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Abstract 

In order to get the COVID-19 pandemic under control, most governments around the globe have 
adopted some sort of containment policies. In the light of the enormous costs of these policies, 
in many countries highly controversial discussions on the adequacy of the chosen policies 
evolved. We contribute to this discussion by evaluating three waves of containment measures 
adopted by the German government. Based on a spatio-temporal endemic-epidemic model we 
show that in retrospective, only the first wave of containment measures clearly contributed to 
flattening the curve of new infections. However, a real-time analysis using the same empirical 
model reveals that based on the then available information, the adoption of additional 
containment measures was warranted. Moreover our spatio-temporal analysis shows that a one-
size-fits-all policy, as it was adopted in Germany on the early stages of the epidemic, is not 
optimal. 
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1. Introduction

When SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus
2 - SARS-CoV-2), causing the respiratory disease COVID-19 (Coronavirus
Disease 2019), spread first quickly within China (especially in the Hubei
region) and then developed into a pandemic early 2020, the vast majority
of affected countries adopted measures against the further (local) spread of
virus. While a few countries at least temporarily considered a herd immunity
strategy with only very mild containment measures, the majority of countries
adopted strategies aiming at ”flattening the curve”. This strategy aims at
slowing the spread of the epidemic so that the peak number of people re-
quiring care at a time is reduced and the health care system does not exceed
its capacity. However, governments differed substantially in the measures
they adopted and how quickly they adopted them (Petherick et al. (2020)).
The chosen containment measures range from public information campaigns,
international travel restrictions, closings of educational institutions, work-
places, public transport and leisure and retail facilities, the cancellation of
public and private events, restrictions on internal movement and obligations
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to wear face masks to stay-at-home requirements.
Especially in those countries which already passed the (preliminary) peak

of new infections and in which the health systems did not reach their capacity
limits, recently a debate on the adequacy of the chosen containment measures
unfolded. As the (expected) costs of the adopted strategies are often enor-
mous, this is not too surprising. The critics of containment policies typically
argue that at least some of the chosen policies were unnecessary as finally the
pandemic proved to be much less severe than the overly pessimistic prophe-
cies have initially told. The supporters of restrictive containment policies
argue that this point of view is the result of a self-defeating prophecy, as
the final reason for the success of containment policies is the existence of
”prophecies of doom”.

Germany is a prominent example for these lively discussions. When Ger-
many experienced strongly rising infection numbers in early March 2020,
quickly spreading all over Germany, the Federal Government initiated three
waves of containment measures.1 Soon after new infections reached their
peak and started decaying, a discussion on the adequacy of the German con-
tainment policy unfolded in both, the public and among scientists from vari-
ous disciplines. Since early April, numerous theoretical and empirical studies
of the adequacy of the German containment measures evolved. Interestingly
enough, they come to heavily differing results.2

This paper contributes to the literature by delivering new empirical ev-
idence for the adequacy of various waves of containment measures adopted
in Germany. Our empirical analysis is based on forecasts derived from an
endemic-epidemic model which has proved to perform well in describing and
forecasting other infectious diseases. As COVID-19 has a strong epidemic
component, we employ a spatio-temporal model variant and conduct our
analysis on the county-level. Doing so allows us constructing meaningful and
consistent forecasts on various levels of spatial aggregation and to exploit all
information in the available raw data (Giuliani et al. (2020)).

Our major finding is that the final judgment of the necessity of the
adopted containment measures depends strongly on the available informa-
tion set. When basing our analysis on all data which was available when
this paper was written in the mid of June 2020, we find that only the first

1We describe these measures in detail in Section 4.2.
2We review this literature briefly in Section 2 of this paper.
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wave of containment measures clearly contributed to ”flattening the curve”.
However, when we take a real-time perspective and use only data which was
available when the decisions on the adoption of the containment measures
were made, all three waves of containment measures appear to be justified, at
least in principle. Our results also indicate that regionally differing contain-
ment policies are strongly superior in comparison to one-size-fits-all policies.

