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Abstract 

This paper derives the incidence of a pollution tax in a stylized general equilibrium framework, 
building on previous work by Fullerton and Heutel (2007a). Using the CPI as numeraire, we show 
that tax incidence is a simpler problem than previously thought, and that general insights can be 
derived without the need to restrict the parameter space. In addition, the counter-intuitive 
possibility that an increase in the tax could lead to worse pollution outcomes vanishes. The choice 
of the CPI as numeraire is further justified by the fact that environmental taxes, for instance carbon 
taxes, are typically indexed on inflation. 
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1 Introduction

It has been known since the seminal work of Muth (1964), and later confirmed through
the more general results of Heiner (1982) and Braulke (1984), that under fairly general
conditions, the law of input demand holds at the industry level even when the prices of
outputs or other inputs are allowed to adjust in related markets in response to the input
price increase. An interpretation of this law is that an exogenous tax on an industry input
reduces the overall use of that input, even if certain firms end up using more of it. That
is, demand and “derived demand” both slope down in the aggregate. If the taxed input
causes pollution, pollution will unambiguously be reduced by an increase in the tax.1
This simple economic logic lies at the core of environmental taxation (Baumol and Oates,
1988).

While the literature cited above explicitly allows for the presence of markets besides
the one subject to taxation, they rely on partial equilibrium approaches. In seminal
contributions to the analysis of the incidence of environmental policy, Fullerton andHeutel
(2007a) and Fullerton and Heutel (2010b) show that the desirable effects of environmental
taxation on pollution may no longer apply in a general equilibrium context, even in a
closed economy and under the assumption of homogenous spending propensities on the
demand side.2 That is, an increase in the tax on a polluting input (e.g., carbon) may
in some cases lead to more, not less, pollution. Similarly, in a cap-and-trade system, a
decrease in the cap on a polluting input could lead to a decrease in the permit price.

Fullerton and Heutel (2007a) suggest that the ambiguity regarding the applicability of
the lawof input demand to polluting inputs is due to general equilibrium feedback effects.3
The present paper shows that whenever the law of input demand is violated for pollution,
the equilibrium in their model is unstable in the Marshallian sense.4 The occurrence of
such instability, which may seem tangential to the issue of policy incidence, is in fact
closely related to it as all comparative statics, not simply that on the pollution outcome,
are reversed in this case. This precludes general conclusions to be drawn regarding policy

1The result holds as long as the supply of the dirty input is less than infinitely inelastic. If it is infinitely
inelastic, input use remains constant, but it does not increase.

2In earlier work, Mieszkowski (1967) relaxes the assumption of identical spending propensities among
owners of capital and owners of labor and shows that a series of counterintuitive comparative statics may
ensue.

3See, for instance, the discussion in footnote 14 of Fullerton and Heutel (2007a). For an example of model
parameterization leading to the counterintuitive outcome, see Appendix A.6.

4Put simply, Marshallian instability means that if the demand price of a good exceeds the supply price
of that good, quantity will move further away from its equilibrium value.
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incidence itself. We go on to show that the existence of unstable equilibria is an artefact
of the choice of numeraire good. In short, due to the non-market nature of pollution,
the tax on the polluting input is a nominal, rather than ad valorem, tax. As a result, the
effects of this nominal tax on goods provision, resource allocation, and relative prices
implicitly depend on which good is chosen as numeraire, as the tax increases the price
of the polluting input relative to that of the numeraire. Said differently, there are as many
varieties of environmental taxes as choices of numeraire good.5

The question naturally arises as to which good should then be chosen as numeraire,
that is, to the price of which good the environmental tax should be anchored. Instead of
being anchored to the price of a single good, the tax could conceptually be anchored to a
price index reflecting the average level of prices across a set of goods.6 In that sense, the
choice of which variety of environmental taxation to model in general equilibrium may
seem overwhelming.

In this paper, we argue that any reasonable anchoring price index should be one for
which the law of input demand is satisfied, that is, an increase in the price of the dirty
input relative to the equilibrium value of the index unambiguously leads to a decrease in
input use—and attendant pollution. Such requirement amounts to ruling out equilibria
that are unstable in the Marshallian sense and thus ensures that meaningful comparative
statics can be derived (Samuelson, 1941). With this constraint in mind, we consider two
classes of price indices: those defined over the prices of consumption goods (uses side)
and those defined over factor prices (sources side). Using the model of Fullerton and
Heutel (2007a), we show that within each class, there exists a unique index that satis-
fies the stability constraint. We express each index using underlying parameters of the
economy. On the uses side, the price index is identical to an inflation index, namely
the product of the prices of consumption goods raised to their respective expenditure
shares. On the sources side, the price index is equal to the product of factor prices raised

5The issue here is not about the undeterminacy surrounding the overall magnitude of prices, but, since
themodel is used to compare equilibria, that an increase in the nominal tax rate increases the price of pollution
relative to the price of the numeraire while potentially decreasing it relative to other prices. In earlier studies
by Bovenberg and Goulder (1997) and De Mooĳ and Bovenberg (1998) that also consider a pollution tax,
capital, the polluting input, and a final consumption good are supplied to/demanded from a small economy
in an infinitely elastic fashion, with fixed rates of exchange on the world market. As a result, a tax on the
dirty input increases the price of that input relative to that of capital and that of the consumption good.
The only price determined endogenously in the model is the wage rate. A government budget constraint
imposes that a rise in the pollution tax be matched by a decrease in either the tax on labor or that on capital,
giving rise to the possibility of an increase in pollution through an expansion in output. The mechanism
behind the increase in pollution in these earlier models is thus distinct from that in Fullerton and Heutel
(2007a) and Fullerton and Heutel (2010b).

6A similar point is made in Baylis et al. (2014, pg. 63).
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to their respective income shares. Importantly, none of these indices depend on behav-
ioral parameters such as substitution elasticities, either in production or consumption.7
Therefore, a government could anchor the pollution tax to either indexwithout unrealistic
informational requirements. For instance, the pollution tax could be tied to the Consumer
Price Index (CPI). With a pollution tax so designed, not only is the effect of a rise in the
tax in accordance with the law of input demand and the intent of environmental taxation,
but the tax incidence results discussed by Fullerton and Heutel (2007a) in the context of
specific parameter values also hold generally.

Although fairly recent, the contribution of Fullerton and Heutel (2007a) has had an
undeniable influence in the environmental economics literature. Their model has been
used in Fullerton and Heutel (2007b), Fullerton and Heutel (2010b), Fullerton and Heutel
(2010a), and Fullerton et al. (2011). It has been modified or extended in further contribu-
tions by Fullerton and Monti (2013), Baylis et al. (2013), Rivers (2013), Baylis et al. (2014),
Rausch and Schwarz (2016), and Goulder et al. (2016). Their analysis has also provided
needed clarity on important drivers of the incidence of environmental policy in studies
that involve more complex and realistic models of the economy, e.g., Rausch et al. (2011),
Rausch and Mowers (2014), or Marten et al. (2019), and in policy discussions, e.g., Morris
and Munnings (2013).

Our papermakes four contributions to the literature. First, we show thatwell-designed
pollution taxes need not have ambiguous effects on equilibrium pollution levels in general
equilibrium, and that counterintuitive pollution outcomes identified in previous literature
imply unstable equilibria. Second, we ask whether there exist anchoring prices that avoid
equilibrium instability altogether. We show that the answer is yes, and that, reassuringly
perhaps, the set of candidate indices is limited. On the uses side, the only index satisfying
the stability constraint for all parameter values is equivalent to the CPI. On the sources
side, it is equivalent to a producer price index for primary production factors. Third, using
these indices, we demonstrate that tax incidence results previously derived only in special
cases hold in fact quite generally. Fourth, we empirically demonstrate that the choice of
numeraire in general equilibrium models influences comparative statics with respect to
nominal taxes on non-market goods like pollution. Notably, using a model calibrated
to the US economy, we show that predicted pollution impacts may differ by up to 40%
depending on the choice of anchoring price, and that this choice acts as an essential driver
of predicted incidence on the uses side. The fact that our model is extremely stylized
suggests that even larger discrepancies could occur in richer models where the number of

7Our model assumes homothetic, but not necessarily Cobb-Douglas, consumer preferences.
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candidate numeraire goods is larger.
In terms of policy implications, we note that many recent policy proposals for a U.S.

carbon tax already choose to index the tax to inflation, albeit for reasons likely unrelated to
the results discussed here (Marron et al., 2015; Aldy, 2016; Vail and Burtraw, 2016;Metcalf,
2018; Climate Leadership Council, 2019; H.R. 763, 2019; H.R. 3966, 2019; H.R. 4058, 2019;
S. 1128, 2019; S. 2368, 2018; S. 2284, 2019). Furthermore, carbon taxes indexed to inflation
have already been implemented in a number of countries, includingDenmark and Sweden
(Withana et al., 2013), Iceland (PMR, 2017), Norway (Haites et al., 2018), Chile, Colombia,
andMexico (UN, 2019), the Netherlands (Andersen et al., 2007), South Africa (Act No. 15,
2019), and the United Kingdom (National Audit Office, 2007).8 The arguments laid out in
the present paper serve to strengthen the case for such indexation. Our simulation results
further suggest that accuratelymodeling the effects of such policies in general equilibrium
requires special attention to the choice of anchoring price.

Although our general equilibrium analysis is of direct relevance to environmental pol-
icy, our findings on the comparative statics of tax incidence do not rely on any assumption
regarding the actual external effects of the “dirty” input on technology or consumer utility;
all that is required for our results is that this input be a non-market good available to the
economy in sufficiently large quantity. As such, the framework conceptually applies to
other settings, for instance per-period restrictions on the extraction of a natural resource
for the purposes of conservation or sustainability.

