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Abstract 
 
Macroeconomic and sector-specific shocks exert differential effects on investment in disaggregate 
sectoral data. The response to macroeconomic shocks is hump-shaped, just as in aggregate data. 
The effects of sectoral innovations decrease monotonically. A calibrated model of investment 
with convex capital adjustment costs and rational inattention explains these features of the data. 
The model matches the empirical responses of sectoral investment because learning about shocks 
generates additional investment demand over time, and more so after aggregate shocks with 
relatively higher persistence. The interaction of information frictions and physical adjustment 
costs is key to this result. 
JEL-Codes: E220, E320, D250, D830, C380. 
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1 Introduction

The hump-shaped response of aggregate investment to macroeconomic shocks is a salient

feature of the business cycle in the United States.1 This paper establishes novel stylized

facts that help to shed light on the propagation mechanism underlying this empirical reg-

ularity. I show that the response of investment to macroeconomic shocks in disaggregate

sectoral data—and, hence, before aggregation—is hump-shaped, just like in aggregate

data. In response to an aggregate shock that leads to a 1 percent increase on impact, sec-

toral investment spending in the median sector rises further to 1.2 percent at the 1-year

horizon. At the 2-year horizon, sectoral investment then settles approximately at the long-

run response. By contrast, the effects of sector-specific surprises on sectoral investment

spending are monotonically decreasing. In response to a sector-specific shock that leads

to a 1 percent increase on impact, sectoral investment spending in the median sector falls

to 0.7 percent at the 1-year horizon, which equals approximately the long-run response.

Moreover, I find that sector-specific shocks account for 90 percent, aggregate shocks for

10 percent of sectoral investment volatility.

The second part of this paper seeks to understand the differential empirical responses

of sectoral investment to aggregate and sector-specific shocks. To this end, I build and

calibrate a model of investment with convex capital adjustment costs and rational inatten-

tion following Sims (2003). My main result is that the model response of sectoral invest-

ment to aggregate shocks is hump-shaped, while the effects of sector-specific shocks are

monotonically decreasing. The model matches this feature of the data because decision-

makers in production units choose to obtain less than perfect information with costly

information acquisition. The amount of information acquired about aggregate and sector-

specific shocks is roughly the same. Given less than perfect information, the response of

sectoral investment to both shocks is dampened in the impact period of the shock. At the

1See, for example, Christiano et al. (2005) and Altig et al. (2011) for monetary policy shocks, Romer and
Romer (2010) and Mertens and Ravn (2013) for tax policy shocks, Dedola and Neri (2007) for technology
shocks, and Altig et al. (2011) for investment-specific technology shocks.
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1-year horizon, more information becomes available and decision-makers learn that their

optimal level of capital is actually higher and thus increase their investment spending.

In the calibration that draws on empirical estimates from the literature, aggregate shocks

are more persistent than sector-specific shocks. Consequently, the optimal capital stock

decays more slowly and investment under rational inattention increases more strongly at

the 1-year horizon following these disturbances, hence the hump shape in the response

of sectoral investment. On the other hand, by the time decision-makers in firms acquire

more information about sector-specific shocks, the optimal level of capital has decreased

more and there is less investment demand due to learning about the shock.

Without convex capital adjustment costs, the response to aggregate shocks becomes

monotonically decreasing because decision-makers choose to adjust the level of capital

immediately, given the information they acquire. At the 1-year horizon, as more infor-

mation about the optimal capital stock becomes available, investment demand is positive

but smaller than on impact. With capital adjustment costs, decision-makers smooth cap-

ital expenditures over time which leads to additional investment demand at the 1-year

horizon. Thus, convex capital adjustment costs and rational inattention are essential for

the model to explain the novel stylized facts documented in the first part of the paper.

Moreover, the form of the investment response to macroeconomic shocks is preserved

under aggregation across all production units in the model. Hence, my results provide a

new microfounded explanation for the hump-shaped response of aggregate investment

to macroeconomic shocks and highlight rational inattention as a new propagation mech-

anism in the investment literature.2

To establish my empirical results, I estimate a dynamic factor model using capital

expenditure data from US manufacturing industries. The data set contains information

2Carroll et al. (2018) for consumption and Maćkowiak et al. (2009) for inflation show that information
frictions can match the persistence in aggregate data and the short-lived dynamics in microeconomic data
at the same time. Angeletos and Huo (2018) provide a complementary mechanism to account for these
feature of the data which operates through higher-order uncertainty instead of different levels of first-order
uncertainty about aggregate and idiosyncratic shocks.

2



about real investment spending for 462 industries at the 6-digit NAICS-level for the years

from 1958 to 2009. The dynamic factor model represents sectoral investment as the sum of

a common component, consisting of a common factor with industry-specific factor load-

ing, and a sector-specific component. The common factor and the sector-specific compo-

nent follow an autoregressive process each with reduced-form error terms that reflect a

variety of macroeconomic and industry-specific shocks. Because the innovations to the

sector-specific component are independent across industries, aggregate shocks lead to

common dynamics in sectoral investment across all 462 industries while sector-specific

shocks do not. I use Bayesian methods to estimate the model. Based on the joint poste-

rior density, I study the effects of aggregate and sector-specific shocks and compute the

variance shares of each shock in sectoral investment volatility.

The theoretical model has the following features. There is a representative produc-

tion unit in each sector. Production units operate a production function that transforms

capital services into output. Total factor productivity (TFP) consists of an aggregate and

a sector-specific component, which are both affected by shocks. Decision-makers in pro-

duction units maximize the expected discounted value of profits by choosing capital and,

thus, investment spending, subject to convex capital adjustment costs. They must pay

attention to learn about the realizations of TFP shocks. Paying attention reduces uncer-

tainty about shock realizations, where uncertainty is measured by entropy following Sims

(2003). Paying attention to aggregate and sector-specific shocks are independent activi-

ties.3 Attention is costly and decision-makers optimally allocate their attention. I calibrate

the model parameters using values from the literature.

In principle, other propagation mechanisms can also be consistent with the empiri-

cal findings presented in this paper. Following Christiano et al. (2005), many business

cycle models feature investment adjustment costs so as to match the hump-shaped im-

pulse response of aggregate investment to macroeconomic shocks.4 In Appendix A, I

3Maćkowiak and Wiederholt (2009) also make this assumption.
4Following Christiano et al. (2005), investment adjustment costs are convex in the growth rate of invest-
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solve an otherwise standard real business cycle model with investment adjustment costs,

perfect information, and aggregate and sector-specific TFP shocks. I calibrate the model

parameters at the quarterly frequency using standard values from the existing literature

and time-aggregate the model responses to the yearly frequency. This calibration strategy

helps to rule out the case in which the response of sectoral investment following sector-

specific innovations is hump-shaped at the quarterly frequency, but time aggregation to

the yearly frequency obtains a monotonically decreasing response as observed in the data.

My results show that in partial as well as in general equilibrium, the impulse responses

of sectoral investment to aggregate and sector-specific shocks are hump-shaped at either

frequency. Hence, under standard assumptions and using a standard calibration of the

model parameters, a model with investment adjustment costs has difficulties to match

my empirical findings.5

Fiori (2012) explores another propagation mechanism that is consistent with the hump-

shaped response of aggregate investment. He shows that if rapid output expansion in the

investment good producing sector is costly, the relative price of investment increases in

response to aggregate shocks. This general equilibrium price response initially depresses

demand for investment goods in all other sectors of the economy. As the supply of invest-

ment goods increases over time, the relative price of investment falls and investment de-

mand in the rest of the economy picks up. The impulse responses of sectoral investment

to aggregate shocks are protracted in each sector, as in the data, but not hump-shaped

in general. Only the consumption good producing sector displays a slowly building sec-

toral investment response. More importantly, in Appendix B, I provide evidence that the

relative price of investment in the manufacturing sector does not move with the macroe-

conomic shock estimated in the statistical model of this paper.

There are two empirical studies in the price setting literature to which this paper

ment while capital adjustment costs are convex in the growth rate of capital.
5Groth and Khan (2010) find a minor role for investment adjustment costs to explain industry investment

dynamics.
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closely relates. Boivin et al. (2009) and Maćkowiak et al. (2009) examine the effects of

macroeconomic and sector-specific shocks on sectoral price indices. This paper estimates

the same impulse responses in the case of sectoral investment spending.6 While the sta-

tistical model and estimation methodology are similar to their work, there are differences

that I will describe in more detail below. Interestingly, my empirical findings bear strong

resemblance to those of Boivin et al. (2009) and Maćkowiak et al. (2009). Both studies find

that aggregate shocks lead to gradual changes in sectoral price indices, whereas adjust-

ment to sector-specific shocks is immediate. Also, they report that the bulk of sectoral

inflation volatility is due to sector-specific shocks.

This article also adds to the literature on rational inattention following Sims (2003,

2006). To the best of my knowledge, this paper is the first to study the implications of in-

vestment under rational inattention.7 Other applications include price setting decisions of

firms (Woodford, 2009; Maćkowiak and Wiederholt, 2009; Matějka, 2016; Afrouzi, 2020);

the consumption-saving decision of households (Luo, 2008; Luo and Young, 2010; Tutino,

2013); discrete choice behavior (Matějka and McKay, 2015); monetary policy (Paciello,

2012; Paciello and Wiederholt, 2014); and portfolio choice (Mondria, 2010; Van Nieuwer-

burgh and Veldkamp, 2009, 2010; Kacperczyk et al., 2016). Maćkowiak and Wiederholt

(2015) formulate a dynamic stochastic general equilibrium model with rational inatten-

tion. However, their model abstracts from capital in production.

The remainder of this paper is organized as follows. Section 2 presents the statisti-

cal model for the sectoral data. Section 3 describes the data. Section 4 contains the main

empirical results and several robustness checks. In Section 5, I lay out the model of invest-

ment with convex capital adjustment costs and rational inattention. Section 6 evaluates

the model and contains the main theoretical results. Section 7 concludes.
6Givens and Reed (2018) estimate the effects of identified monetary policy shocks on 67 detailed com-

ponents of private fixed investment, which arguably proxy for sectoral investment activity, and also find a
hump-shaped response in the majority of cases.

7In related work, Verona (2014) explores the implications of capital adjustment in a model with sticky
information. Under this assumption, decision-makers must pay a fixed cost to acquire new information
and, once they do so, have perfect information in the period of updating.
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2 Statistical Model for Sectoral Capital Expenditure Data

I use the following dynamic factor model to study sectoral capital expenditure data:

yit = Hixt + wit, (1)

where yit, i = 1, . . . , n, t = 1, . . . , T, denotes the period t log change of real investment

in sector i, xt is a single unobserved common factor, and the wit are sector-specific error

terms. The Hi are factor loadings that are possibly different across industries. In Equa-

tion (1), I omit a constant for ease of exposition and because I standardize the data in the

next section.

The factor and the sector-specific terms each follow autoregressive (AR) processes:

xt = F(`)xt−1 + vt, vt ∼ i.i.d.N (0, Q) (2)

wit = Di(`)wit−1 + uit, uit ∼ i.i.d.N (0, Ri) (3)

where F(`) and Di(`) denote lag polynomials of order three, and vt and the uit are Gaus-

sian white noise with variance Q and Ri, respectively. The uit are pairwise independent

and uncorrelated with vt. Moreover, the uit and vt are uncorrelated with initial condi-

tions, the wi0 and x0. These assumptions imply that the wit are pairwise independent and

uncorrelated with xt.

