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Abstract

In this paper we adopt the Hamiltonian Monte Carlo (HMC) estimator

for DSGE models by implementing it into a state-of-the-art, freely available

high-performance software package. We estimate a small scale textbook New-

Keynesian model and the Smets-Wouters model on US data. Our results and

sampling diagnostics confirm the parameter estimates available in existing

literature. In addition we combine the HMC framework with the Sequential

Monte Carlo (SMC) algorithm which permits the estimation of DSGE models

with ill-behaved posterior densities.
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1 Introduction

Dynamic Stochastic General Equilibrium (DSGE) models have been shaping mod-

ern macroeconomic theory since the seminal contribution of Kydland and Prescott

(1982). During the past decades DSGE models have become the workhorse frame-

work for the analysis of economic fluctuations and were extended to achieve a suffi-

ciently proper fit of empirical data. Finding the right link of the model to the data

became an increasingly challenging and complex task. Fernandez-Villaverde et al.

(2016) provides an excellent summary of the methodology and the transition from

small scale calibrated models to the state-of-the-art likelihood-based estimation of

medium to large scale DSGE models. The pioneer work on Bayesian DSGE model

estimation in the form as it is conducted today dates back to Schorfheide (2000)

and Otrok (2001). The original estimation framework was built around the Kalman

filter and the Metropolis-Hastings algorithm, both originally developed as tools for

applied physics. These methods also prepared the ground for the Markov Chain

Monte Carlo (MCMC) algorithms. With the popularity of the DSGE literature and

the increasing complexity of the models also more sophisticated estimation methods

had to be developed, e.g. the Sequential Monte Carlo Method (SMC) which was

first used for posterior inference by Creal (2007) and then formalized by Herbst and

Schorfheide (2014).

A main criticism of the meanwhile established baseline framework using MCMC

algorithms, also readily available in Dynare, remained unaddressed: the simulated

sample draw often suffers from considerably high autocorrelations, and thus will

have a very small effective sample size. A common approach to tackle this short-

coming is to run longer chains and to consider only each n-th draw by discarding

the rest to obtain uncorrelated samples.1 In theory the MCMC algorithm converges

under certain regularity conditions asymptotically to the target density, in practice

the convergence might occur at a very slow pace. Thinning the Markov Chain will

render an efficient sampling impractical, as it can easily become time consuming,

particularly when the dimension of the model to be estimated is high. A key ques-

tion with respect to the MCMC algorithm, whether the Markov chain has already

converged to the target distribution, remained unanswered. Unfortunately, there

1where n usually equals to a multiple of 100
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is no single way to address the latter issue, as pointed out by Brooks and Gelman

(1998), instead ”The idea is to use a wide variety of diagnostics so that if all ap-

pear to suggest that convergence has been achieved, then the user can have some

confidence in that conclusion”. However, even if standard diagnostics suggests that

convergence has not been reached yet, it will be challenging to explore the reason for

non-convergence. Therefore, as also suggested by Betancourt (2018) better meth-

ods are needed to explore the typical set by exploiting the geometry of the target

distribution.

In higher dimensional spaces the standard random walk MCMC algorithm will

explore the typical set only slowly. Large transitions from one point to the other in

the typical set will not be possible, as the number of directions to move the chain

increases exponentially with the dimension. A straightforward algorithm making

use of the information in the geometry of the typical set is the Hybrid Monte Carlo

algorithm. It became also known as the Hamiltonian Monte Carlo (HMC) algorithm

and is the new standard in high dimensional numerical simulation where the gradient

of the target density can be evaluated. Similarly to the Kalman filter and MCMC, it

has its roots in physics, dating back to Duane et al. (1987) originally designed for the

numerical simulation of lattice field theory simulations of quantum chromodynamics.

Due to the accessibility of an advanced software package for Bayesian estima-

tions, STAN, which implemented the HMC algorithm, the methodology is presently

used by many researchers in various fields. The current paper presents its first

detailed implementation for macroeconomic modeling, and in particular for DSGE

estimation. HMC has been shown to have significantly better sampling properties

than the baseline algorithm used for the estimation of DSGE models which is well

documented in the literature, see e.g. Neal (2011). In Herbst and Schorfheide (2015),

a recent textbook on Bayesian DSGE estimation, the advantages of the HMC algo-

rithm are also acknowledged and research to make progress into this direction is also

encouraged. Fortunately the STAN software package is a suitable tool to deal with

complex models and symbolic differentiation which make the accurate implementa-

tion feasible, therefore there is no need to rely on approximations. It also comes

along with a set of powerful diagnostics readily available, which enables to verify

whether the typical set has been explored appropriately.
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The main purpose of this paper is to implement the HMC method in order to

estimate log-linearized DSGE models and illustrate how convergence diagnostics

can indicate model misspecification. As an extension, we will also turn to estimate

pathological posterior densities in established DSGE models by combining the HMC

algorithm with the SMC framework.

This is the first paper to present results of applying the HMC algorithm to DSGE

models.2 In particular we implement HMC using STAN because it comes with the

following advantages: First, it is implemented in C++, a low-level high-performance

programming language. Second, it includes automated differentiation enabling the

calculation of complicated differentials. Third, it features a very powerful diagnostic

and visualization toolkit.

Although the implementation of the HMC algorithm for DSGE models paves

the way for a more sophisticated exploration of the typical set and provides access

to powerful diagnostics it has also a significant drawback. It is well known that the

HMC algorithm fails to deal with multimodal target densities which occur e.g. when

less informative priors are used to estimate the Smets-Wouters model (Herbst and

Schorfheide (2014)). In case the modes are separated by large energy-barriers from

each other, in particular, the posterior likelihood function has no support between

modes, the algorithm will get stuck in one mode and the chain will not be able

to escape in a foreseeable time. Nevertheless, it is possible to include the HMC

sampling algorithm into the SMC framework adopted by Herbst and Schorfheide

(2014) and explore bimodal densities as well, as with computing power available

today the algorithm is feasible.

The remaining part of this paper is organized as follows. In Section 2 we review

briefly the workhorse Bayesian estimation framework. In Section 3 we present the

HMC algorithm and summarize the underlying theoretical considerations. Section 4

describes the way to implement the DSGE estimation framework and discusses some

computational issues. Section 5 presents the estimation results of a textbook small

scale New-Keynesian DSGE model and the Smets and Wouters (2007) model. Sec-

tion 6 extends the paper by combining algorithms to estimate ill-behaved posterior

2In contemporanous work Fernandez-Villaverde and Rubio-Ramirez (2020) propose the appli-
cation of HMC for DSGE estimation, furthermore an incomplete working paper by Goodrich and
Montes-Galdon (retrieved on 25 August, 2020) exists, although without results.
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densities. Section 7 concludes the paper.

2 Bayesian Estimation of DSGE Models:

A Brief Review

In this chapter we briefly review the main estimation framework used for MCMC-

type Bayesian DSGE model estimation. A more extensive treatment can be also

found in the excellent work of Herbst and Schorfheide (2015).

In order to estimate a Bayesian model, the first step is to specify the joint

distribution of the data and the model parameters. The aim is to obtain the posterior

density, that is, the distribution of the model parameters given the data, denoted

by p(θ|Y ) which can be also expressed by the means of Bayes’ rule as follows:

p(θ|Y ) =
p(Y |θ)p(θ)
p(Y )

(1)

p(Y |θ) is referred to as the likelihood function and p(θ) is the prior distribution.

Typically, in a Bayesian estimation, the a priori beliefs about the parameter vector

θ, being equivalent to the the prior distribution, are updated using the likelihood

function. The posterior distribution then comprises the state of knowledge about θ

consisting of the a priori beliefs and the information available in the data.

To specify a likelihood function conditioned on the parameters and turn a DSGE

model into a Bayesian model, a formal representation of the DSGE model is needed.

Hence we need to solve for the law of motion of the model variables. There exists a

variety of solution methods to approximate locally the solution, e.g. Blanchard and

Kahn (1980), Binder and Pesaran (1997), King and Watson (1998), Uhlig (1999),

Anderson (2000), Kim (2000), Christiano (2002). A popular solution technique for a

linearized DSGE model was proposed by Sims (2002) which starts with the following

representation of the DSGE model:

Γ0st = Γ1st−1 + Ψεt + Πηt (2)

where εt is the vector of structural shocks and ηt the one step ahead rational expec-

tation forecast errors, xt − Et−1xt. The solution is based on the QZ-decomposition,
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also referred to as generalized eigenvalue problem Av = λBv where A and B are

square matrices. If the above system has a unique stable solution then it can be

represented in the following VAR-form:

st = G0(θ)st−1 +G1(θ)εt (3)

Applying the solution method proposed by Sims (2002), alternatively any other solu-

tion algorithm, a state space representation can be obtained to specify the likelihood

function. In this setup the VAR-form from above represents the transition equation

which is linked to the data by means of the measurement equation:

yt = H0(θ) +H1(θ)t+H2(θ)st + ut (4)

The state space representation allows to express the joint density function for the

the observed data and the DSGE-model variables where the latter are unobserved:

p(Y1:T , S1:T |θ) =
T∏
t=1

p(yt, st|Y1:t−1, S1:t−1, θ) =
T∏
t=1

p(yt|st, θ)p(st|st−1, θ) (5)

where p(yt|st, θ) and p(st|st−1, θ) are the conditioned probabilities given the ob-

servation and the state equation. To obtain the desired likelihood function the

unobserved states, st, have to be integrated out. For log-linearized DSGE models

with Gaussian disturbance one can use the Kalman filter to obtain the conditional

expectations and variances of the observables and finally the log-likelihood func-

tion. Once the prior distribution of the parameters is specified one can set up the

Random-Walk Metropolis Hastings Algorithm to sample from the posterior density.

