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Social Learning and Solar Photovoltaic Adoption 
 
 

Abstract 
 
A growing literature points to the effectiveness of leveraging social interactions and nudges to 
spur adoption of pro-social behaviors. This study investigates a large-scale behavioral 
intervention designed to actively leverage social learning and peer interactions to encourage 
adoption of residential solar photovoltaic systems. Municipalities choose a solar installer offering 
group pricing, and undertake an informational campaign driven by volunteer ambassadors. We 
find a causal treatment effect of 37 installations per municipality from the campaigns, and no 
evidence of harvesting or persistence. The intervention also lowers installation prices. 
Randomized controlled trials based on the intervention show that selection into the program is 
important while group pricing is not. Our results suggest that the program provided economies of 
scale and lowered consumer acquisition costs, leading to low-cost emissions reductions. 
JEL-Codes: D030, L220, Q420, Q480. 
Keywords: non-price interventions, social learning, renewable energy, solar photovoltaic panels, 
technology adoption, natural experiment. 
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1 Introduction

Climate scientists have strongly argued for substantial action to mitigate emissions to reduce

the negative consequences of climate change.1 One path forward is to transition from fossil

fuels to renewable energy, a transition that will likely be difficult to achieve without invest-

ments in further reducing the costs of renewables. Economists, marketers, and policymakers

have also increasingly turned to behavioral “nudges” to encourage socially beneficial actions,

such as energy conservation, charitable giving, and healthy eating, which often provide in-

formation that includes social comparisons or pro-social appeals (Thaler and Sunstein, 2009;

Dubé, Luo, and Fang, 2016). There is mounting evidence that social interactions themselves,

through social learning and peer effects, influence the adoption of new technologies by over-

coming “information failures” inherent in their diffusion (e.g., Griliches, 1957; Foster and

Rosenzweig, 1995; Kraft-Todd, Bollinger, Gillingham, Lamp, and Rand, 2018).

This study examines whether an intensive behavioral intervention in the United States

designed to leverage the power of social interactions can address this information gap to

increase to adoption of a fast-growing renewable energy technology: solar photovoltaic (PV)

installations. The “Solarize” program is a community-level campaign with several key pillars.

Treated municipalities who receive the intervention choose a single solar PV installer. In

order to become this chosen installer, installers submit bids with a discount group price that

is offered to all consumers in that municipality during the program. The intervention begins

with a kick-off event and involves roughly 20 weeks of community outreach. Notably, the

primary outreach is performed by volunteer resident “solar ambassadors” who encourage

their neighbors and other community members to adopt solar PV, effectively providing a

major nudge towards adoption. This social interaction-based approach parallels previous

efforts to use ambassadors as “injection points” into the social network to promote adoption

of agricultural technology (BenYishay and Mobarak, 2017; Vasilaky and Leonard, 2011) and

1According to both the U.S. National Climate Assessment and the UN Intergovernmental Panel on
Climate Change (IPCC).
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behavior conducive to improving public health (Kremer, Miguel, Mullainathan, Null, and

Zwane, 2011; Ashraf, Bandiera, and Jack, 2015) in developing countries. A distinguishing

feature of our study is that rather than providing a small amount of information from a

single source (e.g., as in BenYishay and Mobarak (2017)), the intervention explicitly aimed

to provide information through a variety of channels that complement each other to bolster

the effect on the uptake of a nascent technology.

In this paper, we ask several questions that shed light on consumer and market behavior

under the influence of a large-scale behavioral intervention. Is such a program effective at

increasing adoption of solar PV and lowering installation prices? Do these effects persist

after the intervention? Are there spillovers or positive treatment externalities to nearby

communities? How cost-effective is the program for meeting policy goals, and is it welfare-

improving? And finally, what is the role of social learning? These research questions have

important relevance to policymakers and practitioners, for similar solar interventions are

currently being implemented in many states, and numerous communities have expressed

interest in the program to help meet environmental goals.2 In fact, there is even a program

guidebook for stakeholders interested in implementing a Solarize program (Hausman and

Condee, 2014).

We first establish the effectiveness of the Solarize program by examining the effects on

adoptions and prices for municipalities that apply to join the program. The municipalities

that apply to join the program are the marginal municipalities that would first join if the pro-

gram is expanded elsewhere and thus are highly relevant to practitioners who would consider

a further expansion. We use a difference-in-difference strategy with rolling control groups, as

in Sianesi (2004) and Harding and Hsiaw (2014). Specifically, the treated municipalities are

compared to a control group of towns that applied to join the program later. In our context,

whether a municipality chooses to apply to conduct the Solarize campaign is not random,

but the exact timing of when a municipality chooses to apply is plausibly random. For the

2States that have implemented Solarize include Oregon, Washington, California, Colorado, South Car-
olina, North Carolina, Ohio, Pennsylvania, New York, Rhode Island, Massachusetts, and Vermont.
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treated municipalities, we find that the treatment leads to 37 additional installations over

the course of a campaign on average, a greater than 1,000% increase above the control. We

also explore whether there are any post-treatment effects from the campaign. We find no

evidence of either a harvesting effect reducing post-treatment installations (e.g., as occurred

with the well-known Cash for Clunkers program (Mian and Sufi, 2012)) or an increase in

post-treatment installations due to continued social learning or peer effects.

The program lowers the equilibrium price during the Solarize campaigns by roughly

$0.46 per watt (W) out of a mean price of roughly $4.63/W in the control municipalities.3

Because the Solarize intervention essentially replaces traditional customer acquisition by

installers, this can be compared to typical estimates of installers’ customer acquisition costs

of $0.48/W (Friedman, Ardani, Feldman, Citron, Margolis, and Zuboy, 2013); the similarity

in the estimates imply that installers pass on much of the acquisition costs to consumers.

The effect on prices lasts only during the campaign, and is thus likely to be driven by the

elimination of customer acquisition costs for the selected solar installer. We also find that

the large increases in solar adoption during the campaigns cannot be purely explained by the

price reduction, providing strong evidence of an informational component of the campaigns.

Why did the intervention work so well? To shed light on this question, we ran two ran-

domly controlled trials (RCTs) that manipulated the campaign in different ways. The first

RCT involves randomly selected municipalities across Connecticut, rather than municipali-

ties that applied to participate. Nearly all of the municipalities we approached agreed to join

the program. The estimated treatment effect is roughly two-thirds the treatment effect in

our primary results, both in terms of installations and prices. This finding provides guidance

for policymakers who would consider scaling up beyond the municipalities that self-select by

applying. Our second RCT removes the group pricing element from the campaigns to assess

the degree to which group pricing helps drive word-of-mouth (WOM) and adoptions. In the

campaigns randomly assigned to not use group pricing, installers bid using a single price

3All dollars in this paper are 2014$.
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during the pre-campaign installer selection process. The campaigns without group pricing

perform just as well as those that had group pricing, indicating that group pricing is not

essential to the success of the campaigns.

We also leveraged the implementation of a very similar program called the “CT Solar

Challenge” (CTSC). CTSC included all of the central tenets of the Solarize program except

the competitive bidding process and the involvement of the state government. The CTSC

program allows us to test whether these components are necessary for the effectiveness of

the overall campaign. We estimate a small and not statistically significant effect of CTCS

on adoptions, and a small effect on prices. Comparing Solarize to CTSC highlights the

importance of the installer recruitment process for the greater success of Solarize.

Our empirical approach is similar to Bloom, Eifert, Mahajan, McKenzie, and Roberts

(2013), who study management practices in 28 Indian manufacturing plants after randomly

assigning some of them to receive management consulting. They establish the importance of

information barriers in management using a survey of manufacturers. Similarly, we survey

participants in the Solarize program in order to assess how potential adopters heard about

the program and the importance of different factors in their decisions. We find that measures

related to social influence are rated as extremely important factors in the decision to install

solar. This, combined with the finding that including price does not change the estimated

treatment effect on installations, provides suggestive evidence that Solarize works primarily

by leveraging social interactions–which is exactly the intention of the program.

Our results have clear policy implications. Behavioral interventions based on information,

word-of-mouth, persuasion, and other non-price approaches have become increasingly popu-

lar for encouraging pro-social behavior, and community-based interventions are perhaps the

latest vanguard of this movement among practitioners (McKenzie-Mohr, 2013). With billions

of dollars spent each year on energy conservation (Gillingham and Palmer, 2014) and billions

more by federal and state governments on promoting adoption of solar energy (Bollinger and

Gillingham, 2019), evaluating the effectiveness, persistence, and cost-effectiveness of these

4



rapidly expanding community-based programs is important for policy development.

We find that the acquisition cost of an additional installation due to Solarize is approxi-

mately $860, plus the cost of the price discount incurred by the installer, which is approxi-

mately $1,700. In comparison, the $0.48/W acquisition cost found in Friedman et al. (2013)

amounts to between $1,500 to $3,000 per installation. Assuming the 2012 carbon intensity

of the electric grid, this implies a direct program cost-effectiveness estimate of $21 per ton

of CO2. This estimate is below most estimates of the social cost of carbon, suggesting that

the program likely improved social welfare based on the carbon benefits alone.

2 Empirical Setting

Our empirical setting is the state of Connecticut over the period 2012-2015. Connecticut has

a small, but fast-growing market for solar PV, which expanded from only three installations

in 2004 to nearly 5,000 new installations in 2014, and over 7,000 new installations in 2018.4

Despite this, the cumulative number of installations still remains a very small fraction of the

potential; nowhere in Connecticut is the market penetration more than 5% of the potential

market and in most municipalities it is less than 1%.5 The pre-incentive price of a solar PV

system has also dropped substantially in the past decade, from an average of $8.39/W in

2005 to an average of $4.44/W in 2014 and under $3/W in 2019. Figure 1 illustrates the

dramatic growth of the solar market.

Despite being in the Northeastern United States, the economics of solar PV in Connecti-

cut are surprisingly good. While Connecticut does not receive as much sunlight as other

regions, it has some of the highest electricity prices in the United States. Moreover, systems

installed in Connecticut are eligible for state rebates, federal tax credits, and net metering.6

4https://www.ctgreenbank.com/wp-content/uploads/2019/01/RSIP-Legislative-Report-2019.

pdf
5Estimates based on authors’ calculations from solar installation data and potential market data based

on satellite imaging from Geostellar (2013). The potential market data is focused on the shading of house-
holds, but accounts for the possibility of some ground-mounted systems. Ground-mounted systems are more
expensive and they make up only a small percent of the systems.

6Net metering allows excess solar PV production to be sold back to the electric grid at retail rates, with
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For a typical 4.23 kW system in 2014, we calculate that a system purchased with cash in

southern Connecticut would cost just under $10,000 after accounting for state and federal

subsidies and would have a internal rate of return of roughly 7% for a system that lasts the

expected lifetime of 25 years (See Appendix A for more details on this calculation and some

sensitivity analysis). Thus, for many consumers, solar PV systems are an ex ante profitable

investment from the private perspective alone.

