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Abstract

We consider optimal non-linear income tax problems when the social welfare function only
depends on ranks as in Yaari (1987) and weights agree with the Lorenz quasi-ordering. Gini, S-
Gini, and a class putting more emphasis on inequality in the upper part of the distribution belong
to this set. Adopting a first-order approach, we establish marginal tax formula assuming a
continuous population framework, and derive conditions on the primitives of the model for which
the socially optimal allocation is either fully separating or involves some bunching. For all log-
concave survival functions, bunching is precluded for the maximin, Gini, and ”illfare-ranked
single-series Ginis”. We then turn to a discrete population setting, and provide "ABC” formulas
for optimal marginal tax rates, which are related to those for a continuum of types but remain
essentially distinct.
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I. Introduction

Among many other topics, John Weymark has contributed to the literature on optimal in-
come taxation (see, e.g., Weymark (1986a,b, 1987)) as well as on the better understanding of
inequality indexes of the Gini family (see, e.g., Weymark (1981)). The present article articulates
the former and the latter, and more specifically explore some properties of optimal non-linear
income taxation for rank-dependent welfare functions a la Yaari (1987). In that case, individ-
ual welfare weights depend on the position of individuals in the distribution of indirect utility.
We consider individual weights such that social welfare can be written as the egalitarian bench-
mark, deflated by inequality measured by the Gini, S-Gini or ”illfare-ranked single-series Ginis”
introduced by Donaldson and Weymark (1980) as well as Bossert (1990). The illfare-ranked sin-
gle series Ginis are referred to as the ”A-family” below, given that they have extensively been
studied by Aaberge (2000). Beyond Lorenz agreement, the S-Gini family favors a reduction of
inequality in the lower part of the distribution, while the A-family places more weight on a
reduction of inequality in the upper part.

Following Mirrlees (1971), the productivity of each agent is private information, and the
benevolent policymaker only knows how productivity is distributed within the population. As
a result, the optimal allocation maximizes rank-dependent welfare subject to the tax-revenue
and incentive-compatibility constraints. The latter are necessary and sufficient to provide each
agent with the right incentive for them to truthfully report their private information, i.e., to
behave in the way chosen by the policy-designer. Incentive-compatible allocations verify two
conditions: on the one hand, indirect utility must increase at a sufficient rate to induce truth-
telling; on the other hand, gross income (or equivalently net income) must be non-decreasing
with productivity. A situation in which the “monotonicity” condition on gross income is bind-
ing is referred to in the literature as “bunching”. In other words, “bunching” is said to occur
in a social optimum when agents with different productivity levels choose the same gross-
income/net-income combination. Absent bunching, ranks in terms of indirect utility, gross
income, net income and productivity are all the same. In addition, providing agents behave in
a rational way, these ranks corresponds to those in the actual allocation. Ranks then become “in-
variant” and provide a standard with respect to which tax rates may be expressed, as suggested
by Trannoy (2019).

To cast light on the main mechanisms and intuitions, we consider that individual utility is
quasi-linear, linear with respect to net income. Such preferences are widely used in the literature
following Piketty (1997) and Diamond (1998), even though assuming that there is no income
effect on gross income is obviously restrictive. For a continuous population and relying on
the two families of parameterized rank-dependent welfare functions presented above (with
Gini social welfare function as a common element), we are able to obtain clear and intuitive
formulas for optimal income tax rates absent bunching. In addition, we derive tax formulas
for a discrete population, and find expressions as close as possible to the “ABC” formula in the
continuous-population case.

We then pay special attention to situations in which the optimal allocation is not “fully sep-
arating” in a continuous setting. Thanks to rank-dependent welfare weights, we are able to
obtain several conditions on the parameters of the model, under which bunching in the social
optimum is either present or precluded. These conditions are derived exploiting the implicit
expression for the optimal gross income function, coming out from the optimization process.



This expression is particularly simple due to the combined assumptions of quasi-linear individ-
ual preferences and rank-dependent social welfare weights. To study bunching, we restrict the
class of preferences to those for which the marginal dis-utility of gross income is convex, but less
convex the higher the agent’s productivity. Under this assumption, the discussion about bunch-
ing only depends on the shape of the productivity distribution and the class of rank-dependent
social welfare functions (S-Gini or A-families).

We in particular resort to log-concavity of the type’s survival function or log-convexity of
the type’s probability density function (pdf). Under log-concavity of survival function of the
productivity distribution and for the whole A-family (including Gini), the optimal allocation
does not involve any bunching whatsoever; if the focus is on reducing inequality in the top of
the income distribution, bunching is precluded. The same assumption of log-concavity does
not guarantee the absence of a pooling equilibrium when we pay closer attention to reducing
inequalities in the lower part of the distribution, as for the S-Gini family. We then are only able
to prove that the optimal gross income function is increasing above a productivity threshold.

We also examine specific distributions as did Boadway et al. (2000) for quasi-linear-in-leisure
preferences and weighted utilitarianism and Boadway and Jacquet (2008) for separable prefer-
ences and the “Rawlsian” maximin. The findings in Boadway et al. (2000) regarding the absence
of bunching for any exponential distribution of productivity are extended to our setting. In ad-
dition, the result in Boadway and Jacquet (2008) regarding the absence of bunching under the
maximin, quasi-linear-in-consumption preferences, and a Weibull probability density for types
(with scaling parameter above 1), appears as a subcase of a result we obtain for all productivity
distributions with a log-concave survival function. Indeed, the maximin appears as a limit case
to the S-Gini family, and in this situation, bunching does not occur in the social optimum under
the considered assumptions.

Weymark (1987) and Simula (2010) already considered optimal income taxation for a so-
cial welfare function with exogenous individual weights, diminishing with productivity. The
parametric families we consider, consistent with Lorenz second-order stochastic dominance,
are specific examples of such decreasing weights. One of their main interest is to base such
welfare weights by relying upon the literature on inequality measurement. In addition, the var-
ious patterns of decreasing welfare weights they generate allow us to go one step further and
obtain both simpler expressions for optimal marginal tax rates and clearer conditions regard-
ing bunching. This findings complements Simula and Trannoy (2020) through a more technical
exploration in the theory of rank-depend optimum income taxation.

Many articles on optimal taxation, among which several of us Simula and Trannoy (2010) or
Lehmann et al. (2014), adopt the "first-order” approach, ignoring the monotonicity constraints
for gross income, and checking it ex post in numerical simulations. Brito and Oakland (1977)
and Lollivier and Rochet (1983) were the first to explain how to formally account for this diffi-
culty which already had been noted by Mirrlees (1971). For continuous populations, Lollivier
and Rochet (1983) considered an example in which bunching occured in the social optimum,
showing the limitations of the first-order approach. In addition, Ebert (1992) provided an other
example of bunching and examined whether the general features of the “optimal” schedule
obtained when ignoring the possibility of bunching were preserved in the “full” optimum.
For a discrete population, Weymark (1986b) —focusing on quasilinear-in-leisure preferences—
provided an example in which the solution to the “relaxed problem” (ignoring possible bunch-
ing) cannot be the solution to the full problem, before showing how to solve the full problem



through ”ironing” techniques. Also for a discrete population, Simula (2010) provided condi-
tions for bunching to occur in the social optimum when preferences are quasi-linear, linear
with respect to consumption.