The algorithm is summarized below:3

Algorithm 1: Random-Walk Metropolis Hastings

1. Maximize lnp(Y |θ) + lnp(θ) by a numerical algorithm to obtain the posterior

mode, denoted by θ̃. (This step involves the application of the solution algo-

3This code summarizes the main steps described also extensively in Herbst and Schorfheide
(2015)
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rithm of the DSGE model, setting up the state space representation and the

calculation of the likelihood by means of the Kalman filter)

2. Compute Σ̃, the inverse of the Hessian at θ̃

3. Initialize a starting value or draw θ(0) from the proposal density q(θ(0)|θ̃) (in

this case N(θ̃, c2
0Σ̃))

4. For i = 1, ..., N draw θ′ from the proposal distribution N (θ(n−1), c2
0Σ̃).

5. Solve the DSGE model for θ′ and build the new state space representation.

6. Calculate p(Y |θ′) and p(θ′) (by means of the Kalman filter)

7. Accept θ′, that is, (θ(n) = θ′), with probability min
{

1, f(θ(n−1), θ′|Y )
}

and

reject (θ(n) = θ(n−1)) otherwise where

f(θ(n−1), θ′|Y ) =
p(Y |θ′)p(θ′)q(θ′|θ(n−1))

p(Y |θ(n−1))p(θ(n−1))q(θ(n−1)|θ′)

8. Estimate the posterior expected value of the function h(θ) by 1
N

∑N
i=1 h(θ(i))

In the above case the proposal density q(·|·) is chosen to be the normal distri-

bution with expected value θ(n−1) which implies that the proposals follow a random

walk. In addition, as the density function of the normal distribution is symmetric,

the proposal densities cancel. Also the scaling paramater, c0, should be chosen in a

way that the acceptance ratio equals to 23.4%, which was proven to be the optimal

acceptance ratio, see Roberts et al. (1997). In practice however this parameter is

chosen in a way that the acceptance ratio lies between 0.2 and 0.4.

There are several other modified versions of the MH algorithm. For example, the

Block-MH algorithm breaks the parameter vector into blocks and as its name sug-

gests it updates at most only one block of the parameters at once. This scheme can

be further extended by randomizing the break-up of the parameter vector into blocks

in each step. A further possibility to improve the algorithm is to apply a more sophis-

ticated proposal density. In particular, the Metropolis-Adjusted Langevin (MAL)

algorithm suggests to choose again a normal distribution or student distribution,
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where the latter would have been appropriate also in the above case, however the

expected value should be adjusted by one step into the direction of the gradient of

the negative log-posterior. Intuitively, this algorithm accounts for the shape of the

posterior density and pushes the chain, thus the new proposal for the parameter, to-

ward regions with higher probability density. It is common to choose a scaled version

of the identity matrix as the variance. Both the step size into the direction of the

gradient and the scaling of the variance are subject to fine-tuning. The MH-Newton

algorithm only differs from the latter modified MAL-algorithm in that instead of the

Hessian at the posterior mode the Hessian at θ(n−1) is taken. For further discussion

of estimation methods we refer to the work of Herbst and Schorfheide (2015).

Although first-order linear approximations around the non-stochastic steady

state are popular, in a number of cases more elaborate estimation methods are

required. For example, when higher order approximations are necessary to capture

the impact of shocks on endogenous variables, then the state space will be non linear.

To evaluate the likelihood in this more complex case particle filters were proposed

in literature. At the same time, particle filters are also applied if the posterior like-

lihood is ill shaped, e.g. Sequential Monte Carlo Methods (SMC), which may even

occur when standard models are estimated using first order linear approximations.

Our extension of the HMC with SMC falls into the latter application.

3 The Hamiltonian Monte Carlo Method

This section of the paper will provide an introduction into the HMC framework

and is aimed to offer some intuition to the reader while we also reveal some main

theoretical aspects of the methodology.4 Similarly to alternative approaches from

above the HMC algorithm builds on the information provided by the gradient of the

log-posterior density function. In particular, this algorithm uses the information in

the geometry of the target distribution and its main advantage is that by means of

the Hamiltonian equations, which concept was borrowed from physics, the algorithm

enables to propose a new parameter draw θ′ which is distant from the current θ while

it maintains a sufficiently high acceptance rate.

4More extensive treatment is provided e.g. in Neal (2011) or Betancourt (2018).
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In physics researchers usually model the evolution of a mechanical system over

time given a particle’s position and momentum by functions measuring its potential

and kinetic energy. This can be visualized the easiest by a puck in a frictionless

environment sliding over a surface. Here the potential energy of the puck is described

by the function U(q), depending proportionally on the position and its kinetic energy

K(p) which is equal to |p|2/(2m) where m corresponds to the mass of the puck.

Further classical examples are a bouncing ball, a pendulum or an oscillating spring.

In a classical physical system which is isolated from any outside force the energy of

the puck, being the sum of potential and kinetic energy remains constant. Hence if

the puck moves along a path with positive slope, its velocity p/m will decrease. The

above isolated system in physics, among others the evolution of the position and

velocity can be fully described by the Hamiltonian equation H(q, p), also referred

to as the total energy function. In classical mechanics the Hamiltonian equation is

obtained from Lagrange’s equation, a reformulation of the Newtonian mechanics, by

a Legendre transformation, where H : R2d → R with R2d being the phase space and

d the degrees of freedom. This Hamiltonian framework can be easily translated also

to MCMC applications outside physics, by regarding the position of the puck q as

the variables of interest of which posterior distribution a sample should be drawn.

The main idea is to extend Bayes’ Theorem p(θ|Y ) ∝ p(θ)p(Y |θ) by an auxiliary

vector α of momentum variables to obtain the joint posterior density p(θ, α|Y ) ∝

p(θ, α)p(Y |θ, α) of θ and α. To each parameter θi one momentum variable αi is

assigned. The auxiliary variables are a priori independent of θ and Y implying that

p(θ, α|Y ) ∝ p(θ)p(α)p(Y |θ).

The change in the current position q and momentum p, being both of dimension d

respectively, over time is characterized by the partial derivatives of the Hamiltonian

equation:

dqi
dt

=
∂H(q, p)

∂pi
∀i = 1, ..., d (6)

dpi
dt

= −∂H(q, p)

∂qi
∀i = 1, ..., d (7)

where 2d equals the full dimension of the system. The equations of motion can
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be presented also in a more compact way by defining z := (q, p) such that

dz

dt
= J∇H(z) (8)

with ∇H(z) being the gradient of the Hamiltonian system and J a matrix of di-

mension 2d× 2d:

J =

 0d×d Id×d

−Id×d 0d×d


The solution to this system of differential equations can be regarded as a mapping

Fs : Rd × Rd → Rd × Rd with (q, p)(t) → (q, p)(t + s) such that the Hamiltonian

equations describe the law of motion of the system from t to t+ s.

The Hamiltonian measures total energy and for the HMC algorithm it takes an

additive form

H(p, q) = U(q) +K(p). (9)

The kinetic energy K(p) is usually defined as

K(p) = pTM−1p/2 (10)

where M is referred to as the ”mass” matrix which is typically diagonal, and is

often a scalar multiple of the identity matrix.

The Hamiltonian system has four key properties which allow for using it for the

construction of an MCMC algorithm. Firstly, the Hamiltonian does not change over

time, that is, dH/dt = 0, which is crucial to ensure that the acceptance probability

equals always one.

Secondly, the Hamiltonian system preserves the volume in the phase space.

Without going too deeply into details of volume measures of a phase space, this

property is crucial in the sense that there is no need to account for a change in the

volume in the acceptance probability.

Thirdly, the Hamiltonian system is symplectic. Formally this corresponds to the

property that the Jacobian Bs := DTs of the mapping Ts, satisfies the following
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equation:

BT
s ABs = A (11)

where A is in general a fixed 2d × 2d, non-singular, skew symmetric matrix. Usu-

ally, the matrix J from above is chosen for A. The determinant of the matrix J is

unity and it also holds that J−1 = JT = −J . The symplecticness condition also

implies that the mapping is volume preserving as from the equation above it im-

mediately follows that |det(Bs)| = 1. Yet, the above property is stronger than just

volume preservation if d > 1. This property is important, as in practice Hamiltonian

equations can be solved only by numerical integration. Although a large number of

numerical integrators exist, most of them are prone to accumulate approximation

errors such that the accuracy of the solution will be significantly impaired. How-

ever, to solve for the Hamiltonian, symplectic integrators can be applied having the

advantage that the approximated trajectory does not drift away from the true one.

Finally, the mapping Ts defined above, is reversible, that is Ts has an inverse T−s

which is exactly the negation of the time derivatives in the Hamiltonian equations.

Considering again the example with the puck, one can imagine this as stopping

the puck at q(t + s) and hit it into the opposite direction with the same impulse.

In case K(p) = pTM−1p/2 one can negate K(p), apply Ts and then negate again

K(p) to obtain the original (q, p)(t) where the puck departed from. The reversibility

property is crucial when proving the detailed balanced condition in the probabilistic

framework which ensures together with ergodicity that the HMC converges to the

invariant distribution.

To apply this framework to a probabilistic setting borrowing one further concept

from statistical mechanics is necessary referred to as the ”cannonical” distribution

at a given temperature. This concept describes possible states of a mechanical

system which is at thermal equilibrium at temperature T . For the latter purpose

the following distribution is used:

P (x) =
1

Z
e−E(x)/T (12)

where we assume that the energy E(x) and its gradient can be evaluated. Any

particular density P (x) can be adopted to the above scheme by setting E(x) =
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−log P (x) − logZ and T = 1. The HMC algorithm translates this framework into

an MCMC-sampling algorithm by applying the Hamiltonian equation as the total

energy function for the joint state (p, q) which results in the following cannonical

distribution:

P (q, p) =
1

Z
e−H(q,p)/T (13)

with H(q, p) = U(q) +K(p) we obtain

P (q, p) =
1

Z
e−U(q)/T e−K(p)/T (14)

Setting for U(q) the target density p(Y |θ)p(θ) and for K(p) the kinetic energy func-

tion allows to define an algorthim which samples from the distribution of interest.

The iteration is carried out in three steps:

Algorithm 2: Hamiltonian Monte Carlo

1. Draw a momentum vector p′ from its multivariate normal distribution which

can be carried out by Gibbs-sampling.

2. Draw the position vector θ′ by applying the Hamiltonian equations determin-

istically.

3. Metropolis-Hastings step: accept the new proposal and set θ(n+1) = θ′ with

probability min[1, exp(−(U(q′)− U(q) +K(p′)−K(p)))].