The paper is structured as follows. Section 2 discusses the related litera-
ture. Section 3 describes the employed data. Section 4 outlines the empirical
strategy, explains the considered containment measures, introduces the em-
ployed empirical model and presents the main empirical results. Section 5
delivers the results for the real-time perspective. Section 6 discusses the
adequacy of the containment measures on the disaggregated spatial level.
Section 6 concludes.

2. Related Literature

Although the COVID-19 pandemic is still evolving in many parts of the
world, there is already quite some literature which is concerned with evalu-
ating different containment policies. In the following we briefly discuss this
literature, however, with a focus on Germany. Broadly, the literature can be
divided into two strands: papers basing on calibrated theoretical models and
econometric approaches.

Especially the model-based literature often bases upon the SIR model
(Britton (2010)), which goes back to early work by Kermack et al. (1927). It
assumes the population can be subdivided into at least three compartments:
susceptible (S), infectious (I) and recovered individuals (I). Whenever cen-
tral parameters such as the likelihood of susceptible individuals to become
infectious, the time infectious individuals remain infectious and the time un-
til recovery are known, the SIR model can be formulated as a system of
differential equations and, after calibration, can be used for forecasting or
simulation purposes.

The first strand of the literature employs calibrated (variants of) SIR
models to study the effect of containment measures on the development of
the COVID-19 epidemic.3 To the best of our knowledge, the first study for
Germany was delivered by an der Heiden and Buchholz (2020) and bases on

3See e.g. Maier and Brockmann (2020) for China or the multi-country-studies by
Flaxman et al. (2020) and Gros et al. (2020).
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an SEIR model, which extends the standard SIR model for a latent state of
being exposed before becoming infectious. The model is mostly calibrated
with data from China and concludes that without containment measures
Germany would have reached quickly a critical level of infections exceeding
the health system’s capacity. The authors argue that under most scenarios
a combination of various containment measures is necessary to prevent the
health system from collapsing. A subsequent study by Donsimoni et al.
(2020) relies on a very similar model, but calibrates it with more recent data
from Germany. The authors show that public interventions can lead to more
or less severe outcomes of the epidemic, depending on their timing and the
employed outcome measures. Even the most recent calibration study for
Germany by Dehning et al. (2020) relies on an SIR model. Here, the authors
use Bayesian inference on Markov-Chain Monte-Carlo sampling to calibrate
their model. The authors find that a model variant including three change
points on March 6, March 15 and March 23 explain the data best and that
even the third wave of containment measures was necessary to leave the path
of exponential growth of new infections.

The second strand of the literature uses econometric methods to study
whether and how containment measures affected newly occurring infections,
either on the country or the regional level. To the best of our knowledge, the
earliest econometric study for Germany on the country-level was conducted
by Hartl et al. (2020). The study is based on data collected by Johns-
Hopkins-University and analyzes the effect of the policy package adopted
on March 13, which included the decision to close educational institutions.
Employing a simple linear trend model for the logarithm of confirmed cases
the authors find a structural break on March 20. Assuming a time-lag of 7-8
days, they attribute the structural break to the measures adopted on March
13. Homburg (2020) follows a similar approach, based on the same (but more
recent) data. He basically argues that the ”lockdown” on March 23 and even
the closure of educational institutions 7 days earlier was unnecessary as the
the peak of new infections was already reached on March 29. Assuming
a time-lag of the data of 17 days the new infections would already have
started to decrease well before these measures were adopted by the German
government.