The article is organized as follows. Section II introduces rank-dependent welfare functions.
Section III examines optimal marginal tax rates in the absence of bunching. Section IV char-
acterizes the bunching pattern, deriving conditions on the primitives of the model. Section V
focuses on a discrete population of types to show similarities and differences with regards to
the continuous setting. Section VI provides concluding comments.

II. FROM WEIGHTS DEPENDING ON RANKS TO
OPTIMAL TAXATION

This section introduces rank-dependent social welfare function and shows how they connect
to the literature on inequality measurement. We present the concepts assuming a continuous
population of individuals, differing with a single dimension of heterogeneity. This setting will
be maintain in Sections IIl and IV. Section V focuses on similarities and differences between the
continuous and discrete population settings.

I11.1. Rank-Dependent Social Welfare

We consider a population of individuals, heterogeneous with respect to a variable x. For
simplicity, we assume that the latter is uni-dimensional and smoothly distributed according
to the cumulative distribution function (CDF) denoted F(x), with support X C R,. We call
f(x) the corresponding probability density function (pdf). The average value of x within the
population is y = [ xf(x)dx.

We define the quantile function as F~!(p) = x, where p € [0,1] stands for the rank or
“position”, and introduce weights to capture the social planner’s aversion to inequality. The
marginal weights are denoted A(p) and the cumulated weights A(p) = [ A(p)dp. In the whole
article, we focus on weights consistent with second-order stochastic dominance, belonging to
the set:

L={Vpe(0,1),A(p) >0and A (p) < 0;A(0) = A(1) = 0; A(1) = 1}. (1)

The assumption that A(p) is positive and decreasing means that every individual counts, but
to a lower extent the higher the rank. The other assumptions are normalizations. On this basis,
rank-dependent social welfare (Yaari, 1987, 1988) is defined as:

! -1
w= [ ApF " (p)dp. @

11.2.  From Rank-Dependent Social Welfare to Inequality Indexes

By definition, F is an egalitarian distribution if and only if WW = u. Otherwise, there is a
positive gap A = u — WV between social welfare VW and the equality benchmark. Dividing this
gap by p, we obtain the mean-invariant inequality index, I = A/u. Using these definitions, we



can rewrite social welfare (2) in abbreviated form:
W= pu(1-1). ®)

This expression illustrates the close connection between rank-dependent social welfare func-
tions and inequality indexes: W is equal to the egalitarian benchmark deflated by inequality as
measured by I.

Specifying the weights A(p), we focus on two important families of rank-dependent social
welfare functions:

- The S-Gini family (Donaldson and Weymark, 1980) for A(p) =1 — (1 — p)’ and 6 > 2.

- The ”A” family for A(p) = (6p — p°)/(6 — 1) and 6 > 2.8 When s — 1, A(p) = p(1 —
log(p)) which corrresponds to the rank-dependent welfare function W in which I is the
Bonferroni index of inequality.2

For both families, the weights coincide when § = 2, with A(p) = p(2 — p). In that case, the
inequality measure I is the Gini coefficient and W the Gini social welfare function introduced
by Sen (1974). The marginal weights A(p) = 2(1 — p) are then linear with respect to rank. By
contrast, for any ¢ > 2, the weights A(p) are convex when considering the S-Gini family, and
concave for the A-family. To gain further insights, let us consider a fixed transfer taking place
between two agents with equal difference in ranks. For the S-Gini family, convexity implies
that the equalizing effect of the transfer becomes larger the lower the ranks considered. The
focus is thus on poverty. On the contrary, for the A family, the higher the ranks the stronger the
equalizing effect. The emphasis is layed on inequalities at the top of the distribution. When
goes up, the 5-Gini and A-families tend to two important benchmarks, the Rawlsian maximin
on the one hand and pure utilitarianism on the other hand. In addition, for every interior p,
the cumulated weights are larger in the Bonferroni case than in the Gini one, implying that the
former stresses poverty more than the latter.

III. OPTIMAL MARGINAL TAX RATES

This Section is devoted to the characterization of optimal marginal income tax rates for a
population of agents differing with respect to productivity 6 belonging to a compact subset
[6,6] of the positive real line. The parameter of heterogeneity 6 is smoothly distributed, with
cumulative density function H and probability density function h = H’ (satisfying h > 0 over
its support). Its distribution is common knowledge; but the exact productivity of a given agent
is only known to herself. The connection with the distribution of x introduced in Section II will
be made clear below.

1 Aaberge (2000) refers to this class as the Lorenz family for 6 = 2,3, .... It corresponds to the integer subfamily of
the ”illfare-ranked single-series Ginis” discussed by Donaldson and Weymark (1980) and Bossert (1990). We refer to the
latter as the “A” family. Aaberge (2009) and Aaberge et al. (2020) have indeed shown the usefulness of this family for
analyzing inequality when Lorenz curves intersect.

ZLet u(x) = (Jy xdF(x)) /F(x) and r(x) = (4 — p(x))/p. The Bonferroni inequality index is [y r(x)dF(x).



1I1.1. Formulation of the Optimal Income Tax Problem

The starting point is the utility maximization problem of an agent with given productivity
6. The latter chooses consumption ¢ and taxable income z so as to maximize:

u(c,z;0) =c—v(z;0) =z —T(z) —v(z0), 4)

where T(z) stands for the nonlinear income tax schedule. It should be noted that the dis-utility
of gross income v(z; ) is written in a more general way than the more commonly-used mul-
tiplicative form where v(z;0) = v(z/0). In that case, gross income is obtained as the product
of the wage rate and working hours. The specification that we use is not just a theoretical re-
finement. Indeed, empirical findings do not bolster the case for a multiplicative form, except
for shift work. In addition, we let the dis-utility of gross income v(z; #) be increasing and con-
vex in gross income z. Hence, v(z;0) > 0 and v,(z;0) > 0. In addition, we assume that the
Spence-Mirrlees condition is satified.

ASSUMPTION 1 (Spence-Mirrlees Condition). v},(z;6) < 0.

Assumption 1 has the following interpretation. When productivity goes up, it becomes eas-
ier for an agent to increase gross income by a small given amount dz. We do not mention it
explicitly in Propositions and Lemmas below, but it holds in the rest of the article.