As the total energy in the system remains constant, in theory the proposal ob-

tained by applying the Hamiltonian equations is always accepted. To obtain a

sample from the target distribution one simply omits the sampled momenta. It is

well known that to show that the resulting Markov chain converges to the target

distribution it has to be ergodic and has to fulfill the detailed balance condition:

P (q, p)PK((q, p)→ (q′, p′)) = P (q′, p′)PK((q′, p′)→ (q, p)) (15)

where PK is the HMC kernel. The key property that allows to proof that the
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detailed balance condition holds is reversibility of the Hamiltonian system. In addi-

tion, the symplecticness of the numerical integrator to be used ensures that detailed

balance holds even if the solution is approximated numerically. A formal proof is

available in Duane et al. (1987). As regards ergodicity the original paper does not

provide any insights, instead it assesses using an example in compact quantum elec-

trodynamics ”Whether or not this idea works in practice...”. Proving ergodicity

for the HMC algorithm involves deep knowledge in probability theory. Very loosely

spoken ergodicity implies that the Markov chain will not be trapped in a subset of

the parameter space, instead it will reach all possible states again and again, hence

it will asymptotically converge to the invariant distribution. Neal (2011) also points

out that in theory it is possible that ergodicity fails once as a fixed number of inte-

gration steps is used for the numerical approximation of the solution and illustrates

this based on a short example. Mackenzie (1989) proposes that by randomizing

the length of the Hamiltonian trajectory this issue can be eliminated while recently

general conditions for the convergence of the HMC algorithm could be proved, see

e.g. Livingstone et al. (2018) and Durmus et al. (2019).

4 Implementation into STAN

The STAN software package is a state-of-the-art probabilistic programming language

for Bayesian inference written in C++ language. It allows users to set up hierarchical

Bayesian models in a convenient statistical language and provides thereby an easy

to apply interface to the HMC algorithm for complex models. C++ is a machine-

oriented programming language and is also often applied to perform computationally

highly intensive calculations due to its performance, also necessary to estimate a

DSGE model. Yet, this comes at the cost of complexity in terms of the programming

language which the STAN interface remedies and makes this powerful and complex

concept available to researchers, working out-of-the-box.

4.1 Features and Calibration

The Hamiltonian equations typically describe the dynamics of a system in con-

tinuous time. However, in practice it will be necessary to apply a discrete-time
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approximation in order to calculate the new position, the momentum, the potential

energy and the kinetic energy. One of the key challenges lies in the accurate solution

of the Hamiltonian equations. As the Hamiltonian system is symplectic a dedicated

class of simplectic integrators can be applied enabling the calculation of an accurate

discrete time solution for the Hamiltonian trajectory in the phase space. The main

advantage of the latter class of integrators is that the approximated trajectory does

not drift away from the true one, even if integration is carried out over a long dis-

tance in time. STAN uses a simple implementation referred to as the “leapfrogging”

algorithm to solve for the discrete-time approximation of the Hamiltonian equations

which is summarized by the following algorithm:

Algorithm 3: Leapfrogging Algorithm

1. pi(t+ ε/2) = pi(t)− (ε/2)
∂U

∂qi
(q(t))

2. qi(t+ ε) = qi(t) + ε
pi(t+ ε/2)

mi

3. pi(t+ ε) = pi(t+ ε/2)− (ε/2)
∂U

∂qi
(q(t+ ε))

Although at first glance the above algorithm is easy to implement, it generates

a further challenge, especially when applied in the context of DSGE estimation.

In general it requires to evaluate the gradient of the log-posterior which calculation

might be extremely difficult and time intensive. Gradients obtained by numerical ap-

proximations can be inaccurate or computationally demanding when the parameter

space is large. One of the main advantages of STAN is that it applies a reverse-mode

automatic differentiation and C++ template metaprogramming. Automatic differ-

entiation requires only a limited number of differentiation rules and the gradient

is constructed via the chain rule by creating an expression tree backwards starting

with the last expression in the likelihood function. For example, STAN is capable

of differentiating any iterative algorithm which will turn out to be handy when im-

plementing the estimation of DSGE models. Therefore, there is no need to specify

any derivatives by the user, yet in theory it is possible to write wrappers if a closed
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form solution of the partial derivatives is available. Although the derivation of the

log-likelihood function which also depends on the solution of the DSGE model is

computationally involved for a mid-scale DSGE model, the latter is performed by

STAN in a highly efficient way.

The performance of the algorithm is sensitive to the selection of two parameters:

the stepsize, ε and the number of steps in time, L. The selection of the discrete

time approximation to calculate the integral, ε, is of crucial importance. If the

approximation is overly fine then the proposal to update θ will be accepted with

very high probability, yet ||θ′ − θ|| will be small and the chain will explore the

parameter space very slowly. If ε is too high, the approximation of the true solution

to the Hamiltonian equation will become imprecise, or may even diverge, and θ′ will

be unlikely to be accepted. Furthermore, it can also occur that the Markov chain

will fail completely to explore certain regions of the posterior. Usually the posterior

likelihood function exhibits regions with both lower and larger curvature especially if

the model is more complex, therefore one has to strike the right balance when setting

ε. A further strength of STAN lies in the feature that ε is calibrated automatically

during the warmup period and fixed afterwards, yet the user retains the option to set

the parameter manually. STAN aims to calibrate ε in a way that the acceptance rate

lies at 80% being significantly higher than 23.4% in the Random Walk Metropolis

algorithm. In case the divergence rate remains still high the option remains to

instruct the automated calibration mechanism in STAN manually to target higher

acceptance ratios.

It is also crucial to select a suitable number of steps, L, to be conducted by the

leapfrogging algorithm in order to explore the state space systematically as pointed

out by Neal (2011). An inappropriately low L will cause θ′ to be little distant from

θ, hence the algorithm will exhibit random walk behavior and the Markov chain will

explore the parameter space again inefficiently slowly, as also highlighted by Hoffman

and Gelman (2014). If L is too large, computational resources are wasted as the

acceptance rate does not depend systematically on the number of steps. A further

built-in feature of STAN is that it optimizes automatically the number of steps by

means of the No U-Turn Sampling (NUTS) algorithm, see Hoffman and Gelman

(2014). The intuition of NUTS is to use the leapfrog integrator to iterate on θ
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both in positive and negative direction, that is first running forwards or backwards

1 step, then forwards or backwards 2 steps, then forwards or backwards 4 steps

and so on. The doubling process implicitly builds a balanced binary tree and will

continue until some proposal moves backwards to its original point of departure,

thus it would make a U-turn and moves again towards the point of departure, θ.

STAN applies then a slice sampling algorithm to select randomly a point along

the Hamiltonian trajectory which adds complexity, yet it is necessary to preserve

certain crucial properties of the Markov chain. Finally, it accepts the proposal with

the probability given in the Metropolis-Hastings step.

The mass matrixM , being typically a diagonal matrix is also tuned automatically

during the warmup. Here, the user is also allowed to tune M manually, however the

automated tuning process of STAN operates sufficiently well.

A further useful feature which is implemented into STAN is that it is able to

remedy the weakness that the HMC algorithm works only if the support of the pos-

terior density spans the entire parameter space. If a proposal is accepted in a region

where the mass of the parameter space is zero, the gradient will also become zero

or undefined and the chain will get stuck. A straightforward approach to avoid this

issue is to restrict the parameter space and let the Markov Chain bounce back from

the boundary by negating the momentum. However, instead STAN reparametrizes

θ as a function of unbounded parameters. This occurs typically when standard de-

viations are estimated. The latter approach obviously involves the calculation of the

Jacobian, however this is carried out again automatically by STAN.

As already pointed out, the main advantage of the HMC algorithm is that it

uses gradient information to explore suitable paths on which the level of energy

remains constant and finds new proposals θ′ which are distant from the most recent

draw θ. However, it comes along with the difficulty that the gradient of the log-

likelihood function needs to be evaluated. Recall that the popular solution algorithm

to DSGE models proposed by Sims (2002) uses a QZ-decomposition where the entries

of the matrices can become complex. A main shortcoming of STAN is that it is not

capable to execute calculation with complex numbers, hence a QZ decomposition

cannot be implemented. Furthermore, it might be also challenging to build the

derivatives when complex numbers are involved. To overcome this difficulty we
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need to rely on a DSGE model solution algorithm which makes it feasible to the

automated differentiation implemented in STAN to calculate the gradient. The

reverse-mode automatic differentiation relies on the chain rule when building the

symbolic derivative, hence it is capable to handle any matrix iteration algorithm

where no complex numbers are involved. A straightforward and easy to understand

algorithm to be applied for this purpose is the Binder-Pesaran solution algorithm.

4.2 Binder-Pesaran Algorithm

The main idea of the Binder and Pesaran method is to tweak st such that the

reshuffled form will not contain the st−1 term and the system can be solved forward

in case it has a unique stationary solution. A short recap of the main steps of the

algorithm looks as follows. Without loss of generality let the system be given in a

slightly different form:

M00st = M10st−1 + M01Etst+1 + Msεt (16)

In the following it is assumed that M00 is invertible which implies that

st = Ast−1 + BEtst+1 + Wεt (17)

with A = M−1
00 M10, B = M−1

00 M01 and W = M−1
00 Ms. The assumption that M00 has

to be invertible is a little restrictive at first sight, yet it is less of a concern. In

particular, the matrix can become only non-invertible when a linear combination

of future expectations in t + 1 depend only on linear combinations of past values

of endogenous variables and shocks. However, this does not seem to be an issue in

practice.5 Now let St := st − Cst−1 with St and C to be determined. st can be

expressed from the definition and substituted above to obtain

St + Cst−1 = Ast−1 + B(EtSt+1 + Cst) + Wεt (18)

Collecting and rearranging terms yields

5Even if this feature of the algorithm postulated an issue a number slightly larger than machine
precision could be added to the matrix which does not influence results.
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(I− BC)St = (BC2 − C + A)st−1 + B(EtSt+1) + Wεt (19)

The backward looking component will drop out of the equation if BC2−C + A = 0.