Other econometric studies have exploited regional data to examine the
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effect of containment measures.4 All regional studies for Germany base on
data on new infections on the county level, published by the RKI. Mense and
Michelsen (2020) cumulate the data on the week level and study the overall
effectiveness of the German containment measures adopted in the 12th and
13th week 2020. In order to do so they regress new infections on past infec-
tions and a spatial lag of past infections within a two-way fixed effects panel
setting. They find systematically lower coefficients for the spatial effect after
the implementation of the containment measures and argue that, as a pack-
age, the adopted measures were effective. Glogowsky et al. (2020) employ an
event-study framework for their empirical analysis. The authors find that the
implemented containment measures reduced mobility and also significantly
decreased new infections. Wieland (2020) employs the RKI data in daily
frequency. However, before using them in his empirical approach he infers
missing data points on the reference date from the available observations via
auxiliary regressions and assumes an incubation time of 5 days. Based on the
corrected data, he estimates logistic growth models to determine the local
infection points, e.g. the days when the growth rate of new infections started
decreasing. For Germany as a whole he estimates the infection point to lie
in between March 17 and March 20 and thus well before the third round of
containment policies became effective. For as many as 255 out of 412 county
observations, the infection point is estimated before March 23. Felbermayr
et al. (2020) primarily aim at identifying the main ”superspreader-event”
which led to the subsequent spread of COVID-19 within Germany. In order
to do so they conduct a (repeated) cross-section analysis of new infection
counts using a negative binomial model and find a significant effect of the
road distance to Ischgl, a skiing area in Austria which was heavily visited
by German tourists. The authors interpret their finding that the distance-
to-Ischgl-coefficient turned out to be significant even after the containment
policies in Germany were adopted as indication that the containment policy
was successful in limiting infections over county borders.

4See e.g. the studies for China by Kraemer et al. (2020), for Spain by Orea and
Álvarez (2020) and for the United States by Abouk and Heydari (2020), Chernozhukov
et al. (2020) and Courtemanche et al. (2020). A multi-country study based on regional
data was conducted by Hsiang et al. (2020).
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3. Data

The data we employ for our empirical analysis comes from the Robert
Koch Institute (RKI). RKI is the German government’s central scientific
institution in the field of biomedicine. A major task of RKI is monitoring
infectious diseases such as COVID-19. To fulfill this task, RKI collects data
on all detected COVID-19 cases in Germany.

According to the German Infection Protection Act (Infektionsschutzge-
setz, IfSG), physicians and laboratories detecting active COVID-19 cases
have to report these cases within 24 hours to the local public health depart-
ment (Gesundheitsamt).5 COVID-19 cases meeting the definition of the RKI
are transmitted electronically by the local health department to the state
government which then forwards this information to the RKI at the latest
on the next working day. Most of the involved health authorities transmit
the data earlier and more frequently than required by law, usually daily and
also at weekends. Nevertheless, there is typically a delay of several days
in the transmission of cases. The data transmitted to RKI always contains
information on gender and age (age groups) of the infected individuals, the
place of living (only county information) and the day, when the local public
health department acquired knowledge on the case (”reporting date”). In
roughly two-thirds of the cases the data also comes with information on the
day, when the first symptoms occurred (”reference date”). Whenever the
reference date is unknown, the reference date is set to the reporting date.

For our subsequent empirical analysis we need data on the date of in-
fection. As this date is not included in the RKI data, we construct this
information in a two-step procedure. In the first step we estimate the refer-
ence date for those observations in the RKI data, for which only the reporting
date is available. In order to do so we employ those observations, for which
both reporting and reference date are available. We then regress the differ-
ence between reference date and reporting date on age, gender and week-day
and, in addition, use commune-fixed effects. We then use the estimated co-
efficients to impute the missing reference dates in the dataset. In the second
step we calculate the most likely day of infection by assuming an incubation

5Note that COVID-19 often occurs without any or with only mild symptoms (see e.g.
Streeck et al. (2020)). Thus, the factual number of infections is likely larger than the
one reported in the RKI data. However, as we explain later, underreported data is not a
problem in our empirical approach.
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period of 5.8 days (see the meta-study by McAloon et al. (2020)).
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Figure 1: New Infections Based on Original Reference Dates, Corrected
Reference Dates and Inferred Infection Dates

In Figure 1 we show the development of new infections when referring to
(i) the reference dates reported in the original RKI data, (ii) the corrected
reference dates and (iii) the likely infection date. By construction, both
types of corrections result in more cases earlier on the time axis. Obviously,
the effect of the correction of missing reference dates is comparatively small
until the mid of March 2020 and increases slightly in size over the rest of the
sample period. In general, the correction for the incubation time has a much
more pronounced effect on the resulting data of new infections.
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4. Were the German Containment Measures Necessary?