From 2012 to 2015, the Connecticut solar market had 89 installers, ranging in size from

small local companies to large national installers. The state rebates, disbursed by the Con-

necticut Green Bank, began in 2006 at $5.90 per W and declined to $1.75 per W by the end

of 2014. The incentives were held constant during the time periods covered by the treat-

ments in this study. The Connecticut solar market was slow to adopt third party-ownership

(e.g., solar leases or power purchase agreements) and most systems during the time period of

our analysis were purchased outright.7 Regardless of ownership, the state rebates are nearly

always applied for by the installer and passed on to consumers.8

3 The Solarize Intervention

3.1 Why Solarize?

The Solarize program in Connecticut is a behavioral intervention with several components,

each motivated by findings in the literature. At its core, the program focuses on facilitating

social learning and peer influence. Social learning can include campaigns matching local

entrepreneurs to remote coaches with business experience, as in Anderson, Chintagunta,

a calculation of the net electricity use occurring at the end of each month. Any excess credits remaining on
March 31 of each year receive a lower rate.

7As of 2014, roughly 37% of all systems installed were third party-owned, and these third party-owned
systems were distributed across Connecticut and not concentrated in any particular municipalities. From
2015-2017, third party-ownership increased greatly, but since then has been decreasing.

8Gillingham and Tsvetanov (2016) estimate the pass-through of state rebates in the Connecticut solar
market during a similar time period and find that only roughly 16 percent of the rebates are captured by
firms.
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and Vilcassim (2019), to observational learning, as is common in the peer effects literature.

Peer effects have been demonstrated to speed the adoption of many new technologies and

behaviors, including agricultural technologies (Foster and Rosenzweig, 1995; Conley and

Udry, 2010), information technology (Tucker, 2008), criminal behavior (Glaeser, Sacerdote,

and Scheinkman, 1996; Bayer, Pintoff, and Pozen, 2009), health and retirement plan choice

(Sorensen, 2006; Duflo and Saez, 2003), home foreclosure (Towe and Lawley, 2013), water

conservation (Bollinger, Burkhardt, and Gillingham, 2020), and hybrid vehicle purchases

(Narayanan and Nair, 2013). Bollinger and Gillingham (2012) and Graziano and Gillingham

(2015) find evidence of neighbor or peer influence on the adoption of solar PV technology in

California and Connecticut, respectively, and other studies find similar results in Germany

and Switzerland (Rode and Weber, 2016; Carattini, Péclat, and Baranzini, 2018). We study

the Solarize program due to considerable policymaker interest in enhancing the uptake of

solar energy, and the potential for the program to draw upon promising approaches from

existing work.

In facilitating the Solarize program in Connecticut, we worked with a state agency, the

Connecticut Green Bank (CGB), and a non-profit marketing firm, SmartPower.9 The inter-

vention is performed at the municipality level. After a municipality is selected to participate,

the first component of the campaign is a competitive bidding process, in which installers sub-

mit bids to be the single vetted installer for a given campaign. The installer works with

SmartPower and volunteers at events by providing information, and will assist with its own

marketing materials. The winning bid is chosen in a beauty contest auction, as in Yoga-

narasimhan (2015). Municipality leaders rank their choices based on a variety of attributes,

including a group price. There is a matching process in which municipalities may not always

receive their first choice. This is because a single installer is not permitted to participate

in too many campaigns simultaneously for fairness and logistical reasons (usually no more

than two).

9The programs were funded by the Connecticut Green Bank, The John Merck Fund, The Putnam Foun-
dation, and a grant from the U.S. Department of Energy.
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The second critical component of the Solarize program is the use of volunteer promoters or

‘ambassadors’ to provide information to their community about solar PV. There is growing

evidence on the effectiveness of promoters or ambassadors in driving social learning and

influencing behavior (BenYishay and Mobarak, 2017; Vasilaky and Leonard, 2011; Kremer

et al., 2011; Ashraf et al., 2015). Why might volunteer community members be effective in

Solarize? At the community-level, social connectedness is likely to be high, which enhances

trust (Glaeser, Laibson, Scheinkman, and Soutter, 2000; List and Price, 2009). Since the

ambassadors are volunteers, they may also be more likely to be seen as trustworthy by other

community members. Indeed, Kraft-Todd et al. (2018) find that an ambassador’s adoption

during a Solarize campaign significantly increases total adoptions, through the effect on

second order beliefs–the beliefs of others about the beliefs of the ambassadors regarding the

value of adopting solar.10

The third major component of the program is the focus on community-based recruitment.

In Solarize, this consists of mailings signed by the ambassadors, open houses to provide

information about panels, tabling at events, banners over key roads, op-eds in the local

newspaper, and even individual phone calls to neighbors who have expressed interest by

the ambassadors. Jacobsen, Kotchen, and Clendenning (2013) use non-experimental data

to show that a community-based recruitment campaign can increase the uptake of green

electricity using some (but not all) of these approaches. Kessler (2014) shows that public

announcements of support can increase public good provision, which might improve the

effectiveness of the ambassadors in Solarize.

The fourth major component is the group pricing discount offered to the entire commu-

nity, in which the final price is a function of the total number of contracts signed as part of

the campaign.11 This provides an incentive for early adopters to convince others to adopt

solar as well and reduce the price for everyone. By basing prices on total adoptions, group

10Note Kraft-Todd et al. (2018) does not estimate the treatment effect of the Solarize campaigns.
11If a rooftop or system requires additional effort, installers are permitted to include Green Bank-approved

‘adders’ to the price.
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pricing can help spur word-of-mouth, and establish norms around adoption. There is strong

evidence from consumer decisions about charitable contributions that indicates consumers

are more willing to contribute when others contribute (Frey and Meier, 2004; Karlan and

List, 2007; DellaVigna, List, and Malmendier, 2012). Moreover, there is building evidence

demonstrating the effectiveness of social norm-based informational interventions to encour-

age electricity or water conservation (Ferraro, Miranda, and Price, 2011; Ferraro and Price,

2013; LaRiviere, Price, Holladay, and Novgorodsky, 2014; Brandon, List, Metcalfe, Price,

and Rundhammer, 2018). The choice to install solar PV is a much higher-stakes decision

than to contribute to a charity or conserve a bit on electricity or water, so it is not obvi-

ous that effects seen in lower-stakes decisions apply. However, Coffman, Featherstone, and

Kessler (2014) show that provision of social information can have an important impact even

on high-stakes decisions such as undertaking teacher training and accepting a teaching job.

The final major component is the limited time frame for the campaign. Such a limited

time frame may provide a motivational reward effect (Duflo and Saez, 2003) because the price

discount would be expected to be unavailable after the campaign. Recent reviews (Gneezy,

Meier, and Rey-Biel, 2011; Bowles and Polania-Reyes, 2012) suggest that monetary incentives

can be substitutes for prosocial behavior, but by providing a prosocial reward that helps all,

it is quite possible that the two are complements in this situation.

Thus, the program is designed as a package of all of these components. In this sense, our

program has a clear parallel to Bloom et al. (2013) in applying many of the best approaches

known to make a difference at the problem at once–only in our case, it is about encouraging

solar adoption, rather than improving firm management.

A standard timeline for the program in Connecticut is as follows:

1. CGB and SmartPower inform municipalities about the program and encourage town

leaders to submit an application to take part in the program.

2. CGB and SmartPower select municipalities from those that apply by the deadline.

3. Municipalities issue a request for group discount bids from solar PV installers for each

9



municipality through a publicized request-for-proposals.

4. Municipalities choose a single installer, with guidance from CGB and SmartPower.

5. CGB and SmartPower recruit volunteer “solar ambassadors” to promote the campaign.

6. A kickoff event begins an approximately 20-week campaign featuring workshops, open

houses, local events, etc., coordinated by SmartPower, CGB, the installer, and ambas-

sadors.

7. Consumers can request site visits and if the rooftop is viable, the consumer will receive

a quote and can choose to install solar PV.

8. After the campaign is over, the installations occur.

This timeline describes our baseline type of campaign, which we call the Solarize ‘classic’

campaign. Figure 2 shows the ‘Solarize CT’ website and Figure 3 provides a few examples

of elements of the real-world grassroots Solarize campaigns, including a kick-off meeting, a

solar open house, volunteers participating in a parade, and a roadside sign displaying the

pricing tier for the campaign.

3.2 Research Design

3.2.1 Research Design for the Effects of Solarize

Similar to the management interventions in Bloom et al. (2013), running the Solarize pro-

grams is expensive, which necessitated some tradeoffs. For example, we could only run a

relatively limited number of interventions, as each campaign costs approximately $30,000 to

run. From September 2012 through November 2014, we ran classic Solarize campaigns in 34

municipalities. Another tradeoff is that manpower and logistical constraints prevent us from

running all of the campaigns at once. Thus, we ran the campaigns in a staggered rollout

over time in five distinct rounds, similar to the multiple rounds of interventions in Bloom

et al. (2013).

To recruit municipalities for each of the five rounds, SmartPower reached out to represen-

10



tatives of municipalities in state-wide events and through personal contacts. For example,

there are occasional gatherings of members of municipality clean energy task forces, which

are groups of residents charged with finding ways to encourage clean energy and energy

efficiency. Representatives of a municipality hear about Solarize at these events through

conversations with SmartPower staff or other municipality representatives. Thus, there is

a random, idiosyncratic element to exactly when any given municipality representative re-

ceived the information about Solarize. This element depends on who the SmartPower staff

end up sitting next to and talking to and who they happened to be introduced to. Once

representatives of a municipality are informed about the Solarize campaign, they then must

find the time to present it to their municipality board (often in Connecticut, this is a set

of town ‘selectmen’ or ‘selectwomen’). In many cases, representatives from municipalities

expressed great interest in hosting a campaign, but due to individual-specific reasons (e.g.,

a major town construction project underway, a health concern from a key representative, a

key player in the task force being especially busy at that moment, a representative stepping

down, etc.) they preferred to wait some number of months before applying for a campaign.

Thus, the exact timing of when any specific municipality chooses to apply for a Solarize

campaign differs for highly idiosyncratic factors that influence when municipality represen-

tatives are informed about Solarize and when they manage to successfully get approval from

the municipality board.

Our primary identification strategy exploits the plausibly random timing of when when

municipalities apply to receive the treatment. In our study design, untreated municipalities

that eventually become treated are first used as controls, and later are treated. So for the

first round of the program, the control group consists of all municipalities that apply for a

campaign in all of the subsequent rounds. In the final round, we can only include munic-

ipalities that apply for Solarize after the end of our study period.12 This research design

is analogous to the approach in Sianesi (2004). We also make sure to exclude municipal-

12There were six Solarize campaigns run after the end of our study period, and we use these as controls.
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ities from the control if they are adjacent to one of the treated municipalities due to the

possibility of spillovers–a topic we will investigate in section 4.5. For robustness, we also

examine two other possible control groups. The first uses a nearest-neighbor propensity

score matching approach with a 0.05 caliper to match each of the treated municipalities to

three nearest neighbors based on observed demographics. The second takes advantage of a

pre-existing set of municipalities that have chosen to participate in the “Connecticut Clean

Energy Communities” program by committing to having a municipality clean energy task

force. For this second control group, we use all non-treated municipalities in the Connecticut

Clean Energy Communities program. The results from these other two control groups serve

as useful robustness checks.13

Table 1 shows the balance of observables between the treated and control municipalities.

