθ2dθ3 (3)

= f(θ1, ā1, ā2, ā3) ∝ f(θ1|ā1, ā2, ā3). (4)

We have used the fact that conditional on θi, each element in ai is independent to obtain

step (1), applied Bayes’ rule to obtain step (2), used the well-known result that āi is a

sufficient statistic if one wants to predict θi with ai alone (e.g., Jovanovic (1982)) when



deriving step (3), and finally obtained equation (4) by rolling back the derivations above

(with āi instead of ai). Therefore, we have simplified the problem: we just need to use the

joint distribution of θ1, ā1, ā2, ā3 to derive the posterior distribution of θ1.

1.1.1 Before Entering Market 1

Before the firm enters market 1, it uses ā2 and ā3 to predict θ1 given the joint normal

distribution:









θ1

ā2

ā3








∼ N







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




θ̄1

θ̄2

θ̄3









,









σ2
θ1 ρ12σθ1σθ2 ρ13σθ1σθ3

ρ12σθ1σθ2 σ2
θ2 + σ2

ε2/t2 ρ23σθ2σθ3

ρ13σθ1σθ3 ρ23σθ2σθ3 σ2
θ3 + σ2

ε3/t3

















.

We denote the number of signals received in market j up to the current period as tj , and

the signal-to-noise ratio in market j as λj ≡ σ2
θj/σ

2
εj .

Using the formula of the conditional distribution under joint normal distributions, θ1|ā2, ā3

is distributed as normal with mean μ̄ and variance Σ̄. One can obtain the conditional mean

of θ1

μ̄ = θ̄1 + β2(ā2 − θ̄2) + β3(ā3 − θ̄3),

where

β2 =
σθ1σθ2

σ2
ε2

ρ12(λ3 + 1/t3) − ρ13ρ23λ3

(λ2 + 1/t2)(λ3 + 1/t3) − ρ2
23λ2λ3

(5)

β3 =
σθ1σθ3

σ2
ε3

ρ13(λ2 + 1/t2) − ρ12ρ23λ2

(λ2 + 1/t2)(λ3 + 1/t3) − ρ2
23λ2λ3

. (6)

The conditional variance is

Σ̄ = σ2
θ1 − β2σ

2
12 − β3σ

2
13 = σ2

θ1 − σ2
θ1

ρ2
12λ2(λ3 + 1/t3) − 2ρ12ρ13ρ23λ2λ3 + ρ2

13λ3(λ2 + 1/t2)

(λ2 + 1/t2)(λ3 + 1/t3) − ρ2
23λ2λ3

.
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1.1.2 After Entering Market 1

After the firm enters market 1, it uses all three average past signals ā1, ā2, ā3 to form the

posterior of θ1. The joint distribution of θ1, ā1, ā2, ā3 is


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∼ N
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
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



σ2
θ1 σ2

θ1 ρ12σθ1σθ2 ρ13σθ1σθ3

σ2
θ1 σ2

θ1 + σ2
ε1/t1 ρ12σθ1σθ2 ρ13σθ1σθ3

ρ12σθ1σθ2 ρ12σθ1σθ2 σ2
θ2 + σ2

ε2/t2 ρ23σθ2σθ3

ρ13σθ1σθ3 ρ13σθ1σθ3 ρ23σθ2σθ3 σ2
θ3 + σ2

ε3/t3























.

According to the formula of the conditional distribution of joint normal distributions, the

conditional mean of θ1 given ā1, ā2, ā3 is

μ̄ = θ̄1 +

[

σ2
θ1 ρ12σθ1σθ2 ρ13σθ1σθ3

]

A−1









ā1 − θ̄1

ā2 − θ̄2

ā3 − θ̄3,









where A denotes the submatrix of the variance-covariance matrix after removing Row 1 and

Column 1.