The first-order condition of Agent 6’s utility maximization program is:

1—T/(z) = 9.(z0). (5)

We call ¢(0) and z(0) the optimal consumption and taxable income, and V' (6) = c(0) —v(z(0);0)
the corresponding indirect utility. Because of the taxation principle, a tax function is equivalent
to the specification of a (c(6), z(0))-allocation subject to incentive-compatibility constraints. The
latter ensure that a f-individual has an incentive to disclose private information, i.e., her pro-
ductivity level 0. This is the case providing:

V(0) = maxc(6') — o(z(¢');0)for any (6,6) € [6, . ©6)

As is well-known (see, e.g., Salanié (2005)), this is equivalent to:

V(@) = —uy(z(6);0), (7)
Z() > o. 8)

Equation (7) is the first-order condition for incentive compatibility. It ensures that indirect util-
ity V() increases at a sufficient rate to prevent agents from downward mimicking. Inequality
(8) is the second-order condition for incentive compatibility. It requires gross income z () to be
non-decreasing when productivity 6 goes up. It is equivalent to ¢/(6) > 0.

Because T(z(0)) = z(6) — c(6), the government’s budget constraint can be written as:

(2(6) —c(0))dH(0) > E, ©)

\m\w



where E is an exogenous amount of public expenditures. We focus on the case in which the tax
policy is purely redistributive. Hence, E = 0 from now on. Moreover, in any social optimum,
(9) will be binding. Using (6), we obtain c(6) = V(0) + v(z(8); ), which can be substituted into
the binding government’s budget constraint (9) to get:

(2(6) = V(0) —v(2(0);6))dH(6) = 0. (10)

Kb\tb\

In reference to Section II, we let x = V. Consequently, p = F(V(0)) = H(#), which also
implies: F~!(p) = V(6). The social objective is to maximize a weighted sum W of indirect
utilities V(6), with weights given by A(p) = A(H(0)), i.e.,

W= [ A(H(0))V(6)dH(6). (11)

m\m\

The optimal income tax problem can therefore be stated as follows:

PROBLEM 1 (Full Problem). Choose z(#) and c¢(f) to maximize )V subject to the incentive-
compatibility constraints (7) and (8) as well as the tax-revenue constraint (10).

We also formulate a variation of Problem 1 from which the second-order condition for incentive
compatibility (8) has been removed.

PROBLEM 2 (Relaxed Problem). Choose z*(6) and c*(6) to maximize WV subject to the first-
order condition for incentive compatibility (7) and the tax-revenue constraint (10).

The so-called “first-order approach” consists in solving Problem 1 without explicitly ac-
counting for the second-order condition for incentive compatibility (8). The idea is to solve the
Relaxed Problem and verify in a second step whether its solution generates a non-decreasing
pattern of taxable income 6 — z* (0). If this is the case, it is also the solution to the Full Problem,
and z(0) = z*(0) at any productivity 6 in [6, 6].

II1.2. Solution to the Relaxed Problem

The method of derivation follows the same steps as Brett and Weymark (2017) in a political-
economy setting.> The main advantage of this procedure is to solve the optimal income tax
problem in a clear and transparent manner, without resorting to optimal control theory. In
addition, this derivation accommodates the possibility of mass points in the distribution of
social weights. On this basis, the Rawlsian maximin in particular can be obtained as a limit case
of the £-class. More generally, cumulated social weights A are allowed to be defined as a step
function, which is continuous almost everywhere, with a finite number of discontinuity points.

This Subsection is devoted to the solution to the Relaxed Problem. We first used the first-
order condition for incentive compatibility (7). Integrating between € and any given 6, we

3Brett and Weymark (2017) characterize the income tax schedule maximizing the utility of a given agent subject to
incentive-compatibility constraints and budget balancedness. Brett and Weymark (2017) themselves rely on Lollivier
and Rochet (1983) who present a simple non-linear taxation model in which the agents, with quasi-linear in labor
preferences, are indexed by a one-dimensional parameter.



obtain:

0
V(o) = v(©) — [ vpla(t);tyat (12)
2

dH(0). (13)

Because A(1) =1 forany 6 — A(6) in L, the first term on the right-hand side of (13) is equal
to V(). Therefore, (13) may be rearranged as:

W =V(8) - // ACH(6))0)(=(t), t)dH(8)dt. (14)
Making use of Fubini’s Theorem, this simplifies into:
0
W =V(8) - / o) (2(6),8) [1 — A(H(8))] de. (15)
2]

It is worth noting that the above derivation does not require the weight function A to be contin-
uous. We only need them to be Lebesgue integrable. Therefore, they remain valid for Rawlsian
weights, with a mass point at § and thereafter equal to zero.

The next step is to plug in V() as defined in (12) into the government’s budget constraint
(10). We obtain:

7 70
/(2(0)—v(z(@);@)—V(Q))dH(G)—i—//v t)dt dH(8) = 0, (16)
o o

which is equivalent to:
0 6 0
V(8) = / (2(60) — v(2(6);0))dH(0) + / / o (2(8); ) dt dH(6) (17)
[4 0 0

because ff A(0)dH(0) = 1. We then employ Fubini’s Theorem to evaluate the double integral
and get:

0 0
/ /'v’e(z(t),-t)dth(e): o(2(6);6) (1 — H(6))ds, (18)
0 0

I~ o

which remains valid even if H is a step function. Consequently, (17) may be rearranged as:

0 0
vie) = / (2(8) — v(2(0);0))dH(6) + / V) (2(8);0)(1 — H(6))do (19)
2] 2]



The above expression may now be substituted into (15), which yields:

W =

KD\Q:\

0
[(2(6) — v(2(6);0))] dH(6) + /05(2(9);9) [A(H(0)) — H(6)] do. (20)
2]

The Relaxed Problem amounts to choosing 6 — z(6) such that W defined in (20) is maximum.
The first-order condition is:

1—0(2(0);0))h(0) = —vp,(z(6);60) [A(H(0)) — H(0)] forany 6 € [6,6], (21)

which may also be rearranged as follows:

1— ol (2(0);0)) = ol (2(0);0) 2D —HO) ¢ ovo e [08], 22)

providing h(6) > 0, as assumed in this Section. We obtain the following Lemma.
LEMMA 1. Optimal gross income levels are determined by:

10z

H(6 -
ng(z(é () forany 6 € [6,6] . (23)

0);9)) _ A(H(0)) —
);9) h(0)
The latter equation is of particular interest for the study of bunching because it provides the
optimal gross income function implicitly. Its LHS is related to individual preferences, while the
RHS is determined by the distributions of both productivity and social weights.

Thanks to the first-order condition of the individual utility maximization program (5), we
see that the right-hand side of (21) is equal to the marginal tax rate solution to the Relaxed
Problem, that we call T"*. The z-function solution to (21) is also that obtained for the Relaxed

Problem, that we denote by z*. The following Proposition summarizes the results.