A few remarks are in order. First, it is worth pointing out that I do not attempt to iden-

tify structural innovations. Surprise movements in vt and in the wit are reduced-form and

reflect a convolution of structural innovations. Second, given xt, Equation (1) is a normal

linear regression with serially correlated error term. Because the wit are pairwise inde-

pendent and uncorrelated with xt, all comovement in sectoral investment comes from the

factor xt. It follows that, given xt, Equation (1) can be estimated equation-by-equation

for each sector. Note that sector-specific components are allowed to have different persis-
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tence and innovation variances across industries. Third, the dynamic response of sectoral

investment to innovations in the factor, vt, can be read off the coefficients of the infinite-

order lag polynomial Hi(1 − F(`)L)−1, where L denotes the lag operator. Hence, the

statistical model imposes that the impulse responses of investment to aggregate shocks

are proportional across industries.8 It bears pointing out that the shape of the impulse

responses itself is not pinned down by the model, but will be determined by the data.

Furthermore, the model does not restrict the impulse responses of sectoral investment to

sector-specific innovations to be proportional.

This paper uses Bayesian methods to estimate the model. In particular, I use Gibbs

sampling with a Metropolis-Hastings step to sample from the joint posterior density of

the factor and the model’s parameters. Given a draw of the model’s parameters, I sample

from the conditional posterior density of the factor, xt, using the Carter and Kohn (1994)

simulation smoother. Given a draw of the factor, I sample from the conditional posterior

densities of the parameters. Equation (2) is an AR process that can be estimated using a

variant of Chib and Greenberg (1994). Equation (1) is a normal linear regression model

with AR errors, which can be estimated using the method by Chib and Greenberg (1994).

The priors for the lag polynomials F(`) and Di(`) are centered around zero at each

lag. Like the Minnesota prior, the prior precision at more distant lags is higher. The

factor loadings Hi also have zero prior mean and unit variance. For the sector-specific

innovations Ri, I use the diffuse prior by Otrok and Whiteman (1998). More details on the

estimation methodology and priors are available in Appendix C.

8Maćkowiak et al. (2009) point out this insight. In the spirit of Jordà (2005), their dynamic factor model
estimates impulse responses at each horizon of interest without the restriction of proportionality. Like
Ramey (2013), I found that this approach can lead to erratic impulse responses of sectoral investment.
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3 Data

The disaggregate sectoral capital expenditure data comes from the NBER-CES Manufac-

turing Industry Database. This data set contains nominal investment spending and in-

vestment price deflators at the industry level for a representative sample of the US man-

ufacturing sector. The sample starts in 1958 and the frequency of the data is annual. The

level of aggregation is the 6-digit NAICS-level.9 The data set contains a balanced panel of

462 sectors.10 The median number of establishments per sector in the population is 342.11

The data set ends in 2009.12

I compute sectoral real investment by dividing nominal capital expenditures in each

year and sector by the corresponding investment price deflator. I convert each series into

growth rates by taking log differences. Furthermore, I standardize each growth rate se-

ries to have zero mean and unit variance. The standardization helps to abstract from

differences in the coefficients of the statistical model due to differences in sectoral volatil-

ity. This facilitates estimation and makes impulses responses easier to compare across

sectors.

In terms of sectoral comovement, the first principal component of the standardized

sectoral real investment growth rates explains roughly 14.5 percent of their total variance.

The next four principal components add 5.46 percent, 4.15 percent, 3.82 percent, and 3.62

percent each to the total variance explained. The drop and leveling off in incremental

explanatory power after the first principal component informally suggests the presence

of one factor, which is why I assume a single factor in the statistical model described in

the previous section.13 Also, the low portion of variation explained by the first princi-

9As an example, “Cookie and Cracker Manufacturing” is a 6-digit NAICS industry.
10In 1997, eleven industries were reclassified into manufacturing but capital expenditure data prior to

1997 is not available for them. Therefore, I do not consider them in the analysis.
11I obtain this number from the County Business Patterns as the median value for the years from 1998

to 2001. The industry classification used in the Country Business Patterns is different from the industry
classification used in the NBER-CES Manufacturing Industry Database in other years.

12See Bartelsman and Gray (1996) and Becker et al. (2016) for a detailed description of the NBER-CES
Manufacturing Industry Database.

13In a robustness exercise below, I find no evidence for additional factors.
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pal component already suggests that investment dynamics at the sector-level are mostly

driven by sector-specific shocks.

Aggregating over all sectors, the sample covers on average about 55 percent of US

manufacturing nonresidential, private fixed investment spending. In real terms, the lin-

ear correlation between total investment expenditures in the sample and US manufactur-

ing nonresidential, private fixed investment spending is 0.97.14 These statistics suggest

that the data is representative of the US manufacturing sector.

4 Empirical Results

The first part of this section presents the three main empirical findings of this paper: (i)

the impulse response of sectoral investment to aggregate shocks is hump-shaped, (ii) the

effects of sector-specific shocks on sectoral investment are not hump-shaped and decrease

monotonically, and (iii) sector-specific shocks account for the bulk of sectoral investment

volatility.

The second part assesses the robustness of my empirical findings by exploring whether

(i) there are multiple common factors, (ii) the results change at the 4-digit and 3-digit

NAICS industry-level, and (iii) the results are prone to the missing persistence bias pointed

out by Berger et al. (2015). I find that the results are robust along these dimensions.

Before I present my main empirical findings, let me give two additional results. First,

Figure 1 displays impulse responses of aggregate investment to a 1 percent innovation

over a 5-year horizon. I estimate the following AR(3) process to obtain these impulse

responses:

yt = c +
3

∑
j=1

φjyt−j + wt, (4)

where yt denotes the log change of aggregate investment in real terms and wt is Gaussian

14US manufacturing nonresidential, private fixed investment spending in nominal and real terms is avail-
able from the Bureau of Economic Analysis (BEA) Fixed Asset Accounts, Tables 4.7 and 4.8, respectively.
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Figure 1 – Estimated Response of Aggregate Investment to 1 Percent Innovation.
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Notes: This figure depicts three impulse responses of aggregate investment to a one percent innovation in year zero. Total
economy (NIPA) is the response of nonresidential, private fixed investment in the total economy using data from the Bureau
of Economic Analysis (BEA) Fixed Asset Accounts, Table 4.8. Manufacturing (NIPA) is the response of nonresidential, private
fixed investment in the manufacturing sector using data from the same source. Manufacturing (NBER-CES) is the response of
the aggregated sectoral real capital expenditure data from the NBER-CES Manufacturing Industry Database. Each impulse
response is obtained by estimating Equation (4) and computing the cumulative effects of an innovation in wt that leads to a one
percent increase on impact. The gray-shaded area corresponds to the 68 percent error bands for the response of Manufacturing
(NBER-CES) generated by taking 1,000 draws from the joint posterior density as described in the text.

white noise. The impulse response of the log-level of aggregate investment corresponds

to the cumulative impulse response of yt. Again, it is worth pointing out that this is a

reduced-form impulse response and does not reflect the effects of a structural macroeco-

nomic shock. I estimate Equation (4) using three different time series.15 The blue line in

Figure 1 shows the effects on US nonresidential, private fixed investment. In response

to a 1 percent innovation, aggregate investment rises further to 1.6 percent at the 1-year

horizon, giving rise to a hump-shape. The green line in Figure 1 is based on aggregate

manufacturing investment data, while the red line is based on the aggregated micro data.

The effects of an innovation on aggregate manufacturing investment are in both cases

slightly less pronounced and more short-lived, but the hump shape is nevertheless pre-

served. Notice that the error bands do not contain 0.01 at the 1-year horizon.16

15See Footnote 14 for data sources of manufacturing and total economy data used in the following.
16These are 68 percent error bands obtained by direct Monte Carlo sampling from the posterior distribu-

tion of the AR parameters. I take 1,000 draws and use Jeffrey’s noninformative prior in estimation.
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Figure 2 – Estimated Common Factor.
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Notes: This figure shows the pointwise posterior median estimate of the common factor, xt (left axis), in the dynamic factor
model given by Equations (1)-(3). The model is estimated using Gibbs-sampling with a Metropolis step as described in the text.
∆VAMFCT

t (right axis) is the growth rate of real value added in the manufacturing industry using GDP-by-industry data from the
BEA Annual Industry Account. The correlation coefficient between xt and ∆VAMFCT

t , ρ, is 0.55. The gray-shaded regions show
NBER recessions.

Second, in Figure 2, the solid blue line depicts the pointwise posterior median estimate

of the common factor. The dashed black line depicts the growth rate of value added in

the US manufacturing sector for comparison.17 The gray-shaded regions correspond to

NBER recessions. The figure suggests that the common factor is pro-cyclical. Indeed, the

correlation with US manufacturing value added growth is 0.55. Moreover, the correlation

between the factor and US manufacturing investment growth is 0.87.

In sum, these results show why the estimated statistical model for disaggregate sec-

toral capital expenditure data from manufacturing industries is useful. The impulse re-

sponses in the manufacturing sector are very similar to that of the total economy. More-

over, the statistical model provides an estimate of common investment dynamics strongly

correlated with the business cycle. We can now ask what are the effects of macroeconomic

and sector-specific shocks on sectoral investment.

17The data source for the US manufacturing value added series is the BEA Industry Economic Accounts.
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4.1 Main Results

The first empirical main result is that the impulse response of sectoral investment to ag-

gregate shocks is protracted and hump-shaped. To obtain this result, I first sample ran-

domly 1,000 parameter draws from the joint posterior density. Second, for each sector

and every draw, I compute the cumulative impulse response of investment growth in re-

sponse to an aggregate shock that leads to a 1 percent increase on impact. The cumulative

impulse response corresponds to the impulse response of the log-level of sectoral invest-

ment. Third, I define the median sector as the pointwise 50th percentile of the distribution

of impulse responses obtained in the previous step. Recall that the impulse responses of

investment to aggregate shocks are proportional across industries. Given a parameter

draw, the pointwise cross-sectional median of impulse responses therefore corresponds

to the same industry at all horizons. Moreover, the impulse responses are scaled to imply

an increase of investment by 1 percent on impact in each sector. It follows that the impulse

responses of investment to aggregate shocks are the same in all sectors for a given param-

eter draw. The form of impulse responses across draws varies, however. The median

sector measures the central tendency of impulse responses at each horizon. Fourth, I also

compute the pointwise 16th and 84th percentiles of the distribution of impulse responses

obtained in the second step. I use these statistics to characterize posterior uncertainty

about the impulse responses. From the above, it follows that posterior uncertainty re-

flects posterior parameter uncertainty only. Figure 3 shows the result of this procedure.

In response to an aggregate shock that leads to a 1 percent increase on impact, sectoral

investment spending in the median sector rises further to 1.2 percent at the 1-year hori-

zon, giving rise to a hump-shape. Note that the posterior density at the 1-year horizon

lies above 0.01. At the 2-year horizon, sectoral investment then settles approximately at

the long-run response.

To shed light on posterior uncertainty from a different angle, I compute the percentage

share of investment responses to aggregate shocks that have a hump-shaped form. I con-
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Figure 3 – Estimated Response of Sectoral Investment to 1 Percent Aggregate Shock.