Therefore, the conditional mean of θ1 is linear in āi − θ̄i:

μ̄ = θ̄1 + β1(ā1 − θ̄1) + β2(ā2 − θ̄2) + β3(ā3 − θ̄3),
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where

β1 =

σ2
θ1σ

2
ε2σ

2
ε3






(λ2 + 1/t2)(λ3 + 1/t3) + 2ρ12ρ13ρ23λ2λ3

−ρ2
23λ2λ3 − ρ2

12λ2(λ3 + 1/t3) − ρ2
13λ3(λ2 + 1/t2)






Δ
, (7)

β2 =

σθ1σθ2σ
2
ε1σ

2
ε3

[
ρ12

t1
(λ3 + 1/t3) − ρ13ρ23

λ3

t1

]

Δ
, (8)

β3 =

σθ1σθ3σ
2
ε1σ

2
ε2

[
ρ13

t1
(λ2 + 1/t2) − ρ12ρ23

λ2

t1

]

Δ
, (9)

and Δ is the determinant of matrix A, which is positive. ((ā1, ā2, ā3) has a non-degenerate

multivariate normal distribution, meaning that the covariance matrix must be positive-

definite with a positive determinant.) The conditional variance of θ1, Σ̄, can be expressed as

follows:

Σ̄ = (1 − β1)σ
2
θ1 − β2σ

2
12 − β3σ

2
13. (10)

1.2 Proof of Proposition 1

Proof. Under Assumption 1, we can simplify equations (5) and (6) as

β2 =
σθ1σθ2

σ2
ε2

ρ12

λ2 + 1/t2
, β3 = 0.

Therefore, the firm only uses signals from market 2 to form its expectation of market 1.

Next, we study how the average signal from market 2 affects the entry probability. We

can rewrite the conditional mean and variance of θ1 as

μ̄ = θ̄1 +
σθ1ρ12

σθ2

(
1 −

1

1 + λ2t2

)
(ā2 − θ̄2) (11)
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and

Σ̄ = σ2
θ1 − σ2

θ1ρ
2
12

λ2t2
1 + λ2t2

. (12)

The firm’s probability of entering market 1 is G(π1t) and

∂G(π1t)

∂ā2

= g(π1t)Bte
μ̄+ Σ̄

2
σθ1ρ12

σθ2

λ2t2
1 + λ2t2

> 0,

where

Bt ≡ eσ2
ε1/2Et−1

∞∑

τ=t

A1τ

(
σw1t

σ − 1

)1−σ

ητ−t.

We can conclude that the entry probability increases with the average signal from market 2,

ā2.

1.3 Proof of Proposition 2

Proof. Recall that the firm’s sales in market 1 can be expressed as

R1t = A1te
a1t

(
σw1t

σ − 1

)1−σ

.

Here, we maintain the assumption that the aggregate variables A1t, w1t are independent of

the demand draw θ1. Therefore, we can write the expected sales as

Et−1(Rt) = Et−1(e
a1t)ebt−1 ,

where bt−1 is the log of Et−1

(
A1t (σw1t/(σ − 1))1−σ). Since the posterior of a1t is normal

with mean μ̄ and variance Σ̄ + σ2
ε1 as discussed in Section 1.1.2, we have

log Et−1(Rt) = μ̄ +
(
Σ̄ + σ2

ε1

)
/2.
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In this expression, only the term μ̄ is affected by the signals. Therefore, to understand how

the signals affect the log of expected revenue, it is sufficient to examine how they affect μ̄.

Under Assumption 1, we can simplify equations (7) to (8) as

β1 =
(1 − ρ2

12)λ2 + 1/t2
(1 + 1/λ1t1)(λ2 + 1/t2) − ρ2

12λ2

(13)

β2 =
σθ1

σθ2

ρ12/t1
(λ1 + 1/t1)(1 + 1/λ2t2) − ρ2

12λ1

(14)

β3 = 0,

and the firm forms its expectation of θ1 using the following rule:

μ̄ = θ̄1 + β1(ā1 − θ̄1) + β2(ā2 − θ̄2),

Both β1 and β2 are positive.

We are now ready to characterize how the effects of signals on expected revenue are

affected by the other model parameters. It is straightforward to show that

∂β1

∂t1
> 0,

∂β1

∂t2
< 0,

∂β2

∂t1
< 0,

∂β2

∂t2
> 0.

The noisiness of signals from market 1, σε1, only enters β1 and β2 via λ1 ≡ σ2
θ1/σ

2
ε1. Since

β1 increases with λ1 and β2 decreases with λ1 (holding all the other parameters fixed), we

must have

∂β1

∂σε1

< 0,
∂β2

∂σε1

> 0.