PROPOSITION 1. The tax function T* and gross income z* solution to the Relaxed Problem are
such that:

T (2*(0)) = —v,,(z*(0);6) forany 6 € [6,6]. (24)

A(H(6)) — H(6)
h(6)

In Proposition 1, %

population, and therefore only on rank p = H(6) and its derivative,

only depends on the distribution of productivity within the

p = (25)

If we define G(p, ) as:
G(p(6),7(0)) = ————— (26)

Formula (24) may be rewritten as:

T"(2°(8)) = —vp, (2°(8);8) G(p(6), 7(6)). (27)

10



111.3. Interpretation

First, we see that Formulas (24) and, equivalently, (27) correspond to a joint determination of
the optimal marginal tax rates and the optimal gross income levels. They do not, in particular,
incorporate any term related to consumption. This feature allows a sequential determination
of the optimal allocation: in a first step, gross incomes and marginal tax rates are jointly ob-
tained. Optimal consumption levels can then be characterized in a second step. This two-step
procedure is a byproduct of quasi-linear preferences as well as weights which only depend on
ranks. It was emphasized in a discrete population setting by Simula (2010), who develops a
sequential procedure to construct the optimal allocation. In other words, Formulas (24) and
(27) capture an interaction between two endogenous variables: the marginal tax rate, on the
one hand, and gross income, on the other hand. Applying the implicit function theorem to
T"*(z) + vy, (z*;0)G(p, ) = 0, the effect of marginal tax rates on gross income are given by:

oz* 1

=~ G(p, ). 28
aT/* vzze (Z*,Q) (p 7-[) ( )

Therefore, the following Corollary is obtained:

n

COROLLARY 1. Gross income z* decreases with the marginal tax rate if and only iffv,_, > 0.

zz0

Second, following the insights of Saez (2001), it has become usual to pay a lot of attention to
the part played by behavioral elasticities in optimal income tax formulas. In Proposition 1, the
behavioral term is equal to —v},(z*;6), which —as expected- is directly related to the Spence-
Mirlees single-crossing condition. This term tells us how the slope of the indifference curve in
the gross-income/net-income space should vary with productivity. It is is non-negative under
the Spencer-Mirrlees condition, implying that the dis-utility of working an extra hour decreases
with productivity. The more it does so, the steeper the profile of marginal tax rates will be.
Indeed, the potential downward mimicking behavior then becomes less stringent. Everything
else being equal, the optimal tax schedule can thus be more marginally progressive.

Third, the above Formulas may also be written as an “ABC formula”. This allows a more
direct comparison with standard optimal income tax formulas, and in particular Diamond’s
(1998) one. Making use of the first-order condition of agent 6’s utility maximization program
(5), we obtain:

T™(z*(0) v, (2"(0);0)
1—T+(z*(9)) _vz(Z*(G);Q)) (p(0),7(6)) (29)

It remains to understand the intuition behind the fraction on the right-hand side. To this aim, it
should be noted that the elasticity of taxable income with respect to the marginal retention rate

is equal to:

oz 1-T 1-T  9.(z0) (30)
o1—-T) z  zvl(z0) zvl(z0)

e1-1(z0) =

where we made use of the implicit function theorem applied to (5). Following Jacquet et al.
(2013) (see also Lehmann et al. (2014)), we also introduce the elasticity of taxable income with
respect to productivity (i.e., gross wage in the laissez-faire) for a linearized income tax schedule
with the same slope as T at the gross income/consumption combination chosen by taxpayer 6.
It is given by:

0z 005(z0)

€g(z,0) = = ,
o(z/6) 90 z zol! (z;0)

@)
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where the implicit function theorem was employed again to the taxpayer’s first-order condition
(5), neutralizing any change in the marginal tax rate due to the assumed linearization. The ratio
of both elasticities, denoted e(z, 6), is equal to:

e1-1(z9) v.(z;6)

¢(z6) = €9(z,0) :_602’9(2;6)' (32)

Using (32), Formula (29) may be rearranged as:

T*(z*(0)) 1 1
1—T*(z*(0)) = e(z*(0);0) éG(p(G), 7(0)), (33)
or, equivalently, as:
THE) 1 1-p() Ap(e) — p(6). o

1—-T*(z%)  e(z*(0);8) 67(0) 1—p(6)

We see that the elasticity of taxable income with respect to the marginal retention rate is “nor-
malized” by the elasticity of taxable income with respect to productivity. The latter provides
a benchmark to which the former is compared. However, even though “ABC” formulas offer
a nice and insightful economic interpretation, they do not offer a direct route to find out the
optimum allocation, except when elasticities are independent of gross income z.

IV. BUNCHING

The previous Section provided a formulation of the Full Problem and then focused on the
Relaxed Problem to offer a characterization and interpretation of optimal marginal tax rates.
This characterization is valid providing 6 — z*() is non-decreasing in productivity, so that
the monotonicity constraint (8) is satisfied. Otherwise, the solution to the Relaxed Problem is
not solution to the Full Problem. In this Section, we examine cases in which 6 — z*(#) is non-
decreasing, so that the allocation solution to the Full Problem does not involve any bunching
of types; it is then “fully separating”. We also examine the opposite situation, in which some
types are bunched together.

IV.1. General Properties

We let 6, be the solution in 6 to: p = F(6). The latter increases with p because F is increas-
ing. Given this definition, note that z*(6)) being strictly increasing with rank p is a sufficient
condition for bunching not to arise, so that z(6,) = z*(6,) for any rank p. Moreover, a neces-
sary and sufficient condition for bunching to arise is that z*(6,) be non-increasing. In that case,
z(0) # z*(0) on at least of subset of [0, 0] with positive measure.

The first strategy we follow is to look at conditions on the primitives of the model for which
z*(6) is increasing over [f,60] and therefore equal to z(6). Its starting point is to consider the
Relaxed Problem’s first-order condition (23). We rewrite it as:

1—0.(z) + v, (z;6)T(6) =0, (35)
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where

I(6) = G(p(6), 7(6)) = W (36)

only depends on how types are distributed within the population. Applying the implicit func-
tion theorem, we obtain:

() = et Vol (0) + 00, T'(0)  wigoT(0) + 0, (I'(6) — 1) @7
- —oll o r(@) - —o! o F(Q)
zz 220 zz zz60

where some arguments have been omitted. We know that T'(8) > 0, v, (z;6) > 0, vgz(z; ) < 0.
If we add: v/,(z;0) < 0, v3(2,6) > 0and I"(6) < 1, we obtain a sufficient condition for

z*'(0) > 0. The following Proposition summarizes the result.