0 1 2 3 4 5
0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

years

pe
rc

en
t

Notes: This figure plots the impulse response of sectoral investment in the median industry to a one percent aggregate shock
in year zero. The impulse response is obtained by estimating the dynamic factor model in Equations (1)-(3) and computing the
cumulative effects of an innovation in vt that leads to a one percent increase on impact. The gray-shaded area corresponds to
the 68 percent error bands generated by taking 1,000 draws from the joint posterior density as described in the text. The median
industry is defined as the pointwise median impulse response across all draws and sectors.

sider all investment responses obtained in the second step of the above procedure. About

83 percent of the investment responses peak between horizons 0 and 5. If, in addition,

the requirement that the response is monotonically increasing to the left of the peak is

imposed, approximately 76 percent of the impulse responses have a hump-shaped form.

The second empirical main result is that the effects of sector-specific shocks on sectoral

investment are not hump-shaped but monotonically decreasing. I use the same procedure

as above to conduct posterior inference on the impulse response to a sector-specific shock

that leads to a 1 percent increase in sectoral investment. However, the median sector now

measures the central tendency of impulses responses at each horizon both across sectors

and draws. Similarly, the posterior uncertainty now reflects both posterior parameter

uncertainty and cross-sectional variation. The reason for this difference with respect to

the impulse responses to aggregate shocks is that the statistical model does not restrict

the impulse responses of sectoral investment to sector-specific shocks to be proportional.

Figure 4 depicts the result. In response to a sector-specific shock that leads to a 1 percent
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Figure 4 – Estimated Response of Sectoral Investment to 1 Percent Sector-Specific Shock.
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Notes: This figure plots the impulse response of sectoral investment in the median industry to a one percent sector-specific shock
in year zero. The impulse response is obtained by estimating the dynamic factor model in Equations (1)-(3) and computing the
cumulative effects of an innovation in uit that leads to a one percent increase on impact. The gray-shaded area corresponds to
the 68 percent error bands generated by taking 1,000 draws from the joint posterior density as described in the text. The median
industry is defined as the pointwise median impulse response across all draws and sectors.

increase on impact, sectoral investment spending in the median sector falls to 0.7 percent

at the 1-year horizon, which equals approximately the long-run response. In compari-

son to the impulse response to aggregate shocks, the effects of sector-specific shocks on

sectoral investment are short-lived and monotonically decreasing.

In the case of sector-specific shocks, only about 14 percent of the investment responses

drawn peak between horizons 0 and 5. This percentage share reduces further to 8 per-

cent if only those responses that are monotonically increasing to the left of the peak are

considered.

The third empirical main result is that sector-specific shocks explain the bulk of sec-

toral investment volatility. To obtain this result, recall that the assumptions of the econo-

metric framework imply that the factor, xt, and the sector-specific term, wit, are uncor-

related. Hence, the variance of the sectoral investment growth rate, yit, can be written

as Var[yit] = H2
i Var[xt] + Var[wit]. The first term captures the contribution of aggregate

shocks, the second term the contribution of sector-specific shocks to sectoral investment
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volatility. First, I use the posterior median estimate of F(`) to compute the unconditional

variance of the process for xt, Var[xt]. Second, I compute the unconditional variance of

the process for wit, Var[wit], using the posterior median estimates of Di(`) and Ri for each

sector. Third, I compute the variance shares of aggregate and sector-specific shocks in sec-

toral investment volatility for each sector. Fourth, I define the median industry as the 50th

percentile of the cross-sectional distribution of variance shares. I find that sector-specific

shocks account for about 90 percent, aggregate shocks for about 10 percent of sectoral

investment volatility in the median sector.

4.2 Robustness

This subsection investigates the robustness of my empirical findings with respect to the

number of factors, the level of aggregation, and a potential bias in the estimates towards

less persistence. The differential effects on investment remain to hold in each of these

exercises.

4.2.1 Number of Factors

The statistical model in Equation (1) assumes a single common factor. To test for the pres-

ence of additional common factors, I study the cross-sectional correlation of the sector-

specific terms, wit. Recall that the factors account for all the comovement in the ob-

servable data, whereas the sector-specific terms are assumed to be uncorrelated in the

cross-section. If there are additional factors omitted from Equation (1), the comovement

stemming from them has to be captured by the sector-specific terms. Therefore, I take

a random draw from the posterior distribution of the factor, xt, and the factor loading,

Hi, to compute the wit. Next, I compute the median of the absolute value of the cross-

sectional correlation, |corr[wi, wj]|, ∀i 6= j. I repeat this procedure 1,000 times. Figure 5

displays the histogram of this statistic. The median of this distribution is low and equals

0.1091, which means that there is little cross-sectional correlation in the sectoral compo-
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Figure 5 – Testing for the Number of Common Factors.
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Notes: The histogram in this figure depicts the posterior density of the statistic defined in the text to test for the number of
common factors. The test statistic is the median absolute value of cross-sectional correlations between the sector-specific com-
ponents of the dynamic factor model in Equations (1)-(3), obtained by taking a draw from the joint posterior density of the
common factor and the model’s parameters, computing the pairwise cross-sectional correlations between the wit in Equation (1),
corr

[
wi , wj

]
, ∀i 6= j, taking absolute values, and retaining the median across sectors. The posterior density of this statistic is

simulated for 1,000 draws.

nents. This exercise suggests that there are no additional factors relevant to explain the

cross-sectional comovement in the sectoral investment.

4.2.2 Level of Aggregation

I re-estimate the model at the 4-digit and 3-digit NAICS industry level to test if the results

depend on the level of aggregation.18 Figure 6 contrasts the posterior median estimate

of the common factor at different levels of aggregation. The solid blue line depicts the

estimate based on 6-digit NAICS industry data shown in Figure 2. The red dash-dot line

and the green dashed line show the estimates obtained from using 4-digit and 3-digit

NAICS industry data, respectively. Figure 6 shows that the median estimates of the factor

have virtually the same dynamics at different levels of aggregation. At higher levels of

aggregation, the factor captures more comovement in sectoral investment, which is why

18I follow the approach by the BEA to aggregate chain-type quantity indices and aggregate the real in-
vestment quantity indices to the 4-digit and 3-digit NAICS industry level. There are 86 industries at the
4-digit and 21 industries at the 3-digit NAICS industry level in the US manufacturing sector.
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Figure 6 – Estimated Common Factor by Level of Aggregation.
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Notes: This figure shows three estimates of the common factor, xt, obtained by estimating the dynamic factor model in Equa-
tions (1)-(3) using sectoral real capital expenditure data at different levels of aggregation. 6-digit NAICS is the pointwise posterior
median estimate shown in Figure 2 using data at the 6-digit North American Industry Classification System (NAICS) industry
level. 4-digit NAICS is the pointwise posterior median estimate using 4-digit NAICS industry-level data. 3-digit NAICS is the
pointwise posterior median estimate using data at the 3-digit NAICS industry level. The gray-shaded regions show NBER
recessions.

the volatility of the estimates increases. Figures 7 and 8 show that the impulse responses

to shocks also do not change with the level of aggregation. Figure 7 contrasts the impulse

responses of sectoral investment to aggregate shocks at the 6-digit, the 4-digit, and the

3-digit NAICS industry level. The line styles and colors are the same as in Figure 6. The

figures shows that the impulse responses to aggregate shocks are qualitatively and, to

a large extent, quantitatively the same and do not depend on the level of aggregation.

Similarly, Figure 8 depicts the effects of sector-specific shocks on sectoral investment at

different levels of aggregation. The line styles and colors are again the same as above. In

all three cases, the effects of sector-specific shocks are monotonically decreasing. As the

sectors become more aggregate, the impulse responses become more gradual.

4.2.3 Missing Persistence Bias

Berger et al. (2015) prove that the estimated persistence of aggregate time series with

lumpy behavior at the micro level is biased towards zero at low levels of aggregation. The
17



Figure 7 – Estimated Response to 1 Percent Aggregate Shock by Level of Aggregation.
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Notes: This figure plots impulse responses of sectoral investment at different levels of aggregation to a one percent aggregate
shock in year zero. 6-digit NAICS is the response in the median industry shown in Figure 3 using data at the 6-digit NAICS
industry level. 4-digit NAICS is the response in the median industry using 4-digit NAICS industry-level data. 3-digit NAICS is
the response in the median industry at the 3-digit NAICS industry level. See the notes to Figure 3 for further information.

Figure 8 – Estimated Response to 1 Percent Sector-Specific Shock by Level of Aggregation.
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Notes: This figure plots impulse responses of sectoral investment at different levels of aggregation to a one percent sector-specific
shock in year zero. 6-digit NAICS is the response in the median industry shown in Figure 3 using data at the 6-digit NAICS
industry level. 4-digit NAICS is the response in the median industry using 4-digit NAICS industry-level data. 3-digit NAICS is
the response in the median industry at the 3-digit NAICS industry level. See the notes to Figure 4 for further information.
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reason for the bias is an identification problem: the econometrician cannot disentangle the

adjustment in response to contemporaneous shocks from the adjustment to past shocks,

and attributes all adjustment to the contemporaneous innovation. At higher levels of

aggregation, the cross-sectional correlation of capital adjustments across sectors informs

the econometrician and the bias vanishes. Indeed, Figure 8 suggests that the persistence

of impulse responses of sectoral investment to sector-specific shocks increases with the

level of aggregation. To account for this bias, Berger et al. (2015) propose to use proxy

variables for the shocks.

To verify the robustness of my results, I follow Berger et al. (2015) and use proxy vari-

ables for the shocks to re-estimate impulse responses. More specifically, I calculate growth

rates of Solow residuals for each sector from the NBER-CES data using a Cobb-Douglas

production function for real value added in employment and real capital. Since the data

set does not contain a deflator for value added, I use the GDP deflator. The employment

share equals the average percentage share of payroll in value added in the ongoing and in

the previous year. The capital share equals the residual factor share. Next, I decompose

the sectoral Solow residual growth rates into common and sectoral components, denoted

TFPAgg
t and TFPSect

t , using principal components. Using these variables as proxies for

aggregate and sector-specific shocks, I run a regression of the sectoral investment growth

rate on the contemporaneous and lagged values of TFPAgg
t and TFPSect

t :

yit =
5

∑
j=0

αijTFPAgg
t−j +

5

∑
j=0

βijTFPSect
t−j + εit. (5)

Using TFPAgg
t and TFPSect

t as proxy variables for each shock, the impulse responses of

sectoral investment to aggregate and sector-specific shocks after h years are just the sum

of the coefficients on the contemporaneous value and the first h lags of aggregate and

sector-specific TFP: ∑h
j=0 αij and ∑h

j=0 βij. To test if sectoral investment responds faster

to sector-specific shocks than to aggregate shocks, I follow Maćkowiak et al. (2009) and
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measure the speed of adjustment for each sector i by the following statistic:

τ
Agg
i =

∑1
h=0|∑h

j=0 αij|

∑3
h=2|∑

h
j=0 αij|

and τSect
i =

∑1
h=0|∑h

j=0 βij|

∑3
h=2|∑

h
j=0 βij|

. (6)

For each shock, this statistic captures the short-run response of sectoral investment spend-

ing relative to the long-run response. I define the short-run response as the average abso-

lute effect on sectoral investment in the impact period and at the 1-year horizon. Similarly,

I take the long-run response as the average absolute effect at the 2-year and at the 3-year

horizon.