2 Model and notation

Weborrow the assumptions of Fullerton andHeutel (2007a), which build upon the seminal
model of Harberger (1962). The model is parsimonious and aims to capture the essen-
tial drivers and overall magnitude of environmental tax incidence, rather than provide
accurate predictions for a given economy, as would a more detailed computable general
equilibrium approach. A notable advantage is that it can be solved analytically, providing
a “model of the model” (Fullerton and Heutel, 2010a). Relatedly, Fullerton and Ta (2019)
demonstrate that a stylized and analytically solvable model of the US economy delivers
quantitative predictions on the effects of a carbon tax that are not far from those obtained
from the detailed CGE model developed by Goulder and Hafstead (2018), and can help
in understanding the drivers of these effects.

There are two economic sectors, X and Y, that use labor (L) and capital (K) as inputs.

8California and Québec operate a cap-and-trade program rather than a carbon tax. Yet, the auction price
floor and price ceiling are both indexed to inflation (ICAP, 2019b,a).
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The dirty sector (Y) also uses a dirty input (Z, pollution). In each sector, production
displays constant returns to scale.9 The economy is endowed with fixed quantities of
labor and capital allocated across the two sectors, and with an unspecified quantity of
dirty input. The use of the dirty input by sector Y causes pollution, which a tax on input
Z aims to reduce.

The model allows for pre-existing ad valorem taxes on all goods, but since the focus of
our discussion is on environmental taxes (the tax on input Z), we follow Fullerton and
Heutel (2007a) and ignore them in the discussion. That is, the only exogenous change is
a rise in the tax on the dirty input, and all other taxes are assumed to remain constant.
As in Harberger (1962), government is assumed to use additional tax revenue to purchase
the two goods in the same proportion as would households under the initial prices. A
consequence of this assumption is that the change in the relative aggregate demands for
consumption goods only depends on the change in their relative prices. An alternative
set of assumptions would be that tax revenue is redistributed to households, who have
identical homothetic preferences.

We denote by LX (resp. LY) the quantity of labor employed in sector X (resp. sector
Y), KX (resp. KY) the quantity of capital employed in sector X (resp.Y), pX (resp. pY) the
price of good X (resp. good Y), w (resp. r) the price of labor (resp. capital), and pZ the
price of Z (that is, the tax per unit of Z). Small relative changes in equilibrium variables
are denoted with a “hat.” For instance, p̂Y ≡ dpY

pY
.

Themodel is solved bydifferentiating equilibriumconditions pertaining to production,
consumption, and resource availability, yielding the following set of linear equations:

L̂X + γL L̂Y � 0 (1)

K̂X + γKK̂Y � 0 (2)

X̂ − θXL L̂X − θXKK̂X � 0 (3)

Ŷ − θYL L̂Y − θYKK̂Y − θYZẐ � 0 (4)

p̂X − θXLŵ − θXK r̂ � 0 (5)

p̂Y − θYLŵ − θYK r̂ � θYZ p̂Z (6)

L̂X − K̂X + σX ŵ − σX r̂ � 0 (7)

L̂Y − Ẑ − θYL(eLL − eLZ)ŵ − θYK(eLK − eKZ)r̂ � θYZ(eLZ − eZZ)p̂Z (8)

K̂Y − Ẑ − θYL(eLK − eLZ)ŵ − θYK(eKK − eKZ)r̂ � θYZ(eKZ − eZZ)p̂Z (9)

X̂ − Ŷ + σu p̂X − σu p̂Y � 0 (10)

9In sector Y, the constant returns to scale are with respect to all three inputs L, K, and Z.
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where γL ≡ LY
LX
> 0 and γK ≡ KY

KX
> 0 denote the resources allocated to sector Y relative

to sector X, θXL ≡ wLX
pX X denotes the cost share of labor in sector X (and similarly for the

parameters θXK , θYL, θYK , and θYZ), σu ≥ 0 is the elasticity of substitution in consumption
between X and Y, σX ≥ 0 is the elasticity of substitution between labor and capital in sector
X, and the parameters ei j , for i , j ∈ {L, K, Z}, represent Allen elasticities of substitution
defined as ei j � θY j ai j , where ai j is the conditional input demand elasticity for input i with
respect to the price of input j in sector Y. Microeconomic theory places restrictions on the
acceptable values of the θX j , θY j , and ei j parameters that are described in Appendix A.1.
Given an exogenous change p̂Z, this system has 10 equations for 11 unknowns. Choosing
a numeraire good adds themissing relationship, but changing the numeraire also changes
the nature of the tax increase and therefore the variety of environmental policy considered.
In the next section, we express the tax on pollution, p̂Z, relative to an explicit price index,
thereby eliminating the dependency of comparative static results on numeraire choice.

3 Anchoring the environmental tax to a price index

Consider the following Cobb-Douglas price index:

P � pαX
X pαY

Y wαL rαK

with positive exponents and αX + αY + αL + αK � 1 due to homogeneity of degree one.
(Since prices are determined up to a multiplicative constant, the price index so defined
is also determined up to the same multiplicative constant.) The relative change in P can
then be expressed as

P̂ � αX p̂X + αY p̂Y + αLŵ + αK r̂ .

If the price index P is used to anchor the pollution tax, then pZ � PτZ, where τZ is
now interpretable as an ad valorem tax relative to P, and therefore

p̂Z � P̂ + τ̂Z .

Note that due to the equilibrium relationship p̂X � θXLŵ + θXK r̂, including pX in
the price index P is redundant. That is, any change in the weight on pX can be exactly
offset by changes in the weights on w and r, leaving P̂ unchanged. This is not the case
for pY because p̂Y � θYLŵ + θYK r̂ + θYZ τ̂Z, that is, unlike p̂X , p̂Y implicitly includes τ̂Z

independently of ŵ and r̂. Without loss of generality, we can therefore focus on price
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indices of the form
P � pβY

(
wαr1−α)1−β (11)

where 0 ≤ α, β ≤ 1. If β � 0 then the index reflects an average of factor prices, that is, the
price of a combined labor-capital input. If α � θXL, then due to Equation (5) the index
reflects an average of prices of consumption goods. Note that our specification of the price
index includes as a special case the normalization made by Fullerton and Heutel (2007a),
that is, P � pX (β � 0, α � θXL).10 It also includes as special cases the choices of pY (β � 1),
w (β � 0, α � 1), or r (β � 0, α � 0) as alternative numeraire goods.

In what follows, we focus on price indices that reflect prices either on the uses side
(α � θXL) or the sources side (β � 0). Although we could analyze each case separately,
the price index in Equation (11) allows us to handle both cases within a single framework.
We also focus on price indices that can be constructed from the observation of an initial
equilibrium allocation and do not require knowledge of substitution elasticities, either in
production or consumption. The idea is that since the anchoring price index corresponds
to a particular policy choice, it is desirable for implementability to restrict the search to
indices that can be designed with readily available economic information.

Note that the restriction toprice indices of theCobb-Douglas form ismadeherewithout
loss of generality. Consider for instance a CES price index on the uses side

P �

[
βp

σ−1
σ

X + (1 − β)p
σ−1
σ

Y

] σ
σ−1

where 0 ≤ β ≤ 1 and σ ≥ 0. It is easy to show that

P̂ � Bp̂X + (1 − B)p̂Y

where B �
βp

σ−1
σ

X

βp
σ−1
σ

X +(1−β)p
σ−1
σ

Y

. Therefore, a CES index would not meaningfully expand the set

of acceptable indices, as the relative change in the value of the CES index is still reducible
to a convex combination of relative price changes. As such, any restriction on the CES
parameters β and σ to ensure a downward-sloping demand for the polluting input would
necessarily be channelled through the Cobb-Douglas share B.

10Fullerton and Heutel (2007a) choose the normalization p̂X � 0 while setting pZ � τZ (that is, τZ is a
nominal tax), which given the equilibrium condition (5) is equivalent to setting β � 0 and α � θXL.
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Figure 1: The Marshallian adjustment process in the market for the dirty input
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3.1 Stability of the competitive equilibrium with pollution tax

Here we use the concept of Marshallian stability, as explained for instance in Samuelson
(1941) or Plott and George (1992). Marshallian stability mandates that quantity adjusts to
the difference between the demand and the supply prices of a good.11 As explained in
Samuelson (1941), “the problem of stability of equilibrium is intimately tied up with the
problem of deriving fruitful theorems in comparative statics.”

We consider the followingMarshallian adjustment process: if at any point in time t, the
quantity of polluting input Zt is such that the demand price for that quantity (expressed
relative to the price index P) exceeds the supply price (that is, the pollution tax τZ), then
the quantity must increase. The opposite holds in the case when the demand price is
less than the supply price. Figure 1 shows a graphical representation of such adjustment
process in the normal case of a downward-sloping derived demand, assuming that in
the initial condition the quantity is less than the equilibrium value. Because the derived
demand for the input slopes down, the equilibrium is stable: the adjustment process
brings quantity closer to its equilibrium value. Had the derived demand sloped up, the
equilibrium would have been Marshallian unstable.

A simple mathematical representation of the Marshallian process posits the following

11In contrast, Walrasian stability mandates that price adjusts to excess demand, that is, the difference
between quantity demanded and quantity supplied. In our model with horizontal supply of polluting
input, the quantity of polluting input supplied is not a well-defined function of price, which precludes the
use of Walrasian stability.
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dynamic relationship:
dZ
dt

� ρZ(Z) − τZ

where ρZ(Z) represents the inverse demand function for the polluting input, expressed
relative to the price index P. Following Samuelson (1941), we can use a first-order
expansion of the function ρZ(Z) around the equilibrium point Z̄ to obtain

dZ
dt

� ρ′Z(Z̄)
(
Z − Z̄

)
where we have made use of ρZ(Z̄) � τZ. The solution to this differential equation,
together with the initial condition Z � Z0, is simply Z(t) � Z̄ + (Z0 − Z̄)eρ′Z(Z̄)t , implying
that limt→∞ Z(t) � Z̄ if and only if ρ′Z(Z̄) ≤ 0, that is, the demand for pollution slopes
down. This result establishes the fact that whenever the derived demand for pollution
slopes up, the equilibrium cannot be stable in the Marshallian sense. In what follows,
we characterize price indices P that ensure that the derived demand for pollution slopes
down, that is, the equilibrium is stable in the Marshallian sense.