This completes the proof of all three properties discussed in Proposition 2.

1.4 Effects of t2 on the Entry Probability

In this section, we examine how t2 affects the entry probability and how it affects the partial

derivative of G(π1t) with respect to ā2.
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First, calculation shows

∂G(π1t)

∂t2
= g(π1t)Bte

μ̄+ Σ̄
2
σθ1ρ12

σθ2

λ2t2
1 + λ2t2

(
(ā2 − θ̄2) −

σθ1σθ2ρ12

2

)
.

Therefore, ∂G(π1t)
∂t2

> 0 if and only if ā2 > θ̄2 + σθ1σθ2ρ12

2
(i.e., ā2 is sufficiently large).

Next, we discuss signs of ∂2 ln(π1t)
∂ā2∂t2

and ∂2π1t

∂ā2∂t2
. Simple calculation shows

∂2 ln (π1t)

∂ā2∂t2
=

σθ1ρ12

σθ2

1

1 + λ2t22
> 0,

and

∂2π1t

∂ā2∂t2
=

∂π1t

∂ā2

[

1 +
σθ1ρ12

σθ2

λ2t2
1 + λ2t2

(
(ā2 − θ̄2) −

σθ1σθ2ρ12

2

)]

,

which is positive if and only if

1 +
σθ1ρ12

σθ2

λ2t2
1 + λ2t2

(
(ā2 − θ̄2) −

σθ1σθ2ρ12

2

)
> 0.

I.e., when ā2 is not too small, ∂2π1t

∂ā2∂t2
> 0.

Third, the relationship between entry probability, G(π1t), and the nearby sibling’s signal,

ā2, is mediated by various parameters such as t2. One may conjecture that the sign of

∂2G(π1t)
∂ā2∂t2

is unambiguous (at least under simple parameter restrictions). However, we are

going to show the sign of this cross derivative is actually ambiguous.

Consider the cross derivative of G(π1t) with respect to ā2 and t2, which can be written

as

∂2G(π1t)

∂ā2∂t2
=

∂

∂t2

(

g(π1t)
∂π1t

∂ā2

)

= g′(π1t)
∂π1t

∂t2

∂π1t

∂ā2

+ g(π1t)
∂2π1t

∂ā2∂t2
,

where π1t = Bt exp(μ̄ + Σ̄/2). The above expression can be rewritten as

∂2G(π1t)

∂ā2∂t2
=

∂π1t

∂ā2

[
g

′
(π1t)π1tA + g(π1t)(1 + A)

]
,
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where

A ≡
σθ1ρ12

σθ2

λ2t2
1 + λ2t2

(
(ā2 − θ̄2) −

σθ1σθ2ρ12

2

)
. (15)

Therefore, ∂2G(π1t)
∂ā2∂t2

has an ambiguous sign, as the value of g(π1t) and the sign of g
′
(π1t)

all depend on the value of π1t and the functional assumption of g(∙). Without knowing

the distributional assumption of the entry cost, we cannot determine the sign of the above

expression.

Finally, we discuss whether the sign of ∂2G(π1t)
∂ā2∂t2

has a systemic pattern, if the entry cost

is assumed to follow a log normal normal N(μe, σ
2
e). In such a case, we have

∂2G (π1t)

∂ā2∂t2
=

∂2Φ (ln (π1t))

∂ā2∂t2

=
∂

∂t2

(

φ (ln (π1t))
∂ ln (π1t)

∂ā2

)

=
σθ1ρ12

σθ2

1

1 + λ2t22
[φ′ (ln (π1t)) A + φ (ln (π1t))]

=
σθ1ρ12

σθ2

1

1 + λ2t22
φ (ln (π1t))

(

1 − A
π1t − μe√

σ2
e

)

,

where A is defined in equation (15), Φ and φ denote the CDF and PDF of the normal

distribution with mean μe and variance σ2
e . The last step comes from the definition of PDF

of the log normal distribution. We know φ (ln (π1t)) is positive and both A and π1t strictly

increase with ā2. In particular, both A and π1t approach infinity when ā2 goes to infinity,

which leads to ∂2Φ(ln(π1t))
∂ā2∂t2

< 0. However, we do not know the sign of 1 − Aπ1t−μe√
σ2

e

(and thus

∂2Φ(ln(π1t))
∂ā2∂t2

) in general. In total, our learning model has an ambiguous prediction on how

the number of signals affects the positive impact of a better average signal on the entry

probability.