To calculate these statistics, we bring in data from three sources. First, we have data from

the Connecticut Green Bank on all solar installations in Connecticut through 2017. In

order to receive the rebate, firms report each installation to the Green Bank, including the

address, the date the contract was approved, the date the installation was completed, the

size of the installation, the pre-incentive price, the incentive paid, whether the installation

is third party-owned (e.g., solar lease or power-purchase agreement), and additional system

characteristics. Since the rebate has been substantial over the the past decade, nearly all solar

PV installations in Connecticut are included in the database.14 Second, we use municipality-

level demographic data from the U.S. Census Bureau’s 2009-2013 American Community

Survey. Third, we include voter registration data from the Connecticut Secretary of State

(SOTS).15

In Table 1, we see that that none of the means of the observables are significantly different

13In our first round of Solarize, we had more municipalities submit applications than we could accept and
thus we could randomize. However, the sample was too small to perform an adequately-powered analysis.

14The exception is any installation performed in the three small municipal utility regions of Wallingford,
Norwich, and Bozrah. Given their ineligibility for the state rebates, we expect few installations in these
areas.

15These data include total voter registration as well as the number of active and inactive registered voters
in each political party, (CT SOTS, 2015).
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between the treatment and future controls or propensity score matched controls. The sample

sizes are reasonably sized (e.g., 72 municipalities when comparing the treatment to the

future controls), so we do not believe that these results are solely because of small sample

sizes. A few variables have means that are statistically significantly different (or close to it)

between the treatment and the Connecticut Clean Energy Communities control, such as the

percentage of the population with a college degree. Thus, we are more cautious about using

the Connecticut Clean Energy Communities as the control, although these differences could

simply be from random variation.

3.2.2 Research Design for the Analysis of Mechanisms

To better understand the mechanisms at work in the Solarize campaign, we run two RCTs

and exploit related campaigns run by a non-profit focused around a for-profit solar firm. In

our RCT, we compare the classic Solarize campaigns, where municipalities apply themselves

to be able to run a campaign, to a campaign where we pre-selected the municipalities and

approached them ourselves with an offer to run a campaign. For simplicity, we will refer to

the classic Solarize campaigns hereafter as ‘Solarize Classic’ campaigns.

One might hypothesize that having an eager and engaged set of volunteers who put in the

work for the municipality to apply to the program is crucial for the success of the program,

and our first RCT tests the importance of this aspect of campaigns. In effect, it is testing the

importance of selection into the Solarize campaign. To examine this, we randomly draw five

municipalities from the pool of all non-Solarize municipalities in Connecticut. We ran these

five randomly drawn campaigns alongside Solarize Classic campaigns in seven municipalities

during Round 4 of the program. These municipalities may not be the marginal municipalities

most likely to be the most engaged in clean energy, and thus the success of the campaign in

these municipalities provides guidance on how Solarize might work on average if campaigns

were run in all municipalities in Connecticut.

In our second RCT, we compare the Solarize Classic campaign described above to an
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intervention where we remove the group pricing aspect of the campaigns in order to test

whether group pricing is critical to the success of the campaigns. We randomized municipal-

ities that applied to receive a Solarize campaign during Round 5 of the program into either

the Solarize Classic or ‘no group pricing’ versions of the campaign.16 Five municipalities in

this round received the Solarize Classic campaign, while another four received Solarize with-

out group pricing. In each of the two RCTs, we make sure not to run campaigns in adjacent

municipalities at the same time because of the possibility of spillovers across municipality

borders.

During the time frame of our study, a for-profit solar installer–Aegis Solar–independently

conducted similar campaigns. Specifically, Aegis Solar created and funded the non-profit

‘Connecticut Solar Challenge’ (CTSC) to contact municipalities and encourage them to

participate in a Solarize-type campaign. These CTSC campaigns are explicitly modeled

after Solarize, as Aegis Solar took part in the first round of Solarize and thus was very

familiar with the program. The only substantive differences from the Solarize campaign

are that (1) there was no competitive bidding process for the installer (Aegis Solar was the

only participating installer), (2) the Connecticut Green Bank and SmartPower were not

involved, and (3) the length of the campaigns tended to be slightly longer. Otherwise, the

CTSC campaigns are the same as Solarize campaigns. Thus, analyzing these campaigns

provides an opportunity to explore the importance of the competitive bidding and trust in

the program organizers in the success of the campaigns. We analyze 10 CTSC campaigns

conducted during the time frame of our study.

As each of these additional analyses uses a small sample, it is important to keep these

results in context. For example, in the RCT where we removed group pricing, we have a

sample size of 9, and are comparing five in one treatment to four in the other. In such a

small-sample analysis, a couple of issues are raised. One is whether we can find statistically

significant results. The interventions themselves are intensive enough that we expect to find

16During this round we also randomized some municipalities into a campaign based around the online
platform of EnergySage, but we do not cover this arm of the experiment in this paper.
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clear differences from the controls, but we may not find differences across the two types of

treatments. A second issue is how to perform statistical inference. As we will discuss, we

use small-sample statistical inference approaches on all of our analyses.

In total, we analyze campaigns in 53 municipalities in this study. Figure 4 provides a

map of the 169 municipalities in Connecticut, illustrating the 53 treated municipalities we

examine in this study.17 Appendix Table A.1 provides a complete list of all of the campaigns

we analyze in this paper and the dates that they were run.

4 Impact of the Treatment on Solar Adoption and Prices

4.1 Descriptive Evidence

We begin with some descriptive evidence of the effect of the Solarize treatment. For the big

picture, we examine the mean number of adoptions in a municipality over the full length

of the campaigns in the raw data. Figure 5 presents the mean number of adoptions in a

municipality during a campaign by round for the Solarize treatment group and each of the

three potential control groups, where the ‘future control group’ (municipalities that in the

future will apply to join Solarize) is our preferred control group.

In Figure 5, we observe a substantial increase in adoptions of solar systems in the Solarize

Classic campaigns over any of the control municipalities during the time period of the cam-

paigns. In general, the control municipalities show low rates of adoption during the campaign

period, and these rates are generally not statistically different from each other across the

control groups. In many cases, they are not statistically different from zero either, although

they do tend to increase over time, along with a general upward trend of solar adoptions in

the Connecticut market. In contrast, the increase from Solarize Classic is just as large in

some of the later campaigns as it is in the earlier ones. This is important, as it provides

17Some contiguous municipalities are run as joint campaigns, such as Mansfield and Windham in order to
reduce costs. However, both municipalities still receive the full treatment.
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evidence in support of our identifying assumption in using the ‘future control group.’ We

might have been worried if the municipalities that were treated earlier had greater adoptions

because this would have raised questions about whether the timing of when municipalities

apply for the program is plausibly random. Fortunately, we observe no discernable pattern

in the numbers of adoptions during the campaign across campaign rounds, consistent with

plausibly random timing.

By pooling across rounds in the raw data, we observe that the average number of adop-

tions in a municipality in the Solarize Classic campaign is 48.1. In comparison, the average

for the propensity score matching caliper control group is 4.0, while for the Connecticut

Clean Energy Communities control group it is 10.2, and for the future control group it is

9.2. Using a standard t-test of differences in means reveals that the Solarize Classic mean

is significantly different from any of the control groups. Just taking a simple difference in

the raw data suggests that the added lift from Solarize Classic is in the range of 38 to 44

additional solar installations from the campaign. This provides a benchmark to compare our

empirical results to.

Figure 6 pools across the rounds and presents the average number of monthly solar

adoptions by a municipality (Panel (a)) and the average prices (Panel (b)) for the Solarize

Classic treatment and the three control groups. The x-axis plots the number of months

since the start of the Solarize campaigns and the shaded area refers to length of the Solarize

campaigns. Panel (a) clearly shows a dramatic spike in adoptions during the Solarize Classic

campaigns, while each of the control groups show a modest rate of adoption that slowly and

steadily increases over time. Moreover, the pre-period adoptions are very similar between

the treatment and control groups. Along with Figure 5, this is strong descriptive evidence

of a major increase due to the intervention. Another observation from Panel (a) is that the

post-treatment rate of adoption of the treated municipalities goes back to being similar to

the control municipalities. This suggests that there is neither harvesting reducing adoption

nor enhanced peer effects increasing adoption in the post-treatment period.
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Panel (b) of Figure 6 shows that the average solar prices are roughly the same in the

pre-treatment period between the treatment and control municipalities. However, during the

campaign, the prices dropped substantially in the treated municipalities. Post-treatment we

see the prices returning to be about the same between the treatment and controls. This

descriptive evidence supports the contention that the intervention did succeed in lowering

prices during the campaign through the group pricing deal.

4.2 Causal Effect of the Intervention

The descriptive evidence from the raw data already presents a compelling picture of a strong

treatment effect of the Solarize program in increasing adoptions. We now turn to an empirical

model to estimate the causal effect of the Solarize intervention after controlling for potential

confounders.

We are interested in the average treatment effect on the treated (ATET) for adoptions

and prices. Because the treatment is at the municipality level, we estimate the effects at this

level, and convert our data to a municipality x month panel. Our preferred specification for

the causal effect on adoptions in municipality i in month t is given as follows:

Adoptionsit = βTit + ηi + µt + εit. (1)

Here Adoptionsit refers to the number of adoptions in municipality i and month t.18 Tit is a

dummy for the Solarize treatment (i.e., a treated municipality during the treatment period).

ηi are municipality fixed effects and µt are month-of-the-sample dummy variables. εit is the

error term.

To estimate the treatment effect on equilibrium prices, we use a similar specification:

Priceit = δTit + λi + πt + εit. (2)

18This is an OLS fixed effects specification, but we find similar results using a negative binomial specifi-
cation.
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In this specification, Priceit is the average price in municipality i and month t. We use the

Tit again as the dummy for the Solarize treatment, λi are municipality dummy variables, πt

are month-of-the-sample fixed effects, and εit is the error term.

Because we have five rounds, we create a stacked data set. For each round, we include all

of the treatment and control municipalities and two years prior to the start of the campaigns.

We do not include any post-period in these estimations.19 Then we stack these data sets

together into a single pooled dataset. Note this means that a municipality can be a control

in the first round and a treated municipality in a later round. We also run each of the rounds

separately, but we face small sample issues in doing so, and thus we prefer the analysis of

the pooled data.

These estimations are difference-in-difference estimations, so identification is based on the

assumptions of parallel trends and the stable unit treatment value assumption (SUTVA).

The parallel trends assumption requires that the control group would have had an identical

trend to the treatment group had the treatment not been implemented. If this assumption

holds, then any time-varying unobservables will be captured through the trends in the control

group. For the parallel trends assumption to hold, we must be confident in the validity of

the control group. We argued above that the timing of municipality applications for Solarize

is plausibly random due to the process by which it occurred, which involved chance contacts

between individuals and idiosyncratic factors at the municipality level. This contention is

strongly supported by the table of balance, Table 1, and by the nearly identical pre-trends

for adoptions and prices in Figure 6.

