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ABSTRACT 

We study the effect of temperature on economic development on the sub-national level, employing 

cross-sectional data for up to 15,533 sub-national units from two distinct sources. In contrast to the 

existing cross-country literature on the temperature-income relationship, our setting allows us to 

exploit sub-national heterogeneity through the inclusion of country fixed effects and mitigate 

omitted variable bias. We find no negative relationship between regional temperature and four 

different measures of economic development (per capita GDP, growth of per capita GDP, nightlights 

and gross cell production). We also test whether temperature is non-linearly related to income (with 

hotter regions being potentially particularly prone to adverse effects of temperature on income) but 

find no evidence in favor of such a relationship. Finally, we examine whether the effect of 

temperature on economic development is especially pronounced in poorer regions (e.g., due to 

weaker adaptation), but find no robust evidence for this proposition. In sum, our findings suggest 

that adaptation to temperature differences could be feasible and relevant. 

JEL-Classification: Q54; Q56; R11 

Keywords: Regional temperature; regional income; sub-national data; non-linearity 
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I. INTRODUCTION 

The role of climate change and related temperature increases for economic development 

has received renewed attention in the cross-country literature in recent years (e.g., Burke et al., 

2015, 2018; Dell et al., 2009, 2012; Lanzafame, 2014). Numerous studies find significant 

negative effects of higher temperature on income. Furthermore, some contributions to the 

literature suggest a non-linear, inverted-U relationship between income and temperature, 

meaning that colder countries (with average yearly temperatures of up to 13-16 degrees) might 

benefit from increasing temperatures, while hotter countries tend to lose (e.g., Burke et al., 

2015, 2018; Deryugina and Hsiang, 2014; Nordhaus, 2006; Zhao et al., 2018). Finally, 

relatively poorer countries could suffer more from higher temperatures, partly due to being 

located in hotter parts of the world and partly due to fewer (financial) means to adapt to 

temperature alterations (e.g., Dell et al., 2012; Moore and Diaz, 2015; Zhao et al., 2018). 

Our contribution to the recent literature on the temperature-income relationship is three-

fold. First, we correlate sub-national data on temperature with sub-national data on economic 

variables (e.g., regional GDP per capita). We gathered two data sets on climatic and economic 

indicators for a large number of world-wide regions. Depending on the variables in use, we are 

able to include between 1,542 to 15,533 sub-national units, which cover mainly developed (data 

from Gennaioli et al. (2014) from 1950 to 2010) as well as developing countries (data from 

Demographic and Health Surveys (DHS) with data on cells for 2005 and 2015) from all 

continents. Both datasets allow us to account for the within-country heterogeneity in 

temperatures and incomes, an aspect that is by construction neglected when only taking a cross-

country perspective.1 

Second, the use of regional data allows us to account for country fixed effects, thereby 

holding constant everything that is specific to a country such as country-specific policies, 

institutions, colonial history or aspects of culture. Thereby, we are able to draw conclusions on 

the relationship between regional temperature and regional income while accounting for 

relevant other influences. In particular, the relationship between temperatures and incomes 

could be affected by adaptation possibilities which, in turn, might be driven by country-specific 

effects that we account for. 

                                                 
1  For example, in Russia we have a spread of 5,000 miles in distance, of 24 degrees in average temperature (between Republic 

of Sakha and Krasnodar Region) and of 47,265 USD in per capita income (between Republic of Ingushetia and Tyumen 
Region) according to our data. 
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Third, we explore the effect of temperature on four different measures for sub-national 

income: regional GDP per capita, growth of GDP per capita from 1950 to 2010, gross cell 

production within a DHS cluster, as well as nightlights within a DHS cluster. 

While countries are the most common units for analyzing the link between temperatures 

and economic development (e.g., Burke et al., 2015, 2018; Dell et al., 2009, 2012), some 

literature has explored within country variation. Nordhaus (2006) relies on the G-Econ database 

employing proxies of economic activity2 for all large countries measured at a 1° latitude by 1° 

longitude scale. Other literature focuses on the link between temperature for regions but is 

mainly limited to the United States (see e.g., Colacito et al., 2019; Dell et al., 2009; Deryugina 

and Hsiang, 2014) and recently China (see Li et al., 2019). In contrast to them, our analysis is 

global. Most closely related to us is Zhao et al. (2018) who consider grid cells and data across 

different continents but rely again on the G-Econ database developed by Nordhaus (2006). 

Instead of grid cells, we employ meaningful subnational administrative regions and typical 

economic indicators such as regional GDP per capita as reported by the national statistical 

offices and we employ data based on surveys from the DHS.3 Thereby, our regional setting is 

directly comparable to the cross-country literature which focusses on national GDP per capita. 

Using data for 1,542 subnational administrative regions from different continents (data 

gathered by Gennaioli et al. (2014)) yields no systematic relationship between temperature and 

regional GDP per capita as well as between temperature and GDP growth.4 There is also no 

systematic difference in the effect of temperature on regional economic development between 

rich and poor regions. Furthermore, we find no systematic evidence for any inverted-U 

relationship between regional temperature and income as well as growth. Employing data from 

the Demographic and Health Surveys, we find, if anything, a positive (though usually 

statistically insignificant) relationship between temperature and nightlights within a DHS 

cluster. The relationship between temperature and gross cell production within a DHS cluster 

is, if anything, slightly negative, with no difference between rich and poor regions. There is 

again no evidence for an inverted-U relationship between temperature and nightlights nor for 

temperature and gross cell production. A series of extensions and sensitivity checks (e.g. 

                                                 
2 Nordhaus (2006) data covers 25,572 terrestrial grid cells and includes several measures of economic activity such as proxies 

for income by industry, employment by industry, urban and rural population or employment. 
3  Moreover, we employ DHS data to analyze enumeration areas, called clusters, and explore the commonly used proxies for 

economic activity such as gross cell production and nightlights. 
4  Potential effect sizes are small and comparatively precisely estimated, which may point to the absence of any (generalized) 

adverse effects of regional temperature. 
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including maximum and minimum temperatures) support our interpretations as our results 

continue to yield zero effects of temperatures on different regional income measures. 