1.5 Model Predictions with Positive Cross-region Correlations

In this subsection, we discuss how our model predictions change when we allow ρ13 and ρ23

to be positive. In particular, we make the following assumption instead of Assumption 1.
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Assumption 1’ ρ12 > ρ23 = ρ13 > 0.

Under this alternative assumption, we have two propositions analogous to Propositions

1 and 2.

Proposition 1’ Assume Assumption 1’ holds. Before the firm enters market 1, it uses

signals from both markets 2 and 3 to forecast its “would-be” demand in market 1. The

firm’s expected profit and entry probability in market 1 increases with the average past signals

ā2 ≡
∑t−1

τ=t−t2
a2τ/t2. and ā3 ≡

∑t−1
τ=t−t3

a3τ/t3.

Proof. Since 0 < ρ23 = ρ13 < ρ12, one can simplify equations (5) and (6) and show

β2 > 0, β3 > 0.

Because the average past signals only affect the expected profit and entry probability via

the conditional mean of θ1 (μ̄), both margins increase with ā2 and ā3.

Proposition 2’ Under Assumption 1’, an affiliate in market 1 uses its own average past

signal, that of its siblings in market 2, and that of its siblings in market 3 to form its

expectation of future sales, with positive weights on all average signals. All else equal, the

weights it places on its own average signal and those of the sibling in market 2 have the

following properties:

1. The weight it places on its own average signal (the average signal of siblings in market

2) increases (decreases) with its age;

2. the weight it places on its own average signal (the average signal of siblings in market

2) decreases (increases) with the standard deviation of the time-varying idiosyncratic

shocks in its market (market noisiness);

3. The weight it places on its own average signal (the average signal of siblings in market

2) decreases (increases) with the total number of signals in market 2.
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Proof. Similar to the proof of Proposition 2, we simplify equations (7) to (9) under the new

assumption. Specifically, we rewrite the expressions for β1 and β2 as

β1 =
σ2

θ1σ
2
θ2σ

2
θ3

Δ






2ρ12ρ13ρ23 + (1 + 1
λ2t2

)(1 + 1
λ3t3

) − ρ2
23

−ρ2
12(1 + 1

λ3t3
) − ρ2

13(1 + 1
λ2t2

)




 ,

β2 =
σθ1σθ2σ

2
θ3σ

2
ε1

Δ

[
ρ12

t1
(1 +

1

λ3t3
) − ρ13ρ23

1

t1

]

,

β3 =
σθ1σθ3σ

2
θ2σ

2
ε1

Δ

[
ρ13

t1
(1 +

1

λ2t2
) − ρ12ρ23

1

t1

]

,

where Δ equals

σ2
θ1σ

2
θ2σ

2
θ3

[

2ρ12ρ13ρ23 +(1+
1

λ1t1
)
[
(1+

1

λ2t2
)(1+

1

λ3t3
)−ρ2

23

]
−ρ2

12(1+
1

λ3t3
)−ρ2

13(1+
1

λ2t2
)

]

.

It is straightforward to show that

β1, β2, β3 > 0.

Regarding the effect of the signals moderated by t1, t2 and σε1, we take the partial

derivative of β1 and β2 with respect to these parameters. Three points are worth mentioning.

First, the numerator of β1 does not depend on t1 and σε1 and the numerator of β2 does not

depend on t2. Second, Δ increases with σε1 and decreases with t1 and t2. Therefore, we

must have

∂β1

∂σε1

< 0,
∂β1

∂t1
> 0,

∂β2

∂t2
> 0.

Third, the numerator of β2 increases proportionately with σε1 and decreases proportionately

with t1. However, the determinant of matrix A, Δ, increases less proportionately with σε1

and decreases less proportionately with t1.
1 Therefore, we must have

∂β2

∂σε1

> 0,
∂β2

∂t1
< 0.

1This is true, as 2ρ12ρ13ρ23 +
[
(1+ 1

λ2t2
)(1+ 1

λ3t3
)−ρ2

23

]
−ρ2

12(1+ 1
λ3t3

)−ρ2
13(1+ 1

λ2t2
) is strictly positive.