The solution of this quadratic matrix equation can be easily obtained by iterating

on

C = (I− BC)−1A (20)

The quadratic matrix equation could be also solved by other techniques from linear

algebra, however this would again involve the calculation of generalized eigenvalues.

After obtaining the solution for C the system of equation looks as follows:

St = (I− BC)−1B︸ ︷︷ ︸
=:F

(EtSt+1) + (I− BC)−1Wεt︸ ︷︷ ︸
=:ζt

(21)

If all eigenvalues of the matrix F are stable the equation can be easily solved forward

to obtain

St =
∞∑
i=0

F iEtζt+i (22)

In this case one obtains a unique stable solution of the system. Plugging back into

the definition of St the solution of the original model is immediately obtained:

st = Cst−1 +
∞∑
i=0

F i(I− BC)−1WEtεt+i (23)

If structural shocks are uncorrelated then the above formula boils down to:

st = Cst−1 + (I− BC)−1Wεt (24)

For the vast majority of the DSGE models one can thus apply the following short

algorithm to obtain the solution:

Algorithm 4: Binder-Pesaran DSGE Solution

1. Rewrite the DSGE model into the following form:

M00st = M10st−1 + M01Etst+1 + Msεt
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2. Compute the matrices A = M−1
00 M10, B = M−1

00 M01 and W = M−1
00 Ms

3. Iterate the equation C = (I − BC)−1A with a suitable guess until the matrix

C converges.

4. Calculate D := (I− BC)−1W to obtain the solution form:

st = Cst−1 + Dεt

Hence, by applying this algorithm one obtains the solution to a large class of

DSGE models by simple matrix iterations and multiplications which can be differ-

entiated such that the solution method can be implemented into the STAN software

package.

4.3 Further Computational Issues

To find a solution to a DSGE model Binder and Pesaran (1997) proposes to iterate

the solution to the C matrix using the following rule: C = (I− BC)−1A. Although

STAN is able to cope with the latter iteration types the building of inverses is

computationally one of the most expensive operations, therefore it should be gen-

erally avoided. Instead one can directly plug in any initial guess into the equation

C = BC2 + A until it converges.

Although the Binder and Pesaran (1997) algorithm is transparent and easy to

implement it has a main drawback. While the solution method proposed by Sims

(2002) provides conditions which are necessary and also sufficient to guarantee that

the model has a unique stable solution, for the Binder-Pesaran algorithm only a

set of sufficient conditions under which the a unique stable solution exists can be

derived. In particular, the matrix iteration will also converge if the model has

multiple equilibria however these solutions are commonly excluded when DSGE

models are estimated. Therefore, to assess whether the model has a unique stable

solution, we rely here on the Sims (2002) algorithm. Although STAN is not capable

to deal with complex numbers, external functions can be included into the algorithm

and also partial derivatives of external functions could be manually specified which

are automatically used by STAN when applying the chain rule. Yet, this is not
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necessary as the Sims (2002) algorithm is used only to reject the sample draw in

case the Hamiltonian sampler enters a point in the parameter space where the model

has no unique stable solution. For the latter purpose no calculation of the derivative

is needed. To implement several matrix decompositions to execute the Sims (2002)

algorithm the Intel Math Kernel Library (Intel MKL), a collection of BLAS and

LAPACK algorithms which also Matlab uses, is applied and linked into the STAN

C++ code.

A further computational issue arises when the covariance matrix Σ is initialized

for the Kalman filter. Hamilton (1994) proposes to use Kronecker products to solve

for Σ which STAN is able to handle, however it is computationally very costly since

the dimension of the problem grows quadratically with the number of equations the

model consists of. Since the solution of the DSGE model has to be non-explosive

we can obtain Σ again by an iterative procedure. However, as Σ has an impact

on the log-likelhood the calculation of this part of the gradient is costly once a

large number of iterations is necessary to achive convergence. The initial variance is

generally obtained by solving the discrete Lyapunov equation which belongs to the

class of Stein matrix equations. Several iterative procedures are proposed in Zhoua

et al. (2009) which accalerate the iteration exponentially and enable to calculate

parts of the derivative in one step.

Altering the iteration procedure in the Binder-Pesaran algorithm and the adop-

tion of a more efficient calculation to initialize the Kalman filter speeded up the

algorithm by a factor of 3-4 for a mid-scale NK-model. In general we can state that

calculation of the gradient is costly therefore streamlining the model setup is nec-

essary as far as possible to avoid additional computational burden which increases

exponentially with the dimension of the model.

5 Estimation Results

In this section we present the results obtained by applying the HMC algorithm to

the textbook small scale New-Keynesian model proposed in Herbst and Schorfheide

(2015) and subsequently to the Smets and Wouters (2007) model, a medium scale

model serving as the core for a wide range of applied policy models.
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5.1 A Small Scale New Keynesian Model

The most basic DSGE model estimated in Herbst and Schorfheide (2015) is a slightly

altered version of the standard three equation textbook New Keynesian model (see

e.g. Clarida et al. (1999)) consisting of the dynamic IS curve, the New Keynesian

Philllips curve and a Taylor-type monetary policy rule. The Herbst and Schorfheide

(2015) version of the model uses quadratic price adjustment instead of the Calvo

(1983) scheme and adds also a government sector to the model. Both the technology

shock and the government spending shock is AR(1). The model can be described

by the following equations:6

ŷt = Et[ŷt+1]− 1

τ

(
R̂t − Et[π̂t+1]− Et[ẑt+1]

)
+ ĝt − Et[ĝt+1] (25)

π̂t = βEt[π̂t+1] + κ(ŷt − ĝt) (26)

R̂t = ρRR̂t−1 + (1− ρR)ψ1π̂t + (1− ρR)ψ2(ŷt − ĝt) + εR,t (27)

ĝt = ρgĝt−1 + εg,t (28)

ẑt = ρgẑt−1 + εz,t (29)

To estimate the model three observables are used: GDP growth, inflation and

the nominal interest rate. These are linked to the state equations as follows:

Y GRt =γ(Q) + 100(ŷt − ŷt−1 + ẑt) (30)

INFLt =π(A) + 400π̂t (31)

INTt =π(A) + 4γ(Q) + 400R̂t (32)

In this setup we do not allow for any measurement error. The small scale model

thus has 13 structural parameters to be estimated:

θ = [τ, κ, ψ1, ψ2, ρr, ρg, ρz, σr, σg, σz, r
A, πA, γQ] (33)

The priors we assume are similar to those used in Herbst and Schorfheide (2015)

and are summarized in the table below.

For the estimation we used 10 parallel chains with each 1,000 draws. Due to the

6For further details we direct the reader to (Herbst and Schorfheide, 2015, pp.15-28.).
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Table 1: Prior Distributions

Name Domain Distribution Parameter 1 Parameter 2

τ [0,∞) Gamma 2.00 0.50
κ [0,1) Uniform 0.00 1.00
ψ1 [0,∞) Gamma 1.50 0.25
ψ2 [0,∞) Gamma 0.50 0.25
r(A) [0,∞) Gamma 0.50 0.50
π(A) [0,∞) Gamma 7.00 2.00
γ(Q) (-∞,∞) Normal 0.40 0.20
ρr [0,1) Uniform 0.00 1.00
ρg [0,1) Uniform 0.00 1.00
ρz [0,1) Uniform 0.00 1.00
100σr [0,∞) Inv. Gamma 0.40 4.00
100σg [0,∞) Inv. Gamma 1.00 4.00
100σz [0,∞) Inv. Gamma 0.50 4.00

Notes: For the Beta, Gamma and Normal distribution Parameter 1 and Parameter 2 stands for
the mean and the standard deviation. For the Uniform distribution the parameters define the
bounds of the interval. For the Inverse Gamma distribution they correspond to parameters s and
ν, where pIG(σ) ∝ σ−ν−1e−νs

2/2σ2

. See also Herbst and Schorfheide (2015).

efficiency of the HMC we settled for a burn in of 500 draws for each chain, and the

diagnostics are confirming that a relatively low number of discarded initial draws is

sufficient to ensure that the sampler finds regions of high probability. To visualize

the diagnostics of the HMC method we used ShinyStan Version 3.0 (Gabry and

Veen, 2020).

Table 2 shows the statistics describing the sampling efficiency of the HMC for

each of the structural parameters and the log-posterior as well. Studying the numer-

ical diagnostics of the sampling efficiency two of the main advantages of the HMC

algorithm becomes visible: the high effective sample size, and the high accuracy of

the simulation of the target density.

Recall, the first is due to the greatly reduced autocorrelation of the draws, intro-

duced by the random variation in the total energy, i.e. by the random variation of

the momentum. The latter is granted by the clever usage of the gradient to set the

trajectory in the phase space along the Hamiltonian, i.e. the Hamiltonian equations

ensures that all draws, after initial convergence, are from the target distribution.

This improvement in efficiency is why we consider HMC revolutionary for DSGE

estimation. Herbst and Schorfheide (2015) report the inefficiency factor for the rel-

ative risk aversion parameter (τ) for the different Random-Walk Metropolis Hast-
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ings algorithms. The inefficiency factor is the inverse of Neff/N, and note that the

Random-Walk Metropolis Hastings suffers from high inefficiency due to its high auto-

correlation. To grasp the leap in efficiency we highlight that the naive identity matrix

based Metropolis proposal has an inefficiency that translates the ”100,000 draws [...]

is about as accurate as an approximation obtained from 5.5 iid draws” (Herbst and

Schorfheide, 2015, p.119.), while the standard, benchmark Random-Walk Metropo-

lis Hastings algorithm described in Chapter 2 has an inefficiency that increases the

effective sample size to 1,137,7 while the 3-Block Random Walk Metropolis Hastings

algorithm results in an equivalent of 2,440 iid draws. In comparison the effective

sample size (Neff ) for the 100,000 draws with HMC is 89,737 for the risk aversion

parameter (τ). In other words the HMC estimation represents 78.60 efficiency im-

provement over the standard, 1-Block, Random Walk Metropolis Hastings algorithm

and a 36.63 fold over the 3-Block Random Walk Metropolis Hastings algorithm.

However, the efficiency gain comes at a cost in terms of computational time, as the

gradient has to be evaluated.