PROPOSITION 2. Assume v./,(z;0) < 0, vlg,(z;0) > 0and I'(6) < 1 for any 6. Then, the
solution to the Relaxed Problem is the solution to the Full Problem. In particular:

(i) z(0) = z*(0) forany 6 € [6,6];

(ii) The solution is fully separating, i.e., does not involve any bunching.

The assumptions on the third derivatives of v(z;6) made in Proposition 2 are additional

requirements to the Spence-Mirrlees condition, v7,(z;60) < 0 (see Assumption 1 above). The

"
220

productive individuals is then less convex than that of less productive agents. The second one,

first one, v’,(z;0) < 0, already appeared in Corollary 1. The marginal dis-utility of highly
U,ZNQG (z) > 0, requires the marginal dis-utility of gross income to decrease with productivity at a
decreasing rate. Both conditions are verified when an iso-elastic specification is used for the dis-
utility of gross income v(z; 0). They are also satisfied when the dis-utility of gross income takes
the often used multiplicative form, v(z;0) = ¢(z/6), as soon as we add ¢"”’ > 0 to the classical
conditions ¢’ > 0 and ¢” > 0. The marginal dis-utility of gross income is then increasing and
convex. In the rest of this Section, we assume:

ASSUMPTION 2. The marginal dis-utility of gross income is convex, but less convex the higher
the productivity: 0”’,(z;0) < 0and v.gy(z) > 0.

zz0

On this basis, our strategy is to check whether I"(0) < 1 for the different scenarios we
consider. Starting from the definition of I'(#) in (36) and differentiating, we obtain:

()~ 1= (Mp(6)) —2) - AT (38)

First, note that a sufficient condition for the second term on the right-hand side (RHS) to be
non-positive is 77/(0) > 0. Second, the first term on the RHS is always negative for the Aaberge
Family including Gini because A(0) = 0 < 2 and A’'(p) < 0. For the two other families, S-Gini
and Bonferroni respectively, the first term is negative providing A(p(6)) < 2. Because A(-) is
monotone decreasing while p is monotone increasing, then (A o p) (.) is monotone decreasing.
In addition, A(0) > 2 and A(f) = 0, there exists 6* in (,6) such that (i) A(p(6*)) = 2 and (ii)
A(p(0)) < 2if and only if 6 > 0* . Consequently, the first term in (38) is negative for all 6 > 6*.
The following Proposition follows from these observations.

PROPOSITION 3. Let Assumption 2 and 77/(0) > 0 be verified. Then:

13



(i) For any Aaberge social welfare function (including Gini, i.e., § = 2), the solution to the
Relaxed Problem is the solution to the Full Problem, i.e., the optimal solution.

(i) For the S-Gini and Bonferroni families, the unconstrained solution 6 — z(#) is increasing
beyond 6* such that A(p(6*)) = 2.

If we instead assume that the pdf of productivity 71(0) is single-peaked, reaching its mode
at M, we obtain:

PROPOSITION 4. Let Assumption 2 hold and 7’ be single-peaked, with mode 6M. Then:

(i) For any Aaberge social welfare function (including Gini, i.e., § = 2), the solution to the
Relaxed Problem 6 — z(8) is increasing for all 8 < M.

(i) For the S-Gini and Bonferroni families, the unconstrained solution 6 — z(#) is increasing
for all 0 in [6*,6M], providing 6* defined by A(p(6*)) = 2 is below 6M.

IV.2. Log-Concave and Log-Convex Distributions

In this Subsection, we maintain Assumption 2 and establish properties of the optimal so-
lution using log-concavity or log-convexity. Any given function f is said to be log-concave on
an interval if and only if log(f) is concave on this interval. It turns out that if the probability
density function of productivity &(0) is log-concave on its support, then the corresponding sur-
vival function, 1 — H(6), is also log-concave. To see that, let us consider 7’ > 0. Then pn’ <
2= 4 pn < m?
n' < 0instead, then —(1 — p)7/ < 7 = -7’ +pn’ < 7
log-concave survival function. In addition, many commonly used distributions, such as the

= —(1 - p)’ < 72, implying a log-concave survival function. If
2

s
= pr’ < m?, implying again a

normal, exponential, Weibull (with scaling parameter above 1) or power distributions, gener-
ate a log-concave h(0) and, thus, a log-concave 1 — H(6). See Table 1 in Bagnoli and Bergstrom
(2005). Because log-concavity of the survival function is less demanding than log-concavity of
the pdf, we resort to the former rather than the latter whenever possible.

PROPOSITION 5. Let Assumption 2 be verified and consider any Aaberge social welfare func-
tion (including Gini, i.e., § = 2). If the survival function 1 — H(0) is log-concave, then:
(i) T'(6) — 1 < 0, so that z*(0) = z() for any 6 in [6,6];

(if) There is no bunching whatsoever.
Proof. For Aaberge social weights, note that:

2_(5_5;7571 P _(1_p571)n/

6—1 6—1 2 (39)

where arguments on the RHS have been removed for notational convenience and > 2. There
are two cases to consider:

- For 6 such that 7/ > 0: T’(6) < 1 given that § > 2 and p belongs to [0, 1].
- For 6 such that 7’ < 0: Log-concavity of 1 — H(f) = 1 — p implies that 7(172’})”, <1

T

Therefore,

2—(5—5pf>‘*1+

/ J—
r'e)—1< 51 5

P =v(). (40)
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It turns out that Y/(8) = —1 — (p* 1 +6(6 — 1)p°~2) < 0 for & > 2. Because Y(2) = —p,
we conclude that, for 6 > 2,T7(9) — 1 < 0. O

We now turn to the S-Gini family of social welfare functions. We are not able to show
that there is no bunching whatsoever for this whole family. Assuming a log-concave survival
function 1 — H(6), we are able to show that the solution 6 — z*(6) is increasing above some
threshold denoted 6.

PROPOSITION 6. Let Assumption 2 be verified and consider any S-Gini social welfare function
(including Gini, i.e., 6 = 2). If the survival function 1 — H(0) is log-concave, then:

- There is a productivity threshold 6 defined by p = p() =1—[1/(6 — 1)]1/(5_1);

- For any 6 > 6, z* () is strictly increasing.

Proof. Given S-Gini weights, one obtains:

/ _ 1— 1—(1—=p)o-1 (0
r'e)—1 = 5(1—p)° 1, (=p)] ;2(9;9) )| 7(6)

sa-p o+ [1-a-p] ca-p 5] @

(41)

Because 0 > 2, the first square bracket is non-positive. There are two cases to consider:

- Atany 6 for which 77/(6) > 0: the product of the two square brackets on the RHS of (42)
is negative except for p = 1 where it is zero. Consequently, I’ (6) < 0 for any 6 in (6,0).
Then § = 0 and z* () is increasing, implying z(8) = z(0) for all @ in [6, 0].