Figure 9 plots the histogram of the cross-sectional distribution for the speed of adjust-

ment. The upper panel shows the speed of adjustment to aggregate shocks, the lower

panel the speed of adjustment to sector-specific shocks. The median of the distribution

is 0.6241 in the top panel and 0.9113 in the bottom panel. This means that adjustment

of the median sector to aggregate shocks in the short run is less than two-thirds of the

adjustment in the long run, while the adjustment to sector-specific shocks in the short run

is about as large as the adjustment in the long run. In other words, investment adjusts

relatively faster to sector-specific TFP shocks than to aggregate TFP shocks. This exercise

suggests that the main results of this paper are not prone to the missing persistence bias.

An interesting observation that emerges from this exercise regards the nature of the

aggregate shock. In Figure 10, I contrast the pointwise posterior median estimate of the

common factor with the aggregate component of sectoral TFP growth. The two shock

measures are very similar, the correlation between both series is 0.63. This is at least

suggestive that the estimated aggregate shock in the statistical model can be interpreted

as innovations to TFP. In the theoretical model in the next section, I will assume that TFP

shocks are the driving force of investment activity.
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Figure 9 – Speed of Adjustment to Shocks Using Proxy Variables for Each Shock.
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Notes: This figure depicts histograms of the speed of adjustment to aggregate shocks and sector-specific shocks using direct
proxy variables for each shock. The proxy variables for each shock are measures of aggregate and sector-specific total factor
productivity (TFP), respectively, constructed as described in the text. The top panel plots the cross-section of the speed of
adjustment statistic for aggregate shocks, τ

Agg
i , the bottom panel the cross-section of the speed of adjustment statistic for sector-

specific shocks, τSect
i , both defined in Equation (6). Each panel trims the histogram at the maximum of the 95th percentiles of

either the τ
Agg
i or the τSect

i .

Figure 10 – Estimated Common Factor and Aggregate Total Factor Productivity.
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Notes: This figure plots the pointwise posterior median estimate of the common factor, xt, in the dynamic factor model given
by Equations (1)-(3). The model is estimated using Gibbs-sampling with a Metropolis step as described in the text. TFP is the
first principal component of sectoral TFP growth rates constructed as described in the text. The correlation coefficient between
xt and TFP, ρ, is 0.63. The gray-shaded regions show NBER recessions.
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5 Investment under Rational Inattention

In this section, I build a model of investment with convex capital adjustment costs and

rational inattention. In the next section, I calibrate and solve the model to investigate if it

can account for the empirical findings presented in this paper.

5.1 Setup

The economy consists of a large number of sectors, which are each populated by a repre-

sentative production unit indexed by i. Time is discrete. Production unit i operates the

production function

Yit = ZtEitKα
it, (7)

where Kit denotes the current stock of capital, Zt and Eit are aggregate and sectoral total

factor productivity (TFP), and α is a parameter.19

Production units own the capital stock, which is specific to their sector. The law of

motion for capital is

Kit+1 = (1− δ)Kit + Iit, (8)

where Iit is investment and δ denotes the rate of depreciation. Changing the level of capi-

tal is costly because of installation costs and results in a loss of profit. Capital adjustment

cost are given by γ
2

(
Iit
Kit

)2
Kit. Period profits of production unit i thus read

Yit − Iit −
γ

2

(
Iit

Kit

)2

Kit. (9)

The sectoral and aggregate components of TFP each follow stationary Gaussian first-

19Because each sector has a representative product unit, the term “sectoral” henceforth refers to the id-
iosyncratic variables of the production unit in that sector.
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order autoregressive processes in logs:

ln Zt = ρz ln Zt−1 + et, (10)

ln Eit = ρε ln Eit−1 + vit, (11)

where the error terms are Gaussian white noise with distributions et ∼ N (0, σ2
e ) and

vit ∼ N (0, σ2
v ), respectively. The sector-specific shocks, vit, are pairwise independent in

the cross-section. Moreover, the vit are independent of aggregate shocks, et.

In each production unit, a decision-maker maximizes the expected net present value

of current and future profits with discount factor β. In period -1, decision-makers de-

cide how much attention to pay. Paying attention is costly and decision-makers will

not attend to all available information. Given less than perfect information, decision-

makers choose investment. I begin with the derivation of the objective function given the

information they do acquire. The following section describes the attention problem of

decision-makers.

Substituting the production function in Equation (7) and the law of motion for capital

in Equation (8) into the expression for period profit in Equation (9) yields the period profit

function

π (Kit, Kit+1, Zt, Eit) = ZtEitKα
it − Kit+1 + (1− δ)Kit −

γ

2

(
Kit+1

Kit
− (1− δ)

)2

Kit. (12)

Rewriting Equation (12) in log-deviations from the non-stochastic steady state, multiply-

ing with βt, summing over all periods from 0 to ∞, and finally taking expectations con-

ditional on information in period −1 yields the objective function for production unit i.

I work with a log-quadratic approximation around the non-stochastic steady state. That

is, I compute a second-order Taylor approximation to the objective function and derive

the following expression for the expected discounted sum of losses in profit when the

actual capital choice given less than perfect information, kit+1, deviates from the profit-
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maximizing capital choice under perfect information, k∗it+1:

∞

∑
t=0

βtEi,−1

{
1
2

H0
(
kit+1 − k∗it+1

)2
+
(
kit+1 − k∗it+1

)
H1
(
kit+2 − k∗it+2

)}
, (13)

where H0 = K
[
−γ + β

(
α(α− 1)Kα−1 − γ

)]
and H1 = βγK. Here, K denotes the value

of capital in the non-stochastic steady state and lower case letters denote log-deviations

from the non-stochastic steady state, for example kit+1 = ln Kit+1 − ln K.

After the log-quadratic approximation, the profit-maximizing capital choice under

perfect information is given by

k∗it+1 =
γk∗it + βEt

{
γk∗it+2 + αKα−1

(zt+1 + εit+1)
}

γ + βγ− βα(α− 1)Kα−1 . (14)

Here, Et denotes the expectation operator conditioned on the history of the economy up

to and including period t.20 Equation (14) is the usual log-linearized optimality condition

for capital in a partial equilibrium model with capital adjustment costs, which can be

expressed as a linear function of current and past shocks:

k∗it+1 = A1(`)et︸ ︷︷ ︸
k∗zit+1

+ A2(`)vit︸ ︷︷ ︸
k∗εit+1

, (15)

where A1(`) and A2(`) are infinite-order lag polynomials.21

The actual capital choice by decision-makers given less than perfect information fol-

20Appendix E contains the derivation of Equations (13) and (14).
21Let λ1 and λ2 denote the roots of the characteristic equation of the linear difference equation appear-

ing in Equation (14). Without loss of generality, suppose that λ1 < λ2. The coefficient corresponding

to lag j in A1(`) equals ρ
j
z

γ
αKα−1−ρz

λ2−ρz

1−(λ1/ρz)
j+1

1−λ1/ρz
, and the coefficient corresponding to lag j in A2(`) equals

ρ
j
ε

γ
αKα−1−ρε

λ2−ρε

1−(λ1/ρε)
j+1

1−λ1/ρε
.
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lows the stochastic process

kit+1 = B1(`)et + C1(`)ue
it︸ ︷︷ ︸

kz
it+1

+ B2(`)vit + C2(`)uv
it︸ ︷︷ ︸

kε
it+1

, (16)

where Bs(`) and Cs(`) with s = 1, 2 are infinite-order lag polynomials. Moreover, ue
it and

uv
it are Gaussian white noise with unit variance, independent of et and vit, independent of

each other, and independent across production units.

Given less than perfect information, the actual capital choice by decision-makers dif-

fers from the profit-maximizing capital choice under perfect information along two di-

mensions. First, capital may respond with dampening and delay to aggregate and sector-

specific shocks, i.e., Bs(`) 6= As(`) for some s. Second, the actual capital choice may be

noisy, i.e., Cs(`) 6= 0 for some s.22 Clearly, if decision-makers know the history of the

economy up to and including period t, they will choose Bs(`) = As(`) and Cs(`) = 0 for

s = 1, 2 and the actual capital choice coincides with that under perfect information.

5.2 Information Structure

All information is freely available in the economy. Paying attention is costly, however. It

takes time and mental capacity to process information about shocks and translate it into

decisions. Following Sims (2003), I assume that paying attention is modelled as uncer-

tainty reduction, where uncertainty is measured by entropy. The amount of information

that the actual capital choice, kit+1, contains about the profit-maximizing capital choice

under perfect information, k∗it+1, cannot be greater than κ ≥ 0. Formally,

I
({

k∗zit+1, k∗εit+1
}

,
{

kz
it+1, kε

it+1
})
≤ κ, (17)

where the operator I is defined in Appendix D.

22Maćkowiak and Wiederholt (2015) also make these assumptions.
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Decision-makers choose how much attention to pay. Paying attention is costly and

results in loss of profit. The per-period marginal cost of paying attention equals λ.

5.3 Attention Problem

In period −1, the decision-maker in production unit i chooses the allocation of attention

and hence a stochastic process for kit+1 to minimize the expected discounted value of

current and future profit losses:

max
κ,B(`),C(`)

{
∞

∑
t=0

βtEi,−1

{
1
2

H0
(
kit+1 − k∗it+1

)2
+
(
kit+1 − k∗it+1

)
H1
(
kit+2 − k∗it+2

)}
− λ

1− β
κ

}
(18)

subject to the law of motion for the profit-maximizing capital choice under perfect infor-

mation

k∗it+1 = A1(`)et + A2(`)vit, (19)

the law of motion for the actual capital choice

kit+1 = B1(`)et + C1(`)ue
it + B2(`)vit + C2(`)uv

it, (20)

and the information flow constraint

I
({

k∗zit+1, k∗εit+1
}

,
{

kz
it+1, kε

it+1
})
≤ κ. (21)

Decision-makers weigh the benefit of paying more attention so that their actual capital

choices follow more closely the profit-maximizing capital choices under perfect informa-

tion against the cost of paying attention. Note that the decision to pay more attention to

one shock does not have an effect on the information acquisition about the other shock,

given a constant marginal cost of attention.
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6 Model Results

This section calibrates and solves the model. I find that the model is able to explain the

discrepancy in the empirical responses of sectoral investment to differential shocks.

6.1 Calibration

I calibrate the model parameters to standard values from the investment literature to

evaluate the model. A period in the model corresponds to a year. The parameters for

β and δ are chosen to match empirical moments reported by Khan and Thomas (2008).

The discount factor β is set to imply discounting of future profits by decision makers at

an annual real interest rate of 4 percent, which gives β = 0.9615. The depreciation rate

is δ = 0.10, which implies that the steady-state investment-to-capital-ratio equals 10 per-

cent. Bachmann et al. (2013) estimate the value-added-weighted average persistence and

value-added-weighted average standard deviation of sectoral TFP from Solow residuals

measured using the same data source as this paper, which leads to the values ρε = 0.55

and σv = 0.0501. Khan and Thomas (2008) estimate the persistence and volatility of ag-

gregate TFP from Solow residuals and find ρz = 0.8590 and σe = 0.0140. Because the

production function of production units implicitly reflect the output of a whole sector, I

assume that the arguments invoked to justify decreasing returns to scale such as span-of-

control do not apply. Indeed, averaging over the returns-to-scale estimates by Basu et al.