Another advantage of weakly autocorrelated draws is the potential to run fully

independent shorter chains in parallel, in other words STAN based HMC is highly

parallelizable. The evaluation of the gradient and its computation for each transi-

tion is an increasingly difficult task in the number of structural parameters. The

C++ level integration of the automated differentiation and the computational im-

provements discussed before renders HMC also for larger models feasible.8

Lastly, and probably most importantly, we need to highlight the fact that due to

the higher convergence of the draws to the typical set, we can abandon the practice

of a mode-estimation before sampling. This potentially also improves the reliability

of our estimation method in higher dimensional models considerably, as discussed

by Betancourt (2018). We are confident that future research will highlight the

advantages of HMC in large DSGE models with irregularly shaped posterior.

The second column of Table 2 reports the ratio of the Monte Carlo standard

error of the mean (MCSE) to the posterior standard deviation (SD). The former

7Herbst and Schorfheide (2015) report the inefficiency factor of 88 for the 1-Block Random
Walk Metropolis Hastings algorithm for the parameter τ . In terms of inefficiency factor the HMC
has a 1.12 inefficiency factor.

8With the advances of GPU computing in STAN and propagation of higher CPU core counts
we anticipate another jump in the computational speed the coming years further advancing the
applicability of our solution to estimate DSGE models.
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Table 2: Sampling Efficiency of the Hamiltonian Monte Carlo

Parameter Neff/N MCSE/SD Parameter Neff/N MCSE/SD
τ 89.37 % 1.05% ρr 65.70 % 1.23%
κ 91.06 % 1.05% ρg 94.94 % 1.03%
ψ1 74.18% 1.16% ρz 56.72% 1.33 %
ψ2 67.16% 1.22% 100σr 74.72 % 1.16%
r(A) 58.19% 1.31% 100σg 94.07 % 1.03%
π(A) 50.44 % 1.47 % 100σz 89.45 % 1.06 %
γ(Q) 55.57 % 1.34 % Log-Posterior 36.24 % 1.66 %

Notes: The table summarizes the efficiency of the HMC sampling. The first column (Neff/N)
displays the effective sample size divided by the total number of draws for the structural
parameters of the Small Scale DSGE model and its posterior in percentages (%). A higher
number indicates more efficient sampling for the respective parameter. The second column
(MCSE/SD) contains the ratio of the Monte Carlo standard error of the mean (MCSE) to the
posterior standard deviation (SD), again in percentages (%). Here a lower number indicates a
more efficient sampling.

is related to the accuracy of the simulation, the smaller the standard error, the

loser the estimated parameter value is to the true value. The latter gives the total

uncertainty around the structural parameter. The ratio is considered to be small if it

is below 5%, thus the values around 1% are indicative of a highly efficient sampling.

Turning to the diagnostics of the sampling, starting with the number and prop-

erties of the divergent transitions. In general the existence of divergent transitions is

a warning sign that the results might be invalid, however rejected transitions might

be also false positive. In other words, if they do not display a common pattern,

and are a low proportion, then they can be safely neglected. From 10,000 draws

we observed approximately 18 divergent iterations, that is 0.2%. The existence of

divergent transitions can indicate invalidity of the results, however the fact that

their number is very low in relative terms, and they show no systematic pattern, we

argue that the results are to be trusted. Figure 1 plots the frequency of divergent

transitions against the log-posterior (lp ) in the top panel, and the acceptance of

statistic (accept stat ) in the bottom panel.
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Figure 1: Small Scale DSGE Diagnostics: Divergence Information

Notes: Plots of the divergent transitions (x-axis) against the log-posterior (y-axis top panel) and

against the acceptance statistic (y-axis bottom panel) of the Hamiltonian Monte Carlo sampling

algorithm.

From the top panel we can see directly the log posterior distribution. It is

worth noting that the divergent transitions are mostly in the medium probability

regions, and not in the high, indicating that any divergence could be a false positive,

i.e. divergent due to the numerical instability given the complexity of the entire

framework. The location of the divergent transitions can provide information which

parts of the target distribution is difficult to sample from, albeit comparing the

two charts, we can conclude that the sampler did explore the difficult regions of

the posterior. Turning to the bottom panel one might be cautious due to the high

acceptance rate9. In general the intuition applies for the HMC as well that if the

acceptance rate is very high it might be indicative of inefficient sampling10. To reject

this possibility we plot the marginal posterior distributions and the scatter plot of

9The acceptance rate refers to the intermediate Metropolis step in the HMC Algorithm imple-
mented in STAN.

10It should be noted that STAN allows to set the target Metropolis acceptance rate with a
specific control option that adapts the jump size based on the sampling during the burn in phase.
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the acceptance rate and the log-posterior on Figure 2.

Figure 2: Small Scale DSGE Diagnostics: Acceptance Information

Notes: The figure plots the marginal posterior distribution of acceptance statistic (top leftpanel),

marginal posterior distribution of the log-posterior (top right panel), and the scatter plot of

acceptance statistic (x-axis bottom panel) against the log-posterior (y-axis bottom panel). The

vertical lines indicate the mean (solid line) and median (dashed line). A bad plot would show a

relationship between the acceptance statistic and the log-posterior.

The figure shows no relationship of the acceptance rate and the log-posterior, in

fact it indicates that the posterior has been adequately explored. This leads us to

the discussion of the energy distribution in order to assess robustness of the HMC

algorithm, shown on Figure 3. It is desirable that the histograms are ”well-matched:

[...] The closer π∆E is to πE the faster the random walk explores the energies and the

smaller the autocorrelations will be in the chain” (Gabry and Veen, 2020). Figure

3 shows the reason for the low autocorrelation, and thus the high efficiency of the

Hamiltonian Monte Carlo algorithm, the energy levels, and with it the posterior-

probability levels of the target distribution, are well explored.
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Figure 3: Small Scale DSGE Diagnostics: Energy Distribution

Notes: These are plots of the overlaid histograms of the marginal energy distribution (πE) and

the energy transition distribution (π∆E). See Betancourt (2018) and Carpenter et al. (2017) for

more details.

Lastly discussing the trace plot of the log-posterior we can visually inspect the

sampling behaviour. Figure 4 shows that the chain explored the different parts of

the parameter space. This applies to the other chains and structural parameters as

well, all indicating a proper sampling.
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Figure 4: Small Scale DSGE Diagnostics: Trace plot

Notes: The log-posterior of the draws from the Hamiltonian Monte Carlo are shown in blue.

Divergent transitions are marked on the x-axis with red lines.

Turning to the structural parameter estimates one can verify that the posterior

estimates from Hamiltonian Monte Carlo are the same as ones obtained with the

Random Walk Metropolis Hastings algorithm.

This verifies the proper functioning of the algorithm, and tells that in small

DSGE models with simple target densities, Random Walk Metropolis Hastings sam-

pling works sufficiently well. To explore the properties of Hamiltonian Monte Carlo

in a larger model the next section presents the estimation of the Smets-Wouters

model.
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Table 3: Posterior Estimates of the Small Scale DSGE Model

Hamiltonian Monte Carlo Random Walk Metropolis Hastings

Parameter Mean [0.05, 0.95] Mean [0.05, 0.95]

τ 2.43 [1.62, 3.35] 2.37 [1.58, 3.82]

κ 0.85 [0.62, 0.99] 0.85 [0.62, 0.98]

ψ1 1.95 [1.59, 2.34] 1.92 [1.55, 2.20]

ψ2 0.61 [0.21, 1.15] 0.60 [0.20, 1.21]

r(A) 0.42 [0.05, 0.90] 0.44 [0.05, 0.95]

π(A) 3.41 [2.79, 4.03] 3.38 [2.76, 3.80]

γ(Q) 0.60 [0.37, 0.83] 0.60 [0.37, 0.74]

ρr 0.81 [0.76, 0.85] 0.77 [0.71, 0.82]

ρg 0.98 [0.95, 1.00] 0.98 [0.95, 1.00]

ρz 0.93 [0.90, 0.97] 0.92 [0.88, 0.92]

100σr 0.19 [0.16, 0.20] 0.22 [0.18, 0.26]

100σg 0.67 [0.59, 0.78] 0.65 [0.57, 0.84]

100σz 0.19 [0.16, 0.23] 0.20 [0.16, 0.36]

Notes: The Table shows the posterior mean and the 5 and 95 percentile of the posterior from the

HMC and the RWMH estimation respectively. The results for the HMC are based on N = 10,000

draws from the posterior, with 10 parallel chains and a burn in of 500 draws for each.

The results for the Random Walk Metropolis Hastings algorithm are based on the authors’

replication of the table reported in Herbst and Schorfheide (2015) using the original code available

with 100,000 draws. Please note the slight difference in the posterior estimates and the different

notation for the scaling of the shock variances compared to Herbst and Schorfheide (2015).

We attribute the former to the inherent random nature of the sampling.

5.2 Smets-Wouters Model

The Smets and Wouters (2007) model is a medium-scale closed economy DSGE

model. It became the standard workhorse model for economic policy analysis and

served as a basis for newer generations of DSGE models that followed. It is esti-

mated for the US with Random Walk Metropolis Hastings algorithm for the sample

of 1960:1–2004:4 using seven key macroeconomic variables: real GDP, real consump-

tion, real investment, the GDP deflator, real wages, employment and the nominal
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short-term interest rate.11 The model features a deterministic growth rate driven

by labor-augmenting technology progress. The model is subject to nominal and real

frictions. The former affecting the labour and goods markets as Calvo-type nominal

rigidities similar to Christiano et al. (2005). Both wages and intermediate product

markets are subject to partial indexation to lagged inflation. The real frictions man-

ifest themselves as investment adjustment and capital utilization costs. Monetary

policy follows a Taylor type rule, with interest rate smoothing and the reaction to

inflation- and output gap, the former defined as the deviation from the estimated

steady state inflation, the latter as the distance to the flex price economy.