10



Finally, we analyze how β1 varies with t2. We rewrite β1 as

β1 =






(1 + 1
λ2t2

)[(1 + 1
λ3t3

)(1 + 1
λ1t1

) − ρ2
13]

+2ρ12ρ13ρ23 − ρ2
12(1 + 1

λ3t3
) − ρ2

23(1 + 1
λ1t1

)






−1 




(1 + 1
λ2t2

)(1 + 1
λ3t3

− ρ2
13)

+2ρ12ρ13ρ23 − ρ2
12(1 + 1

λ3t3
) − ρ2

23




 .

We prove that 1
β1

decreases with 1 + 1
λ2t2

in what follows:

1

β1

= 1 +






(1 + 1
λ2t2

)(1 + 1
λ3t3

− ρ2
13)

+2ρ12ρ13ρ23 − ρ2
12(1 + 1

λ3t3
) − ρ2

23






−1
[

1

λ1t1
(1 +

1

λ2t2
)(1 +

1

λ3t3
) −

ρ2
23

λ1t1

]

> 1.

The calculation shows that

Sign

[
∂ log

(
1
β1

− 1
)

∂ log
(
1 + 1

λ2t2

)

]

= Sign

[

−
[
(1 +

1

λ3t3
)ρ12 − ρ13ρ23

]2
]

< 0.

Since 1 + 1
λ2t2

decreases with t2, we have

∂β1

∂t2
< 0.

2 Additional Empirical Results

2.1 Full Set of Interaction Terms in the Expectation Formation

Regressions
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Table OA.1: Full set of interaction terms in the expectation formation regressions

Dep. Var: log Et(Ri,t+1) (1) (2) (3) (4)

Average self signal 0.869a 0.869a 0.868a 0.867a

(0.00999) (0.00986) (0.00995) (0.00987)
×σε1 (SD of sales growth) -0.0261a -0.0293a

(0.00765) (0.00922)
×σε1 (SD of fore. err.) -0.0128b -0.0104c

(0.00629) (0.00622)
× log(self age) 0.0856a 0.0860a 0.0913a 0.0881a

(0.00661) (0.00676) (0.00643) (0.00691)
× Nearby siblings’ experience 0.00383 0.00309 0.00107 0.00361

(0.00762) (0.00778) (0.00748) (0.00765)
× Destination income level -0.00362 0.0137

(0.0112) (0.00899)
Average nearby signal 0.0507a 0.0497a 0.0503a 0.0515a

(0.0143) (0.0154) (0.0142) (0.0152)
×σε1 (SD of sales growth) 0.0197b 0.0238b

(0.00786) (0.00929)
×σε1 (SD of fore. err.) 0.00944 0.00761

(0.00606) (0.00630)
× log(self age) -0.0471a -0.0479a -0.0516a -0.0495a

(0.00972) (0.00977) (0.00960) (0.00986)
× Nearby siblings’ experience 0.0232b 0.0239b 0.0244b 0.0242b

(0.00976) (0.00955) (0.00965) (0.00953)
× Destination income level 0.00638 -0.00790

(0.0148) (0.0121)
Nearby siblings’ experience 0.0128 0.0136 0.0145 0.0136

(0.0200) (0.0202) (0.0201) (0.0202)
Average remote signal 0.0197 0.0208 0.0198 0.0211

(0.0255) (0.0256) (0.0258) (0.0257)
Destination-Ind-Year FE X X X X
Firm-Year FE X X X X
Age FE X X X X

N 31714 31599 31697 31582
R2 0.905 0.905 0.905 0.905

Notes: Dependent variable is the logarithm of expected sales in the next year. Nearby siblings’ experience is
the total number of nearby siblings’ signals. Host country income level is measured as the log of real GDP
per capita in 2005. All moderator variables are standardized. Standard errors are clustered at the firm level.
Significance levels: a: 0.01, b: 0.05, c: 0.10.
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2.2 Excluding Observations with Zero Expected Growth Rates

Table OA.2 replicates the regressions in Table OA.1 after excluding affiliates whose expected

growth rates are zero. The results are robust.