4.1. Empirical Strategy

Our aim is to evaluate three waves of containment measures, initiated by
the German Federal Government in March 2020. In order to judge whether
these measures were necessary to reach the central goal of preventing a col-
lapse of the health system we proceed in two steps: In a first step we define
the three (groups of) containment measures we investigate in this paper; we
thereby also have to define when exactly the measures became effective. This
step is important, as Germany is a federal state where many of the contain-
ment measures become effective not before the referring local governments
implemented them formally.6 In the second step of our analysis we employ
the data presented in Section 3 to estimate a spatio-temporal model using
only data before a certain measure was adopted. We then use the estimated
model to predict the likely development of new infections for the subsequent
period. The likely effect of the containment measure is then the difference
between factual new infections and the predicted values.

4.2. Definition of Containment Measures

The first containment measure, we study in the following, is a ban on mass
events. The ban was announced by German Minister of Health Jens Spahn
who recommended to cancel all events with more than 1000 participants.
While a number of events was already cancelled earlier (such as e.g. the
international tourist fare ITB in Berlin on February 28 or the Leipzig book
fare on March 4), the official recommendation was made on the afternoon of
March 8. We assume that the ban on mass events became factually effective
two days later, on March 10, when already numerous German states formally
adopted the recommendation.

In the evening of March 16, a second round of containment measures
was announced by Chancellor Angela Merkel. These containment measures
included the closure of educational institutions (nursery schools, schools and
universities), leisure facilities (e.g. gyms, playgrounds, bars and clubs) and
retail facilities (with the exception of pharmacies, drugstores and groceries)
as well as the introduction of national and international traveling restrictions.

6As the three groups of measures we study in the following were discussed and approved
in meetings of the federal government and the German state’s prime ministers, it is justified
to assume that the measures became effective at roughly the same point in time.
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We assume that these measures became effective two days later, i.e. on March
18.

The third group of containment measures, we investigate in this paper,
was announced late on March 22, again by Chancellor Merkel. The pop-
ulation was asked to minimize social contacts as much as possible (”social
distancing”). Firms were advised to allow home-office wherever possible and
to guarantee a minimization of social contact at the working place. While
it was allowed to leave home for work, visiting the doctor, buying food or
having a walk, a physical distance to non-family members of at least 1.5 me-
ters had to be kept. Finally, even restaurants and hairdressers had to close.
Again we assume that these measures became effective two days later, on
March 24.

4.3. Prediction Model

The model we use to predict the onset of the COVID-19 epidemic in Ger-
many is based on the earlier mentioned SIR model and focuses on describing
the transmission from the state of susceptible individuals to infectious indi-
viduals, as reported in the earlier described RKI data. Our empirical imple-
mentation follows the basic idea of Held et al. (2005) to model our panel of
areal count time series as Poisson branching process with immigration. In
line with Meyer et al. (2017) we assume that the regional count of newly
infected individuals Yr,t is determined by an endemic and two epidemic com-
ponents.7 More precisely, we assume that this process follows a negative
binomial distribution (with overdispersion parameter ψ > 0) and has the
conditional mean

µYr,t = er · νt + λr ·
D∑
d=1

ud · Yr,t−d + φr ·
∑
s 6=r

D∑
d=1

wr,s · ud · Ys,t−d. (1)

The endemic component, i.e. the share of the population in region r at
time t which is newly infected, regardless of a county’s infection history and
regardless of the infection histories of its neighbours, is modeled as

ln (νt) = α0 + η · t+ γ · sin(ω · t) + δ · cos(ω · t) (2)

7This approach has recently also been used to model the spatio-temporal spread of the
COVID-19 in Italian provinces, see Giuliani et al. (2020).
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with α0 being a constant, η · t being a time trend8 and γ · sin(ω · t)+δ · cos(ω ·
t) capturing possible seasonal variation of the endemic component as it is
typical for many virus diseases. In order to receive the mean of the endemic
component in region r, we further have to multiply νt by the size of the local
population er.