The remainder of this paper is structured as follows. Section II provides theoretical 

considerations and a literature review. Section III describes data sources and our empirical 

methodology. Section IV presents our results and offers interpretations. We conclude with 

Section V. 

 

II. THEORETICAL CONSIDERATIONS AND LITERATURE REVIEW 

THEORETICAL CONSIDERATIONS 

Recently, there has been renewed interest in exploring the relationship between 

temperature and economic indicators such as per capita GDP or growth, which has been driven 

by evidence for anthropogenic climate change (e.g., Carleton and Hsiang, 2016, Dell et al., 

2014). There are different pathways through which higher temperatures may be detrimental to 

economic development (e.g., Burke et al., 2015; Easterly and Levine, 2003; Gallup et al., 1999): 

1. Higher temperatures adversely affect agricultural production, e.g., by contributing to 

water stress or the spread of plant pests. Especially when economies are poor and dependent on 

agriculture, such adverse effects may hurt overall economic development. 

2. Higher temperatures may affect human productivity in general. For instance, with 

higher temperatures it becomes more exhaustive for the human body to regulate its temperature. 

Increased heat stress in turn will adversely affect labor performance and productivity. The 

adverse effects of heat stress may also be felt in non-agrarian sectors of the economies. 

3. Higher temperatures may also contribute to the spread of debilitating diseases (e.g., 

Malaria, Dengue fever) by facilitating the spread of disease vectors (e.g., mosquitos). These 

diseases will adversely affect the accumulation of human capital (e.g., by contributing to school 

absenteeism or permanent mental or physical disability), which in turn will discourage 

economic development. 

4. Higher temperatures may also have long-run effects on political and economic 

institutions by affecting the modes of agricultural production (e.g., family vs. plantation 

farming) and the suitability of land for foreign settlers due to the incidence of specific diseases. 

For instance, especially debilitating diseases may have prevented the spread of inclusive 

institutions (e.g., sound property rights) by discouraging European settlements in many parts of 
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the world and instead given rise to more extractive modes of production (e.g., the use of forced 

labor) and more extractive economic and political institutions. Extractive institutions (e.g., 

weak property rights, a weak rule of law) in turn are anticipated to discourage innovation and 

investment, thus leading to lower levels of economic development compared to economies that 

enjoy more inclusive economic and political institutions. 

 

COUNTRY LEVEL EVIDENCE 

The relationship between temperature and income is usually investigated at the country 

level. For instance, Dell et al. (2009) find a negative relationship between income per capita 

and temperature; countries in the year 2000 experience a drop in income of 8.5% with every 

degree increase in temperature. Hsiang (2010) comes to a similar conclusion, finding that a 

temporary one degree increase in surface temperature is associated with a contemporaneous 

2.5% reduction in non-agricultural production output for 28 countries in the Caribbean and 

Central America. For more than 160 countries, Burke et al. (2015, 2018) project a reduction in 

global income by 15-25% in 2100 if global warming continues to be unmitigated. Lanzafame 

(2014) investigates the short- and long-term effect of weather shocks on income of 36 African 

countries, finding that African economies are damaged by such shocks. Schlenker and Lobell 

(2010) report a negative association between temperature and agricultural output in Sub-

Saharan African countries. 

 

EVIDENCE AT THE SUB-NATIONAL LEVEL 

By construction, cross-country studies cannot systematically investigate the within-

country heterogeneity regarding temperature and economic development. Some recent studies 

have started to re-analyze the income-temperature relationship by using county or 

(geographical) grid cell level data. Nordhaus (2006) analyzes 25,572 grid cells (on a 1° latitude 

by 1° longitude scale) and finds a 0.9-3% decrease in economic activity (depending on the 

specific proxy of economic activity) due to temperature rises. Dell et al. (2009) find that a one 

degree rise in temperature is related to a 1.2-1.9% decline in municipal income for 7,684 

municipalities in 12 countries in the Americas. Zhao et al. (2018) analyze 10,597 global grid 

cells using data from Nordhaus (2006) and find a weak negative association between 

temperature and economic activity. Focusing only on China, Li et al. (2019) consider data from 

31 Chinese provinces, finding that temperature exerts both positive and negative effects on 

economic growth depending on the level of average temperature. A similar result is obtained 
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by Deryugina and Hsiang (2014) who focus on the United States. Finally, Colacito et al. (2019) 

suggest that a rise in the average summer temperature in the United States leads to a reduction 

in the annual state growth rate of 0.15 to 0.25 percentage points. 

 

NON-LINEAR EFFECTS 

The literature provides some evidence in favor of a non-linear relationship between 

temperature and income. Two cross-country studies by Burke et al. (2015, 2018) examine this 

non-linearity for more than 160 countries and find the relationship to be concave, with 

productivity being highest at approximately 13 degrees and strongly declining at higher 

temperatures. This is in line with Deryugina and Hsiang (2014), Nordhaus (2006) and Zhao et 

al. (2018) who find evidence in favor of an inverted U-shape with a maximum at about 15, 12 

and 16 degrees, respectively. Li et al. (2019) places the “beneficial” temperature threshold at 

23.37 degrees, meaning that almost all Chinese provinces could experience positive effects 

from rising temperatures. Schlenker and Lobell (2010) also find a strong non-linear relationship 

between temperatures and corn, soybean, and cotton yields. On the other hand, Dell et al. (2009, 

2012) and Lanzafame (2014) find little or no evidence that the relationship between income and 

temperature is non-linear. 