3.2 Desirable properties of a price index

We are looking for weights α, β on the price index in Equation (11) such that the following
three conditions are satisfied:

Condition 1 The pollution demand elasticity Ẑ
τ̂z

is defined for all parameter values (that is, the
equilibrium system denominator is never zero and thus does not change sign).

Condition 2 The weights α and β only depend on the observable parameters γK , γL, θXK , θYK ,
and θYL, or combinations thereof.

Condition 3 The pollution tax has the intended effect for all parameter values, that is, Ẑ
τ̂z
≤ 0.

3.3 Derivation of the price indices

In Appendix A.3, we show that Condition 1 and Condition 2 imply the following restric-
tion: [

βθYK + (1 − β)(1 − α)
]
θXL(1 + γL) �

[
βθYL + (1 − β)α

]
θXK(1 + γK), (12)

while Condition 3 is automatically satisfied as long as Condition 1 is. Equation (12) is
violated in Fullerton and Heutel (2007a)’s model where β � 0 and α � θXL, except in the
special case of equal factor intensities in the two sectors (γL � γK).

9



We can now specialize the restriction in Equation (12) to the case of indices on the uses
or sources side. On the uses side (α � θXL), Equation (12) implies that either γL � γK or
β �

pYY
pX X+pYY , that is, the desired price index is

P � pθX
X pθY

Y (13)

where θX represents the initial expenditure share on good X and θY � 1 − θX . No other
choice of weights will guarantee that the law of input demand holds for all parameter
values. In particular, neither pX nor pY as choices of numeraire (and thus anchoring
indices) would allow one to rule out upward-sloping demand for the dirty input.12

On the sources side (β � 0), Equation (12) implies that α �
θXL(1+γL)

θXL(1+γL)+θXK(1+γK) , that is,
the price index is

R � wθL rθK (14)

where θL ≡ wL̄
wL̄+rK̄ �

θXL(1+γL)
θXL(1+γL)+θXK(1+γK) represents the initial contribution of labor to

national income and θK � 1 − θL. Again, these weights are uniquely defined.13
Note that the derivation of Equation (12) provides a formal proof of our claim that

the choice of numeraire matters when modeling a nominal tax on pollution. Here we
model the tax as an ad valorem tax anchored to the price index P, which is equivalent to
modeling a nominal tax with P as the numeraire. Fullerton and Heutel (2007a) model a
nominal tax with pX as the numeraire, which is equivalent to modeling an ad valorem tax
anchored to the price of the clean good. The comparative statics with respect to τ̂Z are
different across the two normalizations; in particular, the choice of pX as the anchoring
price does not guarantee Ẑ

τ̂Z
< 0, whereas that of P̂, with our proposedweights, does. One

may wonder whether the counterintuitive comparative static result would be possible in
a model with only one clean input, say labor. We show in Appendix B that in that case,
the derived demand for the polluting input slopes down for all anchoring price indices,
and all parameter values.

12It is clear from the analysis in Appendix A.3 that whenever the law of derived input demand is violated,
the determinant of the equilibrium system has the “wrong” sign. As a result, all comparative static results,
not just the effect on pollution, are reversed relative to the normal case.

13More generally, if one is willing to consider price indices that involve prices on both the uses and sources
side (that is, pX , pY , w, and r), it can be shown that any price index of the form PφR1−φ, with φ ∈ [0, 1], will
also satisfy Equation (12).
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3.4 Equivalence between our price indices and inflation indices

Inflation is typically measured using a price index that reflects the overall cost of a ref-
erence basket of goods under varying prices. Consider that the reference basket is the
consumption basket before the change in the pollution tax. Our preferred pollution tax is
anchored to the price index P � pθX

X pθY
Y where θX and θY are the reference budget shares.

When prices change in the economy, the change in our price index is:

P̂ � θX p̂X + θY p̂Y

�
pXX

pXX + pYY
dpX

pX
+

pYY
pXX + pYY

dpY

pY

�
XdpX + YdpY

pXX + pYY

�
dCPI
CPI

� ĈPI

whereCPI ≡ pXX+pYY represents the value of the reference basket. Therefore, expressing
the pollution tax as an ad valorem tax anchored to P is equivalent to adjusting a nominal
tax on pollution for inflation as measured by the CPI. In fact, many recent proposals for
a carbon tax in the U.S. propose secular adjustments to the per-unit tax to account for
inflation (H.R. 763, 2019; H.R. 3966, 2019; H.R. 4058, 2019; S. 1128, 2019; S. 2284, 2019).14

A similar argument can be used to demonstrate that our price index on the sources
side represents a producer price index, where the weights on factor prices correspond to
the reference shares of each primary factor in national income.

4 Simple tax incidence

4.1 Sources side

We show in Appendix A.4 that, whenever Equation (12) holds,

sign
{

ŵ − r̂
τ̂Z

}
� sign

{
σu(γK − γL) + γL(1 + γK)eLZ − γK(1 + γL)eKZ

}
.

14Such adjustments would be on top of any ramping up of the tax meant to increase pollution reduction
incentives over time.
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Which sector bears proportionately more of the tax burden therefore depends on the
consumption elasticity σu , the resource allocation parameters γL and γK , and the partial
substitution elasticities eLZ and eKZ, but not on the cost shares in either sector or the
substitution elasticity in the untaxed sector.15

These few parameters affect the direction of the change in the price of labor relative
to capital in an intuitive yet subtle way. If labor and capital are equally substitutable
for pollution (eLZ � eKZ > 0), then the pollution tax places a disproportionate burden
on capital (i.e., ŵ − r̂ > 0) when the polluting sector is capital intensive (γK > γL) as
long as goods are sufficiently substitutable in consumption (i.e., σu > eLZ � eKZ). If not
(σu < eLZ), then the input substitution effect dominates and the demand for capital in
the capital-intensive polluting sector rises so that the return to capital increases relative
to the wage rate. If both sectors are equally capital-intensive (i.e., γL � γK), then capital
bears disproportionately more of the tax burden if and only if it is less substitutable for
the polluting input than is labor.

These economic insights were already discussed, albeit for specific classes of model
parameterizations, in the original contribution of Fullerton and Heutel (2007a). Indeed,
the authors were prevented from drawing general conclusions by the fact that they could
not sign the main equilibrium system denominator except in special cases, which as we
have shown is a direct consequence of modeling the pollution tax increase relative to the
price of good X.

4.2 Uses side

On the uses side, we show in Appendix A.5 that for our choices of anchoring price indices,

sign
{

p̂Y − p̂X

τ̂Z

}
� sign

{
σX(1 + γLθXL + γKθXK) +

(
θYLγK(1 + γL) + θYKγL(1 + γK)

)
eLK

+γL(1 + γK)(θXK − θYK)eLZ + γK(1 + γL)(θXL − θYL)eKZ
}
.

This expression generally has an ambiguous sign, although we show that in the case of
equal factor intensities (γL � γK),

p̂Y−p̂X
τ̂Z

> 0, that is, users of Y share proportionately more
tax burden than users of X irrespective of the values of the substitution elasticities.

15The size of ŵ−r̂
τ̂Z

itself depends on the full set of model parameters and the choice of anchoring index,
see Section 5 and Appendix C.
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Table 1: Model parameters

Parameter Value
eLK 1
σu 1
σX 1
γL 0.25
γK 0.25
θXL 0.60
θYL 0.45
θYK 0.30

Note: Once we have set γL, γK , θYL, and θYK , θXL is determined by θXL �
γKθYL

γKθYL+γLθYK
.

5 Does the choice of numeraire matter in practice?

In the previous sections, we have formally shown that comparative static results for a
nominal pollution tax depend, from an analytical standpoint, on the choice of numeraire.
Appendix A.6 also provides an example whereby using pX as numeraire leads to the
prediction that an increase in the pollution tax increases pollution, whereas the use of
our anchoring indices would lead to a decrease in pollution. Importantly, the signs of
the predicted tax incidence on the sources and uses sides would also be inconsistent for
that parameterization between the two choices of numeraire (i.e., pX versus our proposed
price indices). Intuitively, cases whereby a rise in the pollution tax relative to pX (or any
other price) lead to reversed comparative statics precisely correspond to cases whereby
the value of the pollution tax actually decreases relative to our proposed price indices.

Here, we investigate whether the choice of anchoring price index (or, for a nominal tax,
the choice of numeraire) matters in practice, that is, for reasonable model parameteriza-
tions reflecting existing economies. We use the model parameterizations of Fullerton and
Heutel (2007a) for the US economy, which is close to that used in Fullerton and Heutel
(2010b). In these papers, the polluting sector is defined by selecting polluting industries
based on the EPA’s Toxic Release Inventory for 2002. We do not limit our analysis to a
comparison of our price indices P and R to theirs (pX). Instead, we broaden the scope of
the analysis by also considering the following indices: pY , w, r. Other indices could be de-
fined, however we believe that the set of chosen indices affords sufficient insights into the
empirical question. Baseline parameter values are given in Table 1. All parameter values
are fixed, except for the Allen cross-price elasticities eKZ and eLZ which are allowed to take
on the values {−0.5, 0.0, 0.5, 1.0}. We exclude pairs of elasticities that lead to violations of
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Table 2: Pollution effect of a 10% increase in the nominal pollution tax (%)

eKZ eLZ
Ẑ

pX (R) pY P w r
0.0 0.0 -2.00 -2.67 -2.13 -2.00 -2.00
0.5 0.0 -3.58 -4.77 -3.81 -3.54 -3.63
1.0 0.0 -5.10 -6.80 -5.44 -5.00 -5.26
-0.5 0.5 -2.70 -3.60 -2.88 -2.76 -2.62
0.0 0.5 -4.38 -5.83 -4.67 -4.42 -4.31
0.5 0.5 -6.00 -8.00 -6.40 -6.00 -6.00
1.0 0.5 -7.58 -10.10 -8.08 -7.50 -7.69
-0.5 1.0 -4.97 -6.63 -5.31 -5.14 -4.75
0.0 1.0 -6.70 -8.93 -7.15 -6.84 -6.50
0.5 1.0 -8.38 -11.17 -8.93 -8.46 -8.25
1.0 1.0 -10.00 -13.33 -10.67 -10.00 -10.00

Note: Since γL � γK , θXL � θL and therefore the index pX leads to the same results as the index R.

the negative semidefiniteness of the Slutsky matrix in sector Y. Because it is assumed that
γL � γK , θXL � θL and therefore the index pX leads to the exact same results as the index
R. This assumption is relaxed in additional simulations reported in Appendix C.1.