9

The epidemic components of the infection process consist of an autore-
gressive and a spatial part. The autoregressive epidemic component λr ·∑D

d=1 ud · Yr,t−d accounts for the reproduction of COVID-19 within the same
region. In line with Bracher and Held (2020a) we allow for more than one
autoregressive lag (with the weighting factors ud fulfilling

∑D
d=1 ud = 1) to

better capture the time-series properties of new infections. This component
is modeled as

ln (λr) = br, (3)

with br being a region-specific random effect (with br∼N(0, σ2
λ)) that accounts

for random differences between regions.
The spatial autoregressive component φr ·

∑
s 6=r

∑D
d=1wr,s · ud · Ys,t−d

accounts for the transmission of COVID-19 between regions. The spatial
weights wr,s describe the flow of infections from region s to region r.10 As
for the autoregressive part, we allow for more than one spatial lag in our
estimation approach. Similar as the autoregressive component we model the
spatial component as

ln (φr) = cr, (4)

with cr being a region-specific random effect (with cr∼N(0, σ2
φ)).

As our subsequent empirical analysis is partly based on relatively short
panel data, we opt for two lags (D = 2) in the epidemic components of
our model. We use exponentially decaying weights ud = γ · (1 − γ)d−1 with
γ = 0.6.11

8The time trend also corrects for potential changes in the testing intensity.
9Note that in principle, e can vary over time; however, as local population counts are

not available in high frequency on the county level, we employ the newest population
counts, which relate to the end of 2019 and which are available in the RKI data.

10The weights were derived from a row-normalized contiguity matrix of order one and
type queen.

11In order to find the optimal value for γ we evaluated each estimated model for alter-
native values of γ (γ ∈ {0.6, 0.7, 0.8, 0.9}) using one-step-ahead in-sample forecasts and
compared the models based on the logarithmic score, the ranked probability score and
the Dawid-Sebastiani score (see e.g. Gneiting and Katzfuss (2014)). As the result of this
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The described model can be estimated using penalized maximum likeli-
hood procedures, as described in Paul and Held (2011) and Meyer and Held
(2014). These techniques are implemented in the R package ”surveillance”12.
As we allow for more than one autoregressive term in our specification, we
in addition use the R package ”HHH4addon”13 for the subsequent empiri-
cal analysis. Note that explicitly accounting for underreporting in the RKI
data has little benefit in our application as we use the model primarily for
forecasting and not for identifing parameters (see Bracher and Held (2020b)).

4.4. Empirical Results

We start out with a discussion of the results for the first wave of contain-
ment measures, announced on the afternoon of March 8, which are shown in
the upper part of Figure 2. The black line illustrates new infection counts on
the referring day. The forecast model is fitted over the period of February 1 to
March 9. In the left part of the plot we show the fitted values of the model,
disaggregated in the endemic, the autoregressive epidemic and the spatial
epidemic part. We then use the model to predict the values of infections over
the seven subsequent days14 and show the resulting forecast interval.15 It is
easy to see that the model predicts strongly increasing new infections per
day which almost double from around 4,600 to 8,600 new infections over the
forecast horizon of one week. Over the same period, factual new infections
slightly decreased and thus remained well below the projection. We take this
as an indication that the first wave of containment measures contributed
significantly to flattening the curve of new infections.

The results for the second wave of containment measures, announced on
the evening of March 16, are shown in the middle part of Figure 2. The epi-
demic model was estimated for the period of February 1 to March 17. Again
we use the estimated model to generate one-week-ahead forecasts16 While

procedure γ = 0.6 was chosen for all subsequent empirical specifications.
12Meyer et al. (2017).
13This package is available at https://github.com/jbracher/hhh4addon. See Bracher and

Held (2020a) for an application to dengue fever in Puerto Rico and viral gastroenteritis in
Berlin.

14We refrain from further extending the forecast horizon as the next wave of containment
measures was announced as early as on March 16.