 

ADAPTATION 

A concern of the existing literature is the rate of adaptation to climate change. This rate 

has to be considered when estimating the potentially negative consequences of temperature 

increases (e.g., Moore and Diaz, 2015). Indeed, Dell et al. (2009) suggest that approximately 

half of the negative effect of temperature increase on income is eliminated through adaptation 

in the long-run. According to Dell et al. (2012), the main factor governing adaptation and thus 

accounting for the amount of economic damage due to rising temperatures is a country’s income 

level. Here, poorer countries are expected to see lower rates of adaptation (e.g., in terms of 

using better machinery to compensate for reduced crop yields) and may thus experience 

stronger adverse economic effects. Indeed, several studies distinguish between rich and poor 

countries or regions and find that the negative effect of temperature tends to be more relevant 

for poor areas (Dell et al., 2012; Zhao et al., 2018). Burke et al. (2015, 2018), on the other hand, 

find no difference in the effect of temperature on income in rich and poor countries, 

respectively. 
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III. DATA AND EMPIRICAL STRATEGY 

DATA 

We employ two distinct datasets that allow us to estimate the link between regional 

temperatures on measures of regional economic development. Temperature as well as GDP per 

capita at the regional level and regional growth of GDP per capita from 1950 to 2010 are drawn 

from Gennaioli et al. (2014), while further climate data as well as gross cell production and 

nightlights come from the Demographic and Health Surveys (DHS). Further descriptions, 

descriptive statistics and data sources of all our data can be found in Table A.1 and A.2 in the 

Supplementary Information. 

First, we use a dataset collected by Gennaioli et al. (2014) that contains economic as well 

as geographic variables for 1,542 regions (mainly administrative units such as states and 

provinces) in 83 countries around the world. As for the GDP per capita and GDP per capita 

growth data at the sub-national level, Gennaioli et al. (2014) collect data from national/regional 

statistical offices between 1950 and 2010. The sample covers more than 90% of the world’s 

GDP and includes a large number of countries and regions from Asia, South America, Oceania, 

North America and Europe. African regions are under-represented due to data constrains; they 

represent about 4% of all regions in the dataset. In total, we have approximately 9,500 data 

points available when using the Gennaioli et al. (2014) dataset. 

The dataset includes a variable measuring regional temperature, obtained from the 

WorldClim database. This variable indicates the average temperature per region between 1950 

and 2000. Thereby, we follow Dell et al. (2009) who also use temperature data that is averaged 

over the 1950-2000 period.5 Consequently, our analysis explores whether relatively warmer 

regions are more or less wealthy than relatively colder regions, controlling for country fixed 

effects and other characteristics. We start exploring the full panel dataset and then construct 

seven cross-sections for the years 1950, 1960, 1970, 1980, 1990, 2000 and 2010 to compare the 

effects of different temperature levels on regional GDP over time. This allows us to draw 

potential insights regarding adaptation to hotter temperatures: if comparatively warmer sub-

national regions within a country are equally rich as medium or colder regions, adaptation to 

hotter or colder temperatures might be possible within reasonable time frames. 

Second, we also employ a dataset comprised of DHS data. The DHS program primarily 

collects representative household survey data in the field of demographics and health in more 

                                                 
5  Cross-country studies have usually yearly or five-yearly average temperature data available (e.g., Burke et al., 2015, 2018). 

Grid cell approaches explore a shorter time horizon (e.g., Nordhaus, 2006; Zhao et al., 2018). 
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than 90 countries; to date there are approximately 400 surveys available. The program is 

implemented by ICF International and is mainly funded by the United States Agency for 

International Development, which allows DHS to conduct national surveys at least every five 

years with an average sample size of between 5,000 to 30,000 respondents (see ICF 

International (2019) for more information). DHS covers a large number of African countries 

which constitutes a valuable supplement to the Gennaioli et al. (2014) dataset. DHS survey data 

contains a variety of geographic information which are obtained from the Geographic 

Information System (GIS). In particular, we have temperature, precipitation, frost days, wet 

days, etc. available. This information is available for small geographical units called clusters.6 

GDP data does not exist on the cluster-level; therefore, we use two alternative variables 

to capture average income of a cluster: nightlights which is the average nighttime luminosity of 

the area (composite cloud-free radiance values) available for 2015 and gross cell production 

(GCP) which is the average Purchasing Power Parity (PPP) in 2005 US dollars for the 2 km 

(urban) or 10 km (rural) buffers surrounding the DHS survey cluster (see DHS Sampling 

Manual at ICF International (2012)). We thus have available two separate cross-sectional 

samples for 2005 with 31 surveys and 14,130 cluster-level observations and for 2015 with 37 

surveys and 15,533 cluster-level observations.7 

 

EMPIRICAL STRATEGY 

Our cross-sectional databases from Gennaioli et al. (2014) and DHS (2005, 2015) allow 

us to examine whether warmer regions (clusters) tend to be less or more wealthy than their 

colder counterparts. Our empirical strategy follows a regression approach common in the 

literature. Using Gennaioli et al. (2014) data, our first equation to estimate regional GDP per 

capita in region r of country i at time t is specified as follows: 

𝐿𝑛 ቀ
ீ


ቁ

,,௧
= 𝛽(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒), + 𝜔 + 𝜆௧ + 𝜖,,௧ (1) 

where 𝜔 and 𝜆௧ are country- and time-fixed effects and 𝜖,,௧ is an error term. Country 

fixed effects account for any country-specific and time-invariant unobservables such us colonial 

history, national institutions etc. They can be employed because we analyze regional 

                                                 
6  Clusters are a representative selection of Enumeration Areas, a statistical unit for population census (see ICF International 

(2012) for the selection process of Enumeration Areas, clusters and households by DHS). 
7  To get a high number of observations we included surveys that were conducted three years before or after 2005 and 2015, 

respectively. There was always only one survey per country. 
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temperature and regional income. Time fixed effects capture contemporary global phenomena. 

As our regional temperature variable is time invariant, this setting does not capture changes in 

regional GDP per capita over time. To analyze how regional temperature affects regional GDP 

per capita at different time periods (decades) we also estimate a sequence of seemingly 

unrelated regressions in sensitivity tests below, among other tests.  

Most recent studies of the temperature-income relationship employ fixed effects 

strategies, while the use of further control variables is rare (e.g., Burke et al., 2015, 2018; 

Deryugina and Hsiang, 2014; Li et al., 2019).8 We follow these examples for our main results 

and proceed to run parsimonious models that do not include further economic, demographic or 

political controls. It might be argued that such a strategy gives temperature a comparatively 

high chance to emerge as an explanatory factor for income. Indeed, older literature that took 

account of additional covariates found no effects of temperature or related variables on GDP 

per capita or growth (e.g., Acemoglu et al., 2001; Rodrik et al., 2004; Sala-I-Martin et al., 2004). 