(2006) for 2-digit manufacturing industries gives 0.94. However, for the steady state level

of capital to be uniquely defined, some curvature in production is required. For this rea-

son, the parameter α is set to 0.99. The capital adjustment costs parameter γ equals 0.5,

a value at the lower end of estimates in the literature. Finally, the parameter λ is set to

imply a per-period marginal cost of attention equal to 0.06% of steady state profits. This

value corresponds to the value for the marginal cost of attention estimated by Maćkowiak

and Wiederholt (2015) in the case of the price setting decisions. Given that rational inat-
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tention is a friction that sits on the level of decision-makers, the marginal costs of paying

attention should be the same order of magnitude for any profit-relevant decision.

6.2 Numerical Solution

I use numerical methods to solve the firm’s attention problem. Following Maćkowiak and

Wiederholt (2015), I parametrize the infinite-order lag polynomials Bs(`) and Cs(`) with

s = 1, 2 as lag polynomials of ARMA(2,2) and AR(1) processes, respectively. To make the

problem finite-dimensional, I truncate the lag polynomials to degree 250. Similarly, I eval-

uate the information flow constraint in Equation (17) for 250 periods. I use the non-linear

optimization routine by Kuntsevich and Kappel (1997) to solve for the coefficients in the

lag polynomials and the allocation of attention. To concentrate the numerical search on

regions of the parameter space that imply invertibility of the AR parts in the lag polyno-

mials Bs(`) and Cs(`) with s = 1, 2, I reparameterize the problem by adapting the method

of Monahan (1984).

6.3 Model Investment Responses

The main quantitative result from the model with capital adjustment costs and rational

inattention, depicted in Figure 11, is that the response of sectoral investment to aggregate

shocks displays a hump-shaped form. By contrast, the response of sectoral investment to

sector-specific shocks is monotonically decreasing.

Figure 11 shows the model responses of sectoral investment to aggregate and sector-

specific shocks over a 5 year horizon in the top and bottom panel, respectively. The solid

black lines in both panels show the case of investment with capital adjustment costs under

perfect information. The dashed blue lines in both panels show the case of investment

with capital adjustment costs under rational inattention. The size of each shock is scaled

to imply a 1 percent increase of sectoral investment under perfect information.
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Figure 11 – Model Responses to Aggregate and Sector-Specific Shocks
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Notes: This figure depicts impulse responses of sectoral investment to aggregate and sector-specific shocks in the model with
capital adjustment costs and two different information structures. The top panel shows the impulse response to aggregate
shocks, the bottom panel the impulse response to sector-specific shocks. Perfect Information plots the response to a one percent
innovation when decision-makers know the history of the economy up to and including period t . Rational Inattention depicts the
response for the same shock when the information-flow constraint in Equation (17) is binding. The calibration and numerical
solution of the model follows the description in the text.

It is well-known that capital adjustment costs under perfect information do not give

rise to hump-shaped investment responses; in Figure 11 the peak response of sectoral

investment to both aggregate and sector-specific shocks occurs in the impact period in this

case. Due to increasing marginal costs of capital adjustment, however, decision-makers

delay some of their investment spending to future periods, which explains the persistence

in sectoral investment responses. Note that the effects in the top panel are longer-lasting

than those in the bottom panel. In the calibration, aggregate shocks are more persistent

than sector-specific shocks. Hence, the optimal level of capital decays more slowly in

response to these shocks.

Now consider the case with the information flow constraint binding. The response of

sectoral investment to aggregate shocks becomes hump-shaped. An aggregate shock that

increases sectoral investment spending by 1 percent under perfect information leads to a

0.84 increase on impact under rational inattention. At the 1-year horizon, sectoral invest-

ment rises further to 0.90 percent. On the other hand, the response of sectoral investment
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to sector-specific shocks is still monotonically decreasing. A sector-specific shock that in-

creases sectoral investment spending by 1 percent under perfect information leads to a

0.78 increase on impact under rational inattention. At the 1-year horizon, sectoral invest-

ment falls to 0.59 percent.

Under rational inattention, the effects of both shocks on sectoral investment are damp-

ened in the impact of period of the shock. The reason for this dampening is that decision-

makers have less than perfect information about the current values of aggregate and

sector-specific shocks. Note that the dampening in both responses is about equal. In-

deed, decision-makers on average attend to information about aggregate shocks equal to

1.2943 bits per period and information about sector-specific shocks equal to 1.0867 bits

per period.

Decision-makers pay about as much attention to aggregate and sector-specific shocks

even though the unconditional variance of the latter is greater by a factor of about five. To

understand this perhaps surprising result, consider the expression for loss of profit due

sub-optimal investment decisions in Equation (13). The first term in expectation captures

the variance of errors when the actual capital choice given less than perfect information

deviates from the profit-maximizing capital choice under perfect information. The second

term in expectation captures the first-order autocovariance of errors. The goal of decision-

makers is to minimize the variance of errors and to make only those mistakes that do

not persistent extensively over time. Notice that these two objectives do not necessarily

coincide. On the one hand, because the unconditional variance of sector-specific shocks

is larger, decision-makers wish to pay more attention to these shocks. On the other hand,

because aggregate shocks are more persistent, the mistakes from not paying attention to

these shocks last longer over time. In the calibrated version of the model, these two effects

together are about the same for both shocks, which is why decision-makers roughly pay

the same amount of attention.

At the 1-year horizon, there is further uncertainty reduction. Decision-makers learn
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that their optimal capital stock is larger and increase investment spending. This effect is

absent under perfect information. At the 1-year horizon, the optimal level of capital is

higher in response to aggregate shocks than in response to sector-specific shocks because

the former are more persistent than the latter. As a result, decision-makers expand their

capital expenditures more strongly and the response of sectoral investment to aggregate

shocks becomes hump-shaped.

In the model, the response of sectoral investment to aggregate shocks is the same in

every sector. Therefore, aggregation across all production units preserve the form of the

investment response to aggregate shocks. My results therefore provide a new micro-

founded explanation for the hump-shaped response of aggregate investment which is a

salient feature of aggregate data.

Crucially, both capital adjustment costs and rational inattention are necessary to ob-

tain these results. The solid black lines in Figure 11 illustrate that capital adjustment costs

alone do not give rise to hump-shaped investment responses. Next, I will consider a

model without capital adjustment costs and rational inattention. In this model, the re-

sponse of investment to aggregate shocks is also not hump-shaped.

6.4 Model without Capital Adjustment Costs

The attention problem of decision-makers simplifies when adjusting the capital stock is

not costly. Setting γ = 0 in Equation (13), we have H0 = βα(α− 1)Kα and H1 = 0. The

profit-maximizing capital choice under perfect information in Equation (14) becomes

k∗it+1 =
Et {zt+1 + εit+1}

1− α
, (22)

and the expression for loss of profit in Equation (13) reads:

∞

∑
t=0

βtEi,−1

{
1
2

(
βα(1− α)Kα

) (
kit+1 − k∗it+1

)2
}

. (23)
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Notice that the per-period loss becomes static and does not depend on past or future

values of capital, even though choosing capital is an intertemporal decision. The reason

for this result is the fact that the capital choice for the next period is independent of the

current level of capital without capital adjustment costs.

I use the same calibration and the same numerical solution method to solve the deci-

sion maker’s attention problem in the model without capital adjustment costs. In order

to make the two models comparable, however, I fix the amount of attention, κ, at the

same level as in the model with capital adjustment costs. The main results from this exer-

cise are that (i) the effects of aggregate shocks on sectoral investment are protracted, but

not hump-shaped and (ii) the effects of sector-specific shocks on sectoral investment are

short-lived and monotonically decreasing.

Figure 12 displays the response of sectoral investment to aggregate and sector-specific

shocks in the model without capital adjustment costs over a 5 year horizon. The solid

black lines in both panels show the case of investment under perfect information. The

dashed blue lines in both panels show the case of investment under rational inattention.

The size of each shock is scaled to imply a 1 percent increase of sectoral investment under

perfect information.

Without capital adjustment costs and the constraint on information flow, a decision-

maker optimally chooses instantaneous adjustment of capital to the optimal level. Sec-

toral investment consequently spikes on impact. The effects of shocks to TFP dissipate

over time and the optimal level of capital reverts to the non-stochastic steady state. In re-

sponse to aggregate shocks, the amount of depreciation per period roughly corresponds

to the decrease in the optimal capital level, which is why sectoral investment is essentially

zero at the 1-year horizon and thereafter. Because sector-specific shocks are less persis-

tent, the optimal level of capital decays faster, which is why sectoral investment turns

negative at the 1-year horizon and thereafter.

Now consider the case with the information flow constraint binding. Relative to the
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Figure 12 – Model Responses to Shocks without Capital Adjustment Costs
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Notes: This figure depicts impulse responses of sectoral investment to aggregate and sector-specific shocks in the model without
capital adjustment costs and two different information structures. The top panel shows the impulse response to aggregate
shocks, the bottom panel the impulse response to sector-specific shocks. Perfect Information plots the response to a one percent
innovation when decision-makers know the history of the economy up to and including period t . Rational Inattention depicts the
response for the same shock when the information-flow constraint in Equation (17) is binding. The calibration and numerical
solution of the model follows the description in the text.

perfect information case, the response of sectoral investment to aggregate shocks is damp-

ened. Moreover, the effects of aggregate shocks are protracted; there is still some positive

investment at the 1-year horizon, but the response is not hump-shaped. On the other

hand, the response of sectoral investment to sector-specific shocks is almost identical to

the perfect information case. The reason for this result is that decision-makers now al-

locate a larger share of attention to sector-specific shocks, about 2/3. Decision-makers

choose a different allocation of attention without capital adjustment costs because their

errors do not persist over time in this case. The information flow about sectoral TFP

thus closely resembles that under perfect information. The information about aggregate

shocks is more noisy. On impact the decision-maker dampens the response of sectoral

investment because of higher uncertainty. At the 1-year horizon, uncertainty declines,

decision-makers learn that the optimal capital stock is larger, and choose to invest. How-

ever, the bulk of capital adjustment occurs in the impact period of the shock in the absence
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of capital adjustment costs and the response does not display a hump-shaped form in this

case.

7 Conclusion

In the median US manufacturing sector, the impulse response of sectoral investment to

aggregate shocks is hump-shaped, just as in aggregate data. By contrast, the effects of

sector-specific shocks are monotonically decreasing. I solve a model of investment with

convex capital adjustment costs and rational inattention. The model predicts that the

response of sectoral investment to aggregate shocks is hump-shaped, and monotonically

decreasing in response to sector-specific shocks, hence matching the empirical findings of

this paper.
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MATĚJKA, F. (2016): “Rationally Inattentive Seller: Sales and Discrete Pricing,” Review of

Economic Studies, 83, 1125–1155.
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A Model with Investment Adjustment Costs

The purpose of this appendix is to investigate whether other, existing propagation mecha-

nisms are consistent with my empirical findings. Following Christiano et al. (2005), many

business cycle models assume convex costs in the growth rate of investment, so-called

investment adjustment costs, so as to match the hump-shaped response of aggregate in-

vestment to macroeconomic shocks. This appendix outlines and calibrates a model with

investment adjustment costs and perfect information. I use the model to study the re-

sponses of sectoral investment to aggregate and sector-specific shocks under this alterna-

tive propagation mechanism.