Results in Table 2 show that the choice of numeraire matters for the calculation of the
predicted effect of the nominal tax on pollution, even if there is no reversal in sign. The
largest discrepancies are found when comparing the use of the wage rate or the rental on
capital to that of the dirty good (good Y) as numeraires. In such comparisons, predicted
pollution effects (Ẑ) differ by up to about 40%, and the choice of numeraire leads to
variations in predictions that are often comparable to those arising from alternative sets
of cross-price elasticities. Predictions using the price index P are closer to those obtained
using pX .

Effects on incidence mirror those on pollution effects, although the size of the effects
themselves is smaller. Still, for some model parameterizations, incidence is shown to
differ qualitatively between a model that uses w or r as the numeraire and one that uses
pY as the numeraire. For instance, for eKZ � −0.5 and eLZ � 1.0, using r as the numeraire
yields a predicted increase in w

r (resp. pY
pX
) of 0.75% (resp. 2.39%), versus an increase of

1.05% (resp. 3.33%) when using pY . On the uses side, the largest source of variation in
predicted effects is the choice of numeraire, not the choice of Allen cross-price substitution
elasticities.

In Appendix C.1, we report additional results that hold constant all Allen substitution
elasticities but allow factor intensities, as captured by γK − γL, to vary. Again we follow
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Table 3: Incidence effects of a 10% increase in the nominal pollution tax (%)

eKZ eLZ
Sources side: ŵ − r̂ Uses side: p̂Y − p̂X

pX (R) pY P w r pX (R) pY P w r
0.0 0.0 0.00 0.00 0.00 0.00 0.00 2.50 3.33 2.67 2.50 2.50
0.5 0.0 -0.26 -0.35 -0.28 -0.26 -0.26 2.50 3.33 2.67 2.47 2.54
1.0 0.0 -0.51 -0.68 -0.54 -0.50 -0.53 2.50 3.33 2.67 2.45 2.58
-0.5 0.5 0.53 0.71 0.56 0.54 0.51 2.50 3.33 2.67 2.55 2.42
0.0 0.5 0.26 0.35 0.28 0.26 0.26 2.50 3.33 2.67 2.53 2.46
0.5 0.5 0.00 0.00 0.00 0.00 0.00 2.50 3.33 2.67 2.50 2.50
1.0 0.5 -0.25 -0.34 -0.27 -0.25 -0.26 2.50 3.33 2.67 2.48 2.54
-0.5 1.0 0.79 1.05 0.84 0.81 0.75 2.50 3.33 2.67 2.58 2.39
0.0 1.0 0.52 0.69 0.55 0.53 0.50 2.50 3.33 2.67 2.55 2.43
0.5 1.0 0.25 0.34 0.27 0.26 0.25 2.50 3.33 2.67 2.53 2.46
1.0 1.0 0.00 0.00 0.00 0.00 0.00 2.50 3.33 2.67 2.50 2.50

Note: Since γL � γK , θXL � θL and therefore the index pX leads to the same results as the index R.

the model parameterizations investigated in Fullerton and Heutel (2007a). Our results
confirm the importance of the choice of numeraire for predictions on pollution outcomes
and tax incidence. Notably, the variation in predictions induced by numeraire choice is
not dwarfed by that arising from the choice of factor intensities, and even exceeds it in the
case of incidence on the uses side.

Finally, in Appendix C.2 we report results for a calibration of the model relevant
for a US carbon tax and adapted from Fullerton and Ta (2019). This calibration leads to
discrepancies across anchoring indices even larger than those reported above. Specifically,
because the dirty sector is relatively small in terms of its use of labor and capital, and its
expenditure share on the polluting input is substantial, using pY as the anchoring index
gives results very different from those obtained from the alternative indices.

6 Conclusion

This paper argues that numeraire choice can matter for assessing the general equilibrium
effects of environmental policy on pollution levels and relative prices, both analytically
and numerically. The reason is that pollution is a nonmarket good, making a pollution
tax a nominal tax with no direct ad valorem equivalent. Anchoring the pollution tax to the
equilibrium prices of other goods, as we have done here, renders the choice of numeraire
innocuous, but comparative statics then depend on the choice of anchoring price, a choice
that reflects different varieties of environmental policy. We have shown that if one anchors
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the pollution tax to inflation, then pollution always decreases with an increase in the tax
rate, the resulting equilibrium is always Marshallian stable, and tax incidence results
that have previously been derived for specific model parameterizations in fact hold quite
generally. Our analysis further implies that analytical and numerical models aimed at
capturing the general equilibrium effects of environmental taxes that are actually indexed
on inflation should use the relevant inflation index as numeraire, or explicitly anchor
these taxes to inflation, so that comparative static results have the correct sign, and the
correct magnitude. The fact that even in the pared-downmodel we use, the pollution and
incidence outcomes of nominal taxes depend critically on the numeraire suggests that the
same would be true in larger, more detailed models of the economy with a large set of
candidate numeraire goods.
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Appendices

A Proofs and derivations

A.1 Useful equalities and inequalities implied by theory

Constant returns to scale in sectors X and Y imply that θXL + θXK � 1 and θYL + θYK +

θYZ � 1. Homogeneity of degree one of the conditional input demands implies that
θYLemL + θYKemK + θYZemZ � 0, for m ∈ {L, K, Z}.

Concavity of the indirect cost function and Shephard’s lemma imply that the Jacobian
matrix of the conditional input demands is symmetric and negative semidefinite. These
properties translate to the matrix of Allen substitution elasticities, defined as

E ≡
©­­«

eLL eLK eLZ

eKL eKK eKZ

eZL eZK eZZ

ª®®¬ .
In particular, eLL , eKK , eZZ ≤ 0, eLLeKK − e2

LK ≥ 0, and similarly for other input pairs. In
addition, v′Ev ≤ 0 for any 3 × 1 vector v. This property also implies that v′ELKv ≤ 0 for
any 2 × 1 vector v, where

ELK ≡
(

eLL eLK

eKL eKK

)
.

Note that the Allen substitution matrix is singular, and that any triplet of values of substi-
tution elasticities determine the remaining ones through homogeneity. Relatedly, the fact
that ELK be negative semidefinite suffices to ensure that the entire matrix E be negative
semidefinite.

Simple algebra implies that θXLγL
θYL

�
θXKγK
θYK

�
pYY
pX X and we will denote this ratio as δ.

Further note that δ(θYLγK + θYKγL) � γLγK .

A.2 Equilibrium displacement

Once a price index satisfying one-homogeneity, towhich the pollution tax can be anchored
through the relation p̂Z � P̂ + τ̂Z, has been defined, the choice of which price to use as
a reference indeed becomes innocuous. That is, identical results on goods provision,
resource allocation, and relative prices will be obtained whether it is assumed that p̂X � 0,
ŵ � 0, etc. Here we choose to set P̂ � 0, but our results would be identical if we chose

20



any other price normalization.
Using the normalization P̂ � 0, the system of equations describing the change in

equilibrium values can be written as:

L̂X + γL L̂Y � 0 (A-1)

K̂X + γKK̂Y � 0 (A-2)

X̂ − θXL L̂X − θXKK̂X � 0 (A-3)

Ŷ − θYL L̂Y − θYKK̂Y − θYZẐ � 0 (A-4)

p̂X − θXLŵ − θXK r̂ � 0 (A-5)

p̂Y − θYLŵ − θYK r̂ � θYZ τ̂Z (A-6)

L̂X − K̂X + σX ŵ − σX r̂ � 0 (A-7)

L̂Y − Ẑ − θYL(eLL − eLZ)ŵ − θYK(eLK − eKZ)r̂ � θYZ(eLZ − eZZ)τ̂Z (A-8)

K̂Y − Ẑ − θYL(eLK − eLZ)ŵ − θYK(eKK − eKZ)r̂ � θYZ(eKZ − eZZ)τ̂Z (A-9)

X̂ − Ŷ + σu p̂X − σu p̂Y � 0 (A-10)

βp̂Y + (1 − β)αŵ + (1 − β)(1 − α)r̂ � 0 (A-11)

which is a linear system that includes 11 equations in 11 unknowns. We are particularly
interested in deriving the effect Ẑ

τ̂z
(in order to ensure that Condition 1 holds) and the

effects ŵ
τ̂z

and r̂
τ̂z

(to derive the incidence of the tax increase).

A.3 Derivation of the pollution effect Ẑ
τ̂Z

Condition 1 mandates that the comparative static Ẑ
τ̂z

be defined for all parameter values.
Given that the system describing equilibrium displacement is linear, this implies that the
determinant of the system matrix be nonzero, which, by continuity, implies that it must
be of a determinate sign. We will show that this requirement is met by imposing a simple
functional restriction on the weights of the price index.