In an attempt to further explore such matters too, we include several regional and national 

control variables to our baseline regressions and discover that the effect of temperature is rather 

sensitive towards their inclusion (Table A.7 in the Supplementary Information). 

In a second model, we replace regional per capita GDP by the per capita GDP growth rate 

between the first and the last available regional GDP entry recorded. Our panel data turns into 

a cross-section with the following estimation equation: 

𝐺𝐷𝑃𝑔𝑟𝑜𝑤𝑡ℎ, = 𝛽(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒), + 𝜔 + 𝜖,,௧ (2) 

Similarly, we employ country fixed effects in a regression setting for the DHS data 

samples. We predict nightlights and gross cell production of region r in country i in year 2015 

and 2005 by employing the following equations: 

𝑛𝑖𝑔ℎ𝑡𝑙𝑖𝑔ℎ𝑡𝑠,,ଶଵହ = 𝛽(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒),,ଶଵହ + 𝜔 + 𝜖,,ଶଵହ (3) 

𝑔𝑟𝑜𝑠𝑠 𝑐𝑒𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛,,ଶହ = 𝛽(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒),,ଶହ + 𝜔 + 𝜖,,ଶହ (4) 

Following the literature (e.g., Burke et al., 2015, 2018; Dell et al., 2009, 2012; Lanzafame, 

2014), we expect the temperature-income relationship to be negative in models (1) to (4), i.e., 

we expect hotter regions to be less wealthy. 

                                                 
8  There are a few exceptions: Dell et al. (2009) use a set of geographic variables such as distance to coast; Hsiang (2010) 

controls for cyclone activities; Zhao et al. (2018) uses a set of economic and geographic controls such as population growth 
or precipitation; and Nordhaus (2006) uses mean distance from coast, mean elevation, and absolute value of latitude. 
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To account for adaptation effects and further exploit regional heterogeneity, we estimate 

additional models that include an interaction term with the dummy variable Poor that equals 1 

if a region’s income is below the average of the full sample and 0 otherwise (see also Dell et 

al., 2012; Zhao et al., 2018 for similar approaches). According to the literature, we hypothesize 

that the potential negative effect of temperature on income (𝛽ଶ) is stronger in relatively poorer 

regions due to weaker adaptation. 

Finally, to consider potential non-linearities in the temperature-income relationship 

(where the adverse effect of higher temperatures may be particularly pronounced in hotter 

regions), we add a squared temperature to all our models. Here, we follow Burke et al. (2015, 

2018), Deryugina and Hsiang (2014) and Nordhaus (2006). 

 

IV. THE LINK BETWEEN REGIONAL TEMPERATURE AND 

REGIONAL INCOME 

CORRELATIONS 

Figure 1 shows the relationship between temperature and our four dependent variables: 

regional log GDP per capita, regional GDP per capita growth rate, regional log nightlights and 

regional log gross cell production. 
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Figure 1: The link between regional income and regional temperature 

 

 

Except for regional growth rates (where correlation is close to zero), we observe a 

negative relationship between temperature and income, i.e., hotter regions tend to be less 

wealthy. This is consistent with insights from the existing cross-country literature (e.g., Burke 

et al., 2015, 2018; Dell et al., 2009, 2012). However, Figure 1 highlights that there is substantial 

variation in temperature and each of the regional outcome measures. Indeed, the richest region 

in our dataset (Abu Dhabi in the United Arab Emirates) is also among the hottest, with an 

average temperature of 27.3°C. Moreover, some exceptionally cold regions such as the Tyumen 

region in Russia or the Yukon Territory in Canada are among the richest regions in the world. 

Similarly, some regions seem to have exceptionally high growth rates or very low nightlight 
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intensity. As a sensitivity test, we eliminate such potential outliers9 from the analysis (results 

are relegated to Supplementary Information in Table A.6). In any event, heterogeneity within 

countries matters substantially and alongside country specific characteristics. 

The large heterogeneity within countries highlights the relevance of our analysis as an 

important extension to the existing cross-country literature. Figure 2 emphasizes this 

heterogeneity in selected countries for (the log of) regional GDP per capita (China, Colombia, 

Russia and United States) and (the log of) nightlights (Malawi, Namibia, Zambia, Zimbabwe).10 

In all cases we observe a substantial spread of income and temperature, given that all countries 

are of considerable size and therefore cover various climatic zones and, potentially, exhibit 

different levels of economic development between regions. Take Russia for instance: West and 

East are separated by more than 5,000 miles. Average yearly regional temperature ranges from 

-13 degrees (Republic of Sakha) to +11 degrees (Krasnodar Region), whereas per capita income 

ranges from 2,025 USD (Republic of Ingushetia) to 49,290 USD (Tyumen region). 

Figure 2: Heterogeneity within countries and links between regional income/nightlights and 

temperature for selected countries 

 

In sum, regions or clusters within a country can be relatively hot or cold and relatively 

poor or rich. The variation is substantial. By using national averages only, the cross-country 

literature cannot account for this considerable spread, meaning that an adverse relationship 

between temperature and income at the country level may be due to this rather high level of 

                                                 
9 Outliers are selected by plotting distribution curves and eliminating isolated regions that represent very high values of our 

four dependent variables. 
10 Note that Gennaioli et al. (2014) and DHS (2015) have a different regional focus (developed vs. developing countries). 
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aggregation. Meanwhile, our regional approach allows us to investigate any potentially highly 

relevant within country heterogeneity, while also being able to account for country specific 

characteristics with country fixed effects. Thereby it naturally extends and complements the 

existing literature.  