- At any 6 for which 7/(6) < 0: We can rely on log-concavity of the survival function,
implying I'(0) =1 < (0(1=p)°* 1 =2) + (1-(1-p)* ) = (6 -1)(1-p)* 1 =1 =Y(5).
In addition:

1
_ 1 . A 1 o1

Consequently, I'(0) < 1 forany p € (p,1). O

For example, when 6 = 3, we obtain p = 1 — y/1/2 ~ 0.29.

When ¢ tends to infinity, so that the S-Gini social welfare function tends to the Rawlsian
maximin, [1/(6 — 1)}1/ (=1 tends to 1, so that p tends to 1 and 8 to §. Consequently, z*(8) is
increasing for all 6 and z(0) = z*(6). The following Proposition summarizes this result.

PROPOSITION 7. Let Assumption 2 be verified and consider the Rawlsian social welfare func-
tion (maximin). If the survival function 1 — H(6) is log-concave, then the optimal allocation
does not involve any bunching of types.

Four points are worth noting. First, it follows from Proposition 7 that, under Assumption
2, adopting the “first-order approach” consisting in solving the Relaxed Problem instead of the
Full Problem implies no loss of generality whatsoever to solve for the maximin allocation as
soon as the survival function of productivity 1 — H(#) is log-concave. Second, the findings
in Boadway et al. (2000) regarding the absence of bunching for any exponential distribution of
productivity and quasi-linear in leisure preferences are extended to quasi-linear in consumption
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preferences. Third, the result in Boadway and Jacquet (2008) regarding the absence of bunching
under a Weibull probability density for types (with scaling parameter above 1) and quasi-linear
in consumption preferences are a subcase of Proposition 7. Last, it is insightful to compare
p to the value of p* introduced in Proposition 3 and for which A(p*) = 2. It turns out that:
p>pte (1/(6— 1))1/(‘5—1) < (2/5)1/(‘571) & 2 < 4, which is always satisfied. This is natural
because of the positivity of the second term of (38) when the conditions of Proposition 7 are
verified.

We were able to provide results for the S-Gini and A families. The following remark exam-
ines what would happen for the Bonferroni social welfare function.

REMARK 1 (Bonferroni Social Welfare Function). With Bonferroni social weights, A(p) —p =
—plogp, A(p) —1 = —1—logp and thus:

I'(6) — 1= —2+logp [IZ’((:)) _ 1} , (44)

If log p is concave, then ’;T 7;/((99)) < 1 and, thus, ’;T 72/((99)) —1 < 0. Because log p < 0, we then have:
pr'(6)

log p [ 20 1} > 0. We therefore cannot say anything about the sign of I’ (0) — 1.

A second remark focuses on the variation of I (6).
REMARK 2. Computing I'"’(6), we obtain:

(A —1)7 ' — 272
" = AMm— B —— (A— P)(T

) (45)
in which the (0) arguments were removed for notational convenience. We see that the sign of
I (0) depends on the sign of 7’ and 7.

- Because A’'(0) < 0in £, the first term on the RHS of (45) is strictly negative.

- There exists 8** such that A(p(6**)) = 1, A(p(6)) > 1 for 6 < 6** and A(p(6)) < 1 for 0
> 6**. Then, the second term on the RHS of (45) is always strictly negative when the sign
of 7’ switches from positive to negative exactly at 6**, which is the case for any single-
peaked distribution the mode of which coincides with 6*.

- We always have A(p) — p > 0 for the S-Gini, A- and Bonferroni families. Moreover, a log-
concave probability density function satisfies 77" (8) 77(6) < [7/()]* for any 6. This implies
that the third term on the RHS of (45) is always positive for a log-concave probability
density function, and therefore for any concave probability density function (concavity
implying log-concavity).

- Therefore, we cannot conclude about the sign of I’ (#) for log-concave probability density
functions. There is indeed a conflict between the sign of the above terms. On the contrary,
if the probability density function /(6) is log-convex. Then, 7" (8)71(6) > [7/(6)]?, so that
the third term on the RHS of (45) is negative, as the first two terms.

The above remark allows us to formulate the following Proposition.

PROPOSITION 8. Let Assumption 2 be satisfied and social weights belong to the A-family (in-
cluding Gini). Let the probability density function be (i) single-peaked, (ii) log-convex and
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such that (iii) its mode #M coincides with the value of productivity for which A’'(6) = 1, i.e.,
OM = @**. Then, 8 — z*(0) is increasing on it support, so that z(8) = z*(#). The optimal
allocation is therefore full separating.

Proof. Given the above conditions, the function I () is always decreasing. In addition, I"(0) <
1. Consequently, I (§) — 1 < 0 for all 6 in [6, 6]. O

Proposition 8 applies to log-convex probability density functions. According to Table 3 in
Bagnoli and Bergstrom (2005), the Weibull (for scaling parameter below 1), the Gamma (for
scaling parameter between 0 and 1) and the Pareto distributions have this property. However,
Proposition 8 also requires the mode to be in the interior of the support, a condition that is not
satisfied for a Pareto distribution (often used to describe the distribution of productivities at the
top). For the log-normal distribution, often used to describe the distribution of productivities
(except at the top), we know that the cumulative probability function is log-concave, but the log-
concavity /log-convexity of the probability density function is undetermined in general. In that
case, we cannot sign I (0) — 1 and can only rely on Proposition 4 making use of unimodality.

IV.3. Local Properties

In this Subsection, we establish a few local conditions regarding the solution in gross income
to the Relaxed Problem. First, note that I’ (0) = A’(0)7(0) — W. For all parametric
families introduced above, we have A(0) — 1 > 0. Therefore, if we add the following Assump-

tion, we are able to sign z(6) in the lower part of the distribution.
ASSUMPTION 3. I"’(0) < 0 when 7/(0) > 0.

We already know that I"(0) — 1 < 0. Therefore, if we make Assumption 3 and let 77/(0) > 0,
the following Lemma is obtained:

LEMMA 2. Let Assumptions 2 and 3 be satisfied. If 77/(0) > 0, then there is a § > 8 (with
0 possibly arbitrarily large) such that the solution in gross income to the Relaxed Problem is
strictly increasing on [0, 6].

For the upper bound of the support, 8, we have: T (9) = A/ (8)7(0) + %g)). We know that
A (6-) < 0 for any weights in £ (where the notation 0_ stands for the limit to the left of 6). In

addition, it is likely that 7/(6—) < 0. We can therefore formulate the following Lemma.
LEMMA 3. Let Assumption 2 be verified. If 77/(6_) < 0, the solution to the Relaxed Problem
0 — z(0) is increasing on an interval with upper bound 6.

IV.4. Results for Specific Distributions

We now consider specific distributions of productivity to see whether we may say more
regarding the bunching or separating pattern of the optimal allocation.