Although we could compute the determinant of the system’s matrix directly, follow-
ing Fullerton and Heutel (2007a) it is easier to proceed by substitution to reduce the
dimensionality of the problem. Equations (A-1) and (A-2) imply that L̂X � −γL L̂Y and
K̂X � −γKK̂Y . Using (A-3), we then have X̂ � −θXLγL L̂Y − θXKγKK̂Y which, together with
(A-4), implies that X̂ − Ŷ � −(θXLγL + θYL)L̂Y − (γKθXK + θYK)K̂Y − θYZẐ. Using (A-10)
and defining δ ≡ θXLγL

θYL
�

θXKγK
θYK

, this in turn implies that

θYL(1 + δ)L̂Y + θYK(1 + δ)K̂Y + θYZẐ � σu(p̂X − p̂Y). (A-12)
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Using (A-5) and (A-6), we have

p̂X − p̂Y � (θXL − θYL)ŵ + (θXK − θYK)r̂ − θYZ τ̂Z

which together with (A-12) implies

θYL(1+δ)L̂Y+θYK(1+δ)K̂Y+θYZẐ+σu(θYL−θXL)ŵ+σu(θYK−θXK)r̂ � −σuθYZ τ̂Z . (A-13)

One can then use (A-8) and (A-9) to eliminate L̂Y and K̂Y in Equation (A-13). To alleviate
notation, define

θ̄1
YL ≡ θYL(eLL − eLZ)
θ̄2

YL ≡ θYL(eLK − eLZ)
θ̄1

YK ≡ θYK(eLK − eKZ)
θ̄2

YK ≡ θYK(eKK − eKZ)
θ̄1

YZ ≡ θYZ(eLZ − eZZ)
θ̄2

YZ ≡ θYZ(eKZ − eZZ)

After rearrangement, we obtain:[
σu(θYL − θXL) + (1 + δ)(θYL θ̄1

YL + θYK θ̄2
YL)

]
ŵ +

[
σu(θYK − θXK) + (1 + δ)(θYL θ̄1

YK + θYK θ̄2
YK)

]
r̂

+ [θYZ + (1 + δ)(θYL + θYK)] Ẑ � −
[
σuθYZ + (1 + δ)(θYL θ̄1

YZ + θYK θ̄2
YZ)

]
τ̂Z (A-14)

Equation (A-7) implies that −γL L̂Y + γKK̂Y + σX ŵ − σX r̂ � 0, which after eliminating L̂Y

and K̂Y becomes[
σX − γL θ̄

1
YL + γK θ̄

2
YL

]
ŵ+

[
−σX − γL θ̄

1
YK + γK θ̄

2
YK

]
r̂+

[
γK − γL

]
Ẑ �

[
γL θ̄

1
YZ − γK θ̄

2
YZ

]
τ̂Z .

(A-15)
Finally, (A-6) and (A-11) together imply that[

βθYL + (1 − β)α
]

ŵ +
[
βθYK + (1 − β)(1 − α)

]
r̂ � −βθYZ τ̂Z . (A-16)

Equations (A-14)-(A-16) constitute a linear system in the three unknowns ŵ, r̂, and Ẑ.
For the comparative static Ẑ

τ̂Z
to be defined for all parameter values, the determinant of
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this system should have a constant sign. We can write this determinant as

∆ ≡

�������
σu(θYL − θXL) + (1 + δ)(θYL θ̄1

YL + θYK θ̄2
YL) σu(θYK − θXK) + (1 + δ)(θYL θ̄1

YK + θYK θ̄2
YK) θYZ + (1 + δ)(θYL + θYK)

σX − γL θ̄1
YL + γK θ̄2

YL −σX − γL θ̄1
YK + γK θ̄2

YK γK − γL

βθYL + (1 − β)α βθYK + (1 − β)(1 − α) 0

�������
and, developing along the third column, we get

∆ � [θYZ + (1 + δ)(θYL + θYK)]
[ (
σX − γL θ̄

1
YL + γK θ̄

2
YL

)
BK +

(
σX + γL θ̄

1
YK − γK θ̄

2
YK

)
BL

]
+(γL − γK)

[ (
σu(θYL − θXL) + (1 + δ)(θYL θ̄

1
YL + θYK θ̄

2
YL)

)
BK

−
(
σu(θYK − θXK) + (1 + δ)(θYL θ̄

1
YK + θYK θ̄

2
YK)

)
BL

]
where we have defined BL ≡ βθYL + (1 − β)α and BK ≡ βθYK + (1 − β)(1 − α).

Separating the terms in σX and σu , we can write ∆ � C1σX + C2σu + C3, where

C1 ≡ (BL + BK) (1 + δ(θYL + θYK))
C2 ≡ (γL − γK) [BK(θYL − θXL) − BL(θYK − θXK)]

and

C3 ≡ BL
[
(1 + (1 + δ)(θYL + θYK))

(
γL θ̄

1
YK − γK θ̄

2
YK

)
− (1 + δ)(γL − γK)

(
θYL θ̄

1
YK + θYK θ̄

2
YK

) ]
+BK

[
(1 + (1 + δ)(θYL + θYK))

(
−γL θ̄

1
YL + γK θ̄

2
YL

)
+ (1 + δ)(γL − γK)

(
θYL θ̄

1
YL + θYK θ̄

2
YL

) ]
.

Using the definitions of the terms θ̄1
YL, θ̄

2
YL, θ̄

1
YK , θ̄

2
YK , and using the properties θYZeKZ �

−θYLeLK − θYKeKK and θYZeLZ � −θYLeLL − θYKeLK , we obtain

C3 � −eLLBKθYLγL(1+γK)−eKKBLθYKγK(1+γL)+eLK
[
BKθYLγK(1 + γL) + BLθYKγL(1 + γK)

]
.

It is clear thatC1 > 0, therefore for the signof∆ to be invariant to the choice of parameter
values, which is required for it to always be nonzero, we need both C2 ≥ 0 and C3 ≥ 0.
Let us start by discussing the sign of C3. The first two terms in C3 are clearly non-negative
given that eLL ≤ 0 and eKK ≤ 0. The symmetry and negative semidefiniteness of the
submatrix ELK implies that −eLLv2

1 − eKKv2
2 +2eLKv1v2 ≥ 0 for all vectors v � (v1, v2). If we

can write C3 in this form for some well-chosen vector v, we can then conclude that C3 ≥ 0
for all parameter values. A sufficient condition is that BKθYLγK(1+γL) � BLθYKγL(1+γK),
that is, using the fact that γLθXLθYK � γKθXKθYL,

BKθXL(1 + γL) � BLθXK(1 + γK) (A-17)
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which implies that

C3 � BKθYLγK(1 + γL) (−eLL − eKK + 2eLK) � −v′ELKv

for v ≡
√

BKθYLγK(1 + γL)
(

1
−1

)
.

The restriction in (A-17) also turns out to be necessary to guarantee that C3 ≥ 0 for all
parameter values. To see why, first note that BL and BK depend on the cost shares θYK

and θYL and the index weights α and β. Condition 2 further implies that BL and BK may
not depend on the substitution elasticities eLL, eKK , or eLK since α and β are themselves
restricted to be independent of substitution elasticities. This means that values of α and
β that satisfy Conditions 1 and 2 must ensure that C3 ≥ 0 for all possible values of (eLL,
eKK , eLK) satisfying the restrictions from production theory, namely: for all eLL, eKK , and
eLK such that eLL ≤ 0, eKK ≤ 0, and eLLeKK − e2

LK ≥ 0:

−eLLBKθYLγL(1+γK)−eKKBLθYKγK(1+γL)+eLK
[
BKθYLγK(1 + γL) + BLθYKγL(1 + γK)

]
≥ 0

that is,

BKθYL
[
γK(1 + γL)eLK − γL(1 + γK)eLL

]
≥ BLθYK

[
γK(1 + γL)eKK − γL(1 + γK)eLK

]
.

Note that if eLK > 0, this condition places no restriction on (BL , BK) and thus no restriction
on (α, β). If eLK < 0 however, it constrains the set of acceptable values of (α, β). Consider
the subset of substitution elasticities

(eLL , eKK , eLK) �
(

FγK(1 + γL)
γL(1 + γK)

eLK ,
γL(1 + γK)

FγK(1 + γL)
eLK , eLK

)
where eLK < 0 and F > 0. These elasticities satisfy the theory restrictions. In addition,
γK(1+ γL)eLK − γL(1+ γK)eLL > 0⇔ F > 1. Thus, we have that acceptable values of α and
β must satisfy

BK ≥ BL
θYK

[
γK(1 + γL)eKK − γL(1 + γK)eLK

]
θYL

[
γK(1 + γL)eLK − γL(1 + γK)eLL

] � BL
θYKγL(1 + γK)
θYLγK(1 + γL)

(
1
F − 1
1 − F

)
� BL

θYKγL(1 + γK)
θYLγK(1 + γL)

(
1
F

)
for all F > 1 while also satisfying

BK ≤ BL
θYK

[
γK(1 + γL)eKK − γL(1 + γK)eLK

]
θYL

[
γK(1 + γL)eLK − γL(1 + γK)eLL

] � BL
θYKγL(1 + γK)
θYLγK(1 + γL)

(
1
F

)
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for all F < 1. Taking limits as F→ 1, F > 1, and as F→ 1, F < 1 yields

BL
θYKγL(1 + γK)
θYLγK(1 + γL)

≤ BK ≤ BL
θYKγL(1 + γK)
θYLγK(1 + γL)

which implies (A-17).
Finally, it is easy to check that (A-17) implies that

BK(θYL − θXL) − BL(θYK − θXK) �
BL(γL − γK)θYK(1 + δ)

γK(1 + γL)
(A-18)

so that C2 ≥ 0 as well.
In order to ensure that Condition 3 is satisfied, we use Cramer’s rule to derive the effect

Ẑ
τ̂Z
. Having shown that the system determinant is positive, we only need to ensure that

the following determinant

∆Z ≡

�������
σu(θYL − θXL) + (1 + δ)(θYL θ̄1

YL + θYK θ̄2
YL) σu(θYK − θXK) + (1 + δ)(θYL θ̄1

YK + θYK θ̄2
YK) −σuθYZ − (1 + δ)(θYL θ̄1

YZ + θYK θ̄2
YZ)