15The forecast intervals were constructed via 10.000 Monte Carlo simulations.
16Again this is due to the fact that the third wave of containment measures was already

announced a week later, on the evening of March 22.
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the factual new infections are mostly below the mean values predicted by the
epidemic model, the difference between the mean prediction and the realized
new infections differ significantly only in the first few days. Thereafter, the
95-percent prediction interval includes the realized values. Moreover, the
mean prediction has already a downward slope, indicating that even with-
out the second wave of containment measures the number of new infections
could be expected to decrease. While this does not imply that the second
wave of containment measures was without effect, one might at least ques-
tion whether they in fact were necessary to enforce decreasing new infections
and to prevent the health system from collapsing. However, one should also
take into account that the 95-percent prediction interval widens quickly and
is partly consistent with rising new infections, so that we have to interpret
this finding with some caution.

In the lower part of Figure 2 we show the results for the third wave of
containment measures, which were announced on the evening of March 22.
The epidemic forecast model was fitted over the period of February 1 to
March 23. For the third wave of containment measures we do not observe a
systematic difference between the predicted and the realized new infections.
As the 95-percent prediction interval is strongly downward sloping, the em-
pirical evidence points into the direction that the third wave of containment
measures was not necessary to prevent a collapse of the health system.

Note that the reported empirical results do not imply that the contain-
ment measures adopted in the second and the third wave such as the closure
of educational institutions or enforced social distancing in general have no
effect on new infections at all. First, note that we focused here on the ques-
tion, whether the adopted measures were necessary to prevent a collapse of
the German health system. Even when a measure is thus classified as unnec-
essary to contribute to this goal, it nevertheless might have contributed to
lowering the subsequent number of new infections. Second, in our empirical
setting the estimated effect of the adopted measures is contingent on which
measures were adopted before. Thus, a different sequencing of the measures
could result in a different evaluation of the different containment measures.
Third, it should be considered that the German government and the Robert-
Koch-Institute conducted a continuous media campaign, explaining possible
consequences of COVID-19 and delivering information on how individuals
could contribute to avoiding a further spread of the SARS-CoV-2 virus. Part
of this information campaign were the recommendations to keep physical dis-
tance to others, to wash hands regularly and not to shake hands or to cough
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openly. These recommendations coincided to quite some extent with the so-
cial distancing measures, formally adopted on March 23. It is well possible
(if not likely) that these recommendations were already sufficient to induce
behavioral changes in the population and to reach the goal of preventing a
collapse of the German health system.

5. The Real-Time Perspective of the Acting Politicians

We conducted our previous analysis of the adequacy of the chosen con-
tainment policies in Germany on all data which was available in the mid of
June. Doing so allowed us correcting the original data published by RKI to
account for cases with missing reference date and the incubation period of
5.8 days. We also employed all data before the adoption of a certain con-
tainment measure to predict the likely future development of new infections.
While doing so is adequate to judge the necessity of the containment mea-
sures in retrospect, parts of this information was unavailable to the acting
politicians when they had to decide on the implementation of containment
policies. Thus, while certain containment policies might be judged as un-
necessary in retrospective, they might have looked reasonable at the time
when they were adopted. In order to study this issue, we repeat our analysis
under quasi real-time conditions, i.e. under the premise that only the data
published on the day of announcement of a containment policy was available.

In the following we illustrate our procedure at the example of the first
wave of containment measures, announced on March 8. We applied the same
procedure to the later two waves of containment measures.

In the first step of our real-time analysis, we again infer the missing
reference dates from those cases, where the difference between reporting and
reference date is known via a regression model (as outlined in Section 3).
However, we now use only data which was available on March 8, i.e. data
with reporting dates until March 7. Moreover, we have to take into account
that the most recent data is highly incomplete due to the fact that in most
cases there is a delay between the reporting and the reference day. When we
would use all observations until March 7 for the correction, the correction
would be strongly biased towards too short corrections. In order to reduce
this bias, we use only observations with reference dates before March 1 (e.g.
7 days earlier), as we then can expect to have at least 75 percent of all
observations in our sample. After running the auxiliary regressions we use
their results to infer the missing reference dates. We then correct for the
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mean incubation period of 5.8 days to end up with a corrected panel of
infection counts.