Table OA.2: Full set of interaction terms in the expectation formation regressions, excluding
observations with zero expected growth rates

Dep. Var: log Et(Ri,t+1) (1) (2) (3) (4)

Average self signal 0.859a 0.858a 0.857a 0.856a

(0.00962) (0.00952) (0.00951) (0.00951)
×σε1 (SD of sales growth) -0.0245a -0.0285a

(0.00755) (0.00865)
×σε1 (SD of fore. err.) -0.0127b -0.0107c

(0.00577) (0.00559)
× log(self age) 0.0853a 0.0858a 0.0905a 0.0877a

(0.00652) (0.00667) (0.00629) (0.00679)
× Nearby siblings’ experience 0.00524 0.00433 0.00275 0.00492

(0.00763) (0.00776) (0.00748) (0.00763)
× Destination income level -0.00461 0.0121

(0.0105) (0.00869)
Average nearby signal 0.0537a 0.0526a 0.0535a 0.0547a

(0.0143) (0.0155) (0.0141) (0.0151)
×σε1 (SD of sales growth) 0.0204a 0.0247a

(0.00764) (0.00915)
×σε1 (SD of fore. err.) 0.0107c 0.00898

(0.00589) (0.00615)
× log(self age) -0.0447a -0.0455a -0.0491a -0.0470a

(0.00969) (0.00976) (0.00957) (0.00983)
× Nearby siblings’ experience 0.0215b 0.0221b 0.0226b 0.0224b

(0.00966) (0.00943) (0.00953) (0.00938)
× Destination income level 0.00660 -0.00795

(0.0149) (0.0121)
Nearby siblings’ experience 0.0104 0.0113 0.0118 0.0110

(0.0201) (0.0202) (0.0201) (0.0202)
Average remote signal 0.0247 0.0257 0.0252 0.0261

(0.0251) (0.0252) (0.0254) (0.0252)
Destination-Ind-Year FE X X X X
Firm-Year FE X X X X
Age FE X X X X

N 31101 30988 31084 30971
R2 0.905 0.904 0.904 0.904

Notes: Dependent variable is the logarithm of expected sales in the next year. Nearby siblings’ experience is
the total number of nearby siblings’ signals. Host country income level is measured as the log of real GDP
per capita in 2005. All moderator variables are standardized. Standard errors are clustered at the firm level.
Significance levels: a: 0.01, b: 0.05, c: 0.10.
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2.3 Stricter Definitions of Horizontal MP

Our theory applies to horizontal rather than vertical multinational production (MP). In our

main specifications, we carefully constructed our sample by focusing on affiliates with at least

85% of their sales in the local market. In Columns 1 and 2 of Tables OA.3 and OA.4, we set

the threshold as 95% and check the robustness of our results. This reduces the number of

entries in the entry regressions and the number of observations in the expectation formation

regressions. For the expectation formation regressions, we only present the specifications

with the full set of moderator variables. The results are similar to those obtained before.

Table OA.3: Robustness of the entry regressions: Stricter definitions of horizontal MP

Def. of Horizontal Entry Local Sales Share ≥ 0.95 Regional Import Share < 0.15 Import Share < 0.15

Dep. Var: 1(Enterspk,t+1) × 100 (1) (2) (3) (4) (5) (6)

Average nearby signal 0.0144a 0.0139a 0.0101a 0.0115a 0.00984a 0.0109a

(0.00321) (0.00364) (0.00309) (0.00322) (0.00303) (0.00309)
Average remote signal 0.00327 0.000324 0.00207 0.00363 0.00187 0.00331

(0.00448) (0.00481) (0.00413) (0.00424) (0.00415) (0.00413)
Destination-Ind-Year FE X X X X X X
Firm FE X X X
Firm-Year FE X X X

N 902532 902527 902532 902527 902532 902527
R2 0.065 0.085 0.073 0.095 0.072 0.094
# of Firms 1931 1931 1931 1931 1931 1931
# of Firm-Markets 115184 115183 115184 115183 115184 115183
# of Entries 830 830 746 746 720 720

Notes: Dependent variable is an indicator variable indicating whether the firm enters a particular destination
in the next year. Siblings’ signals are the average of past residual sales. The local sales share is the ratio of
local sales to total sales. The regional import share is the ratio of imports from other countries in the same
region to total sales. The import share is the ratio of imports from the rest of the world (excluding Japan)
to total sales. Standard errors are clustered at the firm level. Significance levels: a: 0.01, b: 0.05, c: 0.10.