PROPOSITION 9. Let Assumption 2 be verified, and productivity be described by a Pareto distri-
bution with parameters A > 0 and k > 1. For the Gini welfare function, the optimal allocation
is fully separating.
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Proof. We have: H(6) = (A/6) = E > 0, implying p = 1— (A/6) = 1—E,1—p = E,
m(0) = k (A)X /6K = kE/6, 12(0) = K2E2/6%, 7' (0) = —k(k + 1) AF /652 = —k(k +1)E/62.
Consequently,

(A(p(8)) = p(O))k(k+1)

/ — —
I'(6) = A(p(6)) — 1+ o] (46)
Replacing with Gini weights, and using 1 — p = E,
(o) = 1 L gyt
F(G)—k—i-E(l k)—k+(1 p)( . ) <1 (47)
fork >1andp € [0,1]. O

PROPOSITION 10. Let Assumption 2 be verified, and productivity be described by a Pareto
distribution with parameters A > 0 and k > 1. For social weights belonging to the A-family,
the optimal allocation is fully separating.

Proof. Starting from (46), and plugging weights for the A-family,

1 6—1y (k+1)
oy L g s sy e PO P
F(G)_((S—l)(l op°T) + 3 . (48)
Using a majoration argument, we establish that:
1 6-1)2
/ 1o so1y , 1P —=p(k)°)
F(9)<5_1(1 op(k)°—) + 1= pk (49)
for any k > 1. Moreover, we check that: I’(6,k = 1) < 1 for any p and deduce that:
1 5-1y
1 s (1= pe )
51 (1=0p(k)°) + 1= p(k) <1, (50)
implying I (6) < 1. O

PROPOSITION 11. Let Assumption 2 be verified, and productivity be described by a Pareto
distribution with parameters A > 0 and k > 1. For 5-Gini (including Gini) welfare weights,
then the sign of I’(6) — 1 follows that of p — p(6) with p =1 — (%)ﬁ

Proof. With 5-Gini weights:

Ap)—p=1-(1-p’-p=Q10-pA-(1-p°" (51)

and A(p) —1=06(1- P)‘Ll —1.Usingl —p =E,

1 1 1 1
re) =L ypieye EEDy 1 pea 1k AR) (52)
k k k k
Consequently,
1, 1+k+ko k—1
re) st e B (———)s — (53)
Rearranging, the latter is equivalentto: p < 1 — (%) = 0
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V. THE DISCRETE POPULATION CASE

The objective of this Section is to highlight the similarities between the previously examined
situations and the case in which the population of agents is discrete. Optimal income taxation
with a finite number of types has been examined by Stiglitz (1982, 1987), providing key in-
sights in a two-type model. This setting was extended to any given number of agents by Roell
(1985) under a very weak redistributive assumption, by Weymark (1987, 1986a,b) when agents
have quasilinear-in-consumption preferences, and then by Simula (2010) when preferences are
quasilinear, linear in gross income, as in Equation (4). See also Simula and Trannoy (2011),
in which a discrete-type optimal income taxation model is used to decentralize the so-called
"ELIE” transfers proposed by Kolm (2004). To a large extent, these studies pay attention to the
characterization of the socially optimal gross-income/net-income allocation, which contrasts
with the literature considering a continuum of types, the main focus of which is the derivation
of optimal marginal tax rates (for a survey see, e.g., Piketty and Saez (2013)).

V1. Setting

The size of the population is normalized to 1. We define the type distribution by a dis-
crete probability measure {6y, rx; k = 1, ..., K}, where the support is a finite set of K points in a
compact subset A of the positive real line. The probability of any subset S of A is given by

p(S) =) mé (54)
0,eS

with J; the Dirac measure at 0. We let F(x) be the CDE, i.e., the step function corresponding to
this discrete probability measure. Namely, F : A — [0,1] with p = F(0) gives the cumulative
proportion of people for whom 6 < 6 for any 6 in S. By construction, we have:

k
j=1

which corresponds to the rank of agents with productivity 6. For later use, note that py —
Prk—1 = . In addition, it should be highlighted that p = F() is constant between two consec-
utive steps (6, 0x.1) of the CDE. We define the quantile function as the right inverse of F, i.e.,
F~(p) = sup F(9)<p Ok - The marginal weights A(p) and cumulative weights A(p) are step func-
tions, with an upward jump at each 6y, and a plateau for any 6 in [0y, 6. 1[. The rank dependent
social welfare function is therefore given by:

1
W= [ApE (p)dp. (56)
0

Evaluating the integral for the discrete distribution, we obtain:

P1 P2 Pk
W = 91//\(P)dp+92//\(P)dP+---9K / Mp)dp =) 0 [A(pe) — Alpea)]. (57)
0 P1 PK-1 k
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If we denote by g(px) the per-capita social weight of group k, i.e.,

A — A(pr-
Pk — Pk—1
the social objective may be rewritten as:
K
W =Y 6 g(pi) - 7. (59)

k=1

Applying the mean value theorem, there exists for every k, a cumulative probability p in [0, 1],
with py_1 < p < py, such that g(px) = A(p). Given that A(p) is strictly decreasing in £, the
per-capita social weight ¢(py) is also strictly decreasing with k.

V.2. Marginal Tax Rate Formula

The way in which the optimal marginal tax rates are derived is formally similar to Sim-
ula (2010). The novelty is to show the similarities with the derivation of formulas for optimal
marginal tax rates in the continuous case. In this way, we complement the important article by
Hellwig (2007), which shows that optimal income taxation in the tradition of Mirrlees (1971) is
built on a single rock, irrespective of whether the population is continuous or discrete. How-
ever, Hellwig (2007) does not provide a comparison of optimal income tax formulas for either
a continuous or a discrete population.