In the second step we have to determine, which is the last reliable obser-
vation of new infection counts in our sample. As the mean incubation time
amounts to 5.8 days and it takes another 7 days until at least 75 percent of
all reference dates became part of the data, the last reliable observation of
our newly constructed new infections variable is February 23. Thus, when
estimating the parameters of our spatio-temporal model we use only infection
data until February 23.

In the third and final step of our analysis we use the estimated model
parameters to nowcast new infections until March 8. In the same manner
we then construct projections for new infections over the subsequent week.
We argue that this projection is describing what a well-informed politician
should have expected for the near future.

Figure 3 shows the results we receive when applying this procedure to all
three waves of containment measures.

In the upper part of Figure 3 we show the situation on March 8, when the
German Minister of Health Jens Spahn announced the ban on mass events.
The now- and forecasted subperiods are separated by dashed vertical lines.
The model nowcasts slightly less than 500 new infections per day for March
8. According to the model’s prediction, the new infection count is expected
to double over the two subsequent weeks to almost 1000. The quickly widen-
ing and highly asymmetric 95-percent prediction interval17 indicates a high
degree of uncertainty on future infection counts and also includes exponential
infection growth paths. Based on this projection, one might hardly classify
the adoption of the first wave of containment measures as unnecessary.

In the middle part of Figure 3 we display the forecast derived from data
available on March 15, when the second wave of containment measures was
announced. Here, the model predicts exponential growth of new infections
reaching values of more than 80.000 daily new infections on March 24. All
infection paths consistent with the 95-percent prediction interval must be
judged as a severe threat to the German health system. Thus, there is
little doubt that based on the available information additional containment
measures appeared as necessary to flatten the curve of new infections.

17Note that we skipped parts of the upper part of the prediction interval due to visibility
of the mean prediciton.
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Finally, in the lower part of Figure 3, we show the model prediction for
the third wave of containment measures, announced on March 22. Here, the
situation is somewhat ambiguous. According to the mean nowcast for March
22, new infections are still on a comparatively high level, but already started
to slightly decrease. A further slight decrease is expected over the period
until March 30. One might argue that based on the information available
on March 22, additional containment measures were unnecessary to reach
the goal of preventing a collapse of the German health system. However,
according to the mean model prediction the number of new infections remains
on a comparatively high level. Moreover, the 95-percent prediction interval
for the mean forecast turns out to be large and highly asymmetric towards
higher new infections. Thus, there was still a significant probability of further
rising new infections over the subsequent week(s). Thus, even when the
mean forecast pointed already into the direction of a slight relaxation of
the situation, a comparatively mild degree of risk aversion would render the
decision to adopt further measures correct. One might therefore conclude
that the decision to adopt further containment measures on March 22 was
warranted, given the then available information.

6. Did One Size Fit All?

In the early phase of the COVID-19 epidemic, the German containment
policies followed a one-size-fits-all strategy. All adopted measures were dis-
cussed on regular joint meetings of the federal and the state governments.
On these meetings the involved politicians, after intense and sometimes con-
troversial discussions, agreed on the measures to be adopted. After the an-
nouncement of the measures by the heads of the German federal coalition
government, the state governments independently implemented these mea-
sures. Although there was a mild variety in the exact timing and even the
implementation of the measures, at least throughout March 2020 it was the
declared will of the acting politicians to realize a joint and highly coordinated
containment policy.18

While one might argue that the implementation of the same measures
in all parts of Germany might have at least initially contributed to a higher

18Note that this does not hold true for later implemented containment measures such as
the obligation to wear face masks. Even the (much later) initiated relaxation of some of
the containment measures differed enormously in both the time and the spatial dimension.
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Figure 4: Adequacy of Alternative Containment Measures for Selected Ger-
man States

degree of acceptance of the containment policy in the population, one might
question whether such a one-size-fits-all policy was the best choice for a
country like Germany with many quite diverse regions and organized as a
federal state. In order to shed some light on this question, we use the spatial
dimension of the empirical model, we estimated in Section 4. As the model
delivers results on the county-level, we can aggregate the results even on lower
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administrative levels such as the state level. In Figure 4 we show the results
for four different states. We opted for the three most affected states Baden-
Württemberg (first row), Bavaria (second row) and North Rhine-Westphalia
(third row) as well as the most populated East German state Saxony (fourth
row). In the columns we show the results for the three waves of containment
measures.