σX − γL θ̄1
YL + γK θ̄2

YL −σX − γL θ̄1
YK + γK θ̄2

YK γL θ̄1
YZ − γK θ̄2

YZ
BL BK −BZ

�������
is non-positive, where we have defined BZ ≡ βθYZ. (Note that BL + BK + BZ � 1.) This
determinant can be written as ∆Z � D1σX + D2σu + D3σXσu + D4, with

D1 ≡ (1 + δ)
[
BZ(θYL θ̄

1
YK + θYK θ̄

2
YK + θYL θ̄

1
YL + θYK θ̄

2
YL) − (BL + BK)(θYL θ̄

1
YZ + θYK θ̄

2
YZ)

]
D2 ≡ (θYL − θXL)

[
BZ(γL θ̄

1
YK − γK θ̄

2
YK) − BK(γL θ̄

1
YZ − γK θ̄

2
YZ)

]
−(θYK − θXK)

[
BZ(γL θ̄

1
YL − γK θ̄

2
YL) − BL(γL θ̄

1
YZ − γK θ̄

2
YZ)

]
+θYZ

[
BK(γL θ̄

1
YL − γK θ̄

2
YL) − BL(γL θ̄

1
YK − γK θ̄

2
YK)

]
D3 ≡ (θYL − θXL + θYK − θXK)BZ − θYZ(BL + BK)
D4 ≡ (1 + δ)

[
BL

(
(θYL θ̄

1
YK + θYK θ̄

2
YK)(γL θ̄

1
YZ − γK θ̄

2
YZ) − (γL θ̄

1
YK − γK θ̄

2
YK)(θYL θ̄

1
YZ + θYK θ̄

2
YZ)

)
−BK

(
(θYL θ̄

1
YL + θYK θ̄

2
YL)(γL θ̄

1
YZ − γK θ̄

2
YZ) − (γL θ̄

1
YL − γK θ̄

2
YL)(θYL θ̄

1
YZ + θYK θ̄

2
YZ)

)
+BZ

(
(θYL θ̄

1
YL + θYK θ̄

2
YL)(γL θ̄

1
YK − γK θ̄

2
YK) − (γL θ̄

1
YL − γK θ̄

2
YL)(θYL θ̄

1
YK + θYK θ̄

2
YK)

) ]
.

It turns out that all the Di parameters are non-positive. To start with, note that
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D3 � −θYZ(BZ + BL + BK) � −θYZ < 0. Let us then show that D1 ≤ 0. First, note that

θYL θ̄
1
YZ + θYK θ̄

2
YZ � θYZ [θYL(eLZ − eZZ) + θYK(eKZ − eZZ)]

� θYZ [θYLeZL + θYKeZK − (θYL + θYK)eZZ]
� θYZ [−θYZeZZ − (θYL + θYK)eZZ]
� −θYZeZZ ≥ 0

Second, note that

θYL θ̄
1
YK + θYK θ̄

2
YK + θYL θ̄

1
YL + θYK θ̄

2
YL � θYLθYK(2eLK − eKZ − eLZ) + (θYL)2(eLL − eLZ) + (θYK)2(eKK − eKZ)

� eLL(θYL)2 + eKK(θYK)2 + 2eLKθYLθYK − (θYL + θYK)(θYLeLZ + θYK eKZ)
� −(θYL + θYK + θYZ)(θYLeLZ + θYK eKZ)
� θYZ eZZ ≤ 0

Therefore, D1 � (1 + δ)θYZeZZ ≤ 0. Let us now show that D4 ≤ 0. We can rewrite

D4 � (1 + δ)(γLθYK + γKθYL)
[
BL(θ̄2

YK θ̄
1
YZ − θ̄

1
YK θ̄

2
YZ) + BK(θ̄1

YL θ̄
2
YZ − θ̄

2
YL θ̄

1
YZ) + BZ(θ̄2

YL θ̄
1
YK − θ̄

1
YL θ̄

2
YK)

]
.

We will show that the coefficients on BL, BK , and BZ in the square bracket are all non-
positive. Consider for instance the coefficient θ̄1

YL θ̄
2
YZ − θ̄

2
YL θ̄

1
YZ on BK . We have:

θ̄1
YL θ̄

2
YZ − θ̄

2
YL θ̄

1
YZ

θYLθYZ
� (eLL − eLZ)(eKZ − eZZ) − (eLK − eLZ)(eLZ − eZZ)

� −(eLLeZZ − e2
LZ) + eLLeKZ − eLZ eKZ − eLK eLZ + eLK eZZ

� −(eLLeZZ − e2
LZ) + eLLeKZ + eLK eZZ −

eLZ

θYK
(θYK eZK + θYK eLK)

� −(eLLeZZ − e2
LZ) + eLLeKZ + eLK eZZ +

eLZ

θYK
(θYLeZL + θYZ eZZ + θYLeLL + θYZ eLZ)

� −(eLLeZZ − e2
LZ) +

1
θYK

[
eLL(θYK eKZ + θYLeLZ) + eZZ(θYK eLK + θYZ eLZ) + e2

LZ(θYL + θYZ)
]

� −
(eLLeZZ − e2

LZ)
θYK

≤ 0

where we have used the fact that eLLeZZ − e2
LZ ≥ 0. Similarly, the coefficient on BZ has the

same sign as

θ̄2
YL θ̄

1
YK − θ̄

1
YL θ̄

2
YK

θYLθYK
� (eLK − eLZ)(eLK − eKZ) − (eLL − eLZ)(eKK − eKZ)

� −(eLLeKK − e2
LK) + eLLeKZ − eLKeKZ − eLKeLZ + eKKeLZ .

A reasoning similar to that used to sign the coefficient on BK can be used by swapping the
indices K and Z to determine the sign of this expression, and similarly for the coefficient
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on BL. Therefore, D4 ≤ 0. It can further be shown that

D4 � −(γLθYK + γKθYL + γLγK) (θYLeLKeLZ + θYKeLKeKZ + θYZeLZeKZ)

so that D4 is independent of α and β. It remains to be shown that D2 ≤ 0. Rewrite

D2 � BL
[
θYZ(γK θ̄

2
YK − γL θ̄

1
YK) + (θYK − θXK)(γL θ̄

1
YZ − γK θ̄

2
YZ)

]
+BK

[
θYZ(γL θ̄

1
YL − γK θ̄

2
YL) + (θYL − θXL)(γK θ̄

2
YZ − γL θ̄

1
YZ)

]
+BZ

[
(θYL − θXL)(γL θ̄

1
YK − γK θ̄

2
YK) + (θYK − θXK)(γK θ̄

2
YL − γL θ̄

1
YL)

]
.

Using the definitions of the θ̄i
Y j parameters and the relationships θYLemL + θYKemK +

θYZemZ � 0, one can show that the three terms in square brackets are equal to each other,
so that the value of D2 is independent of (α, β) due to BL + BK + BZ � 1. Using the first of
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these bracketed terms, we thus have

D2 � θYZθYK
(
γK(eKK − eKZ) − γL(eLK − eKZ)

)
+ (θYK − θXK)θYZ

(
γL(eLZ − eZZ) − γK(eKZ − eZZ)

)
� eKKθYZθYKγK + eZZ(θYK − θXK)θYZ(γK − γL) + eKZ

(
θYZθYK(γL − γK) − (θYK − θXK)θYZγK

)
−eLKθYZθYKγL + eLZ(θYK − θXK)θYZγL

� eKKθYZθYK

(
γK +

θYKγL

θYL

)
+ eZZθYZ(θYK − θXK)

(
γK − γL −

θYZγL

θYL

)
+eKZ

(
θYZθYK(γL − γK) − (θYK − θXK)θYZγK + θYZθYK

θYZγL

θYL
− (θYK − θXK)θYZ

θYKγL

θYL

)
� eKK

θYZθYKγL

δθYL

(
δγKθYL

γL
+ θYKδ

)
+ eZZ

θYZθYK

γKθYL
(γK − δ)

(
(γK − γL)θYL − γLθYZ

)
+eKZθYZθYK

(
γL − γK − γK

(
1 − δ

γK

)
+
θYZγL

θYL
−

(
1 − δ

γK

)
θYKγL

θYL

)
� eKK

θYZθYKγL

δθYL
(γKθXL + γKθXK) + eZZ

θYZθYK

γKθYL
(γK − δ)(γKθYL + γLθYK − γL)

+eKZθYZθYK

(
γL − 2γK + δ +

θYZ

θYL
γL − (γK − δ)

θYKγL

θYLγK

)
� eKK

θYZθYKγLγK

δθYL
+ eZZ

θYZθYKγL

γKθYLδ
(γK − δ)

(
δγKθYL

γL
+ δθYK − δ

)
+eKZθYZθYK

(
γL − 2γK + δ +

γL

θYL
(1 − θYK − θYL) −

θYKγL

θYL
+ δ

θYKγL

θYLγK

)
� eKK

θYZθYKγK

θXL
+ eZZ

θYZθYK

γKθXL

(
γK − δ

)2
+ eKZθYZθYK

(
−2γK + δ +

δ
θXL
−

2γKθXK

θXL
+
δθXK

θXL

)
� eKK

θYZθYKγK

θXL
+ eZZ

θYZθYK

γKθXL

(
γK − δ

)2 − 2eKZ
θYZθYK

θXL

(
γK − δ

)
�

θYZθYK

θXL

(
eKKγK + eZZ

(
γK − δ

)2

γK
− 2eKZ(γK − δ)

)
which is non-positive from the negative semidefiniteness of the submatrix EKZ.

