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Abstract 
 
This paper examines the statistical properties of daily PM10 in eight European capitals 
(Amsterdam, Berlin, Brussels, Helsinki, London, Luxembourg, Madrid and Paris) over the period 
2014-2020 by applying a fractional integration framework; this is more general than the standard 
approach based on the classical dichotomy between I(0) stationary and I(1) non-stationary series 
used in most other studies on air pollutants. All series are found to be characterised by long 
memory and fractional integration, with orders of integration in the range (0, 1), which implies 
that mean reversion occurs and shocks do not have permanent effects. Persistence is highest in 
the case of Brussels, Amsterdam and London. The presence of negative trends in Brussels, Paris 
and Berlin indicates some degree of success in reducing pollution in these capitals. 
JEL-Codes: C220, Q530. 
Keywords: fractional integration, long memory, persistence, trends, air pollutants, PM10. 
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1. Introduction 

Particulate matter (PM) are microscopic particles of solid or liquid matter suspended in 

the air. Its sources can be natural or anthropogenic. It has a significant impact on both 

climate and precipitation, and therefore has both health and social costs. In particular, it 

affects the amount of incoming solar radiation and outgoing terrestrial radiation. The 

coarse particles can have a diameter between 2.5 and 10 micrometers (μm) (PM10) and 

are known to be a very harmful form of air pollution given their ability to penetrate into 

the lungs and blood streams and cause respiratory and heart diseases as well as 

premature death.  Various countries have therefore set limits for particulars in the air, 

which are emitted during the combustion of vehicle engine fuels, braking and tyre 

wearing. In particular, the European Union has defined in a series of directives the 

acceptable limits for exhaust emissions of new vehicles sold in the European Union and 

EEA member states.  

Numerous studies have analysed the connection between pollution and harmful 

health effects (e.g., Schwartz and Marcus, 1990; Anderson et al., 1996; Atkinson et al., 

1999; Gardner and Dorling, 1999). The present study contributes to another branch of 

the literature which focuses instead on modelling various pollutants such as sulphur 

dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), PM2.5 and 

PM10. For instance, Zamri et al. (2009) applied the Box-Jenkins ARIMA approach to 

model CO and NO2 in Malaysia and found an upward trend. Li et al. (2017) analysed air 

quality in Beijing from 2014 to 2016 using the Spatio-temporal Deep Learning (StDL) 

model, the Time Delay Neural Network (TDNN) model, the ARMA model, the Support 

Vector Regression (SVR) model, and the Long Short-Term Memory Neural Network 

Extended (LSTME) model, and concluded that the LSTME model is the most suitable 

one for time series characterised by long-term dependence with optimal time delays. 

https://en.wikipedia.org/wiki/Microscopic
https://en.wikipedia.org/wiki/Particle
https://en.wikipedia.org/wiki/Solid
https://en.wikipedia.org/wiki/Liquid
https://en.wikipedia.org/wiki/Matter
https://en.wikipedia.org/wiki/Suspension_(chemistry)
https://en.wikipedia.org/wiki/Atmosphere_of_Earth
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Naveen and Anu (2017) studied air quality in India using ARIMA, seasonal ARIMA 

(SARIMA) and other models. Pan and Chen (2008) is one of the few studies using long-

memory AutoRegressive Fractional Integrated Moving Average (ARFIMA) models for 

air pollution data (in Taiwan) and concluding that these are more accurate than 

AutoRegressive Integrated Moving Average (ARIMA) models.  

It is clearly important to investigate the dynamics of air pollution to develop 

suitable models for prediction purposes and design policies to manage air quality. This 

paper examines the statistical properties of daily PM10 in eight European capitals 

(Amsterdam, Berlin, Brussels, Helsinki, London, Luxembourg, Madrid and Paris) over 

the period 2014-2020 by applying a fractional integration framework that is more 

general than the standard approach based on the classical dichotomy between I(0) 

stationary and I(1) non-stationary series used in the vast majority of previous studies on 

air pollutants, since it allows for fractional as well as integer degrees of differentiation 

and thus for a much wider set of stochastic behaviours. In particular, it enables the 

researcher to analyse the long-memory properties of the series of interest and the 

possible presence of trends, to test for mean reversion, and to measure the degree of 

persistence and the speed of adjustment to the long-run equilibrium level. Therefore, it 

provides information about whether the effects of shocks are transitory or permanent, 

which is a crucial piece of information for adopting appropriate policy measures.  

The remainder of the paper is structured as follows: Section 2 outlines the 

methodology used for the analysis; Section 3 describes the data; Section 4 presents the 

empirical results; Section 5 offers some concluding remarks. 
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2. Methodology 

As mentioned above, we adopt a long-memory approach based on fractional integration. 