While the first wave of containment measures turns out to be adequate
for Baden-Württemberg, Bavaria and North Rhine-Westphalia, this hardly
holds true for Saxony, where the mean forecast almost perfectly coincides
with the factual development of new infections. Especially for the states
with initially low infection counts in East and North Germany19 already the
first round of containment measures turns out to be somewhat questionable.

Similarly, even for the second wave of containment measures we find re-
markable differences between the four states. While additional measures
seemed to be adequate for Baden-Württemberg and Bavaria, for North Rhine-
Westphalia the mean forecast was already indicating strongly decreasing new
infections. The same applies to Saxony.

For the third wave of containment measures the mean predictions turn
out to be downward sloping for all four states, thereby questioning the neces-
sity of an additional round of containment measures. However, for Baden-
Württemberg and Bavaria the 95-percent prediction interval includes also
paths implying increasing new infections, rendering the decision to have
an additional round of containment measures more rational than for North
Rhine-Westphalia and Saxony. Interestingly enough, it was in fact Bavaria’s
prime minister Markus Söder who insisted on additional containment mea-
sures whereas Armin Laschet, prime minister of North Rhine-Westphalia
early advocated for milder containment policies and relaxations.

The disaggregated data also reveal that there is quite some variety in
the relative importance of the endemic, the autoregressive epidemic and
the spatial endemic components. As Figure 4 reveals, the spatial endemic
component played only a minor role in the case of Saxony whereas spatial
spillovers contributed much to the development of new infections in North

19An exception is Hamburg which had high infection counts in the early phase of the
epidemic. This is mostly due to the fact that Hamburg is the only German state with
skiing holidays in the first two weeks of March. At that time many tourists got infected
in the skiing areas like Ischgl in Austria (see Felbermayr et al. (2020)) and then returned
to their home regions.
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Rhine-Westphalia. These regional differences might be taken as an indication
that different sorts of containment measures are adequate in these regions.

7. Summary and Conclusions

When the COVID-19 epidemic reached Germany in the first quarter of
2020, the German government adopted various waves of country-wide con-
tainment measures. Employing a spatio-temporal endemic-epidemic model,
which is estimated for reference-date- and incubation-time-corrected RKI
data, we showed that the second and especially the third wave of contain-
ment measures was likely not necessary to prevent a collapse of the German
health system. However, based on a quasi real-time analysis we also show
that, based on the available information, the decisions to adopt additional
measures can hardly be judged as wrong or even irrational. However, the de-
picted discrepancy between the ex-post and the ex-ante perspective indicates
that the payoff of better and earlier available data on unfolding epidemics
might be large, especially in the light of the enormous costs of many contain-
ment measures. Investments in the collection of reliable raw data in medical
practices and laboratories and a quicker transmission of this data to the rel-
evant policymakers and researchers might help to reduce the follow-up costs
of unnecessary containment measures.

Our study also questions one-size-fits-all containment policies, as they
were initially adopted in Germany and many other countries. While initially
a common containment policy might be helpful in organizing the necessary
public support as all citizens are exposed to the same measures, this comes at
the price that the adopted measures might be too strict for less affected areas.
In consequence, the total costs of the containment policy are unnecessarily
large. A regional differentiation of containment policies, dependent on the
local infection situation, seems to be preferable, at least in countries where
the federal institutions are capable of conducting and supervising locally
differing policies. The German states seem to have realized this in early
May, when first Thuringia (May 4) and Bavaria (May 5) departed from the
country-wide strategy and relaxed various measures. Only a few days later,
on May 7, Chancellor Merkel announced the end of the regular coordination
meetings and declared the states to be responsible for further containment
strategies.
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