Exogenous variation of the model is driven by seven exogenous shock processes:

the standard total factor productivity, monetary policy, investment specific technol-

ogy, exogenous spending, the model features a risk premium shock and wage and

price markup shocks with a MA structure. The latter property introduces antici-

pated, news shocks for both the regular and the wage Phillips curve. All exogenous

shocks are iid-normal with zero mean and estimated variance. The model is log-

linearized around the steady state and net of deterministic growth rate. Variables

are expressed in terms of percentage deviations from steady state. In order to intro-

duce anticipated news shocks we augment the model with auxiliary state variables,

similar to Dynare, so the Binder-Pesaran algorithm can be easily applied.

We estimate the Smets-Wouters model with HMC and present the sampling

diagnostics in the Appendix. Once again the efficiency of the HMC algorithm is

apparent. Even though we estimate the model with 1000 draws only, it results in

an effective sample size of 287 for the log-posterior. We document zero divergent

transitions and a well behaved sampling behaviour that explored the target density

well. Comparing the posterior results presented in Table 4 and 5 we can conclude

that both estimations deliver similar results. The only exception refers to the steady

state of inflation, that is estimated to be slightly lower with HMC. This is a result

already documented in the forecasting literature, that the Smets-Wouters model has

been inappropriate on long run for inflation.

The results obtained and the HMC diagnostics together confirm that the target

11Both real consumption and investments are deflated using the GDP deflator. The hours
variable is defined as average weekly hours of all persons in the non-farm business sector times
total civilian employment.
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Table 4: Posterior Estimates of the Smets-Wouters Structural Parameters

Hamiltonian Monte Carlo Random Walk Metropolis Hastings

Parameter Mean [0.05, 0.95] Mean [0.05, 0.95]

ϕ 5.88 [4.28, 7.47] 5.93 [4.26, 7.64]
σc 1.41 [1.21, 1.65] 1.42 [1.19, 7.64]
h 0.65 [0.65, 0.79] 0.73 [0.66, 0.80]
ξw 0.75 [0.66, 0.84] 0.75 [0.66, 0.84]
σl 2.09 [1.11, 3.07] 2.06 [1.11, 2.93]
σl 2.09 [1.11, 3.07] 2.06 [1.11, 2.93]
ξp 0.64 [0.56, 0.73] 0.64 [0.56, 0.73]
ιw 0.56 [0.35, 0.78] 0.57 [0.37, 0.78]
ιp 0.24 [0.11, 0.38] 0.23 [0.09, 0.37]
ψ 0.47 [0.30, 0.67] 0.47 [0.30, 0.64]
Φ 1.64 [1.51, 1.76] 1.63 [1.50, 1.76]
rpi 2.05 [1.79, 2.33] 2.05 [1.78, 2.32]
ρ 0.82 [0.77, 0.85] 0.82 [0.78, 0.86]
ry 0.10 [0.07, 0.14] 0.10 [0.06, 0.14]
rdy 0.21 [0.16, 0.25] 0.21 [0.17, 0.25]
π̄ 0.68 [0.51, 0.86] 0.77 [0.59, 0.94]
100(β−1 − 1) 0.14 [0.07, 0.22] 0.15 [0.06, 0.23]
l̄ 0.83 [-0.75, 2.37] 0.73 [-1.00, 2.45]
γ̄ 0.46 [0.43, 0.49] 0.47 [0.44, 0.49]
α 0.21 [0.18, 0.24] 0.20 [0.17, 0.23]

Notes: The Table shows the posterior mean and the 5 and 95 percentile of the posterior from the
Hamiltonian Monte Carlo and the Random Walk Metropolis Hastings estimation respectively.
The results for the Hamiltonian Monte Carlo are based on N = 1000 draws from the posterior
and a burn in of 500 draws.
The results for the Random Walk Metropolis Hastings algorithm are based on the authors’
replication of the model using Johannes Pfeiffer’s replication files written in Dynare with an
acceptance rate of 30.42%, two chains of 500,000 draws and a burn in of 100,000. Thus the
resulting number of draws is 800,000.

density of the Smets-Wouters model is well behaved. Thus the application of the

RWMH algorithm is warranted as long as tight priors are assumed. Future research

may also use HMC diagnostics to facilitate the selection of appropriate priors.
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Table 5: Posterior Estimates of the Smets-Wouters Model’s Shock Processes

Hamiltonian Monte Carlo Random Walk Metropolis Hastings

Parameter Mean [0.05, 0.95] Mean [0.05, 0.95]

σa 0.48 [0.43, 0.52] 0.47 [0.42, 0.51]
σb 0.24 [0.19, 0.28] 0.23 [0.19, 0.28]
σg 0.52 [0.48, 0.57] 0.51 [0.46, 0.56]
σI 0.46 [0.39, 0.54] 0.45 [0.37, 0.53]
σr 0.24 [0.21, 0.25] 0.23 [0.21, 0.26]
σp 0.13 [0.10, 0.16] 0.13 [0.11, 0.16]
σw 0.25 [0.22, 0.28] 0.24 [0.21, 0.28]
ρa 0.98 [0.97, 0.99] 0.98 [0.97, 0.99]
ρb 0.27 [0.11, 0.47] 0.28 [0.10, 0.46]
ρg 0.97 [0.96, 0.99] 0.97 [0.96, 0.99]
ρI 0.69 [0.60, 0.78] 0.69 [0.60, 0.79]
ρr 0.17 [0.07, 0.28] 0.17 [0.06, 0.28]
ρp 0.96 [0.93, 0.99] 0.96 [0.92, 0.99]
ρw 0.97 [0.94, 0.99] 0.97 [0.95, 0.99]
µp 0.80 [0.67, 0.90] 0.80 [0.69, 0.91]
µw 0.89 [0.82, 0.94] 0.89 [0.82, 0.95]
µw 0.89 [0.82, 0.94] 0.89 [0.82, 0.95]
ρga 0.57 [0.44, 0.69] 0.54 [0.41, 0.68]

Notes: The Table shows the posterior mean and the 5 and 95 percentile of the posterior from the
Hamiltonian Monte Carlo and the Random Walk Metropolis Hastings estimation respectively.
The results for the Hamiltonian Monte Carlo are based on N = 1000 draws from the posterior
and a burn in of 500.
The results for the Random Walk Metropolis Hastings algorithm are based on the authors’
replication of the model using Johannes Pfeiffer’s replication files using Dynare with an
acceptance rate of 30.42%, two chains of 500,000 draws and a burn in of 100,000. Thus the
resulting number of draws is 800,000.

6 Extension: Sequential Hamiltonian Monte Carlo

One of the main disadvantages of the HMC algorithm is that it fails to explore

multimodal posterior distributions which is documented in existing literature, see

e.g. Shiwei et al. (2014). An interesting experiment which also addresses critics

by researchers with respect to the estimation setup of the original Smets-Wouters

model was carried out in Herbst and Schorfheide (2014). In particular, in the latter

work the authors unrestrict the Bayesian model by using uninformative priors for a

number of parameters instead of setting tight priors as in Smets and Wouters (2007).

Hence, they allow for the information to obtain a larger weight when estimating the

model. Herbst and Schorfheide (2014) reports a bimodal shape of the marginal

posterior density for a handful parameters once uninformative priors are applied
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in which case widely used MCMC based samplers as the RWMH algorithm do not

mix properly. Instead, commonly used samplers get stuck in one of the modes,

depending on the starting point of the chain. To remedy the issue of multimodality

several algorithms have already been proposed in the literature, e.g. Neal (2001),

Liu and Chen (1998), Gilks and Berzuini (2002) and Moral et al. (2006) where the

latter works mainly combine three different algorithms: importance sampling and

resampling, rejection sampling, and Markov chain iterations. Chopin (2004) derives

a central limit theorem for a large class of SMC sampling methods. Herbst and

Schorfheide (2014) carried out pioneer work by introducing the SMC algorithm to

DSGE models to remedy issues with multimodality. The proposed SMC framework

in Herbst and Schorfheide (2014) fits also into the scheme described by Chopin (2004)

and is in principle a sequential importance sampler. In each step the posterior

density p(Y |θ)βnp(θ) at stage n, where the likelihood is weighted by 0 ≤ βn ≤ 1

∀n, serves as a proposal density for the density to be sampled from at the next

stage p(Y |θ)βn+1p(θ) with βn+1 > βn. This framework is also commonly referred

to as likelihood tempering in existing literature. Alternatively one can also carry

out data tempering by increasing the number of observations included to calculate

the likelihood function at each stage. Without going too deeply into details, at

each stage the importance weights for all draws {θ(n)
j }Jj=1 at stage n, that is the

fraction of the posterior densities at stage n+ 1 and n equaling to p(Y |θ(n))βn+1−βn ,

is calculated and serve as the weights for the importance sampling. The swarm of

parameter draws and weights {θ(n)
j , w

(n)
j }Jj=1 together at each stage are commonly

referred to as particles. Once the variance of the weights becomes large the draws

are resampled using the actual weights and the weights are reset to unity. Finally

at each stage the draws are mutated or moved applying a Metropolis-Hastings step

which is alternatively also referred to as the ’rejuvenation’ step.

A main drawback of using the RWMH sampler to rejuvenate the parameter

draws at each stage is again that the MH-proposal θ′ is either too often rejected

or the distance ||θ − θ′|| between the proposal and the current parameter draw is

relatively small. In case one targets an acceptance rate of 25 percent each particle

will be updated only at each fourth stage on average. The intuition behind likeli-

hood tempering is also that decreasing βn, the weight of the likelihood function in
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the posterior density, reduces the energy barrier between distant separated modes

which enables also to commonly applied MCMC samplers to move between modes.