SUTVA first requires stable treatments, which means that the treatments are applied

the same to all treated municipalities. Our research design assures this. SUTVA also re-

quires non-interference, which implies that there are no spillovers between the treatment

and control. To assure that this holds we drop all municipalities adjacent to the treated mu-

nicipalities from the control groups. Figure 6 provides descriptive evidence that treatment

19We also explore other assumptions, such as including a longer pre-period, no pre-period, or a one-year
post-period. We find extremely similar results.

18



spillovers are unlikely to have a dominant effect, for there is no discernible change in the

trends in the control groups. We further explore the possibility of spillovers shortly after

first presenting our primary results and robustness checks.

4.3 Primary Results

We present our primary results of the effect of the Solarize intervention on adoptions and

prices in Table 2. The first three columns present the results from estimating the adoption

equation (1), while the second three columns present the results from estimating the pricing

equation (2). Columns 1 and 4 present the results using the propensity score caliper matched

control group, columns 2 and 5 present the results using the non-Solarize Connecticut Clean

Energy Communities control group, and columns 3 and 6 present the results using our

preferred future Solarize control group.

One possible concern about inference is that the number of clusters is relatively small.

Even with clustering, our baseline treatment effect inference relies on asymptotic arguments,

and so the municipality-level clustered standard errors may understate the uncertainty in the

estimates. Bertrand, Duflo, and Mullainathan (2004) perform simulations that show that the

cluster-correlated Huber-White estimator can lead to an over-rejection of the null hypothesis

when the number of clusters is small, with 50 being a common benchmark. We are above this

threshold in all columns (see the number of municipality dummies). However, for robustness

we consider other methods of inference. Recently, the Cameron, Gelbach, and Miller (2008)

wild bootstrap method has found wide application in recent empirical studies (Giné and

Yang, 2009; Ben-David, Graham, and Harvey, 2013; Bloom et al., 2013; Elberg, Gardete,

Macera, and Noton, 2019). As another alternative, Cohen and Dupas (2010) and Bloom

et al. (2013) use randomization inference, which does not require asymptotic arguments or

distributional assumptions (Fisher, 1935; Rosenbaum, Duflo, and Mullainathan, 2002). The

first standard errors in parentheses are simply block bootstrapped at the municipality level to

allow for any within-municipality correlation in errors, but we implement both small-sample
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methods and report the p-values for our hypotheses. These small-sample methods become

all the more important when we will use our smaller-sample randomized controlled trials in

later sections.

The primary results in Table 2 demonstrate a strong and significant causal effect of

the Solarize intervention on adoptions. In column 3, we see that the treatment leads to

an increase in adoptions of 6.63 solar systems per municipality in a month. This implies an

average treatment effect of 37.1 over the entire campaign per municipality, which is more than

a 1,000% increase from the control group adoption rate. This is just a bit below the effect

in the raw data when we simply subtract the mean adoptions in the control municipalities

(0.6) from the mean adoptions in the treated municipalities (7.9). For further context,

if we estimate our specification in column 3 using monthly adoptions per owner-occupied

household, we find a treatment effect of 0.2 percentage points, which is a massive increase

over the monthly adoptions per household in the control (0.02%). We also find a similar

strong and statistically significant effect in Table 2 for prices. Our result in column 6 indicates

that the Solarize intervention decreased prices by -$0.46 per watt during the campaign, a

10% decline,20 which is in line with expectations, since Friedman et al. (2013) find installers

customer acquisition costs to be $0.48/W, in the absence of a Solarize campaign.

We can also estimate the treatment effects over time by modifying equation (1) slightly

by interacting the treatment dummy with a dummy variable for each of the months since

the beginning of the treatment. In this estimation we also extend the sample out to two

years pre-treatment and two years post-treatment. Figure 7 shows the treatment effect

on adoptions over time using the future Solarize control group. As expected, there is no

statistically significant effect in the pre-period, but there is a dramatic spike during the

treatment, mirroring what we observed in the raw data in Figure 6. After the treatment,

we see no statistically significant treatment effect, indicating that the treated municipalities

largely returned to the rate of adoption of the control municipalities.

20For reference, the average price in the control municipalities is $4.63 per watt, so this is a substantial
price decline.
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These results provide strong evidence of the success of the Solarize campaign in increasing

adoptions and lowering prices. This success raises a several questions. Did the campaigns

spill over to adjacent municipalities? What is the effect on randomly selected municipali-

ties, rather than the marginal municipalities that opted-in to the campaign? What are the

mechanisms underpinning the success of the campaigns? Before addressing these questions,

we first present several robustness checks.

4.4 Robustness Checks

In Table 2, we show the robustness of our primary results to two other potential control

groups. However, we also explore the robustness of our results to several alternative as-

sumptions and perform a placebo test to further support our identification arguments.

In our first robustness check, we run the model described by equation (1), only we vary

the length of the pre-treatment period that we include. In our primary specifications, we

are include two years of pre-treatment period. If we include a longer pre-treatment period,

we begin to include a time frame that is less relevant for pinning down the trends in the

treatment period. If we include a shorter pre-treatment period, we have less data available to

pin down these pre-treatment trends. At the extreme, we can also estimate the model with

no pre-treatment period, in which case our estimation is no longer a difference-in-difference

approach and we are not taking advantage of the information we have about pre-trends. In

Appendix Table A.2 we compare our primary results using the future control group (column

1) to those with only one year pre-treatment period (column 2) and no pre-treatment period

(column 3). We find very similar results, suggesting that the somewhat arbitrary assumption

we made about the length of the pre-treatment period does not affect our results.21

In our second robustness check, we estimate equation (1) using a negative binomial model

rather than using ordinary least squares. The number of adoptions in a municipality may

21When we do not include a pre-treatment period, this facilitates the use of Abadie-Imbens standard errors
for the caliper control group estimation. The p-value using these standard errors for our hypothesis test
with a null of zero still indicates that the coefficient is statistically significant at the 1% level.
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be thought of as a count variable, and thus a negative binomial model may be appropriate.

Column 4 in Table A.2 presents the results using the negative binomial model, showing

that the main findings do not substantially change. Column 5 in Table A.2 reports a zero-

inflated negative binomial to flexibly account for the many municipality-months that have

zero adoptions. Similarly, one might be concerned that municipalities have different potential

market sizes, so the number of adopters is not fully reflecting the change in propensity to

adopt across municipalities. This should not be an issue in our research design because the

municipalities in the treatment and control have similar potential market sizes, but to assure

that it is not an issue, we estimate a log-odds model based on the share of the potential

market in each municipality (see Appendix D). The results from the log-odds model are

again very similar to our preferred specification and are found in column 6 of Table A.2.

We also perform a set of robustness checks to examine different assumptions that might

affect our price specifications. In our preferred specification, we impute missing solar instal-

lation prices for municipalities that do not have any installations in that month. This is done

by using the average price in the same county as the municipality, and for any remaining

missing prices where there are no installations in the county during that month, we use the

state-wide price (only a very small percentage of municipality-month observations). This

interpolation could lead to some measurement error, so to examine the robustness of our

results, we estimate the model in equation (2) on the sample for which price is non-missing.

Appendix Table A.3 presents these results in columns 1-3, while the primary results from

Table 2 are presented in columns 4-6 for comparison. We observe slightly larger treatment

effects on prices when we remove the missing observations, which makes sense because the

sample is slightly different, with low-adoption municipalities weighted more heavily in our

primary results. It could also be due to attenuation bias from measurement error, but it

is impossible to separate out the two hypotheses. We find it comforting that the coeffi-

cients did not change substantially and that coefficients indicate that our primary results

are conservative.
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Finally, we perform a series of placebo or falsification tests where we shift the dates of

the intervention in our analysis to prior to when they actually happened. Appendix Table

A.4 presents the results from the placebo tests changing the intervention period to the six

months prior to the start of the campaigns. In these estimations, we only include the sample

prior to the beginning of the treatments. As suggested by our descriptive statistics, there is

no discernable difference between the treatment and control group adoption rates or prices

during the pre-treatment period, so it is not surprising that we find that all of the coefficients

are close to zero and/or not statistically significant.

4.5 Spillovers to Adjacent Municipalities?

If the Solarize treatment leads to additional installations through social interactions and

word-of-mouth, we might expect nearby municipalities to also experience some treatment

effect, since social networks extend across municipal borders. Such spillovers or ‘treatment

externalities’ have been exhibited in other field experimental settings (e.g., Miguel and

Kremer, 2004) and can contribute positively to the cost-effectiveness of the program. They

also could pose a challenge to the experimental design if they lead to violations of SUTVA. As

mentioned above, we exclude adjacent municipalities from the control groups in our primary

analysis to address this potential concern.

We estimate the models in equations (1) and (2), only using a treatment dummy that

refers to a municipality adjacent to a treated Solarize municipality. In these regressions

we include only the adjacent municipalities and the controls (the treated Solarize or CTSC

municipalities are excluded). Again, we include the two years prior to the beginning of

the interventions. Our results show no statistically significant evidence of spillovers at the

municipality level in either adoptions or prices. Appendix Table A.5 provides the results

using the future Solarize control group. The coefficients suggest a very small and positive

effect on adoptions and very small and negative effect on prices, but the coefficients are not

precisely estimated and cannot be distinguished from zero.
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This analysis so far was based at the municipality level, but it is possible that spillovers

happen only in the area immediately adjacent to a treated Solarize municipality. Thus, to

look more deeply into spillovers, we also performed a spatial analysis, similar to Anderson,

Chandy, and Zia (2018)’s study of small business owner training in South Africa. Using

geographic information system software (ArcMap), we created a buffer zone around each

Solarize municipality and then a further zone with the same width in the interior of the

adjacent municipality, as is illustrated in Appendix Figure A.1. Then we calculated the rate

of adoption of solar in the immediately adjacent buffer zone and compared it to the rate

of adoption in the equivalently-sized zone in the interior of the municipality. We examined

several different buffer zone sizes, including one mile and a half mile. Similarly we examined

several different values for the gap between the adjacent buffer zone and the interior zone,

such as two miles and five miles. Our results from this detailed analysis are similarly incon-

clusive; we perform a set of t-tests comparing the mean adoption rate during the campaign

in the two zones and find no statistically significant results. The lack of significant spillover

effects suggests that the social learning is predominantly confined within the area of the

campaign.

4.6 How Important is Selection into the Program?

We have thus far demonstrated a substantial causal effect from the Solarize treatment on the

municipalities that chose to apply for the treatment. One could view these municipalities

as the ‘cream-of-the-crop’ for such behavioral programs because enthusiastic individuals in

these communities went out of their way to select into the program. This raises the natural

question of what the effects of the Solarize intervention would be if the program is scaled up

to all municipalities in Connecticut, rather than only the most enthusiastic. We thus test

this with the randomly-assigned set of municipalities that SmartPower approached with the

opportunity to participate. Fortunately, the approached municipalities agreed to participate,

but there was not always complete buy-in from the town council in all municipalities and it
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was more difficult finding campaign volunteers.