Long memory is a feature of time series that are characterised by a high degree of 

dependence between observations which are far apart in time. It has been found to be 

displayed by many time series in different fields such as climatology (Gil-Alana, 2005;  

2008; 2017; Vyushin and Kushner, 2009; Franzke, 2012; Ludescher et al., 2016; Bunde, 

2017; Yuan et al., 2019); environmental sciences (Barros et al., 2016; Gil-Alana et al., 

2016; Tiwari et al., 2016; Gil-Alana and Solarin, 2018); economics and finance (Gil-

Alana and Moreno, 2012; Abritti et al., 2017); etc. 

There exist a variety of statistical models that can describe this type of 

behaviour; a very popular one among time series analysts is based on the concept of 

fractional integration, which occurs when the number of differences required to make a 

series stationary I(0) is a fractional value. More precisely, a time series is said to be 

integrated of order d or I(d) if it can be expressed as: 

,...,2,1,)1( ==− tuxB tt    (1) 

where B is the backshift operator (Bxt =xt-1), the differencing parameter d can be any 

real value, and ut is I(0) defined as a covariance stationary process with a spectral 

density function that is positive and bounded at all frequencies in the spectrum. This 

framework encompasses different cases such as short memory (d = 0), stationary long 

memory (0 < d < 0.5), non-stationary though mean-reverting processes (0.5 ≤ d < 1), 

unit roots (d = 1) and explosive patterns (d ≥ 1). 

 

3. Data 

The series analysed is the daily average air quality taken from the World Air Quality 

Index (WAQI) at https://aqicn.org/map/world/es/. All data have been converted using 
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the US EPA standard (United States Environmental Protection Agency). Specifically, 

we use daily data for the past 7 years (2014-2020) concerning eight European capitals: 

Amsterdam, Berlin, Brussels, Helsinki, London, Luxembourg, Madrid and Paris. The 

series represents the daily level of air quality (PM10) measured in micrograms per cubic 

meter of air (ug/m3). The WAQI data come from the following original sources: 

Madrid: http://www.mambiente.madrid.es/opencms/opencms/calaire/ (Ayuntamiento de 

Madrid); Paris: http://www.airparif.asso.fr/ (AirParif - Association de surveillance de la 

qualité de l'air en Île-de-France); Amsterdan: https://www.luchtmeetnet.nl/ (RIVM); 

Luxembourg: https://environnement.public.lu/fr.html (Portail de l`Environnement du 

Grand-duché de Luxembourg); London: https://uk-air.defra.gov.uk/ (UK-AIR, air 

quality information resource - Defra, UK); Helsinki: 

https://www.ilmatieteenlaitos.fi/ilmanlaatu (Ilmanlaatu Suomessa); Brussels: 

https://www.irceline.be/en/ (Belgian Interregional Environment Agency); Berlin: 

https://www.berlin.de/senuvk/umwelt/luftqualitaet/  (Luftqualität). 

 

[TABLE 1 ABOUT HERE] 

 

Table 1 reports the sample periods for each capital and provides some 

descriptive statistics for each series. It can be seen that Paris exhibits the highest mean 

value, while Helsinki has the lowest. Paris also has the most volatile series, whilst 

Luxembourg has the least volatile.  

 

4. Empirical Results 

We estimate the following model: 

,...,2,1t,ux)B1(,xty tt
d

tt
o ==−+β+α=   (2) 

http://www.mambiente.madrid.es/opencms/opencms/calaire/
http://www.airparif.asso.fr/
https://www.luchtmeetnet.nl/
https://environnement.public.lu/fr.html
https://uk-air.defra.gov.uk/
https://www.ilmatieteenlaitos.fi/ilmanlaatu
https://www.irceline.be/en/
https://www.berlin.de/senuvk/umwelt/luftqualitaet/
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where yt stands for PM10 in each European capital in turn; B is the backshift operator, 

and xt is an I(d) process such that the error term ut is I(0); the disturbances are assumed 

to follow a white noise (see Tables 2 and 3) and an autocorrelated process (see Tables 4 

and 5) in turn, where the latter is modelled using the exponential spectral framework of 

Bloomfield (1973). In all cases we display the estimated values of d (and their 

associated 95% confidence bands) for three different specifications: (i) no deterministic 

terms in (1), i.e., we impose the restriction α = β = 0 (the results for this case are 

reported in the second column in Tables 2 and 4); (ii) an intercept only (see the third 

column in both tables); (iii) an intercept and a linear time trend (see the fourth column 

in both tables). The estimated values reported in bold in these tables are those 

corresponding to our preferred specification, which has been selected on the basis of the 

statistical significance of the regressors. 