A.4 Tax incidence: sources side

We apply Cramer’s rule to derive the effect ŵ
τ̂Z
. The effect r̂

τ̂Z
can be obtained using

symmetry. We have that ŵ
τ̂Z

�
∆w
∆
, where

∆w ≡

�������
−σuθYZ − (1 + δ)(θYL θ̄1

YZ + θYK θ̄2
YZ) σu(θYK − θXK) + (1 + δ)(θYL θ̄1

YK + θYK θ̄2
YK) θYZ + (1 + δ)(θYL + θYK)

γL θ̄1
YZ − γK θ̄2

YZ −σX − γL θ̄1
YK + γK θ̄2

YK γK − γL

−BZ BK 0

������� .

28



This determinant can be written as ∆w � F1σX + F2σu + F3, with

F1 � − [θYZ + (1 + δ)(θYL + θYK)] BZ

F2 � (γK − γL) [θYZBK − (θYK − θXK)BZ]
F3 � (1 + δ)(γK − γL)

[
(θYL θ̄

1
YZ + θYK θ̄

2
YZ)BK − (θYL θ̄

1
YK + θYK θ̄

2
YK)BZ

]
+ [θYZ + (1 + δ)(θYL + θYK)]

[
(γL θ̄

1
YZ − γK θ̄

2
YZ)BK − (γL θ̄

1
YK − γK θ̄

2
YK)BZ

]
.

Simplifying, we obtain:

F3 � θYZ
[
(γL θ̄

1
YZ − γK θ̄

2
YZ)BK − (γL θ̄

1
YK − γK θ̄

2
YK)BZ

]
+(1 + δ)(γLθYK + γKθYL)

[
(θ̄1

YZ − θ̄
2
YZ)BK − (θ̄1

YK − θ̄
2
YK)BZ

]
� θYZ

[
(γL θ̄

1
YZ − γK θ̄

2
YZ)BK − (γL θ̄

1
YK − γK θ̄

2
YK)BZ

]
+(1 + δ)(γLθYK + γKθYL) [θYZ(eLZ − eKZ)BK − θYK(eLK − eKK)BZ] .

Using symmetry, we then have that r̂
τ̂Z

�
G1σX+G2σu+G3

∆
with

G1 � F1

G2 � (γK − γL) [−θYZBL + (θYL − θXL)BZ]

and

G3 � θYZ
[
−(γL θ̄

1
YZ − γK θ̄

2
YZ)BL − (γK θ̄

2
YL − γL θ̄

1
YL)BZ

]
+(1 + δ)(γLθYK + γKθYL) [−θYZ(eLZ − eKZ)BL − θYL(eLK − eLL)BZ] .

We have ŵ−r̂
τ̂Z

�
σX(F1−G1)+σu(F2−G2)+F3−G3

∆
. It is easy to see that F2 − G2 � (γK − γL)θYZ. In

addition, we have

F3 − G3 � θYZ
[
(BL + BK)(γL θ̄

1
YZ − γK θ̄

2
YZ) + BZ

(
γK θ̄

2
YL − γL θ̄

1
YL − γL θ̄

1
YK + γK θ̄

2
YK

) ]
+(1 + δ)(γLθYK + γKθYL) [θYZ(eLZ − eKZ)(BL + BK) + (θYL(eLK − eLL) − θYK(eLK − eKK)) BZ]

� eZZ(θYZ)2(BL + BK)(γK − γL)
+eLZ

[
(θYZ)2(BL + BK)γL + θYZθYLBZ(γL − γK) + (1 + δ)(γLθYK + γKθYL)θYZ(BL + BK)

]
+eKZ

[
−(θYZ)2(BL + BK)γK + θYZθYKBZ(γL − γK) − (1 + δ)(γLθYK + γKθYL)θYZ(BL + BK)

]
+eLL

[
−θYZθYLBZγL − (1 + δ)(γLθYK + γKθYL)θYLBZ

]
+eLK

[
θYZBZ

(
γKθYL − γLθYK

)
+ (1 + δ)(γLθYK + γKθYL)(θYL − θYK)BZ

]
+eKK

[
θYZθYKBZγK + (1 + δ)(γLθYK + γKθYL)θYKBZ

]
.
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Using θYLeLL � −θYKeLK−θYZeLZ and θYKeKK � −θYLeLK−θYZeKZ and BL +BK � 1−BZ,
we get

F3 − G3 � eZZ(θYZ)2(1 − BZ)(γK − γL)
+eLZ

[
(θYZ)2γL + θYZθYLBZ(γL − γK) + (1 + δ)(γLθYK + γKθYL)θYZ(1 − BZ)

]
+eKZ

[
−(θYZ)2γK + θYZθYKBZ(γL − γK) − (1 + δ)(γLθYK + γKθYL)θYZ(1 − BZ)

]
−eLL(1 + δ)(γLθYK + γKθYL)θYLBZ

+eLK(1 + δ)(γLθYK + γKθYL)(θYL − θYK)BZ

+eKK(1 + δ)(γLθYK + γKθYL)θYKBZ .

Now using θYZeZZ + θYLeLZ + θYKeKZ � 0, we get

F3 − G3 � eZZ(θYZ)2(γK − γL)
+eLZ

[
(θYZ)2γL + (1 + δ)(γLθYK + γKθYL)θYZ(1 − BZ)

]
+eKZ

[
−(θYZ)2γK − (1 + δ)(γLθYK + γKθYL)θYZ(1 − BZ)

]
−eLL(1 + δ)(γLθYK + γKθYL)θYLBZ

+eLK(1 + δ)(γLθYK + γKθYL)(θYL − θYK)BZ

+eKK(1 + δ)(γLθYK + γKθYL)θYKBZ

� eZZ(θYZ)2(γK − γL)
+eLZ

[
(θYZ)2γL + (1 + δ)(γLθYK + γKθYL)θYZ

]
+eKZ

[
−(θYZ)2γK − (1 + δ)(γLθYK + γKθYL)θYZ

]
� eLZθYZ

[
−θYL(γK − γL) + θYZγL + (1 + δ)(γLθYK + γKθYL)

]
+eKZθYZ

[
−θYK(γK − γL) − θYZγK − (1 + δ)(γLθYK + γKθYL)

]
� eLZθYZ

[
γL + δ(γLθYK + γKθYL)

]
− eKZθYZ

[
γK + δ(γLθYK + γKθYL)

]
� eLZθYZγL(1 + γK) − eKZθYZγK(1 + γL).

Therefore, we have

ŵ − r̂
τ̂Z

�
θYZ

[
σu(γK − γL) + γL(1 + γK)eLZ − γK(1 + γL)eKZ

]
∆

.

Note that variations in the choices for α and β affect incidence on the sources side only
through the denominator ∆.
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A.5 Tax incidence: uses side

Using the equalities p̂Y � θYLŵ + θYK r̂ + θYZ τ̂Z and p̂X � θXLŵ + θXK r̂ together with
expressions for ŵ

τ̂Z
and r̂

τ̂Z
, one can derive the following expression for the incidence of the

pollution tax on the uses side:

p̂Y − p̂X

τ̂Z
�

θYZ

∆

[
σX

(
1 + γLθXL + γKθXK

)
+

(
θYLγK(1 + γL) + θYKγL(1 + γK)

)
eLK

+γL(1 + γK)(θXK − θYK)eLZ + γK(1 + γL)(θXL − θYL)eKZ
]
.

Note that variations in the choices for α and β affect incidence on the uses side only
through the denominator ∆. In addition, the price of Y could increase or decrease relative
to X.16 But note that, as in Fullerton and Heutel (2007a), the ambiguity is resolved
when γL � γK ≡ γ. Indeed, we can then write θXL − θYL � θXL − θYL(θXL + θXK) �
θXL(1 − θYL − θYK) � θXLθYZ, and similarly θXK − θYK � θXKθYZ, which yields

p̂Y − p̂X

τ̂Z
�

θYZ(1 + γ)
∆

[
σX + γ ((θYL + θYK)eLK + θXKθYZeLZ + θXLθYZeKZ)

]
�

θYZ(1 + γ)
∆

[
σX + γ ((θXKθYL + θXLθYK)eLK − θXKθYLeLL − θXLθYKeKK)

]
which is positive given the negative semidefiniteness of ELK and the fact that θXLθYK �

θXKθYL.

A.6 Example of pollution-enhancing tax in Fullerton andHeutel (2007a)

In the modeling approach of Fullerton and Heutel (2007a) (β � 0, α � θXL), an increase
in the tax on the polluting input may lead to increased pollution. For instance, the
following set of parameter values leads to the counterintuitive outcome: σu � σX � 0,
θYL �

1
8 , θYK �

1
2 , γL � 1, γK �

12
13 , eLL � −1, eKK � −1.1005, eZZ � −3. The remaining

parameters can be deduced using the relationships γLθXL
θYL

�
γKθXK
θYK

, which determines θXL,
as well as the three equalities θYLemL + θYKemK + θYZemZ � 0, for m ∈ {L, K, Z}, which
jointly determine the three cross-price Allen elasticities. One can check that the resulting
substitution matrix satisfies negative semidefiniteness. With these parameters, we obtain
Ẑ � 0.96τ̂Z, that is, a positive elasticity of pollution with respect to the pollution tax. Not
surprisingly, in that case the value of the pollution tax actually decreases relative to the
value of our preferred price indices. Indeed, denoting θX �

pX X
pX X+pYY and θY � 1 − θX , we

16For an example where p̂Y−p̂X
τ̂Z

< 0, consider the following parameter values: θYL � 0.05, θYK � 0.005,
γL � 1, γK � 0.0025, eLK � −1, eLZ � 0.01, eKZ � 50, and σX � σu � 0.
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obtain p̂Z −
(
θX p̂X + θY p̂Y

)
� −0.8τ̂Z. Denoting θL �

wL̄
wL̄+rK̄ and θK � 1 − θL, we obtain

p̂Z − (θLŵ + θK r̂) � −1.0τ̂Z.
Note that the numerical example given in Fullerton and Heutel (2007a), footnote 14, to

illustrate the counterintuitive outcome violates the negative semidefiniteness property of
the substitution matrix in sector Y. This is easily seen by computing the determinant of

the submatrix

(
eLL eLZ

eLZ eZZ

)
, which turns out to be negative rather than non-negative for

their choice of substitution elasticities.