 

MAIN ECONOMETRIC RESULTS 

Table 1 shows the relationship between regional temperature on regional per capita 

income (specifications (1)-(4)) and its growth rate between the first and the last available GDP 

p.c. data point available (specifications (5)-(8)). We now always account for country 

heterogeneity by including country fixed effects, which capture all national characteristics that 

could influence the relationship between temperature and income. Time fixed effects can only 

be applied when regional income shows variation over time (specifications (1)-(4)). In 

specifications on growth (columns (5)-(8)), meanwhile, we just have one observation per 

region. 

In the parsimonious specification (1), the coefficient for the relationship between 

temperature and log regional GDP p.c. is negative, close to zero (with a point estimate of -

0.004) and statistically insignificant at conventional levels. Thus, accounting for country 

specific heterogeneity, there is no systematic link between regional temperature and regional 

income. Given that the coefficient estimate is small and the standard error estimate is not 

unreasonably large, the specification tends to provide evidence of absence of any link between 

regional temperature and regional incomes.11 Put differently, regions within a country are not 

systematically wealthier or poorer only because they are colder or hotter. In specification (5) 

we investigate the link between regional temperature and regional growth when controlling for 

country fixed effects. Here, we again observe no clear relationship between the two variables. 

We also note that the addition of regional temperature to the model does not improve the overall 

fit of the model, i.e., when estimating a pure fixed effects model without any controls the R² is 

0.86 when regional GDP is the dependent variable and 0.62 when growth is the dependent 

variable. Including regional temperature increases R² by 0.0002 and 0.0019, respectively. This 

                                                 
11 Also note that our setting gives regional temperature a high chance to emerge as an explanatory factor for income differences 

as we do not include any covariates in our main regressions (similar to the recent cross-country literature). Nevertheless, we 
provide an initial attempt to include regional and national control variables that are available and that we believe to be 
relevant for predicting income. In fact, they add between 0.01 and 0.1 to R² in regressions with per capita GDP and per 
capita GDP growth and between 0.05 and 0.2 in regressions with nightlights, whereas regressions with GCP lose about 0.1 
in explanatory power (Table A.7). 
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is suggestive that regional temperature tends to have a comparatively small explanatory power 

for GDP and growth. 

In a second step, we include a dummy variable called Poor for whether a region is below 

the sample average of regional GDP per capita (dummy equals 1) or above (dummy equals 0). 

We then interact this dummy variable with temperature to explore whether the effect of 

temperature on GDP per capita or growth is more relevant in poorer regions. The variable Poor 

itself must have a significantly negative coefficient when explaining regional GDP per capita. 

A positive coefficient in the growth regressions would be consistent with conditional 

convergence. We observe a significant drop in regional GDP per capita by 61% and a 

statistically insignificant increase in growth if the region is poor. Temperature continues to have 

no effect on regional income, independent of whether the region is considered poor or rich 

(specification (2)). The interaction term is positive and statistically significant in specification 

(6) i.e., growth tends to be higher in poorer and warmer regions when differentiating between 

poor and rich regions. 

Potential effects of temperature on income might be non-linear, following an inverted U-

shape. For instance, Burke et al. (2018) and Zhao et al. (2018) find that economic growth is 

concave in temperature, meaning that cooler regions might actually benefit from a rise in 

temperature (e.g., as agricultural productivity improves), while already warmer regions lose. In 

contrast to this literature, specification (3) tends to show a U-shape when employing regional 

data, suggesting that the negative effect of temperature on income is reversed when the average 

annual temperature exceeds 13°. Interpreting these results, we must keep in mind that regions 

from Gennaioli et al. (2014) in general are relatively cool with an average annual temperature 

of about 14 degrees; for instance, many African regions, which may have driven previous 

results due to their dependence on agriculture, are not included in this sample (however they 

are included in the DHS samples below). Moreover, there are numerous hot regions in the 

sample which, at the same time, have high incomes. 

A large strand of the literature points to the role of education in economic development, 

with higher levels of education being conducive to economic progress (e.g., Barro, 1991; 

Bowles, 1972; Mincer, 1974). We include years of education in our regression and interact it 

with temperature, too. This allows us to explore whether temperature has weaker effects on 

income in relatively well-educated regions; potentially, assuming that education is more 

positively correlated with adaptation, this allows regions with high education levels to maintain 

their income levels. However, while years of education have a strong and statistically 
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significant effect on regional GDP per capita (with every additional year of schooling raising 

GDP p.c. by 24% (specification (4)), we find that its effect is independent of temperature. 

Again, for regional growth we find no effect of temperature (specification (8)). 

The results of Table 1 show that the findings of past literature (see e.g., Burke et al., 2015, 

2018; Dell et al., 2009, 2012; or Lanzafame, 2014) are not that robust when transferred to the 

regional level. Controlling for country specific heterogeneity, there is no support for the view 

that warmer regions are systematically poorer than colder regions. The estimated coefficients 

of temperature are close to zero, while being comparatively precisely estimated, indicating that 

there is no effect of regional temperature on regional income and growth. Moreover, poorer 

regions do not seem to suffer more from hotter temperatures than richer regions. It is important 

to note that heterogeneity within countries, i.e., among regions within a country, is substantial 

regarding temperature and income. This suggests that there is no systematic link between 

warmer temperatures and incomes, with national institutions, national policy or other national 

factors potentially helping regions to adapt.  
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Table 1: Baseline regressions for the effect of temperature on regional income and growth when accounting for country and partly time fixed effects 

 

  

Dependent variable
(1)

Ln_GDP_region
(2)

Ln_GDP_region
(3)

Ln_GDP_region
(4)

Ln_GDP_region
(5)

Growth
(6)

Growth
(7)

Growth
(8)

Growth
-0.004 0.007 -0.025** 0.012 0.040 -0.016 0.022 0.069
(0.007) (0.009) (0.012) (0.013) (0.027) (0.027) (0.042) (0.052)

-0.612*** 0.211
(0.114) (0.371)
-0.013 0.065**
(0.009) (0.030)

0.001* 0.001
(0.001) (0.002)

0.238*** -0.072
(0.038) (0.128)
-0.002 -0.004
(0.002) (0.005)