For our analysis here, we use two control groups for comparison. The first control group

consists of all municipalities in Connecticut that did not yet (by the end of the fifth round of

Solarize campaigns) receive a Solarize or CTSC intervention. Recall that this is the pool of

municipalities that we randomly drew from. This is a very appropriate control group for this

analysis. However, due to the small sample size of randomly-drawn campaigns that we were

able to run, it is likely that some of the observable municipality-level characteristics may differ

on average between this control group and the randomly-drawn treatment group. Thus, to be

conservative, we also run an analysis using a propensity score matched caliper control group,

where we again match each of the randomly drawn municipalities to three nearest neighbors

(again using a 0.05 caliper). In Appendix Table A.6, we show that observable demographics

and pre-treatment cumulative adoptions are generally similar between the randomly-drawn

treatment and control groups, although there are a few statistically significant differences,

which may not be surprising given the relatively small number of treated municipalities.

Table 3 presents the results showing the causal effect of the Solarize intervention on

randomly-selected municipalities. Columns 1 and 3 present the results using the broad

control group of all municipalities that did not yet receive a Solarize or CTSC campaign.

Columns 2 and 4 show the results using the propensity score matched caliper control group.

The first two columns show the results for adoptions, while the second two show the results

for prices. Again, we include two years prior to the beginning of the interventions as a pre-

period. The results suggest an increase in adoptions of 3.66 to 5.22 adoptions per municipality

per month, which translate into 20.5 and 29.2 over the entire campaigns. Prices decline by

$0.26 to $0.29 per watt from an average of about $4.60. These coefficients are all statistically

significant despite the smaller sample size.

However, when we compare these results to those for Solarize Classic in Table 2, it is clear

that the effects are muted in the randomly-selected group. There are fewer adoptions and

the price decline is substantially lower. This also holds if we compare the results in Table
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3 only to the Solarize Classic campaign in Round 4, with an even greater difference in the

number of adoptions and a similar difference for the price decline. Specifically, the Solarize

Classic treatment effect in Round 4 is 8.97 adoptions per municipality per month, with a

cost decline of $0.42 per watt (both are statistically significant). This comparison shows

that while the Solarize program can still be effective in randomly selected municipalities,

selection into the program matters.

This sheds further light on the mechanisms underlying the effectiveness of the program.

Selecting into the Solarize campaign by applying for it is usually the result of one or two key

ambassadors or municipality leaders who are particularly interested in promoting solar to

their community. Having these key promoters at the center of a campaign is a primary dif-

ference between the campaigns in the randomly drawn municipalities and the municipalities

that selected into the program.

5 Mechanisms

5.1 Is Solarize Just a Discount Pricing Scheme?

5.1.1 Prices or information?

We can examine whether the installation treatment effect is simply the result of the price

decline by exploring whether prices or information are the primary determinants of the

increased adoption from the campaign. We re-estimate equation (1), only we include the

average installation price as a covariate. In order to identify the causal effect of prices, we

need to address price endogeneity, especially given the fact that the Solarize installers’ bids

will reflect the expected demand lift from the campaign. To do so, we leverage cross-sectional

and time series variation in the Bureau of Labor Statistics county-level roofing wage rate,

which is driven in large part by the availability of roofing labor. Roofers and solar installer

employees have a very similar skill set, and so the roofing wage rate is a good proxy for
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installers’ labor costs (this instrument has also been used in previous papers, including

Gillingham and Tsvetanov (2016)).

In columns 1 through 3 of Table 4, we present the OLS results, using each of the three

control groups, and in columns 4 through 6, we instrument for price using the roofing wage

rate. We see no effect of price in the OLS regressions, but this is as expected due to the

price endogeneity. In the IV regressions, we can only imprecisely estimate the effect of price

when using the caliper control group, given the smaller sample size. However, when the

other two control groups we find that price has a significant, negative effect on adoptions.

For instance, using the CEC control group, we find that a one dollar per watt price increase

in price leads to a decline of 7.5 installations per month and with the future control group,

we find a reduction of 5.8 installations per month.

With a price decline of $0.46/watt due to the campaigns, our estimates suggest that the

decrease in price can only explain a lift from Solarize of approximately 2.5 installations per

month. This is less than half of the total treatment effect of over six installations per month,

which suggests that the majority of the treatment effect from the Solarize campaign cannot

be explained by the price reduction alone. Other elements of the campaigns, such as the

solar ambassadors and the community-based recruitment, must be playing a more important

role in the increased adoptions from the campaigns than the price discount.

5.1.2 How important is group pricing?

We can further explore the importance of pricing by examining the role of group pricing.

Theory suggests that with group pricing, installers may benefit from the dissemination of

information through peer effects from additional WOM. Given the many psychological drivers

of WOM (Zhang, Feick, and Mittal, 2013; Berger, 2014), we might expect the effectiveness

of WOM to be altered with the inclusion of group pricing, given that group pricing includes

extrinsic motivation for WOM. The presence of a group buy may also change the dynamics

within a campaign. Kauffman and Wang (2001) and Kauffman, Lai, and Ho (2010) show
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that one should expect inertia in group buys, with the greatest uptake at the end of the deal.

This intuitively makes sense since consumers have an incentive to wait for more information

regarding what the final price would be, but it could also suppress word-of-mouth in the first

part of the campaigns.

Recall that we randomized municipalities that applied to receive a Solarize campaign

during Round 5 of the program into either the Solarize Classic or no group pricing versions

of the campaign in order to test the importance of group buys. Figure A.2 shows the number

of installations during the campaign for the treatment municipalities and the control groups,

suggesting a similar increase in adoptions regardless of whether group pricing is included.

To estimate causal treatment effects, we again use our primary specification given in

equation (1). Results are shown in columns 1-3 in Table 5. We find that the treatment

effect for the number of installations per month is between 3.22 and 5.34, depending on

which control group is used. To provide an even more direct comparison, we estimate the

treatment effect for just the Round 5 Classic municipalities, shown at the bottom of Table

5, which range between 2.95 and 5.63. In both the CEC and future control groups, the point

estimate is actually higher when group pricing is removed. We also directly compare the two

types of campaigns using only the experimental variation by restricting our sample to using

only the set of Round 5 classic Solarize and no group pricing campaigns. We find that the

coefficient on the Solarize Classic dummy is not significant (-0.73 with a standard error of

2.37), suggesting that the number of adoptions is not appreciably influenced by the group

pricing.

We can also examine how the presence of group pricing influences the effect on equilibrium

prices. Columns 4-6 in Table 5 show the treatment effect on prices. We observe that

the decline in prices due to the campaign without group pricing is smaller than the price

declines from the Solarize Classic campaigns in Table 2, but the treatment effect is very

noisily estimated and is generally not statistically significant. When we estimate the model

using data that include only Round 5 Classic and no group pricing campaigns (with future
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controls), we find that the coefficient on the Solarize Classic dummy is 0.23 with a block

bootstrapped standard error of 0.11, suggesting that the prices are lower without group

pricing. In hindsight, this makes sense. Group pricing can be advantageous for firms due

to its effect on information sharing (Jing and Xie, 2011; Chen and Zhang, 2014), but the

Solarize campaigns are effective in disseminating information even without group pricing.

Our findings suggest that in our context, group pricing does not appear to appreciably lower

prices or increase the number of adoptions, further underscoring that other elements of the

campaign, rather than pricing, are the more dominant mechanisms leading to the outcomes

we observe.

5.2 How Important is the Municipality Selection Process?

The CTSC program included all of the central tenets of the Solarize program except the

competitive bidding process for the installer and the involvement of SmartPower and the

Green Bank. In this respect, CTSC provides a useful example of how Solarize could work if

it is run without government involvement.22 In our analysis we again use the future Solarize

controls because the CTSC municipalities selected into the program in the same way as the

classic Solarize program. The balance of covariates is shown in Appendix Table A.7. We

observe no significant differences across the treatment and control groups in observables.

Because of the limited effectiveness of the campaigns, CTSC extended their campaigns by

an additional two months over the standard five-month length of a Solarize campaign.

The estimated treatment effects of the CTSC campaigns are displayed in Table 6. While

not statistically significant, our point estimate suggests that the CTSC led to 0.65 additional

installations per month (column 1), which is a substantially smaller lift than the over six

additional installations from the classic Solarize campaigns. One explanation for this smaller

effect is that the CTSC did not provide as substantial of a price discount. We see this in

column 2 of Table 6, where there is a much smaller price decline from the CTSC relative

22Although Aegis Solar created and funded CTSC, it is technically a non-profit organization.
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to the controls. This finding shows that when we remove the competition at the bidding

stage–regardless of whether we have group pricing–there is less of a price decline.

The smaller price decline during the CTSC is unlikely to explain the entire difference

relative to the classic Solarize campaigns in the number of installations. For the Classic

campaigns, we found an additional treatment effect of over three installations per month

after controlling for the price reduction. Aegis Solar was also extremely effective in Solarize

Round 1, so it is unlikely that the difference is due to a lower quality installer who did

not know how to run the Solarize intervention. This leads to a final possibility: that trust

in the program is a critical element. The inclusion of third parties, the Green Bank and

SmartPower, along with the competitive bidding process, provided potential customers with

more trust in the installer, and thus more trust in the process. Grayson, Johnson, and Chen

(2008) explicitly show that customers’ trust in the firm(s) is a necessary mediator for trust

in the market context. Indeed, in the Solarize program, the installers were selected by the

municipalities and referred to as “vetted installers”.

5.3 Social Learning and Word-of-Mouth

To more deeply understand the mechanisms driving the treatment effects, we surveyed solar

PV adopters after each Solarize round. This survey was performed through the Qualtrics

survey software and was sent to respondents via e-mail, with an iPad raffled off as a reward

for responding. The e-mail addresses came from Solarize event sign-up sheets and installer

contract lists. Approximately six percent of the signed contracts did not have an e-mail

address. All others we contacted one month after the end of the round, with a follow-up to

non-respondents one month later. The overall response rate across the five rounds of Classic

was 42 percent; this is a very high response rate for an online survey, a testament to the

enthusiasm of the adopters in solar and the Solarize program.

We are especially interested in how solar adopters found out about the program. One

question in our survey provides 14 possible factors that influence the decision to install solar.
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The question asked respondents to “rate the importance of each factor in your decision to

install solar PV,” with the following possible answers: extremely important, very important,

somewhat important, not at all important. Figure 8 shows the number of survey respondents

that rated the information sources as “extremely important” and “very important,” for each

of the 14 information sources. Several of these sources rely on social learning. Indeed, the

top five sources of information listed as either extremely or very important (not including

“other”) involve social learning: the “town information event,” a “friend or neighbor’s rec-

ommendation,” a “recommendation of someone you interact with in your town,” the “solar

ambassador,” and “seeing solar on another home or business.”23 The only social information

not rated highly is a “recommendation of someone you work with”, which is not surprising

since the campaigns leverage social interactions within the communities where people live,

rather than workplaces. These survey results provides evidence that the Solarize intervention

may be working exactly as intended: by fostering social learning.

6 Cost-effectiveness and Welfare

In this section, we assess cost-effectiveness. SmartPower provided us with their cost break-

down of the five round of Solarize Classic, which is mostly covering staff time. For the 34

Classic campaigns, the total cost to SmartPower was $800,000. In addition, we surveyed the

Solarize installer firms, who reported costs of approximately $5,000 per municipality (e.g.,

mailers, additional staff time, etc.). These lead to a combined cost figure of $28,500 per

town. With an estimated treatment effect of 6.63 installations per month (using the future

Solarize town control group), the direct program cost for each new installation from the

program is $860.