 

[TABLES 2 AND 3 ABOUT HERE] 

 

 When assuming that ut is a white noise, the intercept is found to be the only 

significant deterministic term in all cases; the estimated values of d are in the interval 

(0, 1), which implies long memory and fractional integration. They range between 0.39 

(Amsterdam) and 0.62 (Madrid). For Amsterdam, the values are all within the stationary 

range (d < 0.5); for Brussels, London, Paris and London, they are around the stationary 

boundary (d = 0.5), while non-stationarity (d ≥ 0.5) is found in the case of Helsinki, 

Berlin and Madrid. 

 

 [TABLES 4 AND 5 ABOUT HERE] 
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When allowing for autocorrelation (Tables 4 and 5) the time trend appears to be 

negative and statistically significant in the case of Brussels, Berlin and Paris, which 

might reflect the anti-pollution policies adopted in these three capitals. In particular, a 

low emission zone (LEZ) was established in the Brussels region with the aim of 

meeting the European air quality standards and emission ceilings; in Berlin the German 

Climate Action Plan 2050  is being implemented to control air pollution by laying down 

environmental quality standards and emission reduction requirements; a LEZ based on 

Euro norm vehicle classification has also been introduced in Paris. 

The estimated values of d are once more in the interval (0, 1), though they are 

now significantly smaller than in the previous case. In fact, they are all within the 

stationary range, specifically between 0.22 (Luxembourg) and 0.33 (Helsinki and Paris). 

These lower estimates are likely to reflect the competition between the fractional 

integration and Bloomfield parameters in describing time dependence between the 

observations. Both sets of estimates, under the assumption of white noise and 

autocorrelated errors respectively, indicate that the degree of persistence is highest in 

the case of Brussels, Amsterdam and London, and lowest in the case of Helsinki, Berlin, 

and Madrid; thus, the effects of shocks are more long-lived in the former capitals. 

 

5. Conclusions 

This paper has used fractional integration methods to obtain evidence on persistence and 

time trends in PM10 in eight European capitals (Amsterdam, Berlin, Brussels, Helsinki, 

London, Luxembourg, Madrid and Paris). This approach is more general than the 

standard ones used in most of the literature on air pollutants and thus is more 

informative about the time series properties of the series of interest. The results indicate 

that all of them display fractional integration with orders of integration in the range 
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(0,1); this implies that mean reversion occurs and shocks do not have permanent effects. 

However, the degree of persistence is different in the eight capitals examined; in 

particular, the effects of shocks take longer to die away in the case of Brussels, 

Amsterdam and London. Such evidence should be taken into account by policy makers 

aiming to design effective measures to reduce pollution. 

The estimated values of d are lower under the assumption of autocorrelated 

errors; in this case three of the capitals examined (Brussels, Paris and Berlin) exhibit 

statistically significant negative time trends, which suggests that the policies they have 

adopted to reduce pollution (such as the establishment of LEZs) have been successful, 

at least to some extent. 

Other statistical properties of PM10 that could be investigated are seasonality, 

non-linearities and structural breaks; the forecasting properties of rival models could 

also be examined; all these issues are left for future work. 
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Table 1: Descriptive statistics 

AMSTERDAM 
Start date End date 

01/01/2014 13/06/2020 
 

BERLIN 
Start date End date 

20/08/2014 13/06/2020 
 

No. of observations: 2145 No. of observations: 2114 
Mean: 25.7 Mean: 28.0 

Standard deviation: 11.1 Standard deviation: 11.9 
Variance: 124.1 Variance: 140.6 

Min./Max.: 8 / 263  Min./Max.:  8 / 95 
Range: 255 Range: 87 

BRUSSELS 
Start date End date 

31/12/2013 13/06/2020 
 

HELSINKI 
Start date End date 

02/05/2014 13/06/2020 
 

No. of observations: 2334 No. of observations: 2214 
Mean: 24.0 Mean: 18.1 

Standard deviation: 11.8 Standard deviation: 10.0 
Variance: 140.4 Variance: 99.9 

Min./Max.: 1 / 100 Min./Max.: 3 / 90 
Range: 99 Range: 87 

LONDON 
Start date End date 

31/12/2013 13/06/2020 
 

LUXEMBOURG 
Start date End date 

19/06/2015 13/06/2020 
 

No. of observations: 2353 No. of observations: 1583 
Mean: 26.5 Mean: 19.5 

Standard deviation: 9.9 Standard deviation: 6.8 
Variance: 97.1 Variance: 46.2 

Min./Max.: 5 / 89 Min./Max.: 2 / 52 
Range: 84 Range: 50 

MADRID 
Start date End date 

31/12/2013 13/06/2020 
 

PARIS 
Start date End date 

31/12/2013 13/06/2020 
 

No. of observations: 2323 No. of observations: 2227 
Mean: 24.3 Mean: 39.3 

Standard deviation: 11.7 Standard deviation: 14.5 
Variance: 138.0 Variance: 210.5 