However this feature can be only exploited when the step size is large enough. For

the reason that the HMC algorithm is capable of proposing updates θ′ to the current

draws θ which are distant and in theory always accepted, it can also exploit this

potential when βn is relatively small. A key question in this context is how large is

the probability that the true parameter vector θ lies in the region of the posterior

density surrounding a particular mode. This probability is measured by the volumes

under the posterior density around a particular mode 1
Z

∫
θ∈Θi

p(Y |θ)p(θ)dθ. A po-

tential issue if using the RWMH algorithm in the rejuvenation step is that particles

will tend to get stuck in the same region around the typical set where they started

from at stage zero and could potentially bias the estimation. With the number of

particles going to infinity this bias will have to disappear even if particles were not

rejuvenated at all, when using e.g. annealed importance sampling by Neal (2001), as

convergence of these algorithms is warranted. However, with increasing amount of

parameters the number of particles necessary will increase also exponentially such

that a guided approach to rejuvenate the actual parameter draw might be of an

advantage. The Sequential Hamiltonian Monte Carlo algorithm has already been

applied by Daviet (2018) to logit discrete choice models and reports better conver-

gence properties than the simple SMC method if a leave-one-out approximation of

the observed distribution of the particles is used in the correction step. In our work

we will use the SMC framework also used in Herbst and Schorfheide (2014) with

both multinomial and stratified resampling. The next algorithm summarizes the

main steps:

Algorithm 5: Sequential Hamiltonian Monte Carlo

1. Search for the different modes by starting the HMC algorithm from different

parameter settings.

2. Specify a sequence {βn}Nn=0 such that 1 = βN > ... > βn+1 > βn > ... > β0 ≥ 0

3. Tune the HMC sampler for each target density p(Y |θ(n))βnp(θ(n)) separately,

depending also on the current position a given particle θ
(n)
j to be rejuvenated,
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if necessary.

4. Run the SMC algorithm by applying the HMC algorithm to execute the reju-

venation step and use always the pretuned sampler at each stage for the target

distribution p(Y |θ(n))βnp(θ(n)) depending also on the current position of the

actual draw θ
(n)
j .

This algorithm fits also into the scheme proposed by Chopin (2004), as already

pointed out by Daviet (2018). Therefore, under common regularity conditions and

assuming that the multinomial resampling is used, almost sure convergence will

hold:

1

J

J∑
j=1

h(θ
(n)
j )

a.s.→ Eπ̃n(h) (34)

∑J
j=1w

(n)
j h(θ

(n)
j )∑J

j=1w
(n)
j

a.s.→ Eπt(h) (35)

1

J

J∑
j=1

h(θ̂
(n)
j )

a.s.→ Eπn(h) (36)

where π̃n(· ) :=
∫
πn−1(θ(n−1))k(n)(θ̂(n−1), · )dθ(n−1) with k(n) being the stochastic

kernel density function implied by the HMC algorithm. Furthermore πn(θ(n)) =
1

Zn
p(Y |θ(n))βnp(θ(n)), w

(n)
j ∝ ν

(n)
j = πn(θ

(n−1)
j )/π̃n(θ

(n−1)
j ) and θ̂

(n)
j the particle posi-

tions after resampling. As HMC leaves πn−1 invariant, it follows that π̃(n) = πn−1,

hence w
(n)
j = p(Y |θ(n−1)

j )βn−βn−1 .

Furthermore, the limit distribution equals to:

J1/2

{
1

J

J∑
j=1

h(θ̂
(n)
j )− Eπn(h)

D→ N (0, V̂n(h))

}
∀n = 1, ..., N (37)
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with V̂n(h) obtained recursively:

Ṽ0(h) = Varπ̃(0)(h) (38)

Ṽn(h) = V̂n−1(h) {Ekn(h)}+ Eπn−1(h)Varkn(h) ∀n = 1, ..., N (39)

Vn(h) = Ṽn {νn · (h− Eπn(h))} ∀n = 1, ..., N (40)

V̂n(h) = Vn(h) + Varπn(h) ∀n = 1, ..., N (41)

To apply the algorithm we estimate again the Smets and Wouters (2007) model

and release the priors in line with Herbst and Schorfheide (2014). We use also the

same data set as we used for the estimation of the restricted model. Before executing

the estimation code the sampler has to be tuned. In particular, we use N = 37 stages

and J = 256 particles in order not to waste computational resources, which amount

is rather low if compared SMC frameworks using RWMH for rejuvenation. The

tempering schedule {βn}Nn=1 was calibrated in a way that p(Y |θ)βnp(θ) serves always

sufficiently well as proposal density for p(Y |θ)βn+1p(θ), hence the bridge densities are

never too different. Even with such a relatively small amount of stages and particles

modes are not absorbed highlighting the power of the SHMC estimator in the sense

that the rejuvenation step is guided. The following graph displays the shape of the

tempering schedule:

Figure 5: Tempering Schedule

Notes: The solid line shows the tempering schedule used for the estimation. The dashed line
shows the tempering schedule if βn = ((n− 1)/(N − 1))λ with λ = 2.1 and the dotted line if
λ = 2.75.

The solid line shows the tempering schedule while we also plotted the original
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schedule used in Herbst and Schorfheide (2014) with λ = 2.1 (dashed line). At the

low end the tempering schedules correspond while after approximately one quarter

the schedule used by Herbst and Schorfheide (2014) starts to increase more rapidly.

As a comparison we also plotted the schedule from Herbst and Schorfheide (2014)

with λ = 2.75 which provides a better approximation of the schedule used for our

estimation framework. Using the HMC sampler there is no need to increase the

tempering schedule as rapidly due to the better sampling properties at higher βn

values which allows the particle positions to remain at lower βn-levels and to mix

between the modes for a longer time. However, one should also notice that already

at relatively low βn levels mixing is far away from optimal. As βn increases less

information can be extracted from the density as regards the ratio of the volumes

under the modes by moving the particles in the parameter space, yet one can obtain

more information with respect to the exact shape of the modes. Another difference if

compared with the tempering schedule used by Herbst and Schorfheide (2014) is that

while the latter starts with a draw from the prior distribution our initial sampling

stems from a slightly informed distribution with βn = 0.005, where the HMC sampler

is capable to mix between the modes. In our initial sample approximately 30 percent

of the particles are from the region around the mode which seem be dominated and

to encompass less volume. The latter setup is also in line with our prior beliefs

based on existing literature, see also Lanne and Luoto (2018) which augments the

SMC algorithm with a non-sequential importance sampling. We also applied the

criterion used in Herbst and Schorfheide (2014) to decide whether to resample at

a given stage n, yet we resample when the effective sample size (ESS) drops below

0.7 instead of 0.5. In practice, the algorithm resamples in most of the cases at each

second stage. Alternatively, we could have also resampled deterministically at each

second stage.

We performed the estimation both using multinomial and stratified resampling.

Our estimation results suggest that the posterior density for a handful parameters

is ill-behaved. In particular, we find in line with Herbst and Schorfheide (2014) and

Lanne and Luoto (2018) that the joint kernel density estimates of the parameters ρp

and µp, the ARMA(1,1) terms in the exogenous shock process of the Phillips-curve,

is bimodal as illustrated below. In our estimations we obtain that approximately
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Figure 6: Joint Posterior Density Estimates

Notes: The plot show the joint posterior densities of the following parameters: [ρp,µp] (upper
left), [ξw,ρw] (upper right), [ξw,µw] (lower left) and [ρw,µw] (lower right). Sample size equals 512,
where two sample draws of the size J = 256, respectively, were merged, the first obtained by
applying multinomial resampling, the second one by stratified resampling. Divergence rate at the
last stage βn = 1 was approximately 2.3 percent and 1.5 percent, respectively, while the overall
divergence rate throughout all N = 37 stages amounted to approximately 5.1 percent for both
samples.

between 10 and 30 percent of the particles are concentrated in the area around the

dominated mode which is higher than the probability of around 5 percent reported

in Herbst and Schorfheide (2014). The parameters determining the wage Phillips

curve, ξw and ρw, that is the wage rigidity and the AR(1) term of the mark-up

shock process exhibit also a bimodal pattern, yet both modes are rather stretched

out in length. The joint kernel density of ξw and the MA(1) coefficient of the

wage mark-up shock, µw, is shaped similarly as the joint density of [ξw, ρw]. The

reason for this feature is that ρw and µw are highly correlated. The joint kernel

density exhibits a long ridge along the 45° line which suggests that the mark-up

shock process is overparametrized as also suggested by Lanne and Luoto (2018) and

restricting the model could result in an improved fit. In general we can conclude

that by combining the HMC estimator with SMC we obtain a powerful tool which

allows for the estimation of complex and ill-behaved posterior densities and delivers
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results line with existing literature.

7 Conclusion and Outlook

In this paper we review the benchmark DSGE estimation framework, the RWMH,

and present an advanced alternative, the HMC sampler. Subsequently we implement

the algorithm for DSGE models in STAN, a state-of-the-art, high-performance soft-

ware package which has become a workhorse development environment for Bayesian

estimation. We estimate a small scale three equation NK textbook model and

the Smets-Wouters model using HMC. Our estimation results largely correspond

to those from existing literature which underlines the accuracy of the estimation

method and the implemented algorithm. In addition we present in detail the sam-

pling diagnostics which enables to conclude that the target densities of the three

equation textbook model and the Smets-Wouters model in its original setup exhibit

a regular shape. We confirm that in such cases the RWMH algorithm operates ad-

equately. We highlight that the advanced sampling diagnostics for HMC enables to

identify parameters which are difficult to sample. In addition a further advantage

of HMC is that it does not require any posterior mode search.

We also combine the HMC algorithm with the SMC method to address a short-

coming of the HMC algorithm that it fails to explore ill-behaved posterior densities.

We apply this extended framework to estimate the Smets-Wouters model using less

informative priors and obtain bimodal posterior densities which results are also inline

with those in existing literature.

We are confident that HMC opens new avenues to revisit existing DSGE model

estimation exercises in light of the improved sampling properties and the available

diagnostics. However, we also acknowledge that further effort is needed to increase

the speed of the algorithm.
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Appendix

Smets-Wouters Model:
Hamiltonian Monte Carlo Estima-
tion Diagnostics

Warnings

[1] "None of the 1000 iterations ended with a divergent transition."