From the solar installer firm’s perspective, there was also the discount of $0.46/W. For an

average system size of 4.23 kW, this amounts to $1,690 per installation. Adding in the direct

23“Other” is the third ranked source of information when ranking only by the number of respondents
rating the source as “extremely important”.
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marketing expenditures by the installers, this means that the solar firm spent roughly $1,840

per installation installed through Solarize. This compares favorably to installers’ reported

consumer acquisition costs of $1,500-$3,000 per installation when the installers are finding

customers on their own. The main advantage to installers of participating in the Solarize

campaigns is that they provide many more leads and adoptions, allowing for more business

for the installers, which also provides greater economies of scale. Of course, the major reason

for policymakers to support Solarize campaigns is because of the environmental benefits. In

2012, electricity on the Connecticut grid has a carbon intensity of 547 pounds of CO2 per

MWh. Using estimates of expected solar electricity generation at the municipality level from

the Green Bank, we find that in total, the 1,127 additional installations from the Solarize

Classic campaigns led to a reduction of 3,683 pounds of carbon annually. Assuming the same

carbon intensity over time, the total reduction over the 25 year lifespan of the solar panels

is 92,100 pounds.

Applying our estimates of direct program cost and carbon reductions yields a cost per

ton of avoided CO2 from the Solarize program of $20.61 (the cost per ton would be higher if

the New England electricity grid decarbonizes). In comparison, the 2019 central estimate of

the social cost of carbon is about $50 per ton (in 2019$) (Environmental Protection Agency,

2016), although some recent work has put the price at over $100 per ton (Daniel, Litterman,

and Wagner, 2019). Thus, the Solarize program very likely increases social welfare based on

the environmental benefits alone.24

7 Conclusions

This paper contributes to the literature on pro-social behavioral interventions. The Solarize

program, which draws upon several theoretical and empirical findings in previous work, is

24Note that our calculations are not a full social welfare analysis, which would also account for the other
subsidies for solar as well as all of the other externalities. The subsidies are a transfer from the government
to consumers, but there may be a social cost from raising the tax revenue. If we assume a 10% marginal
social cost of public funds to pay for the subsidies, the cost per ton of avoided CO2 rises to $44.47.
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expanding rapidly and could be applied to other energy-saving or renewable energy technolo-

gies. We find very strong treatment effects from the program: an increase in installations

by 37 per municipality, which is more than a 1,000% increase from the control group rate,

and a decrease in pre-incentive equilibrium prices of $0.46/W. We use a field experiment to

demonstrate that these programs can also increase installations in randomly-selected munic-

ipalities (although with a slightly smaller lift), providing guidance on the external validity

of our results.

Our research also delves into the mechanisms underlying this result. We show that

the discount pricing is a secondary factor influencing the success of the campaigns, and

in a second side field experiment with the same campaigns but without the group pricing,

we show that group pricing is not essential to the lift in adoptions. We also examine a

similar campaign with all of the central tenets of Solarize, only without competition for the

chosen installer and run without the participation of SmartPower and the Green Bank. This

campaign led to far fewer installations, suggesting the value of both the installer selection

process and trust in the campaign organizers.

Our survey results highlight the importance of social learning and information provision

within the campaign. Our calculations reveal that the program is surprisingly cost-effective,

with a direct program cost of $21/ton of CO2 reduced, which is less than half of common

estimates of the social cost. Although residential rooftop solar alone will not solve the world’s

dependency on fossil fuels, the efficacy of the Solarize campaigns underscores the promise of

leveraging social learning in other energy-related behaviors for reducing climate risks.
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Tables & Figures

Table 1: Table of Balance

All of CT Treated Caliper Controls CEC Controls Future Controls
diff. diff. diff

variable Mean Stdev Mean Mean p-value Mean p-value Mean p-value
Number of towns 169 n/a 34 23 n/a 47 n/a 38 n/a
Cum. pre-adoptions 13.9 9.4 16.4 13.5 0.29 15.0 0.51 17.6 0.63
Population density 885 1218 900 933 0.93 1344 0.16 1041 0.67
Med hh income 83,899 26,846 94,095 86,826 0.38 82,148 0.06 90,512 0.61
% over 65 15.7 3.9 14.7 15.3 0.48 15.9 0.11 15.3 0.49
% white 88.9 11.9 86.9 89.3 0.48 87.3 0.88 87.3 0.89
% black 4.0 7.8 5.9 3.3 0.32 4.8 0.61 4.6 0.57
% hh w children 71.1 7.5 72.0 71.4 0.80 70.4 0.33 71.6 0.82
% commute >60mi 8.6 5.8 9.2 8.4 0.66 8.0 0.36 9.1 0.95
% below poverty 6.3 5.1 6.3 6.2 0.94 6.7 0.74 6.4 0.94
% college degree 47.8 5.3 49.3 48.4 0.53 46.4 0.02 48.4 0.51
% unemployed 8.3 2.7 7.7 8.3 0.45 8.8 0.09 7.8 0.93
% detached housing 77.0 17.1 78.4 78.3 0.98 72.7 0.15 76.6 0.64
% republican voters 23.5 7.4 24.5 25.9 0.57 22.1 0.17 24.1 0.86
% democrat voters 30.9 8.9 32.4 29.0 0.17 32.3 0.97 32.0 0.85

Notes: Means are at the municipality level. p-values are from two-sided t-tests of differences in treatment vs. control means.
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Table 2: The Impact of the Solarize Intervention on Solar Installations and Prices

(1) (2) (3) (4) (5) (6)
Dependent variable Installations Prices

Control Group Caliper CEC Future Caliper CEC Future

Interventionit 6.82 6.20 6.63 -0.45 -0.39 -0.46
(0.72)*** (0.63)*** (0.85)*** (0.08)*** (0.07)*** (0.08)***

Small sample robustness
Wild cluster bootstrap-t (p-value) 0.00 0.00 0.00 0.00 0.00 0.00
Randomization inference (p-value) 0.00 0.00 0.00 0.00 0.00 0.00

# Municipality fixed effects 62 199 153 62 199 153
# Month-of-sample dummies 43 43 43 43 43 43
Observations 1,059 3,705 2,769 1,059 3,705 2,769
R-squared 0.51 0.42 0.48 0.29 0.22 0.2

Effect over entire campaign
Average ATET per municipality 38.2 34.7 37.1
Effect in raw data 44.1 37.9 38.9
Treated town average price ($/W) 4.16 4.16 4.16
Control town average price ($/W) 4.56 4.61 4.63

Notes: An observation is a municipality-month. Standard errors in parentheses are block bootstrapped at the
municipality level. Intervention is a dummy equal to 1 for a Solarize campaign occurring. The sample is stacked
over the rounds, so a municipality may be a control for an earlier round and treated in a later round. Once
treated, municipalities are removed from the sample. Caliper refers to propensity score matching of the treated
municipalities to the three nearest neighbors with a 0.05 caliper. CEC refers a control group of all Connecticut
Clean Energy Community municipalities except those treated or adjacent to treated. Future refers to a control
group of municipalities that in future rounds opted-in to a Solarize campaign. # Municipality fixed effects
reports the number of town-level fixed effects. # Month-of-sample dummies reports the number of month-of-
sample dummies (one or more are dropped due to collinearity). Wild cluster bootstrap-t reports the p-value for
testing the null hypothesis that the treatment has no effect using the wild cluster bootstrap-t procedure from
Cameron et al. (2008). Randomization inference reports the p-value for testing the same null hypothesis using
randomization inference. The Average ATET per municipality calculates the effect over an entire campaign of
5.6 months on average. The Effect in raw data calculates the difference between the total installations during
a campaign for treatment and control groups, averaged over all municipalities. The final two rows calculate the
average price during campaigns (in 2014$/W) in treatment and control groups. *** denotes 1% significance.
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Table 3: The Impact of Solarize in Randomly-Selected Towns

(1) (2) (3) (4)
Dependent variable Installations Prices

Control Group Non-Solarize Caliper Non-Solarize Caliper

Interventionit 3.66 5.22 -0.26 -0.29
(1.07)*** (0.95)*** (0.09)*** (0.09)***

Small sample robustness
Wild cluster boostrap-t (p-value) 0.07 0.00 0.01 0.02
Randomization inference (p-value) 0.00 0.00 0.02 0.00

# Municipality fixed effects 126 9 126 9
# Month-of-sample dummies 17 17 17 17
Observations 2,268 153 2,268 162
R-squared 0.27 0.22 0.2 0.19

Effect over entire campaign
Average ATET per municipality 20.5 29.2
Effect in raw data 22.2 32.3
Treated town average price ($/W) 4.38 4.38
Control town average price ($/W) 4.64 4.62

Notes: Regressions are run on the subsample of randomly-selected Solarize and control towns. An
observation is a municipality-month. Standard errors in parentheses are block bootstrapped at the
municipality level. Intervention is a dummy equal to 1 for a Solarize campaign occurring. Non-
solarize refers to the control group of all non-treated municipalities. Caliper refers to propensity
score matching of the treated municipalities to the three nearest neighbors with a 0.05 caliper.
# Municipality fixed effects reports the number of town-level fixed effects. # Month-of-sample
dummies reports the number of month-of-sample dummies (one or more are dropped due to
collinearity). Wild cluster bootstrap-t reports the p-value for testing the null hypothesis that
the treatment has no effect using the wild cluster bootstrap-t procedure from Cameron et al.
(2008). Randomization inference reports the p-value for testing the same null hypothesis using
randomization inference. The Average ATET per municipality calculates the effect over an entire
campaign of 5.6 months on average. The Effect in raw data calculates the difference between
the total installations during a campaign for treatment and control groups, averaged over all
municipalities. The final two rows calculate the average price during campaigns (in 2014$/W) in
treatment and control groups. *** denotes 1% significance.
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Table 4: The Effect of Prices Versus Information

(1) (2) (3) (4) (5) (6)
OLS IV

Control Group Caliper CEC Future Caliper CEC Future

Interventionit 6.76 6.16 6.31 -2.48 3.31 3.95
(0.76)*** (0.62)*** (0.74)*** (7.61) (1.27)*** (1.47)***

Price per watt ($/W)it -0.12 -0.09 -0.05 -20.9 -7.48 -5.76
(0.12) (0.05) (0.03) (17.60) (3.05)** (3.10)*

# Municipality fixed effects 62 199 153 62 199 153
# Month-of-sample dummies 43 43 43 43 43 43
Observations 1,059 3,705 2,769 1,059 3,705 2,769
First stage F-stat 25.29 11.08 10.97
p-value on instrument 0.29 0.002 0.05

Effect over entire campaign
Average ATET per municipality 37.9 34.5 35.3 -13.9 18.5 22.1
Effect in raw data 44.1 37.9 38.9