Min./Max.: 5 / 160 Min./Max.: 6 / 122 
Range: 155 Range: 116 
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Table 2: Estimates of d: White noise errors 

Series No deterministic 
terms An intercept An intercept and a 

time trend 
AMSTERDAM 0.42   (0.39,  0.46) 0.39   (0.35,  0.44) 0.39   (0.35,  0.44) 

BERLIN 0.63   (0.58,  0.68) 0.61   (0.56,  0.67) 0.61   (0.56,  0.67) 
BRUSSELS 0.52   (0.48,  0.56) 0.50   (0.46,  0.55) 0.50   (0.46,  0.55) 

HELSINKI 0.57   (0.52,  0.61) 0.54   (0.50,  0.59) 0.54   (0.50,  0.59) 
LONDON 0.54   (0.50,  0.59) 0.52   (0.47,  0.57) 0.52   (0.47,  0.57) 

LUXEMBOURG 0.56   (0.51,  0.62) 0.54   (0.48,  0.61) 0.54   (0.48,  0.61) 

MADRID 0.63   (0.58,  0.68) 0.62   (0.57,  0.67) 0.62   (0.57,  0.67) 
PARIS 0.55   (0.51,  0.59) 0.53   (0.49,  0.58) 0.53   (0.49,  0.58) 

We report the estimates of d and its 95% confidence band (in parenthesis). In bold, the selected 
specification for each series. 
 

 

Table 3: Estimated coefficients in the selected model: White noise errors 

Series d (95% band) Intercept (t-value) Time trend 
AMSTERDAM 0.39   (0.35,  0.44) 26.0450   (8.77) --- 

BERLIN 0.61   (0.56,  0.67) 25.3864   (3.93) --- 
BRUSSELS 0.50   (0.46,  0.55) 20.9146   (4.17) --- 

HELSINKI 0.54   (0.50,  0.59) 20.4913   (4.57) --- 
LONDON 0.52   (0.47,  0.57) 23.0696   (5.23) --- 

LUXEMBOURG 0.54   (0.48,  0.61) 15.6394   (4.61) --- 

MADRID 0.62   (0.57,  0.67) 16.5249   (2.59) --- 
PARIS 0.53   (0.49,  0.58) 32.9226   (5.16) --- 

The values in parenthesis in column 3 are the corresponding t-values. 
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Table 4: Estimates of d: Autocorrelated errors 

Series No deterministic 
terms An intercept An intercept and a 

time trend 
AMSTERDAM 0.34   (0.29,  0.39) 0.26   (0.21,  0.30) 0.25   (0.20,  0.30) 

BERLIN 0.38   (0.33,  0.43) 0.30   (0.25,  0.36) 0.29   (0.23,  0.36) 
BRUSSELS 0.33   (0.28,  0.38) 0.26   (0.21,  0.32) 0.25   (0.21,  0.31) 
HELSINKI 0.40   (0.35,  0.45) 0.33   (0.29,  0.39) 0.33   (0.29,  0.38) 

LONDON 0.34   (0.30,  0.39) 0.26   (0.21,  0.31) 0.27   (0.22,  0.30) 
LUXEMBOURG 0.32   (0.28,  0.38) 0.22   (0.16,  0.29) 0.21   (0.15,  0.28) 

MADRID 0.34   (0.30,  0.39) 0.30   (0.25,  0.35) 0.30   (0.25,  0.35) 
PARIS 0.41   (0.37,  0.46) 0.33   (0.28,  0.38) 0.33   (0.28,  0.38) 

We report the estimates of d and its 95% confidence band (in parenthesis). In bold, the selected 
specification for each series. 
 

 

Table 5: Estimated coefficients in the selected model: Autocorrelated errors 

Series d (95% band) Intercept (t-value) Time trend (t-value) 
AMSTERDAM 0.26   (0.21,  0.30) 25.6832   (21.18) --- 

BERLIN 0.29   (0.23,  0.36) 32.6088   (16.38) -0.0046   (-2.92) 

BRUSSELS 0.25   (0.21,  0.31) 26.3621   (15.22) -0.0022   (1.97) 
HELSINKI 0.33   (0.29,  0.39) 19.6888   (12.88) --- 

LONDON 0.26   (0.21,  0.31) 25.9193   (24.21) --- 
LUXEMBOURG 0.22   (0.16,  0.29) 19.2309   (34.57) --- 

MADRID 0.30   (0.25,  0.35) 23.5407   (16.78) --- 
PARIS 0.33   (0.28,  0.38) 42.2180   (13.79) -0.0044   (-1.98) 

The values in parenthesis in columns 3 and 4 are the corresponding t-values for the intercept and the time 
trend respectively. 
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