The model takes into account the effects of time aggregation on the estimated invest-

ment responses. Remember that the capital expenditure data in the estimation of the

statistical model is at the yearly frequency. It is possible that the speed of adjustment

following sector-specific shocks is faster (absent general equilibrium price responses, for

instance) and that the response of sectoral investment is also hump-shaped at higher fre-

quencies. In this case, time aggregation from quarterly to yearly frequency can obtain

a monotonically decreasing response to sector-specific shocks. Therefore, I calibrate the

model to the quarterly frequency and time-aggregate the theoretical investment responses

to the yearly frequency.

My findings are as follows. In partial equilibrium, the effects of both aggregate and

sector-specific shocks on sectoral investment are hump-shaped. In addition, if a house-

hold sector closes the model in general equilibrium, the response of sectoral investment

to sector-specific shocks becomes relatively more hump-shaped in the sense that the peak

response occurs after a longer period of time. Time aggregation does not change these re-

sults. Hence, under standard assumptions and using a standard calibration of the model

parameters, a model with investment adjustment costs and perfect information has diffi-

culties to explain my empirical findings.
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A.1 Setup

The physical environment of the economy is the same as in Section 5, except that produc-

tion units now face investment instead of capital adjustment costs.

The economy consists of a unit measure of sectors, which are each populated by a

representative production unit indexed by i. Time is discrete. Production unit i operates

the production function Yit = ZtEitKα
it, where Kit denotes the current stock of capital, Zt

and Eit are aggregate and sectoral total factor productivity (TFP), and α is a parameter.

Production units own the capital stock, which is specific to their sector. The law of

motion for capital now reads Kit+1 = (1− δ)Kit +
(

1− S
(

Iit
Iit−1

))
Iit, where Iit is invest-

ment, δ denotes the rate of depreciation, and S
(

Iit
Iit−1

)
are investment adjustment costs.

The function S is monotonically increasing, convex, and satisfies S (1) = S′ (1) = 0.

The sectoral and aggregate components of TFP each follow stationary Gaussian first-

order autoregressive processes in logs: ln Zt = ρz ln Zt−1 + et and ln Eit = ρε ln Eit−1 + vit,

where the error terms are Gaussian white noise with distributions et ∼ N (0, σ2
e ) and

vit ∼ N (0, σ2
v ), respectively. The sector-specific shocks, vit, are pairwise independent in

the cross-section. Moreover, the vit are independent of aggregate shocks, et.

Decision-makers in production units discount future profits between period t and pe-

riod 0 using the stochastic discount factor βtλt. Their profit maximization problem reads

max
{Kit+1,Iit}∞

t=0

E0

∞

∑
t=0

βtλt [ZtEitKα
it − Iit]

subject to the capital accumulation equation, the stochastic processes for aggregate and

sector-specific TFP, and given an initial capital stock Ki0.

The household sector of this economy is deliberately simple. A representative house-

hold consumes, buys shares of production units, receives dividends, and trades in a risk-

free bond. Market are complete. Households maximize lifetime utility, their instanta-

neous utility function is U(Ct), and their discount factor is β.
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Market clearing and aggregation require the following:

∫ 1

0
Yitdi = Ct +

∫ 1

0
Iitdi,

Kt =
∫ 1

0
Kitdi.

Aggregate output equals consumption and aggregate investment expenditures. Aggre-

gate capital equals the integral over each production’s unit capital stock.

A.2 Solution and Calibration

I solve this model by taking a log-linear approximation to the household’s and produc-

tion unit’s optimality conditions, the law of motion for capital, and the market clearing

conditions.

A period in the model now corresponds to a quarter. The calibration of the model’s

parameters is exactly the same as in Section 5, adjusted correspondingly to account for

the change in frequency. The second derivative of the function S is set to 1.5. This value

corresponds to the estimate by Altig et al. (2011).

To aggregate the investment responses over time, I use the fact that iy = 1
4

(
iq1 + iq2 + iq3 + iq4

)
.

That is, the log-deviation of investment from its non-stochastic steady state at the yearly

frequency equals the yearly average log-deviation of investment from its non-stochastic

steady state at the quarterly frequency.

A.3 Results

Figure A.1 shows the effects of aggregate and sector-specific shocks on sectoral invest-

ment in the model with investment adjustment costs and perfect information. The left

panel shows the responses to aggregate shocks in the partial equilibrium version of the

model (that is, with the real interest rate fixed at its steady-state value). The middle panel

depicts the effects of aggregate shocks in general equilibrium. The right panel graphs the
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Figure A.1 – Investment Responses in Model with Investment Adjustment Costs.
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responses of sectoral investment to sector-specific shocks. In each panel, blue lines with

circles show the model response of sectoral investment at the quarterly frequency, while

red lines with triangles correspond to the model responses time-aggregated to the yearly

frequency.

At the quarterly frequency, the response of sectoral investment to both aggregate and

sector-specific shocks is slowly building over time and the peak response does not oc-

cur on impact. In either case, production units must pay investment adjustment costs

and abrupt investment growth is extremely costly. Aggregate shocks are more persistent

than sector-specific shocks, which is why in partial equilibrium decision-makers find it

optimal to smooth their investment expenditure over a longer time period of time. As a

result, the peak response following aggregate shocks occurs later. In general equilibrium,

the real interest rate decreases because the supply of funds increases stronger than in-

vestment demand, because the latter is constrained by investment adjustment costs. The

rate reduction makes capital today more valuable and decision-makers find it optimal to

front-load their investment spending.

Time aggregation from the quarterly to the yearly frequency does not change these
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findings. Note that, in general equilibrium, the response following sector-specific shocks

is actually more hump-shaped in the sense that the peak response occurs later. I conclude

that a model with investment adjustment costs and perfect information has difficulties to

explain the discrepancy in the empirical responses of sectoral investment to differential

shocks, at least under standard assumptions and under the standard calibration used in

this exercise.

B Aggregate Shocks and the Relative Price of Investment

This section tests whether the macroeconomic shock estimated in the statistical model of

this paper is correlated with the relative price of investment in the manufacturing sec-

tor. Fiori (2012) formulates an alternative model that is also consistent with the observed

hump-shape response of aggregate investment. In his model, rapid output expansion in

the investment good producing sector is costly. In response to aggregate shocks, the rel-

ative price of investment increases, initially depressing demand for investment goods in

all other sectors of the economy. As the supply of investment goods increases over time,

the relative price of investment falls and investment demand in the rest of the economy

picks up. Aggregation across all sectors in the economy obtains a hump-shaped response

of aggregate investment to macroeconomic shocks.

In order to evaluate this alternative model, I test one of its key predictions in the data:

movements in the relative price of investment in response to macroeconomic shocks. To

this end, I estimate (by ordinary least squares) a bivariate vectorautoregression (VAR) and

test for Granger-causality of the macroeconomic factor for the relative price of investment

in the manufacturing sector. The VAR contains three lags.

For simplicity, I use the pointwise posterior median estimate of the macroeconomic

factor (depicted in Figure 6). The relative price of investment in the manufacturing indus-

try corresponds to the ratio of the deflators for investment and gross domestic product. I
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work with two measures of the deflator for investment. The first measure uses aggregate

manufacturing investment data while the second measure is based on the aggregated

micro data.1

At the 5% significance level, the macroeconomic factor is not Granger-causal for the

relative price of investment in the manufacturing sector for neither measure of the latter.

Hence, there is no evidence that macroeconomic shocks are followed by movements in

the relative price of investment, one of the key predictions of the model by Fiori (2012).

C Econometric Appendix

This appendix provides further details about the statistical model for the sectoral capital

expenditure data. For the reader’s convenience, I first restate the dynamic factor model

from Section 2. Next, I describe identification of the unobserved factors and the unob-

served loadings. The appendix then moves on to explain the estimation methodology,

which closely follows Del Negro and Schorfheide (2011). Specifically, I use the Gibbs

sampling algorithm to sample from the joint posterior of the factors and the model’s pa-

rameters. This algorithm draws alternately from their respective conditional distributions

to generate a sample from the joint distribution. I lay out the priors and write down the

conditional posterior densities. Importantly, I do not condition on initial observations but

use the full conditional distributions in the Gibbs sampling algorithm. A minor differ-

ence between this paper and the estimation methodology by Del Negro and Schorfheide

(2011) is that I switch the ordering of conditional distributions in the algorithm. In par-

ticular, I first sample from the conditional posterior density of the factors and then from

the conditional posterior density of the model’s parameters. The appendix concludes by

describing how I initialize the Gibbs sampling algorithm.

1See Footnote 14 for data sources of aggregate manufacturing data used in this exercise.
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Model Consider the dynamic factor model

xt = F(`)xt−1 + vt, vt ∼ i.i.d.N (0, Q) (A.1)

yit = Hixt + wit (A.2)

wit = Di(`)wit−1 + uit, uit ∼ i.i.d.N (0, Ri) (A.3)

where yit, i = 1, . . . , n, t = 1, . . . , T, denotes the standardized period t sector i log change

of real investment, xt is an unobserved factor, the Hi are factor loadings, and the wit are

sector-specific components. Both xt and wit follow AR processes, F(`) and Di(`) denote

lag polynomials of order three, and vt and the uit are Gaussian white noise with variance

Q and Ri, respectively. Assume that the uit are pairwise independent and uncorrelated

with vt.

Identification Stacking Equation (A.2) over all i gives

yt = Hxt + wt (A.4)

where yt, wt, and H are column vectors of length n. Because the factor and the loadings

are unobserved, their sign and scale are not identified from the data. Therefore, I assume

that the first element in H is positive and that Q in Equation (A.1) is a known constant.

These assumptions are standard in the literature on dynamic factor models and uniquely

identify the space spanned by the factors.

Priors The prior distribution for the coefficients of F(`) is N (φ0, Φ−1
0 )ISF , where N de-

notes the multivariate Normal distribution with mean φ0 and second moment Φ−1
0 , and

ISF is an indicator function for stationary of xt implied by F(`). Similarly, the prior for

the coefficients of Di(`) is N (θ0, Θ−1
0 )ISD . I choose prior means φ0 and θ0 equal to col-

umn vectors of zeros of length three. The prior precisions are small but increase with lag
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length as in the case of the Minnesota prior. In particular, following Robertson and Tall-

man (1999), I set the lag l prior precisions implied by Φ0 and Θ0 equal to (exp(cl − c))−1,

where c matches a quarterly harmonic decay rate at lag three. The prior for each Ri is

IG(ν0/2, δ0/2), where IG denotes the inverse gamma distribution. Following Otrok and

Whiteman (1998), I set ν0 = 6 and δ0 = 0.001, which implies a diffuse prior distribution.

Finally, the prior on each loading Hi is N (β0, B−1
0 ). I choose β0 = 0 and B0 = 1.