Notes: An observation is a municipality-month. Standard errors in parentheses are block bootstrapped
at the municipality level. The first three column present ordinary least squares (OLS) results, while the
second two present instrumental variables (IV) results where we instrument for price with the roofer wage
rate. Intervention is a dummy equal to 1 for a Solarize campaign occurring. The sample is stacked over
the rounds, so a municipality may be a control for an earlier round and treated in a later round. Once
treated, municipalities are removed from the sample. Caliper refers to propensity score matching of the
treated municipalities to the three nearest neighbors with a 0.05 caliper. CEC refers a control group
of all Connecticut Clean Energy Community municipalities except those treated or adjacent to treated.
Future refers to a control group of municipalities that in future rounds opted-in to a Solarize campaign.
# Municipality fixed effects reports the number of town-level fixed effects. # Month-of-sample dummies
reports the number of month-of-sample dummies (one or more are dropped due to collinearity). Wild
cluster bootstrap-t reports the p-value for testing the null hypothesis that the treatment has no effect using
the wild cluster bootstrap-t procedure from Cameron et al. (2008). Randomization inference reports the
p-value for testing the same null hypothesis using randomization inference. The Average ATET per
municipality calculates the effect over an entire campaign of 5.6 months on average. The Effect in raw
data calculates the difference between the total installations during a campaign for treatment and control
groups, averaged over all municipalities. *** denotes 1%, ** 5%, and * 10% significance.
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Table 5: The Impact of the Solarize Intervention without Group Pricing

(1) (2) (3) (4) (5) (6)
Dependent variable Installations Prices

Control Group Caliper CEC Future Caliper CEC Future

Interventionit 3.22 3.67 5.34 -0.13 -0.13 -0.18
(2.30) (2.08)* (2.42)** (0.32) (0.06)** (0.17)

Small sample robustness
Wild cluster boostrap-t (p-value) 0.26 0.19 0.07 0.58 0.16 0.39
Randomization inference (p-value) 0.06 0.02 0.04 0.09 0.12 0.03

# Municipality fixed effects 9 36 9 9 36 9
# Month-of-sample dummies 15 15 15 15 15 15
Observations 135 540 135 135 540 135
R-squared 0.51 0.41 0.53 0.10 0.22 0.24

Effect over entire campaign
Average ATET per municipality 18.1 20.6 29.9
Effect in raw data 20.9 24.1 34.7
Treated town average price ($/W) 4.34 4.34 4.34
Control town average price ($/W) 4.45 4.48 4.45

Round 5 Classic Results for Comparison
Interventionit 5.63 2.95 4.62 -0.13 0.09 0.05

(1.15)*** (1.32)** (1.47)*** (0.14) (0.12) (0.25)

Notes: An observation is a municipality-month. Standard errors in parentheses are block bootstrapped at the
municipality level. Intervention is a dummy equal to 1 for a Solarize campaign occurring. The sample is stacked
over the rounds, so a municipality may be a control for an earlier round and treated in a later round. Once
treated, municipalities are removed from the sample. Caliper refers to propensity score matching of the treated
municipalities to the three nearest neighbors with a 0.05 caliper. CEC refers a control group of all Connecticut
Clean Energy Community municipalities except those treated or adjacent to treated. Future refers to a control
group of municipalities that in future rounds opted-in to a Solarize campaign. # Municipality fixed effects
reports the number of town-level fixed effects. # Month-of-sample dummies reports the number of month-of-
sample dummies (one or more are dropped due to collinearity). Wild cluster bootstrap-t reports the p-value for
testing the null hypothesis that the treatment has no effect using the wild cluster bootstrap-t procedure from
Cameron et al. (2008). Randomization inference reports the p-value for testing the same null hypothesis using
randomization inference. The Average ATET per municipality calculates the effect over an entire campaign of
5.6 months on average. The Effect in raw data calculates the difference between the total installations during a
campaign for treatment and control groups, averaged over all municipalities. The final two rows calculate the
average price during campaigns (in 2014$/W) in treatment and control groups. *** denotes 1% significance.
*** denotes 1%, ** 5%, and * 10% significance.
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Table 6: CTSC Treatment Effects

(1) (2)
Dependent variable Adoptions Prices
Treatmentit 0.65 -0.26

(0.45) (0.13)*
Small sample robustness
Wild cluster boostrap-t (p-value) 0.18 0.06
Randomization inference (p-value) 0.53 0.55

# Municipality fixed effects 35 35
# Month-of-sample dummies 84 84
Observations 1,592 1,592
R-squared 0.32 0.12

Effect over entire campaign
Average ATET per municipality 3.64
Effect in raw data 12.05
Treated town average price ($/W) 4.35
Control town average price ($/W) 4.59

Notes: An observation is a municipality-month. Standard errors in parentheses are block

bootstrapped at the municipality level. These regressions use the same future controls

as in our primary regressions and all small sample robustness rows are the same. There

are 10 CTSC treated towns. The Average ATET per municipality calculates the effect

over an entire campaign of 5.6 months on average. The Effect in raw data calculates

the difference between the total installations during a campaign for treated and control

towns, averaged over all towns. The final two rows calculate the average price during

campaigns (in 2014$/W) in treated and control towns respectively. *** denotes 1%, **

5%, and * 10% significance.
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Figure 1: Solar Adoptions and Prices in Connecticut (Source: CT Green Bank)
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Figure 2: SolarizeCT.org Website

Figure 3: Example Photos from Solarize Campaigns
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Figure 4: Map of Solarize Campaigns
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Figure 6: Campaign Adoptions and Prices
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Figure 7: Treatment Effects on Adoption Over Time
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Figure 8: Importance of Information Channels
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ONLINE APPENDIX

A Private Economics of Solar PV in Connecticut

This appendix provides details on the calculations for the private economics of solar PV

in Connecticut, based on data from 2014. As solar PV prices have dropped since then,

one would expect the private economics to have improved further in 2015 and 2016. As

mentioned above, only a small fraction of the solar PV systems installed in Connecticut as

of 2014 were third party-owned. The remainder were either purchased with cash or financed.

Such financing is possible through a home equity loan, a personal loan, or a ‘CT solar loan’

(a product that was available for a short time from the CGB). We cannot observe whether

consumers make an all-cash purchase or finance with a loan that is not the CT solar loan.

Only 30 installations in our dataset were done with the CT solar loan, so this was not an

important factor in our data.

The average system size in Connecticut in 2014 is 4.23 kW, which is large enough to

generate most of the electricity for a typical residential home. This system will produce

4,736 kW annually.25 In 2014, the initial cost of a system is $4.54 per watt.26 This implies

a system cost of $19,187.28. The state rebate in late 2014 is $1.25/W, which corresponds to

$5,287.50. Assuming that the purchaser has sufficient taxable income to take the full federal

investment tax credit, this would imply a tax credit of $4,169.93. Thus, the post-incentive

cost comes out to $9,729.85. The lifespan of a solar PV system is widely considered to be

25 years. About half-way through the lifespan of the system, the inverter must be replaced.

While the future cost may be less, the cost in 2014 of a new inverter for a system this

size is $3,315.21.27 The electricity rates in Connecticut are roughly $0.16/kWh on average.

We assume that these electricity rates increase by 2 percent annually, consistent with EIA

25See http://pvwatts.nrel.gov/.
26See http://www.energizect.com/sites/default/files/uploads/
Residential Solar Investment Program Market Watch Report November 7 2014.pdf.
27See http://www.greentechmedia.com/articles/read/new-report-tough-times-ahead-for-pv-inverter-

incumbents.

53



projections.28.

The following analyses ignore warm-glow benefits to consumer utility, and also assume

no additional maintenance costs outside of the replacement of the inverter.

Cash Purchase

The simplest case is an all-cash purchase. Given the assumptions above, the internal rate

of return on the 25-year investment is 7 percent. Given a 5 percent discount rate, the net

present value of the investment is $1,816, while at a 7 percent discount rate, the investment is

roughly break-even. The payback period for the investment is roughly 14 years. Thus, from

a private perspective, the investment is a reasonable investment for the typical household

purchasing solar PV in Connecticut, albeit one with a relatively long payback period.

Financing

It is likely that many, if not most, consumers used some financing for their purchase

of the solar PV system. For illustrative calculations, we assume a conservative 7 percent

interest rate, a loan term of 20 years, with monthly payments. Under these assumptions,

the payback period is very quick, due to the state rebate and the federal tax credit. For

example, at the end of the first year, upon receipt of the state rebate nad tax credit, the

net revenue from the system is over $9,000. After this year, the net annual revenue becomes

negative for the remainder of the loan, but the cumulative cash flow remains positive for the

remainder of the lifespan of the panels.

Other Options

Other options include power purchase agreements and solar leases. The economics of

these depend greatly on the contract details. Illustrative calculations suggest that neither of

these options are as attractive on a net present value basis as financing or an outright cash

purchase. However, these options require little or no upfront investment and put the burden

of maintenance on the installing firm, rather than the residential owner.

Further sensitivity analyses with different assumptions about the growth in electricity

28See http://www.eia.gov/forecasts/steo/report/electricity.cfm .
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rates do not change the primary results significantly, unless it is assumed that electricity

rates will decrease over time, rather than increase.
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B Solarize Timelines

This appendix provides a detailed timeline of the Solarize campaigns and variants that are

examined in this study.

Table A.1: Detailed Timeline of Campaigns

Start Date End Date
Round 1
Durham Sept 5, 2012 Jan 14, 2013
Westport Aug 22, 2012 Jan 14, 2013
Portland Sept 4, 2012 Jan 14, 2013
Fairfield Aug 28, 2012 Jan 14, 2013

Round 2
Bridgeport Mar 26, 2013 July 31, 2013
Coventry Mar 30, 2013 July 31, 2013
Canton Mar 19, 2013 July 31, 2013
Mansfield Mar 11, 2013 July 31, 2013
Windham Mar 11, 2013 July 31, 2013

Round 3
Easton Sept 22, 2013 Feb 9, 2014
Redding Sept 22, 2013 Feb 9, 2014
Trumbull Sept 22, 2013 Feb 9, 2014
Ashford Sept 24, 2013 Feb 11, 2014
Chaplin Sept 24, 2013 Feb 11, 2014
Hampton Sept 24, 2013 Feb 11, 2014
Pomfret Sept 24, 2013 Feb 11, 2014
Greenwich Oct 2, 2013 Feb 18, 2014
Newtown Sept 24, 2013 Feb 28, 2014
Manchester Oct 3, 2013 Feb 28, 2014
West Hartford Sept 30, 2013 Feb 18, 2014

Round 4
Tolland Apr 23, 2014 Sept 16, 2014
Torrington Apr 24, 2014 Sept 16, 2014
Simsbury Apr 29, 2014 Sept 23, 2014
Bloomfield May 6, 2014 Sept 30, 2014
Farmington May 14, 2014 Oct 7, 2014
Haddam May 15, 2014 Oct 7, 2014
Killingworth May 15, 2014 Oct 7, 2014

Select (During Round 4)

Essex Apr 29, 2014 Sept 23, 2014
Montville May 1, 2014 Sept 23, 2014
Brookfield May 6, 2014 Sept 30, 2014
Weston June 24, 2014 Nov 14, 2014
East Lyme May 22, 2014 Oct 14, 2014

Round 5
New Hartford November 17, 2014 March 24, 2015
Burlington November 19, 2014 April 26, 2015
New Canaan December 2, 2014 April 22, 2015
East Granby December 2, 2014 April 22, 2015
Suffield December 2, 2014 April 22, 2015
Windsor December 2, 2014 April 22, 2015
Windsor Locks December 2, 2014 April 22, 2015

No Group Pricing (During Round 5)

Southbury November 19, 2014 April 9, 2015
Avon November 20, 2014 April 10, 2015
Milford December 3, 2014 April 23, 1015
Griswold December 8, 2014 April 28, 2015
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C Robustness Checks

This appendix contains the robustness check tables mentioned in the main text as well as

additional tables for further reference.