Country FE YES YES YES YES YES YES YES YES
Time FE YES YES YES YES NO NO NO NO
Observations 9,472 9,472 9,472 7,504 1,527 1,527 1,527 1,505
R2 0.858 0.884 0.86 0.893 0.626 0.631 0.626 0.627

Residual Std. Error
0.438

(df=9344)
0.396

(df=9342)
0.436

(df=9343)
0.379

(df=7381)
1.714

(df=1444)
1.704

(df=1442)
1.715

(df=1443)
1.722

(df=1422)
F Statistic 445.6*** 553.3*** 447.3*** 506.9*** 29.49*** 29.38*** 29.14*** 29.15***

temperature x Years 
of Education

Note: The regressions estimate the effect of temperature on logarithmized regional GDP p.c. and regional growth in regressions with the dummy variable Poor (1 if regional GDP is below sample average; 
0 otherwise) and its interaction with temperature, Years of education its interaction with temperature, as well as temperature squared. Regressions are run with the Gennaioli et al. (2014) dataset with 
country and partly time fixed effects. Robust clustered standard error estimates (country-level) are presented below the coefficients. Significance levels are indicated by *p<0.1; **p<0.05; ***p<0.01.

temperature

Poor

temperature x Poor

temperature²

Years of Education
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In a similar manner, we run the model as outlined above employing our two DHS samples. 

The unit of observations are DHS clusters. We use the logarithm of nightlights and gross cell 

production (GCP) as dependent variables. Here, we are dealing with cross-sectional data, as 

our variables nightlights and gross cell production are only available for 2015 and 2005, 

respectively. We again account for country fixed effects. Results of estimation equations (3) 

and (4) are presented in Table 2. The results suggest a positive relationship between the cluster 

temperature and nightlights within a cluster, i.e., with every increase in temperature we observe 

an increase in nightlights by 18% to 40%. In relatively poor regions, this positive effect is 

somewhat less pronounced (specification (2)). We also find that the relationship between 

temperature and nightlights does not follow a non-linear pattern as the coefficient for the 

squared term of temperature is insignificant. 

The relationship of temperature with gross cell production is ambiguous. If anything, 

temperature seems to have a small but negative effect on gross cell production, i.e., results 

suggest that higher temperatures in a cluster tend to reduce gross cell production in 2005 by 

approximately 3%. This only holds in the presence of the dummy variable Poor, which is the 

only other significant variable in our model (specification (5)).  
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Table 2: Baseline regressions for the effect of temperature on nightlights in 2015 and gross cell 

production in 2005 when accounting for country fixed effects 

 

 

EXTENTIONS AND SENSITIVITY TESTS 

In the following, we present three empirical extensions, aiming at refining our previous 

estimations. 

First, we reconsider our subnational administrative data and create seven year-

subsamples, i.e., one cross-section for every first year of a new decade (1950, 1960, 1970, 1980, 

1990, 2000, 2010). We proceed with our three main specifications (as seen in Tables 1 and 2) 

for every year-subsample. The results for the seven cross-sections (Table A.3 in the 

Supplementary Information) confirm the ambiguous effect of regional temperature on regional 

GDP per capita. While we observe a negative and statistically significant relationship between 

temperature and log GDP per capita in a few cases, this effect is sensitive to alterations in 

specifications in all year-subsamples. For all specifications, the effect of regional temperature 

on regional GDP per capita is small, as shown by the coefficient estimates ranging between 

0.004 to 0.033; that is, regions within a country that are one degree warmer than the average 

region of the country tend to have a have a 0.4% to 3.3% smaller GDP. When interacted with 

Poor, we only find significantly negative coefficients in subsamples for 1950 and 1960. We 

might conclude that poorer regions had more difficulties to cope with higher temperatures 

before 1970 but thereafter found adaption methods (such as improvements in medicine, 

agriculture etc.) that decoupled temperature effects from income. As in Table 1, there does not 

Dependent variable
(1)

Ln_nightlights
(2)

Ln_nightlights
(3)

Ln_nightlights
(4)

Ln_GCP
(5)

Ln_GCP
(6)

Ln_GCP
0.181*** 0.203*** 0.397** -0.012 -0.026** 0.054
(0.067) (0.059) (0.191) (0.011) (0.012) (0.063)

-2.370** -1.428***
(0.977) (0.358)

-0.084** 0.018
(0.04) (0.013)

-0.005 -0.002
(0.005) (0.001)

Country FE YES YES YES YES YES YES
Time FE NO NO NO NO NO NO
Observations 15,533 15,533 15,533 14,130 14,130 14,130
R2 0.381 0.579 0.382 0.84 0.891 0.84

Residual Std. Error
2.627

(df=15495)
2.165

(df=15493)
2.625

(df=15494)
0.379

(df=14098)
0.312

(df=14096)
0.378

(df=14097)
F Statistic 257.3*** 546.6*** 251.5*** 2382*** 3493*** 2318***

temperature

Note: The regressions estimate the effect of temperature on logarithmized regional nightlights (gross cell production) in regressions with the dummy variable Poor (1 if 
regional nightlights (gross cell production) is below sample average; 0 otherwise) and its interaction with temperature, as well as temperature squared. Nightlights 
(gross cell production) regressions are run with DHS data for the year 2015 (2005) with country fixed effects. Robust clustered standard error estimates (country-
level) are presented below the coefficients. Significance levels are indicated by *p<0.1; **p<0.05; ***p<0.01.

Poor

temperature x Poor

temperature²
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seem to be a clear non-linear relationship between regional temperature and regional GDP per 

capita. 

To refine our results from Table 2, we employ the DHS data and account for a popular 

critique of using average temperature, namely that temperature averages neglect potentially 

large variation in temperature between months or even days (e.g., Barreca, 2012; Deschênes 

and Greenstone, 2007; Ranson, 2014; Schlenker and Lobell, 2010). DHS enables us to calculate 

the difference between the lowest and highest monthly temperature per year and regress it on 

the logarithm of nightlights in 2015 and gross cell production in 2005. Results are presented in 

Table A.4 in the Supplementary Information. We find a statistically significantly negative 

impact of strong fluctuations, accounting for a reduction in nightlights by 16% with every 

additional degree between minimum and maximum temperature in rich regions. Interestingly, 

this effect is almost cancelled out if we are dealing with poor regions (positive coefficient of 

0.13). We find no robust relationship between temperature fluctuations and gross cell 

production as shown in columns (3) and (4) of Table A.4. 