To show that our results are not simply driven by regional value chains, we calculate the

regional and total import shares for each affiliate. The regional import share is defined as

affiliates’ imported inputs from countries in the same region (excluding Japan) divided by

total sales, while the total import share is the ratio of imports from all countries excluding

Japan to total sales. We restrict our sample to affiliates whose import shares are less than

15%, since we see these affiliates as not well integrated into the regional value chains or the

global value chains.

Columns 3–6 of Table OA.3 report the entry regressions with the restricted sample.
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Table OA.4: Robustness of the expectation formation regressions: Stricter definitions of
horizontal MP

Def. of Horizontal Affiliates Local Sales Share ≥ 0.95 Regional Import Share < 0.15 Import Share < 0.15

Dep. Var: log Et(Ri,t+1) (1) (2) (3) (4) (5) (6)

Average self signal 0.873a 0.872a 0.871a 0.871a 0.874a 0.875a

(0.0107) (0.0105) (0.0114) (0.0112) (0.0121) (0.0120)
×σε1 (SD of sales growth) -0.0264a -0.0298a -0.0311a -0.0333a -0.0320a -0.0410a

(0.00775) (0.00951) (0.00983) (0.0126) (0.00996) (0.0128)
× Self experience 0.0883a 0.0886a 0.0917a 0.0921a 0.0959a 0.0969a

(0.00724) (0.00739) (0.00781) (0.00793) (0.00807) (0.00820)
× Nearby siblings’ experience 0.00795 0.00709 0.0108 0.0103 0.0130 0.0113

(0.00828) (0.00843) (0.00865) (0.00888) (0.00909) (0.00927)
× Destination income level -0.00379 -0.00280 -0.0112

(0.0121) (0.0130) (0.0137)
Average nearby signal 0.0465a 0.0459a 0.0549a 0.0535a 0.0615a 0.0602a

(0.0141) (0.0152) (0.0170) (0.0186) (0.0167) (0.0179)
×σε1 (SD of sales growth) 0.0177b 0.0204b 0.00697 0.0114 0.00633 0.0131

(0.00758) (0.00949) (0.0109) (0.0124) (0.0128) (0.0132)
× Self experience -0.0529a -0.0537a -0.0557a -0.0562a -0.0578a -0.0589a

(0.0105) (0.0106) (0.0118) (0.0120) (0.0128) (0.0129)
× Nearby siblings’ experience 0.0204b 0.0209b 0.0267b 0.0270b 0.0271b 0.0272b

(0.0100) (0.00988) (0.0110) (0.0106) (0.0108) (0.0108)
× Destination income level 0.00444 0.00637 0.00949

(0.0151) (0.0191) (0.0188)
Nearby siblings’ experience 0.00906 0.00966 0.00406 0.00466 -0.00771 -0.00670

(0.0211) (0.0213) (0.0224) (0.0228) (0.0230) (0.0232)
Average remote signal 0.00446 0.00538 0.0301 0.0313 0.0169 0.0180

(0.0247) (0.0248) (0.0263) (0.0265) (0.0272) (0.0272)
Destination-Ind-Year FE X X X X X X
Firm-Year FE X X X X X X
Age FE X X X X X X

N 26216 26102 24065 24021 23285 23247
R2 0.909 0.909 0.909 0.909 0.912 0.912

Notes: Dependent variable is the logarithm of expected sales in the next year. Standard errors are clustered
at the firm level. Self-experience is the log of affiliate age. Nearby siblings’ experience is the total number of
nearby siblings’ signals. Host country income level is the log of real GDP per capita in 2005. All moderator
variables are standardized. The local sales share is the ratio of local sales to total sales. The regional import
share is the ratio of imports from other countries in the same region to total sales. The import share is the
ratio of imports from the rest of the world (excluding Japan) to total sales. Significance levels: a: 0.01, b:
0.05, c: 0.10.