B Model with one clean input

Consider an economy with one clean good, labor. We consider price indices of the form
P � pβYp1−β

X . (p̂X � ŵ due to constant returns to scale in sector X.) The displaced
equilibrium is given by the following set of equations:

L̂X + γL L̂Y � 0

X̂ − L̂X � 0

Ŷ − θYL L̂Y − θYZẐ � 0

p̂Y − θYL p̂X � θYZ τ̂Z

L̂Y − Ẑ + σY p̂X � σY τ̂Z

X̂ − Ŷ + σu p̂X − σu p̂Y � 0

βp̂Y + (1 − β)p̂X � 0.

where the notation is as before and θYL + θYZ � 1. It is easy to show that the determinant
of the system has a constant sign, and that

Ẑ
τ̂Z

� −
σuθYZ + σY(γL + θYL)
(1 + γL)(1 − βθYZ)

< 0.

C Additional simulations

C.1 Parameter values considered in Fullerton and Heutel (2007a)

Simulations reported in Tables C.1 and C.2 are performed using the parameter values:
σu � σX � eLK � 1, eLZ � 1, eKZ � −0.5, and θYZ � 0.25. As in Fullerton and Heutel
(2007a), the values of the remaining model parameters are determined by the values

32



of γK − γL given in the tables and the conditions KX + KY � 0.4, LX + LY � 0.6, and
LY + KY � 0.2.

Table C.1: Pollution effect of a 10% increase in the nominal pollution tax (%)

γK − γL θYK θXK
Ẑ

pX pY P w r R
-0.25 0.1515 0.4495 -7.50 -10.10 -8.02 -7.64 -7.35 -7.52
-0.20 0.1818 0.4394 -7.00 -9.42 -7.48 -7.14 -6.82 -7.01
-0.15 0.2118 0.4294 -6.49 -8.72 -6.93 -6.65 -6.29 -6.50
-0.10 0.2416 0.4195 -5.98 -8.03 -6.39 -6.14 -5.77 -5.99
-0.05 0.2710 0.4097 -5.48 -7.33 -5.85 -5.64 -5.26 -5.48
0.00 0.3000 0.4000 -4.97 -6.63 -5.31 -5.14 -4.75 -4.97
0.05 0.3286 0.3905 -4.47 -5.94 -4.77 -4.63 -4.25 -4.47
0.10 0.3566 0.3811 -3.98 -5.26 -4.24 -4.13 -3.76 -3.97
0.15 0.3841 0.3720 -3.49 -4.59 -3.71 -3.63 -3.28 -3.48
0.20 0.4110 0.3630 -3.00 -3.93 -3.19 -3.13 -2.81 -2.99

Table C.2: Incidence effects of a 10% increase in the nominal pollution tax (%)

γK − γL
Sources side: ŵ − r̂ Uses side: p̂Y − p̂X

pX pY P w r R pX pY P w r R
-0.25 0.39 0.52 0.41 0.39 0.38 0.39 2.57 3.46 2.75 2.62 2.52 2.58
-0.20 0.47 0.63 0.50 0.48 0.45 0.47 2.57 3.46 2.75 2.62 2.50 2.57
-0.15 0.55 0.73 0.58 0.56 0.53 0.55 2.56 3.44 2.74 2.62 2.48 2.56
-0.10 0.63 0.84 0.67 0.64 0.60 0.63 2.55 3.42 2.72 2.61 2.46 2.55
-0.05 0.71 0.94 0.75 0.73 0.68 0.71 2.53 3.38 2.70 2.60 2.42 2.53
0.00 0.79 1.05 0.84 0.81 0.75 0.79 2.50 3.33 2.67 2.58 2.39 2.50
0.05 0.86 1.15 0.92 0.89 0.82 0.86 2.47 3.28 2.63 2.56 2.35 2.47
0.10 0.94 1.25 1.00 0.98 0.89 0.94 2.43 3.22 2.59 2.52 2.30 2.43
0.15 1.02 1.34 1.09 1.06 0.96 1.02 2.39 3.15 2.54 2.49 2.25 2.39
0.20 1.10 1.44 1.17 1.15 1.03 1.09 2.35 3.07 2.49 2.45 2.19 2.34

C.2 Parameter values adapted from Fullerton and Ta (2019)

Fullerton and Ta (2019) calibrate a Cobb-Douglas model of a closed economy to U.S. data
to analyze the effects of a carbon tax on prices, inputs, outputs, and welfare. Their model
specification does not squarely fit the model discussed here because the dirty input (fossil
fuels) is used in the production of both electricity (a good consumed by households) and
a composite consumption good. The consumption good (X) is produced using electricity
and fossil fuels. Because production of the consumption good uses mostly labor and
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Table C.3: Model parameters adapted from Fullerton and Ta (2019)

Parameter Notation in Fullerton and Ta (2019), Table 1 Value
eLK N/A (Cobb-Douglas) 1
σu N/A (Cobb-Douglas) 1
σX N/A (Cobb-Douglas) 1
γL

L0
E

L0
X

0.012

γK
K0

E
K0

X
0.031

θXL
β
α+β 0.455

θYL ε 0.138
θYK δ 0.415

Note: To ensure internal consistency, once we have set γL, γK , θYL, and θYK we recompute
θXL �

γKθYL
γKθYL+γLθYK

to ensure that the equality γLθXL
θYL

�
γKθXK
θYK

holds exactly.

capital (the cost shares on electricity and fossil fuels are very small), to fit their calibration
data within our framework we assume that production of X rests solely on capital and
labor. Thus sector Y (the dirty sector) is represented by the electricity sector, which uses
a large share of fossil fuels in terms of input costs. Table C.3 summarizes the calibration
data.

Tables C.4 and C.5 summarize results for a set of selected substitution elasticities. We
set eLK � 1 but allow the substitution elasticities eKZ and eLZ to vary. We exclude sets of
substitution elasticities that violate the negative semidefiniteness of the Slutsky matrix.
Note that the choices of pX and R as anchoring indices lead to indistinguishable results
with the level of precision used here, although they are not identical.

The results indicate that choosing pY as the anchoring index leads to predictions very
different from those obtained with other indices. These discrepancies are driven by the
large expenditure share on the polluting input in sector Y and the small shares of labor and
capital used in that sector. To see why, note that differences in predictions are solely due
to differences in ∆, the determinant of the equilibrium system. But ∆ � C1σX +C2σu +C3,
and the expressions for C1, C2, and C3 in Section A.3 make it clear that whenever γL

and γK are small relative to one, which is the case here, the term C1 dominates and thus
determines the magnitude of ∆. (Recall that σX � σu � 1 in the parameterization.) Since
the magnitude of C1 directly depends on BL + BK � 1 − BZ, choices of anchoring indices
leading to very different magnitudes of BZ ≡ βθYZ will lead to very different predictions.
When pY is chosen, β � 1, while for all other choices considered in Tables C.4 and C.5 BZ

is either close to or equal to zero. It is equal to zero whenever β � 0 (choice of pX , w, r, or
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Table C.4: Pollution effect of a 10% increase in the nominal pollution tax (%)

eKZ eLZ
Ẑ

pX pY P w r R
1.0 -0.5 -7.88 -14.28 -8.02 -7.85 -7.91 -7.88
0.0 0.0 -4.36 -7.88 -4.44 -4.38 -4.35 -4.36
0.5 0.0 -6.48 -11.72 -6.60 -6.49 -6.48 -6.48
1.0 0.0 -8.59 -15.55 -8.74 -8.57 -8.61 -8.59
0.0 0.5 -5.06 -9.13 -5.15 -5.09 -5.03 -5.06
0.5 0.5 -7.18 -12.98 -7.31 -7.20 -7.17 -7.18
1.0 0.5 -9.30 -16.82 -9.46 -9.28 -9.31 -9.30
0.0 1.0 -5.75 -10.37 -5.85 -5.79 -5.72 -5.75
0.5 1.0 -7.88 -14.23 -8.02 -7.91 -7.86 -7.88
1.0 1.0 -10.00 -18.08 -10.18 -10.00 -10.00 -10.00

Table C.5: Incidence effect of a 10% increase in the nominal pollution tax (%)

eKZ eLZ
Sources side: ŵ − r̂ Uses side: p̂Y − p̂X

pX pY P w r R pX pY P w r R
1.0 -0.5 -0.08 -0.15 -0.08 -0.08 -0.08 -0.08 4.48 8.11 4.56 4.46 4.50 4.48
0.0 0.0 0.08 0.14 0.08 0.08 0.08 0.08 4.46 8.05 4.54 4.48 4.44 4.46
0.5 0.0 0.01 0.02 0.01 0.01 0.01 0.01 4.47 8.08 4.55 4.47 4.47 4.47
1.0 0.0 -0.05 -0.10 -0.06 -0.05 -0.05 -0.05 4.48 8.10 4.56 4.46 4.49 4.48
0.0 0.5 0.11 0.19 0.11 0.11 0.11 0.11 4.46 8.04 4.54 4.48 4.44 4.46
0.5 0.5 0.04 0.07 0.04 0.04 0.04 0.04 4.47 8.07 4.54 4.48 4.46 4.47
1.0 0.5 -0.03 -0.05 -0.03 -0.03 -0.03 -0.03 4.47 8.09 4.55 4.47 4.48 4.47
0.0 1.0 0.13 0.24 0.14 0.14 0.13 0.13 4.45 8.03 4.53 4.49 4.43 4.45
0.5 1.0 0.07 0.12 0.07 0.07 0.07 0.07 4.46 8.06 4.54 4.48 4.45 4.46
1.0 1.0 0.00 0.00 0.00 0.00 0.00 0.00 4.47 8.08 4.55 4.47 4.47 4.47
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R) and it is close to zero when P is chosen because θY is small (0.039 for this calibration).
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