The proof exploits the fact that, when Assumption 1 is satisfied, only the local and down-
ward incentive-compatibility conditions are binding. This implies that an incentive-compatible
allocation must be such that v(zx,1;60k11) = v(zk;0ky1) for any k = 1,..,K — 1. This corre-
sponds to the first-order condition for incentive compatibility (7) highlighted above. The equiv-
alent to the second-order condition for incentive compatibility (8) is now: z = (zy, ..., zx) non-
decreasing in the sense that z; 1 > z; forany k = 1, ..., K — 1. See Guesnerie and Seade (1982)
for a detailed presentation. On this basis, and following the same steps as in Simula (2010), it is
straightforward to establish that the Relaxed Problem formulated above is now equivalent to:

PROBLEM 3 (Relaxed Discrete-Population Problem). Find gross incomes zj, ..., zx maximizing:
K K
W= 6c-g(pr) e — Y (A — pi) [0(21:6k) — 0(2856p41)] - (60)
k=1 k=1

It is worth noting that (60) is analogue, in the discrete setting, to (20) in the continuous case.
The Full Discrete-Population Problem is similar, with the extra requirement that the solution
vector z is non-decreasing. From now on, we focus on the “first-order approach” and assume
that the monotonicity condition on z is verified. When WV as defined in (60) is maximized:

(1= vL(zk:6k)) i — (A(p) — pr) (V2 (25 06) — VL(25 0pi1)) = O, ¥k =1,.., K—1. (61)
In the continuous-population case, the above condition corresponds to (21). We let:

T/(Z]',' Gk) =1- U;(Z]'; Qk). (62)
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This corresponds to the “implicit marginal tax rate” faced by the 0-individuals at gross income
zj. In particular, T'(z;6k+1) corresponds to the marginal tax rate an agent with productiv-
ity 841 would face when choosing the gross-income level z; designed for the i-individual.
Note that T'(zj;6;) only depends on gross income because, in the gross-income/net-income
space, any given 6-individual’s indifference curves are obtained from one another through
vertical displacements, due to quasilinear-in-consumption preferences. Using the above defini-
tion, Equation (61) may be rewritten as:

A —_
T (zy; 0k) = (pkn)kpk [0 (24; 0k) — ' (21; 0k11) |

1—pr A —
= nkpk (fli) e P [0/ (245 6k) — 0 (243 6401)] - (63)

Following Simula (2010), we define the Spence-Mirrlees wedge as:

SM(Zk,' Gk; 9k+1) = T/(Zk,' 9k+1) - T/(Zk,' Gk) = MRS(Zk; Qk) - MRS(Zk,' 9k+1)/
= 0 (23 k) — V% (23 1), (64)
where MRS(zj;0;) stands for the marginal rate of substitution of a f-agent at gross income

zj. Under Assumption 1, the Spence-Mirrlees wage SM(z;0;0y1) is positive. Using this
definition, (64) becomes:

1—p A —
T (24 0p) = S P AP = Prgpgig:0,, ). (65)
Tl 1—p

In this form, the optimal marginal tax rate appears as the product of three factors: the “de-
mographic” factor (1 — py)/ ;. depends on the distribution of the population across ranks; the
“ethical” factor (A(px) — px)/ (1 — px) depends on the society’s preference for redistributing in-
comes across ranks, as captured by p — A(p); and the last factor SM(zy; 0; 0 1) ensures that
marginal tax rates are adjusted in such a way that indirect utility increases at a sufficient rate
to prevent downward mimicking of 8y-indivuals by 0y 1-individuals. Formula (65) shows in a
transparent way the role played by the Spence-Mirrlees condition (here Assumption 1), which
was key for the solution to the optimal income tax problem as emphasized in Mirrlees’s Nobel
Lecture (Mirrlees, 1997).
Dividing (65) by 1 — T'(zy; 6x) = v'(z; 6k ), we obtain:

T'(zk;0k) 1= px Apr) = pr SM(25 61 6k11)
1-T'(z;6¢)  m  1—p v} (zk; Ok)

(66)

For a discrete population, gross income is not a function, but a vector taking K values, one
for each productivity level. Each of these k values implicitly depends on the marginal tax rate
faced by the 8- individuals, and thus on the retention tax rate, as well as on productivity 6.
Using the differentiability of indifference curves, the elasticities of gross income with respect
to the retention rate (assuming a constant marginal tax rate) and productivity, defined in (30)
and (31) respectively, directly translate to the discrete population setting. To make use of these
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definitions, we may rearrange the last factor in the right-hand side of Formula (66) as follows:

SM(zk; bk; O+1) _ 1 MRS (zy; 0k) — MRS(zk; 0k11)
% (zk; ) 2307 (2, 0k) 04215 Ok) / (2k0%s (24 0k))
_ 0= Ok 1 MRS (zy; ) — MRS(zg; 0k11)
2307, (21 0k) €1—1 (2k; Ok) Ok — Okt
0 —0 1
k1~ Tk MRS} (zi; 0¢), (67)

T 20l (21 6k) €11 (2 6)

where the approximation is valid for 6 sufficiently close to 6. Because MRSj(z;6;) =
vllp(zk; Bk ), we obtain:

T'(zi:600) 1= pe Alpi) — P 1 — 0,07 (2k; 0k) Opi1 — Ok
1—T'(z;6) e 1—pe e (z0k) zkvl(zk; 6k) O
L= P AP —pe_€0(250k) ki1 — Ok

e 1—pe e_p(zb) 6
1 1—pe Alpx) — px B
Te(zipby) O 1—py (Bs1 =) (68)

where the behavioral term e(zy; 6;) is equal to the ratio 1 _7/(zk; 6x) / €g(zk; 6r). In this form, the
first-order approximation of the optimal marginal tax rates obtained for a discrete population
is given by the same ABC terms as in the continuous-population case, multiplied by 61 — 6.
When 6,1 tends to 6, the RHS of (68) tends to zero. This implies that this approximation does
not converge to the continuous-population formula when 60;1 and 6 become arbitrarily close.
Indeed, by (65), two consecutive marginal tax rates do not correspond to the same discrete
change, with:

1— pe Alpy) —
T'(2;6;) = Pk (p"_) PE S M(z1; 04 611, (69)
e 1—px

1 — pry1 A(Prs1) — Prsa SM(
Tl 41 1= pra

T'(zk41;0641) = Zk415 Ok 15 Ok2)- (70)

Taking the limit of (68) does not provide the adequate limit.

VI. Conclusion

This article relies upon rank-dependent welfare functions to connect the theory of optimal
nonlinear income taxation and the literature on the measurement of inequality. Paying special
attention to two families, generating welfare weights depending on a single-dimension param-
eter, we were able to obtain remarkably simple tax formulas, as well as conditions on the prim-
itives of the model precluding or implying bunching in the social optimum. In particular, we
obtain general results for bunching not to occur for either log-concave type’s survival functions
or log-convex type’s pdf, providing the dis-utility of gross income verifies an assumption on
the third derivatives. We also obtain conditions for specific distributions of productivity. An-
other development would be to characterize optimal solutions involving bunching, and obtain
the corresponding tax formulas.

This article also exhibits new "ABC” formulas for optimal marginal tax rates in a discrete
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population setting. If the formulas look like the ones obtained for a continuous population, we
show that the former do not converge to the latter when the distance between two consecutive
productivity levels tend to zero.

Because each population setting has some irreductible specificities, it would be of interest
to explore how comparative statics techniques and properties for discrete-population optimal
income-tax models introduced in Weymark’s (1987) seminal article should be adjusted when a
continuum of agents is considered. This would necessitate a conceptual adjustment of what is
meant by a change in productivity such as those considered for discrete populations by Brett
and Weymark (2008) and Simula (2010).
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