Finally, we exploit our two DHS cross-sections for the difference of summer and winter 

temperatures, expressed by temperature measured in December and July. As DHS data contains 

mostly countries from the southern hemisphere, we summarize December temperature to be 

summer time and July temperatures to be winter time. As in Table 2, the results in Table A.5 

show that nightlights are positively correlated with warmer temperatures in December, 

indicated by statistically significantly positive coefficients between 0.23 and 0.35. The effect 

in poorer regions is approximately 50% smaller. Effects of winter time temperatures are less 

clear, as temperature exerts a much smaller, but still positive, effect on nightlights (0.15 in 

column (4) or 0.12 when interacted with Poor (column (5)). Interestingly, being relatively poor 

(in terms of nightlights) in July is more than thrice as harmful than being poor in December, 

which is potentially due to the fact that fewer sunlight hours in winter (around July) have to be 

compensated with electricity, which is often unstable or unaffordable in developing regions 

(see Adeoye and Spataru, 2019; Jiang et al., 2020 for different season-dependent electricity 

demands in developing countries). This, in return, might explain the stronger negative effect of 

Poor on gross cell production (columns (8) and (11)). Whereas temperature in December seems 

to have no effect on GCP, we observe a negative relationship between temperature in July and 

GCP of around 0.02 to 0.03. As in all our previous results, we find no support that the 

relationship between temperature and income (independent of which proxy is used) is non-

linear. 
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DISCUSSION AND CAVEATS 

With this research effort, we aim at contributing to the discussion on whether hotter 

climate is related to lower income. We explore specifically whether hotter regions have a lower 

income compared to colder regions, independent of any country-specific circumstances such as 

institutions. Previous empirical and theoretical contributions have argued that hot temperature 

may have a direct impact on human productivity, labor morale and productivity or on the spread 

of diseases; hot temperatures may furthermore have an indirect impact on development by 

contributing to the emergence of extractive institutions (e.g., Easterly and Levine, 2003; Gallup 

et al., 1999). Consequently, hotter regions might be characterized by lower per capita incomes. 

However, our results for several thousand sub-national administrative units and DHS clusters 

suggest that there is no systematic effect of regional temperature on regional income. Indeed, 

anecdotal evidence suggests that some of the richest regions in the world are among the hottest 

and among the coldest in the world (e.g., regions in the United Arab Emirates or Canada). We 

also find little evidence that poorer regions experience more income losses from hotter 

temperatures. 

Interpreting our findings, we must highlight two caveats regarding out data. First, when 

focusing on subnational administrative units (data form Gennaioli et al. (2014)), we employ 

average temperature data for a time period of fifty years, while sub-national per capita GDP is 

available for several years in this time period. Thus, we do not analyze income changes due to 

changes in yearly temperature. DHS on the other hand, provides us with two cross-sections for 

the years 2005 and 2015. Empirically, this leaves us unable to include region fixed effects or 

country-time fixed effects, where the latter would allow us to account for anything that is unique 

for a specific nation and time period. Thus, we cannot explore how changes in temperature 

affect changes in GDP per capita for a specific region, i.e., we do not know whether a region in 

the United Arab Emirates becoming even hotter would experience a decrease in GDP per capita. 

Put differently, due to the cross-sectional character of the DHS data, we are restricted to 

exploring differences between regions rather than differences over time. Therefore, we caution 

to draw any direct conclusion regarding the effects of (future) anthropogenic climate change.12 

At the same time, the world regions provide numerous examples that hot temperatures can go 

along with high incomes similarly as cold temperatures may go along with high incomes too.  

                                                 
12 Of course, we also worry that there might be a bias against researchers who find no evidence that hotter temperatures 

decrease GDP per capita. 
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Second, due to their unavailability on the regional level, we are not able to add many 

potentially time-variant control variables that may explain regional income. Precipitation, 

extreme weather events such as cyclone activity, population specifics, regional institutions, 

regional ethno-linguistic diversity, redistribution, etc. are only a few examples from past 

literature. Similar to the cross-country literature, potential omitted variable bias cannot be fully 

ruled out even if we include country fixed effects, i.e. while regional temperature is certainly 

external to a region’s GDP, it does not need to be exogenous.  

 

VI. CONCLUSIONS 

This paper explores the impact of temperature on income for a large number of sub-

national regions and clusters. We use data on temperature, GDP per capita and GDP per capita 

growth for 1,542 administrative regions in 83 countries for the years 1950 to 2010 from 

Gennaioli et al. (2014). Moreover, we employ data on temperature, nightlights for 15,533 sub-

national clusters for the year 2015 in 37 countries and gross cell production for 14,130 sub-

national clusters for the year 2005 in 31 countries, using additional data from the Demographic 

and Health Surveys. This sub-national focus allows us to account for country fixed effects and 

therefore control for any factors that are country specific but relevant to regional growth (e.g., 

national institutions and policies). 

We are unable to identify a consistent and robust link between regional temperature and 

regional incomes. We observe, if anything, a quantitatively negligible negative relationship 

between regional temperature and regional GDP per capita. This relationship is sensitive to 

different specifications. We also do not find that there are systematic differences in the role of 

temperature in regional income between rich and poor regions. We find a relatively stable 

positive relationship between temperature and nightlights that is slightly weakened for poor 

regions. The relationship between temperature and growth or gross cell production is 

ambiguous. Regardless of which regional income proxy is employed, we find no support for a 

non-linear relationship between temperature and income at the regional level. 