Sample factors, conditional on parameters and data In general, let px and pw denote

the order of the lag polynomials F(`) and Di(`), respectively. To sample from the condi-

tional posterior density of the factors given the parameters and the data, I follow Carter

and Kohn (1994). Given Di(`) and Hi, define y∗it = (1−Di(`)L)yit and the lag polynomial

h∗i (`) = (1− Di(`)L)Hi of order pw and, using Equation (A.3), rewrite Equation (A.2) as

y∗it = hi(`)
∗xt + uit. Let H∗i the (pw + 1)× 1 column vector which stacks all the coefficients

of h∗i (`) and define the (pw + 1)× 1 column vector x∗t =
[

xt xt−1 ... xt−pw
]T. Thus, we can

express the equation for y∗it as y∗it = H∗Ti x∗t + uit. Stacking each of these n equations, we

can write down the state-space representation:

x∗t = F∗x∗t−1 + v∗t (A.5)

y∗t = H∗x∗t + ut (A.6)

where v∗t is the (pw + 1)× 1 vector v∗t =
[

vt 0 ... 0
]T, H∗ is an n× (pw + 1) matrix, and F∗

is the (pw + 1)× (pw + 1) matrix

F∗ =

 F 01×((pw+1)−px)

Ipw 0pw×1

 (A.7)

where F is the 1× px row vector which corresponds to the first row of the companion

form matrix of F(`). Note that this notation assumes pw + 1 ≥ px and that Equation (A.6)
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starts from t = pw + 1 instead of t = 1 because y∗0 , . . . , y∗−pw+1 are unobserved. The

variance-covariance matrix of v∗t , Q∗, is (pw + 1)× (pw + 1), the first element on the main

diagonal corresponds to Q, and all other elements equal zero. The variance-covariance

matrix of ut is given by R = diag(R1, . . . , Rn). Conditional on F∗, Q∗, H∗, R, and the

data, the Carter and Kohn (1994) simulation smoother draws a whole sample of the xt,

t = pw + 1, . . . , T, from the corresponding conditional posterior density function. For the

sake of brevity, I omit the conditioning arguments below. Let F̃∗ denote the first row of F∗.

Following Kim and Nelson (1999), I recursively sample from the conditional distributions

x∗T ∼ N (x∗T|T, PT|T) and x∗t | xt+1 ∼ N (x∗t|t,xt+1
, Pt|t,xt+1

), t = T − 1, . . . , pw + 1, where

x∗t|t,xt+1
= x∗t|t + Pt|t F̃

∗T(F̃∗Pt|t F̃
∗T + Q)−1(xt+1 − F̃∗x∗t|t) (A.8)

Pt|t,xt+1
= Pt|t − Pt|t F̃

∗T(F̃∗Pt|t F̃
∗T + Q)−1F̃∗Pt|t (A.9)

and x∗t|t and Pt|t are the conditional mean and the conditional variance of x∗t obtained from

Kalman filtering. The first element of each draw x∗t corresponds to a draw of xt.

Following Del Negro and Otrok (2008), I use the density of x∗pw conditional on the

model’s parameters and the data to initialize the Kalman filter. Specifically, rewrite Equa-

tion (A.4) as

yt =

≡H̃︷ ︸︸ ︷[
H 0n×pw

]
x∗t + wt (A.10)

and substitute x∗t = (F∗)tx∗0 + ∑t−1
j=0(F∗)jv∗t−j for x∗t . Stacking the first pw observations

A.10



gives

≡ypw ...1︷ ︸︸ ︷
ypw

...

y1

 =

≡A︷ ︸︸ ︷
H̃(F∗)pw

...

H̃(F∗)

 x∗0 +

≡B︷ ︸︸ ︷

H̃ H̃F∗ · · · H̃(F∗)pw−1

0n ×(pw+1) H̃ · · · H̃(F∗)pw−2

... . . . ...

0n ×(pw+1) · · · · · · H̃



≡(v∗)pw ...1︷ ︸︸ ︷
v∗pw

...

v∗1

 +

≡wpw ...1︷ ︸︸ ︷
wpw

...

w1

(A.11)

x∗pw = (F∗)pw x∗0 +
[
I(pw+1) F∗ · · · (F∗)pw−1

]
︸ ︷︷ ︸

≡C

(v∗)pw ...1 (A.12)

The joint distribution of the pw initial observations of the data and the (pw + 1) initial

observations of the factors, conditional on the data, therefore reads

ypw ...1

x∗pw

 ∼ N



 AE{x∗0}

(F∗)pw E{x∗0}

 ,

AΣx∗0 AT + BΣ(v∗)pw ...1 BT + Σwpw ...1 •

(F∗)pw Σx∗0 AT + CΣ(v∗)pw ...1 BT (F∗)pw Σx∗0 ((F∗)pw)T + CΣ(v∗)pw ...1CT




where E{x∗0} and Σx∗0 are the unconditional mean and variance covariance matrix of x∗0 ,

respectively, Σ(v∗)pw ...1 denotes the variance covariance matrix of (v∗)pw ...1, and Σwpw ...1 is

the variance covariance matrix of wpw ...1.

From the properties of the multivariate normal distribution, it follows that x∗pw | ypw ...1 ∼

N with first and second moment given by

E{x∗pw | ypw ...1} = (F∗)pw E{x∗0}+ ((F∗)pw Σx∗0 AT + CΣ(v∗)pw ...1 BT)

(AΣx∗0 AT + BΣ(v∗)pw ...1 BT + Σwpw ...1)−1(ypw ...1 − AE{x∗0}) (A.13)

V{x∗pw | ypw ...1} = ((F∗)pw Σx∗0 ((F∗)pw)T + CΣ(v∗)pw ...1CT)− ((F∗)pw Σx∗0 AT + CΣ(v∗)pw ...1 BT)

(AΣx∗0 AT + BΣ(v∗)pw ...1 BT + Σwpw ...1)−1((F∗)pw Σx∗0 AT + CΣ(v∗)pw ...1 BT)T (A.14)
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where Σ(v∗)pw ...1 = Ipw ⊗Q∗. To work out Σwpw ...1 , rewrite the process for wt in companion

form


wt

...

wt−pw+1

 =



diag(D1) diag(D2) · · · diag(Dpw)

In · · · 0n

... . . . ...

0n · · · In 0n


︸ ︷︷ ︸

≡D


wt−1

...

wt−pw

+


ut

...

0n

 (A.15)

where diag(Di) is a n × n diagonal matrix with the coefficients on the ith lag for each

sector on the main diagonal and ut ∼ N (0n, R). Hence, under stationarity, we have

vec(Σwpw ...1) = (I(npw)2 − D⊗ D)−1 vec(


R · · · 0n

... . . . ...

0n · · · 0n

) (A.16)

Finally, under stationarity of the factors, E{x∗0} = 0(pw+1)×1 and vec(Σx∗0 ) = (I(pw+1)2 −

F∗ ⊗ F∗)−1 vec(Q∗). For numerical robustness, I use the method by Bai and Wang (2015)

to compute the conditional variance covariance matrix.

To initialize the Kalman filter in the Carter and Kohn (1994) simulation smoother, I use

the conditional mean F∗E{x∗pw | ypw ...1} and conditional variance F∗V{x∗pw | ypw ...1}(F∗)T +

Q∗. The pw initial observations of xt are drawn from x∗pw | ypw ...1 ∼ N with first and sec-

ond moment given by Equation (A.13) and (A.14), respectively. The last element of xpw ,

x0, is discarded.

Sample parameters of state equation, conditional on parameters in observation equa-

tion, factors and data Abusing notation, write Equation (A.1) in companion form x∗t =

F∗x∗t−1 + v∗t where F∗ denotes the px × px companion form matrix of F(`) and vt ∼

N (0px , Q∗). Suppose that this process is stationary and that the initial observation x∗0 =
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[
x0 x−1 ... x−px+1

]T is drawn from the stationary distribution x∗0 ∼ N (0px , QΣx) where

vec(Σx) = (Ip2
x
− F∗ ⊗ F∗)−1 + vec(e1(px)e1(px)T) with e1(px) =

[
1 0 ... 0

]T denoting the

px × 1 unit vector. Let e the T − px × 1 column vector containing xt, t = px + 1, . . . , T

and E the T − px × px matrix with tth row given by
[

xt−1 ... xt−px
]
. Given Q, H, R,

and the data, Chib and Greenberg (1994) show that the full conditional posterior of the

parameters of the lag polynomial F(`) is given by F ∝ ΨF(F) × N (φ̂, Φ−1
n )ISF , where

φ̂ = Φ−1
n (Φ0φ0 + Q−1ETe), Φn = (Φ0 + Q−1ETE), and

ΨF(F) = |Σx(F)|−1/2 exp
[
− 1

2Q
xT

0 Σ−1
x (F)x0

]
(A.17)

To sample from the conditional distribution, Chib and Greenberg (1994) use a Metropolis-

Hastings step. That is, in the jth iteration of the Gibbs sampler, I generate a candidate

draw F′ from the distribution N (φ̂, Φ−1
n )ISF and use it for the next iteration with prob-

ability min(ΨF(F′)/ΨF(F(j−1)), 1). With probability (1 − min(ΨF(F′)/ΨF(F(j−1)), 1)), I

retain the current value F(j−1).

Sample parameters of observation equation, conditional on factors and data To sam-

ple from the conditional posterior density of the observation equation’s parameters, note

that the Equations (A.2) are independent regressions with AR(pw) errors, given the fac-

tor (Otrok and Whiteman, 1998). I follow the method by Chib and Greenberg (1994) to

sample from the posterior equation-by-equation.

Write Equation (A.3) in companion form w∗it = D∗i w∗it−1 + u∗it, where D∗i denotes the

pw × pw companion form matrix of Di(`), and u∗it ∼ N (0pw , R∗i ), R∗i = diag(Ri, 0, . . . , 0).

Suppose that this process is stationary and that the initial observation w∗0 =
[

w0 w−1 ... w−pw+1
]T

is drawn from the stationary distribution w∗0 ∼ N (0pw , RiΣw), where vec(Σw) = (Ip2
w
−

D∗i ⊗ D∗i )
−1 + vec(e1(pw)e1(pw)T) with e1(pw) =

[
1 0 ... 0

]T denoting the pW × 1 unit

vector. Let y∗i1 = P−1yi1, x∗1 = P−1x1, where P solves PPT = Σw. Define y∗i2 and x∗2

with typical element (1− Di(`)L)yit and (1− Di(`)L)xt, t = pw + 1, . . . , T, respectively.
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Stacking all transformed observations gives y∗ =
[

y∗Ti1 y∗Ti2

]T and x∗ =
[

x∗T1 x∗T2

]T. Let

et = yit − Hixt and define e =
[

epw+1 ... eT
]T and the T − pw × pw matrix E with typi-

cal row given by
[

et−1 ... et−pw
]T, t = pw, . . . , T. Chib and Greenberg (1994) give the full

conditional posterior densities

Hi | Ri, Di(`)∼ N (B−1
n (B0β0 + R−1

i X∗Ty∗i ), B−1
n ), (A.18)

Ri | Hi, Di(`)∼ IG((vo + n)/2, (δ0 + d1)/2), (A.19)

Di(`) | Hi, Ri ∝ ΨD(Di)×N (θ̂, Θ−1
n )ISDi

, (A.20)

where Bn = B0 + R−1
i X∗TX∗, θ̂ = Θ−1

n (Θ0θ0 + R−1
i ETe), Θn = (Θ0 + R−1

i ETE), d1 =

‖y∗ − X∗β‖2, and

ΨD(Di) = |Σy(Di)|−1/2 exp
[
− 1

2Ri
(y1 − X1β)TΣ−1

y (Di)(y1 − X1β)
]

(A.21)

To sample from the conditional posterior of Di(`), Chib and Greenberg (1994) use a

Metropolis-Hastings step. That is, in the jth iteration of the Gibbs sampler, I generate

a candidate draw D′i from the distribution N (θ̂, Θ−1
n )ISD and use it for the next iteration

with probability min(ΨD(D′i)/ΨD(D(j−1)
i ), 1). With probability (1−min(ΨD(D′i)/ΨD(D(j−1)

i ), 1)),

I retain the current value D(j−1)
i .