Requiring the regional import share to be lower than 15% reduces the number of entries by

around one-quarter. Compared with the earlier results, the coefficient of the average nearby

siblings’ signal falls, suggesting that part of the earlier results are driven by integration into

regional value chains. Nevertheless, restricting the sample does not eliminate these effects.

Columns 5 and 6 require entering affiliates to have an import share below 15%. The import

share is higher than the regional import share by definition, and thus we drop more entries.

However, since most of the imported inputs are from the same region, this criterion only

drops slightly more entries compared with Columns 3 and 4. We obtain similar results as in
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those two columns. The results from the expectation formation regressions are also robust

to using these two definitions of horizontal MP, which are reported in Table OA.4.
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2.4 Excluding the Year of 1995

In our data, the entry rates in 1995 are higher than the other years. In Table OA.5 and

OA.6, we replicate the entry and expectation formation regressions in Table 4 in the paper

and Table OA.1, respectively after excluding the year 1995 from our sample. The main

empirical results are robust.

Table OA.5: Impact of siblings’ experience on entry in the next period, excluding 1995

Dep. Var: 1(Enterspk,t+1) × 100 (1) (2) (3)

Average nearby signal 0.0154a 0.0162a 0.0156a

(0.00312) (0.00374) (0.00404)
Average remote signal 0.00578 0.00528 0.00337

(0.00401) (0.00530) (0.00551)
Firm domestic sales 0.00510 -0.0110

(0.00325) (0.0101)
Destination-Ind-Year FE X X X
Firm FE X
Firm-Year FE X

N 853608 853608 879313
R2 0.062 0.065 0.086
# of Firms 1914 1914 1922
# of Firm-Markets 112869 112869 114043
# of Entries 909 909 931

Notes: The dependent variable indicates whether the firm enters a particular destination in the next year.
Standard errors are clustered at the firm level. Significance levels: a: 0.01, b: 0.05, c: 0.10.
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Table OA.6: Full set of interaction terms in the expectation formation regressions, excluding
the year 1995 from our sample

Dep. Var: log Et(Ri,t+1) (1) (2) (3) (4)

Average self signal 0.869a 0.868a 0.868a 0.867a

(0.00997) (0.00984) (0.00992) (0.00986)
×σε1 (SD of sales growth) -0.0249a -0.0287a

(0.00773) (0.00933)
×σε1 (SD of fore. err.) -0.0121c -0.00995

(0.00633) (0.00626)
× log(self age) 0.0862a 0.0866a 0.0917a 0.0887a

(0.00663) (0.00677) (0.00645) (0.00691)
× Nearby siblings’ experience 0.00338 0.00253 0.000650 0.00300

(0.00764) (0.00780) (0.00751) (0.00769)
× Destination income level -0.00437 0.0127

(0.0111) (0.00895)
Average nearby signal 0.0513a 0.0502a 0.0509a 0.0520a

(0.0144) (0.0155) (0.0142) (0.0153)
×σε1 (SD of sales growth) 0.0188b 0.0232b

(0.00795) (0.00936)
×σε1 (SD of fore. err.) 0.00891 0.00728

(0.00608) (0.00631)
× log(self age) -0.0475a -0.0484a -0.0519a -0.0500a

(0.00974) (0.00979) (0.00963) (0.00988)
× Nearby siblings’ experience 0.0236b 0.0243b 0.0247b 0.0246b

(0.00980) (0.00958) (0.00969) (0.00956)
× Destination income level 0.00685 -0.00713

(0.0148) (0.0122)
Nearby siblings’ experience 0.0127 0.0135 0.0143 0.0135

(0.0201) (0.0202) (0.0202) (0.0203)
Average remote signal 0.0192 0.0203 0.0192 0.0205

(0.0256) (0.0257) (0.0259) (0.0258)
Destination-Ind-Year FE X X X X
Firm-Year FE X X X X
Age FE X X X X

N 31586 31471 31569 31454
R2 0.905 0.905 0.905 0.905

Notes: Dependent variable is the logarithm of expected sales in the next year. Nearby siblings’ experience
is the log of total number of nearby siblings’ signals. Host country income level is measured as 2005 real
GDP per capita. All moderator variables are standardized. Standard errors are clustered at the firm level.
Significance levels: a: 0.01, b: 0.05, c: 0.10.
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