Table A.2: Robustness Checks for Solar Adoption

(1) (2) (3) (4) (5) (6)
Main 1-yr pre 0-yr pre Neg Bin ZI Neg Bin Log-Odds

Interventionit 6.63 6.93 6.03 6.52 6.58 1.31
(0.85)*** (0.89)*** (1.03)*** (0.90)*** (0.91)*** (0.12)***

# Municipality FE 153 153 153 153 153 153
# Month-of-sample dummies 43 33 11 43 43 43
Observations 2,769 2,528 857 2,769 2,769 135
R-squared 0.48 0.45 0.35 0.27 - 0.53

Effect over entire campaign
Average ATET per municipality 37.1 38.8 33.8 36.5 36.8 34.1
Effect in raw data 38.9 38.9 38.9 38.9 38.9 38.9

Notes: An observation is a municipality-month. Standard errors in parentheses are block bootstrapped at
the municipality level. Intervention is a dummy equal to 1 for a Solarize campaign occurring. Column 1
is the same as column 3 in Table 2, which include two years of pre-period. Column 2 includes one year of
pre-period. Column 3 includes no pre-period. Column 4 runs a negative binomial; we report the marginal
effect. Column 5 runs a zero-inflated negative binomial; again, we report the marginal effect. Column 6
runs a log-odds specification described in Online Appendix OA; we report the coefficient on the log-odds,
but the effect over the entire campaign reports the weighted average effect. # Municipality fixed effects
reports the number of town-level fixed effects. # Month-of-sample dummies reports the number of month-
of-sample dummies (one or more are dropped due to collinearity). The Average ATET per municipality
calculates the effect over an entire campaign of 5.6 months on average. The Effect in raw data calculates
the difference between the total installations during a campaign for treatment and control groups, averaged
over all municipalities. *** denotes 1% significance.
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Table A.3: Robustness Checks for Prices

(1) (2) (3) (4) (5) (6)
Dependent variable Exclude Missing Primary

Control Group Caliper CEC Future Caliper CEC Future

Interventionit -0.50 -0.49 -0.56 -0.45 -0.39 -0.46
(0.18)*** (0.10)*** (0.85)*** (0.08)*** (0.07)*** (0.08)***

# Municipality FE 61 197 153 62 199 153
# Month-of-sample dum-
mies

17 21 20 43 43 43

Observations 482 1,542 1,131 1,059 3,705 2,769
R-squared 0.40 0.15 0.16 0.29 0.22 0.20

Notes: An observation is a municipality-month. Standard errors in parentheses are block bootstrapped
at the municipality level. Intervention is a dummy equal to 1 for a Solarize campaign occurring. The first
three rows exclude observations with missing prices, while the second three replicate the price results in
Table 2. The sample is stacked over the rounds, so a municipality may be a control for an earlier round
and treated in a later round. Once treated, municipalities are removed from the sample. Caliper refers
to propensity score matching of the treated municipalities to the three nearest neighbors with a 0.05
caliper. CEC refers a control group of all Connecticut Clean Energy Community municipalities except
those treated or adjacent to treated. Future refers to a control group of municipalities that in future
rounds opted-in to a Solarize campaign. # Municipality fixed effects reports the number of town-level
fixed effects. # Month-of-sample dummies reports the number of month-of-sample dummies (one or
more are dropped due to collinearity). *** denotes 1% significance.

Table A.4: Placebo Tests Setting the Pre-Treatment as Intervention

(1) (2) (3) (4) (5) (6)
Dependent variable Installations Prices

Control Group Caliper CEC Future Caliper CEC Future

Interventionit 0.12 0.11 0.13 0.01 -0.04 0.02
(0.12) (0.11) (0.12) (0.14) (0.11) (0.11)

# Municipality fixed effects 62 199 153 62 199 153
# Month-of-sample dummies 24 24 24 24 24 24
Observations 705 2,499 1,902 705 2,499 1,902
R-squared 0.06 0.07 0.10 0.29 0.20 0.17

Notes: An observation is a municipality-month. Standard errors in parentheses are block bootstrapped
at the municipality level. Intervention is a dummy equal to 1 for a Solarize campaign occurring. The
sample is stacked over the rounds, so a municipality may be a control for an earlier round and treated in
a later round. Once treated, municipalities are removed from the sample. Caliper refers to propensity
score matching of the treated municipalities to the three nearest neighbors with a 0.05 caliper. CEC
refers a control group of all Connecticut Clean Energy Community municipalities except those treated
or adjacent to treated. Future refers to a control group of municipalities that in future rounds opted-in
to a Solarize campaign. # Municipality fixed effects reports the number of town-level fixed effects. #
Month-of-sample dummies reports the number of month-of-sample dummies (one or more are dropped
due to collinearity). *** denotes 1% significance.
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Table A.5: Spillover Effects

(1) (2)
Dependent variable Adoptions Prices
Treatmentit -0.03 -0.02

(0.15) (0.04)
Municipality fixed effects Y Y
Month-of-sample dummies Y Y
R-squared 0.25 0.18
Observations 3,692 3,692
Number of municipalities 97 97

Notes: An observation is a municipality-month. Standard errors in parentheses are

block bootstrapped at the municipality level.

Table A.6: Table of Balance for Randomly-Selected Towns

Non-Solarize Controls Caliper Controls
Treatment diff. diff.

variable Mean Mean p-value Mean p-value
Number of towns 5 123 n/a 4 n/a
Cum. adoptions pre-treatment 12.4 12.8 0.91 13.5 0.81
Population density 567 864 0.57 216 0.02
Median houeshold income 109530 80649 0.02 81980 0.39
% over 65 17.3 15.8 0.42 24.1 0.17
% white 88.8 89.5 0.90 91.4 0.63
% black 2.5 3.7 0.71 1.7 0.55
% households with children 75.9 70.9 0.14 71.9 0.40
% commute more than 60 mi 13.6 8.4 0.04 13.8 0.98
% below poverty 4.1 6.3 0.31 5.7 0.31
% college degree 50.5 47.5 0.22 51.2 0.87
% unemployed 6.6 8.5 0.13 8.0 0.24
% detached housing units 82.5 76.8 0.47 86.8 0.51
% republican voters 26.3 23.6 0.44 27.0 0.86
% democrat voters 28.7 30.2 0.69 27.4 0.77

Notes: Means are at the municipality level. p-values are from two-sided t-tests of differences in treatment vs.

control means.
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Table A.7: Table of Balance for CTSC campaigns

Future Controls
Treatment diff.

variable Mean Mean p-value
Number of towns 10 37 n/a
Cum. adoptions pre-treatment 10.9 17.3 0.06
Population density 946 1019 0.88
Median houeshold income 76608 91099 0.15
% over 65 18.2 15.3 0.06
% white 91.1 87.7 0.40
% black 3.2 4.2 0.69
% households with children 68.3 71.8 0.19
% commute more than 60 mi 8.1 9.2 0.57
% below poverty 6.4 6.4 0.96
% college degree 46.0 48.5 0.23
% unemployed 8.2 7.7 0.62
% detached housing units 76.8 77.0 0.97
% republican voters 21.9 24.5 0.39
% democrat voters 31.7 31.5 0.96

Notes: Means are at the municipality level. p-values are from two-sided t-tests of

differences in treatment vs. control means.
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D Random Utility Model for Log-Odds Dependent Vari-

able

In column 6 of Table A.2, we use the log-odds ratio instead of the number of installations as

the dependent variable. This is consistent with a random utility model. Consider consumer

i considering purchasing a solar PV system in municipality m at time t. Let the indirect

utility for this purchase be given by

uimt = βTmt + µm + δt + ξmt + εimt,

where Tmt is the Solarize treatment (i.e., treated municipality interacted with the treatment

period) and µm and δt are individual effects for municipality and time. µm and δt can

be represented by dummy variables; µm captures municipality-level unobservables, such as

demographics and environmental preferences. These municipality-level unobservables are

assumed to be time-invariant over the relatively few years covered by our sample. δt is a

vector of two dummy variables, for both the pre-treatment period and the treatment period.

Since we exclude price, this specification can be thought of as estimating the total treatment

effect of the behavioral intervention, including that which results from the price decline,

which makes it more comparable to our main treatment effect estimates.

Under the assumption that εimt is an i.i.d type I extreme value error, we have the following

model at the municipality market level:

ln(smt)− ln(s0
mt) = βTmt + µm + δt + ξmt, (3)

where smt is the market share of solar PV. The market share is defined as smt = qmt+1
Pm−

∑
τ<t qmτ

,

where qmt is the number installations and Pm is the size of the potential market for solar PV

based on the satellite imaging. The outside option share is defined as s0
mt = 1− smt and s0

mt

is the share of the outside option (i.e., not installing solar PV). Note that ln(smt)− ln(s0
mt)
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is the log odds-ratio of the market share in a municipality. β is the coefficient of interest.

Our estimated β of 1.31 in this utility specification leads to a total treatment effect of 34.1

installations, not distinguishable from our main estimates.
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E Additional Figures

The figure below illustrates how we performed our geospatial analysis of spillovers.

Figure A.1: Illustrative Map of Buffers used in Geospatial Analysis

The next figure descriptively shows the mean number of adoptions in the ‘no group

pricing’ treatment group and control groups..
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Figure A.2: Mean Adoptions in Group Pricing Experiment

0

20

40

60

80

M
ea

n 
A

do
pt

io
ns

 D
ur

in
g 

C
am

pa
ig

n

R5 Classic Solarize Prime Caliper Matched Group
CEC Matched Group Future Matched Group

The lines on each bar indicate +/- one standard deviation from the mean

64


	Gillingham social learning.pdf
	Introduction
	Empirical Setting
	The Solarize Intervention
	Why Solarize?
	Research Design
	Research Design for the Effects of Solarize
	Research Design for the Analysis of Mechanisms


	Impact of the Treatment on Solar Adoption and Prices
	Descriptive Evidence
	Causal Effect of the Intervention
	Primary Results
	Robustness Checks
	Spillovers to Adjacent Municipalities?
	How Important is Selection into the Program?

	Mechanisms
	Is Solarize Just a Discount Pricing Scheme?
	Prices or information?
	How important is group pricing?

	How Important is the Municipality Selection Process?
	Social Learning and Word-of-Mouth

	Cost-effectiveness and Welfare
	Conclusions
	Private Economics of Solar PV in Connecticut
	Solarize Timelines
	Robustness Checks
	Random Utility Model for Log-Odds Dependent Variable
	Additional Figures

	8434abstract.pdf
	Abstract