Numerical diagnostics

n_eff Rhat mean se_mean sd

log-posterior 286.97 1.00 -1191.64 0.27 4.63

crpi 541.79 1.01 2.05 0.01 0.16

crdy 1209.11 1.00 0.21 0.00 0.03

cry 547.47 1.01 0.10 0.00 0.02

crr 471.66 1.01 0.82 0.00 0.02

constelab 1044.53 1.00 0.83 0.03 0.96

constepinf 1039.36 1.00 0.68 0.00 0.10

ctrend 442.39 1.00 0.46 0.00 0.02

constebeta 955.50 1.00 0.14 0.00 0.05

cgy 976.79 1.00 0.57 0.00 0.07

cmaw 625.70 1.01 0.89 0.00 0.04

cmap 358.32 1.00 0.80 0.00 0.07

calfa 716.24 1.00 0.21 0.00 0.02

czcap 831.01 1.00 0.47 0.00 0.11

csadjcost 865.28 1.00 5.88 0.03 0.97

csigma 554.11 1.00 1.41 0.01 0.13

chabb 486.61 1.00 0.73 0.00 0.04

cfc 831.22 1.00 1.64 0.00 0.08

cindw 1003.05 1.00 0.56 0.00 0.13
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cprobw 588.38 1.00 0.75 0.00 0.05

cindp 736.73 1.00 0.24 0.00 0.08

cprobp 740.00 1.00 0.64 0.00 0.05

csigl 803.21 1.00 2.09 0.02 0.59

crhoa 950.71 1.00 0.98 0.00 0.01

crhob 476.22 1.00 0.27 0.01 0.11

crhog 573.45 1.00 0.97 0.00 0.01

crhoqs 746.01 1.00 0.69 0.00 0.05

crhoms 793.29 1.01 0.17 0.00 0.06

crhopinf 555.60 1.00 0.96 0.00 0.02

crhow 615.86 1.01 0.97 0.00 0.01

sigmaea 815.18 1.00 0.48 0.00 0.03

sigmaeb 533.36 1.00 0.24 0.00 0.03

sigmaeg 1355.67 1.00 0.52 0.00 0.03

sigmaeqs 859.94 1.00 0.46 0.00 0.04

sigmaem 882.47 1.01 0.23 0.00 0.01

sigmaepinf 518.16 1.00 0.13 0.00 0.02

sigmaew 865.71 1.00 0.25 0.00 0.02

ctou 0.50 1.00 0.03 0.00 0.00

cg 0.50 1.00 0.18 0.00 0.00

curvp NaN NaN 10.00 NaN 0.00

curvw NaN NaN 10.00 NaN 0.00

clandaw NaN NaN 1.50 NaN 0.00

LL 506.40 1.00 -961.42 0.25 5.54

cpie 1038.58 1.00 1.01 0.00 0.00

cgamma 441.30 1.00 1.00 0.00 0.00

cbeta 955.70 1.00 1.00 0.00 0.00

clandap 831.22 1.00 1.64 0.00 0.08

cbetabar 785.52 1.00 0.99 0.00 0.00

cr 938.46 1.00 1.01 0.00 0.00

crk 785.35 1.00 0.03 0.00 0.00

cw 1145.77 1.00 0.69 0.00 0.04

43



cikbar 442.35 1.00 0.03 0.00 0.00

cik 442.38 1.00 0.03 0.00 0.00

clk 981.86 1.00 0.19 0.00 0.03

cky 783.99 1.00 6.28 0.02 0.55

ciy 753.17 1.00 0.19 0.00 0.02

ccy 753.17 1.00 0.63 0.00 0.02

crkky 716.24 1.00 0.21 0.00 0.02

cwhlc 924.85 1.00 0.83 0.00 0.01

cwly 716.24 1.00 0.79 0.00 0.02

conster 938.96 1.00 1.48 0.00 0.13
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Visual diagnostics

Divergence Information

These are plots of the divergent transition status (x-axis) against the log-posterior

(y-axis top panel) and against the acceptance statistic (y-axis bottom panel) of the

sampling algorithm for all chains. Divergent transitions can indicate problems for the

validity of the results. A good plot would show no divergent transitions. If the diver-

gent transitions show the same pattern as the non divergent transitions, this could

indicate that the divergent transitions are false positives. A bad plot would shows

systematic differences between the divergent transitions and non-divergent tran-

sitions. For more information see https://mc-stan.org/misc/warnings.html#

divergent-transitions-after-warmup.
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Energy

These are plots of the overlaid histograms of the marginal energy distribution (πE)

and the energy transition distribution (π∆E) for all chains. A good plot shows

histograms that look well-matched indicating that the Hamiltonian Monte Carlo

should perform robustly. The closer π∆E is to πE the faster the random walk explores

the energies and the smaller the autocorrelations will be in the chain. If π∆E is

narrower than πE the random walk is less effective and autocorrelations will be

larger. Additionally the chain may not be able to completely explore the tails of

the target distribution. See Betancourt ‘A conceptual introduction to Hamiltonian

Monte Carlo’ and Betancourt ‘Diagnosing suboptimal cotangent disintegrations in

Hamiltonian Monte Carlo’ for the general theory behind the energy plots.
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Treedepth Information

These are plots of the treedepth (x-axis) against the log-posterior (y-axis top left

panel) and against the acceptance statistic (y-axis top right panel) of the sam-

pling algorithm for all chains. In these plots information is given concerning the

efficiency of the sampling algorithm. Zero treedepth can indicate extreme cur-

vature and poorly-chosen step size. Treedepth equal to the maximum treedepth

might be a sign of poor adaptation or of a difficult posterior from which to sample.

The former can be resolved by increasing the warmup time, the latter might be

mitigated by reparametrization. For more information see https://mc-stan.org/

misc/warnings.html#maximum-treedepth-exceeded or https://mc-stan.org/docs/reference-

manual/hmc-algorithm-parameters.html.
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Step Size Information

These are plots of the integrator step size per chain (x-axis) against the log-posterior

(y-axis top panel) and against the acceptance statistic (y-axis bottom panel) of the

sampling algorithm. If the step size is too large, the integrator will be inaccurate

and too many proposals will be rejected. If the step size is too small, the many

small steps lead to long simulation times per interval. Thus the goal is to balance

the acceptance rate between these extremes. Good plots will show full exploration

of the log-posterior and moderate to high acceptance rates for all chains and step

sizes. Bad plots might show incomplete exploration of the log-posterior and lower

acceptance rates for larger step sizes.
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Acceptance Information

These are plots of the acceptance statistic (top leftpanel), the log-posterior (top

right panel), and, the acceptance statistic (x-axis bottom panel) against the log-

posterior (y-axis bottom panel) for all chains. The vertical lines indicate the mean

(solid line) and median (dashed line). A bad plot would show a relationship be-

tween the acceptance statistic and the log-posterior. This might be indicative of

poor exploration of parts of the posterior which might be might be mitigated by

reparametrization or adaptation of the step size. If many proposals are rejected the

integrator step size might be too large and the posterior might not be fully explored.

If the acceptance rate is very high this might be indicative of inefficient sampling.

The target Metropolis acceptance rate can be set with the adapt delta control op-

tion. For more information see https://mc-stan.org/docs/reference-manual/

hmc-algorithm-parameters.html.
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Scatter plots

These are scatter plots of crpi, crdy, cry, crr, constelab, constepinf, ctrend, conste-

beta, cgy, cmaw, cmap, calfa, czcap, csadjcost, csigma, chabb, cfc, cindw, cprobw,

cindp, cprobp, csigl, crhoa, crhob, crhog, crhoqs, crhoms, crhopinf, crhow, sig-

maea, sigmaeb, sigmaeg, sigmaeqs, sigmaem, sigmaepinf, sigmaew, ctou, cg, curvp,

curvw, clandaw, LL, cpie, cgamma, cbeta, clandap, cbetabar, cr, crk, cw, cikbar, cik,

clk, cky, ciy, ccy, crkky, cwhlc, cwly, conster, Iter, plotted against log-posterior.

The red dots, if present, indicate divergent transitions. Divergent transitions can

indicate problems for the validity of the results. A good plot would show no di-

vergent transitions. A bad plot would show divergent transitions in a systematic

pattern. For more information see https://mc-stan.org/misc/warnings.html#

divergent-transitions-after-warmup.
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Autocorrelation

These are autocorrelation plots of crpi, crdy, cry, crr, constelab, constepinf, ctrend,

constebeta, cgy, cmaw, cmap, calfa, czcap, csadjcost, csigma, chabb, cfc, cindw,

cprobw, cindp, cprobp, csigl, crhoa, crhob, crhog, crhoqs, crhoms, crhopinf, crhow,

sigmaea, sigmaeb, sigmaeg, sigmaeqs, sigmaem, sigmaepinf, sigmaew, ctou, cg,

curvp, curvw, clandaw, LL, cpie, cgamma, cbeta, clandap, cbetabar, cr, crk, cw,

cikbar, cik, clk, cky, ciy, ccy, crkky, cwhlc, cwly, conster, Iter. The autocorrela-

tion expresses the dependence between the samples of a Monte Carlo simulation.

With higher dependence between the draws, more samples are needed to obtain

the same effective sample size. High autocorrelation can sometimes be remedied by

reparametrization of the model.
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czcap
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Trace Plots

These are trace plots of crpi, crdy, cry, crr, constelab, constepinf, ctrend, conste-

beta, cgy, cmaw, cmap, calfa, czcap, csadjcost, csigma, chabb, cfc, cindw, cprobw,

cindp, cprobp, csigl, crhoa, crhob, crhog, crhoqs, crhoms, crhopinf, crhow, sigmaea,

sigmaeb, sigmaeg, sigmaeqs, sigmaem, sigmaepinf, sigmaew, ctou, cg, curvp, curvw,

clandaw, LL, cpie, cgamma, cbeta, clandap, cbetabar, cr, crk, cw, cikbar, cik, clk,

cky, ciy, ccy, crkky, cwhlc, cwly, conster, Iter, for all chains. Trace plots provide

a visual way to inspect sampling behavior and assess mixing across chains. The

iteration number (x-axis) is plotted against the parameter value at that iteration

(y-axis). Divergent transitions are marked on the x-axis. A good plot shows chains

that move swiftly through the parameter space and all chains that explore the same

parameter space without any divergent transitions. A bad plot shows chains explor-

ing different parts of the parameter space, this is a sign of non-convergence. If there

are divergent transitions, looking at the parameter value related to these iterations

might provide information about the part of the parameter space that is difficult to

sample from. Slowly moving chains are indicative of high autocorrelation or small

integrator step size, both of which relate to ineffective sampling and lower effective

sample sizes for the parameter.
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