Initialization In order to initialize the Gibbs sampling algorithm, I use the first principal

component of the data to obtain an estimate for the factor. Given this estimate, I run an

OLS regression on its own px lags to initialize F(`). I compute the variance of the error

term of this regression and use it throughout as the constant (by assumption) value of Q.

For each Hi, I obtain the OLS estimate from a regression of yit on the principal components

factor estimate. On the residuals of this regression, I run an OLS regression on its own pw

lags to initialize the Di(`). Using the residuals of this regression in turn, I compute their

variance to set the initial value of Ri.
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The Gibbs sampling algorithm Using the initial values for the model’s parameters de-

scribed in the previous paragraph, I sample the factors using their conditional posterior

density from above. Next, I first draw the parameters of state equation and then the pa-

rameters of the observation equation from their respective conditional posterior density

as explained in this appendix. Using the parameter draws from this iteration, I repeat the

algorithm and sample the factors again. In total, I run 20,000 iterations and discard the

first 5,000 draws to ensure that the algorithm has converged to its ergodic distribution.

D Modeling Limited Attention

This appendix provides further details on how I model limited attention of decision-

makers in firms. Following Sims (2003), I assume that limited attention is a constraint

on uncertainty reduction, where uncertainty is measured by entropy. Entropy is a mea-

sure of uncertainty from information theory, defined as

H(X) = −E {log2 (p (X))} ,

where X is a random vector. For example, if X is a T × 1 multivariate normal random

vector with variance-covariance matrix Σ, then it has entropy

H(X) =
1
2

log2

[
(2πe)T det Σ

]
.

Similarly, given two T × 1 multivariate normal random vectors X and Y, the condi-

tional entropy of X given Y is

H(X|Y) = 1
2

log2

[
(2πe)T det ΣX|Y

]
,

where ΣX|Y denotes the conditional variance-covariance of X given Y.
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Define uncertainty reduction as

I(X; Y) = H(X)− H(X|Y).

This measure is also called mutual information. It quantifies by how much uncertainty

about X reduces having observed Y. If {Xt}∞
t=0 and {Yt}∞

t=0 are two stochastic processes,

we can define the average per-period uncertainty reduction

I({Xt} ; {Yt}) = lim
T→∞

1
T
(H(X1, . . . , XT)− H(X1, . . . , XT|Y1, . . . , YT)) .

E Derivation of Objective Function

This appendix derives the expected discounted sum of losses in profit when the actual in-

vestment decisions given less than perfect information deviate from the profit-maximizing

investment decisions under perfect information given in Equation (13). The derivation

closely follows Maćkowiak and Wiederholt (2015, Appendix D), which contains more de-

tails.

First, express the period profit function in log-deviations from the non-stochastic steady

state, multiply by βt, and sum over all periods from 0 to ∞. Let g denote this functional,

and let g̃ denote the second-order Taylor expansion to g around the non-stochastic steady

state.

Second, let yit = ( zt εit )
T denote the vector of shocks in period t. Conditional on

production unit i’s information in period -1, compute the second-order Taylor approxi-

mation to the expected discounted sum of profits around the non-stochastic steady state.
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This approximation gives

Ei,−1 {g̃ (ki0, ki1, yi0, ki2, yi1, ki3, yi2, . . .)} =

Ei,−1



g(0, 0, 0, 0, 0, 0, 0, . . .)

+
∞

∑
t=0

βt


hkkit+1 + hT

y yit

+1
2 kit+1Hk,−1kit +

1
2 Hk,0k2

it+1 +
1
2 kit+1Hk,1kit+2

+1
2 kit+1Hky,1yit+1 +

1
2 yT

it Hy,0yit +
1
2 yT

it Hyk,−1kit


+β−1

(
h−1ki0 +

1
2 H−1k2

i0 +
1
2 ki0Hk,1ki1 +

1
2 ki0Hky,1yi0

)


, (A.22)

where Ei,−1 denotes the expectation operator conditional on production unit i’s infor-

mation in period -1 and lower-case letters denote log-deviations from the non-stochastic

steady state, for example kit+1 = ln Kit+1 − ln K. Moreover, βthk is the first derivative of

g with respect to kit+1, βthy is the vector of first derivatives of g with respect to yit, βtHk,τ

denotes the second derivative of g with respect to kit+1 and kit+1+τ, βtHy,0 denotes the

matrix of second derivatives of g with respect to yit, βtHky,1 denotes the vector of second

derivatives of g with respect to kit+1 and yit+1, and βtHyk,−1 denotes the vector of second

derivatives of g with respect to yit and kit. Similarly, β−1h−1 and β−1H−1 are the first and

second derivative of g with respect to ki0, respectively. All first and second derivatives

appearing in Equation (A.22) are evaluated at the non-stochastic steady state. Because for

all t ≥ 0 the first derivatives of g with respect to kit+1 and yit+1 depend only on kit, kit+1,

kit+2, yit+1 and kit, yit, respectively, and because the first derivative of g with respect to ki0

depends only on ki0, ki1, yi0, Equation (A.22) contains only certain second-order terms.

Third, define vT
t =

(
kit+1, yT

t , 1
)

and suppose there exist two constants δ < (1/β) and

A ∈ R such that, for all m and n, for each period t ≥ 0, and for τ = 0, 1, the following
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regularity conditions hold:

Ei,−1

{
k2

i0

}
< ∞ (A.23)

Ei,−1 {|ki0vn,0|} < ∞ (A.24)

Ei,−1 {|vm,tvn,t+τ|} < δt A (A.25)

where vi,t denotes the ith element of vt.2 The conditions in Equations (A.24) and (A.25)

allow to rewrite the expectation of every infinite sum appearing on the right-hand side of

Equation (A.22) as the infinite sum of expectations and imply that each of these infinite

sums of expectations converges to an element in R. In conjunction with the fact that

Hk,1 = βHk,−1 and Hky,1 = βHT
yk,−1, one can rewrite Equation (A.22) as

Ei,−1 {g̃ (ki0, ki1, yi0, ki2, yi1, . . .)}

= g(0, 0, 0, 0, 0, . . .) +
∞

∑
t=0

βtEi,−1 {hkkit+1}+
∞

∑
t=0

βtEi,−1

{
hT

y yit

}
+

∞

∑
t=0

βtEi,−1

{
1
2

Hk,0k2
it+1

}
+

∞

∑
t=0

βtEi,−1

{
1
2

kit+1Hk,1kit+2

}
+

∞

∑
t=0

βtEi,−1
{

kit+1Hky,1yit+1
}
+

∞

∑
t=0

βtEi,−1

{
1
2

yT
it Hy,0yit

}
+β−1Ei,−1

{
h−1ki0 +

1
2

H−1k2
i0 + ki0Hk,1ki1 + ki0Hky,1yi0

}
. (A.26)

The regularity conditions in Equations (A.23) and (A.24) imply that the term in the last

line on the right-hand side of Equation (A.26) is finite.

Fourth, define the stochastic process
{

k∗it+1
}∞

t=−1 for the profit-maximizing capital

choice under perfect information satisfying the following properties: (i) k∗i0 = ki0, (ii)

in each period t ≥ 0, k∗it+1 satisfies

Et
{

hk + Hk,−1k∗it + Hk,0k∗it+1 + Hk,1k∗it+2 + Hky,1yit+1
}
= 0, (A.27)

2Maćkowiak and Wiederholt (2015, Appendix D) assume similar regularity conditions.
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where Et denotes the the expectation operator conditioned on the history of the econ-

omy up to and including period t, and (iii) the vector vt with kit+1 = k∗it+1 satisfies the

regularity conditions given in Equations (A.23)-(A.25).

Fifth, multiply Equation (A.27) by (kit+1 − k∗it+1), use the law of iterated expectations,

and rearrange. This gives

Ei,−1
{
(kit+1 − k∗it+1)

(
hk + Hky,1yit+1

)}
= −Ei,−1

{
(kit+1 − k∗it+1)

(
Hk,−1k∗it + Hk,0k∗it+1 + Hk,1k∗it+2

)}
, (A.28)

a useful result in the next step.

Sixth, compute the expected discounted sum of losses in profit when the actual invest-

ment decisions given less than perfect information deviate from the profit-maximizing

investment decisions under perfect information, recall that k∗i0 = ki0, note that hk = 0,

and use the result in Equation (A.28) to obtain

Ei,−1 {g̃ (ki0, ki1, yi0, ki2, yi1, . . .)} − Ei,−1 {g̃ (k∗i0, k∗i1, yi0, k∗i2, yi1, . . .)}

=
∞

∑
t=0

βtEi,−1

{
1
2

Hk,0k2
it+1 −

1
2

Hk,0k∗2it+1 + kit+1Hk,1kit+2 − k∗it+1Hk,1k∗it+2

}
−

∞

∑
t=0

βtEi,−1
{
(kit+1 − k∗it+1)

(
Hk,−1k∗it + Hk,0k∗it+1 + Hk,1k∗it+2

)}
+β−1Ei,−1 {ki0Hk,1(ki1 − k∗i1)} (A.29)

The conditions in Equations (A.23) and (A.25) and the definition of the process
{

k∗it+1
}∞

t=−1

imply that ∑∞
t=0 βtEi,−1

{
kit+1k∗it+τ

}
, τ = −1, 0, 1, converges to an element in R. Together

with the fact that Hk,1 = βHk,−1, k∗i0 = ki0 and after rearranging we have

Ei,−1 {g̃ (ki0, ki1, yi0, ki2, yi1, . . .)} − Ei,−1 {g̃ (k∗i0, k∗i1, yi0, k∗i2, yi1, . . .)}

=
∞

∑
t=0

βtEi,−1

{
1
2

Hk,0
(
kit+1 − k∗it+1

)2
+
(
kit+1 − k∗it+1

)
Hk,1

(
kit+2 − k∗it+2

)}
(A.30)
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Seventh, compute the first and second derivatives appearing in Equations (A.27) and (A.30).

These are:

hk = 0 (A.31)

Hk,0 = K
[
−γ + β

(
α(α− 1)Kα−1 − γ

)]
(A.32)

Hk,1 = βγK (A.33)

Hk,−1 = γK (A.34)

Hky,1 =

[
βαKα

βαKα

]
(A.35)

Eighth, solve for the profit-maximizing investment decision under perfect information

by substituting Equations (A.31)-(A.35) into Equation (A.27) and rearrange to arrive at:

k∗it+1 =
γk∗it + βEt

{
γk∗it+2 + αKα−1

(zt+1 + εit+1)
}

γ + βγ− βα(α− 1)Kα−1 (A.36)
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