Compared to the cross-country literature on the temperature-income relationship, our 

approach using sub-national data allows us to account for a heterogeneity within a country. We 

are also able to add to the discussion on the non-linearity assumption of the temperature-income 

relationship as well as to the discussion whether poor regions suffer more from hot temperatures 

due to a failure of sufficiently adapting to them. Currently, the missing time variation of the 
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temperature variable at the regional and the cluster level is a caveat of our approach. Ideally, 

we would want to analyze regional temperature for every year from 1950 onwards so that we 

can employ region fixed effects. This would allow for an even more stringent testing of the 

relationship than with country fixed effects. Until then, we caution to remain critical towards 

transferring the negative effect of temperature on income found in the cross-country literature 

to the regional level. We think that far more research is required in this domain to establish 

clear-cut results and offer policy conclusions.  
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VII. SUPPLEMENTARY INFORMATION 

Table A.1: Descriptive statistics (main variables) 

 

Variable (dependent variable 
in respective sample)

Description Median Mean Std. Dev. Min Max Observations Source

Ln GDP region
Logarithm of the gross domestic product per capita 
in a region (in constant 2005 PPP US$).

0.02 0.03 0.04 -0.35 0.45 7,945 Gennaioli et. al (2014)

Growth
Growth of gross domestic product per capita in a 
region (in constant 2005 PPP US$) between the first 
and the last available year.

0.89 1.79 2.73 -0.73 38.12 1,527 Gennaioli et. al (2014)

Ln Nightlights Composite

Logarithm of the average nighttime luminosity of the 
area (Composite cloud-free radiance values) within 
the 2 km (urban) or 10 km (rural) buffer surrounding 
the DHS survey cluster location in 2015.

-0.78 -1.02 3.34 -11.92 4.94 15,948 DHS (2015)

Ln Gross Cell Production 
(GCP)

Logarithm of the average Purchasing Power Parity 
(PPP) in 2005 US dollars for the 2 km (urban) or 10 
km (rural) buffers surrounding the DHS survey 
cluster.

7.30 7.49 0.94 2.13 12.98 14,332 DHS (2005)

temperature (Ln_GDP_region)
Temperature (Celsius) averaged for the period 1950 
to 2000 within the subnational region.

12.60 14.18 8.06 -14.49 28.19 9,472 Gennaioli et. al (2014)

temperature (Growth)
Temperature (Celsius) averaged for the period 1950 
to 2000 within the subnational region.

12.18 14.19 8.22 -14.49 28.19 1,527 Gennaioli et. al (2014)

temperature (Ln_nightlights)
The average yearly temperature (in degree celsius) 
within the 2 km (urban) or 10 km (rural) buffer 
surrounding the DHS survey cluster location.

23.19 22.52 4.36 -3.77 30.38 18,604 DHS (2015)

temperature (Ln_GCP)
The average yearly temperature (in degree celsius) 
within the 2 km (urban) or 10 km (rural) buffer 
surrounding the DHS survey cluster location.

23.64 22.79 4.26 -0.50 30.55 14,594 DHS (2005)

Poor (Ln_GDP_region)
Dummy variable equals 1 if region is below sample 
average regarding per capita GDP. 0 otherwise.

1.00 0.63 0.48 0 1 9,472 DHS, Gennaioli (2014)

Poor (Growth)
Dummy variable equals 1 if region is below sample 
average regarding per capita GDP. 0 otherwise.

1.00 0.87 0.34 0 1 1,527 DHS, Gennaioli (2014)
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Table A.1 continued: Descriptive statistics (main variables) 

 

  

Variable (dependent variable 
in respective sample)

Description Median Mean Std. Dev. Min Max Observations Source

Poor (Ln_nightlights)
Dummy variable equals 1 if region is below sample 
average regarding nightlights. 0 otherwise.

1.00 0.78 0.41 0 1 19,036 DHS (2015)

Poor (Ln_GCP)
Dummy variable equals 1 if region is below sample 
average regarding gross cell production. 0 otherwise.

1.00 0.66 0.47 0 1 14,332 DHS (2005)

Years of education 
(Ln_GDP_region)

Average years of schooling from primary school 
onwards for the population aged 15 years or older in 
a region.

7.41 7.21 3.25 0.39 13.76 7,504 Gennaioli et. al (2014)

Years of education (Growth)
Average years of schooling from primary school 
onwards for the population aged 15 years or older in 
a region.

6.90 7.01 2.95 0.99 12.95 1,505 Gennaioli et. al (2014)

Diff Max Min (Ln_nightlights)

The difference between the average annual maximum 
and minimum temperature (in degree celsius) within 
the 2 km (urban) or 10 km (rural) buffer surrounding 
the DHS survey cluster location.

5.42 7.62 5.76 0.56 29.24 18,604 DHS (2015)

Diff Max Min (Ln_GCP)

The difference between the average annual maximum 
and minimum temperature (in degree celsius) within 
the 2 km (urban) or 10 km (rural) buffer surrounding 
the DHS survey cluster location.

5.39 7.35 5.23 0.55 21.41 14,594 DHS (2005)

Temperature December 
(Ln_nightlights)

The average monthly temperature in December (in 
degree celsius) within the 2 km (urban) or 10 km 
(rural) buffer surrounding the DHS survey cluster 
location.

22.83 20.85 6.21 -13.66 29.68 18,604 DHS (2015)

Temperature December 
(Ln_GCP)

The average monthly temperature in December (in 
degree celsius) within the 2 km (urban) or 10 km 
(rural) buffer surrounding the DHS survey cluster 
location.

23.06 21.00 5.55 -6.22 29.70 14,594 DHS (2005)
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Table A.1 continued: Descriptive statistics (main variables) 

 

 

  

Variable (dependent variable 
in respective sample)

Description Median Mean Std. Dev. Min Max Observations Source

Temperature July 
(Ln_nightlights)

The average monthly temperature in July (in degree 
celsius) within the 2 km (urban) or 10 km (rural) 
buffer surrounding the DHS survey cluster location.

24.57 22.96 5.16 2.03 34.52 18,604 DHS (2015)

Temperature July (Ln_GCP)
The average monthly temperature in July (in degree 
celsius) within the 2 km (urban) or 10 km (rural) 
buffer surrounding the DHS survey cluster location.

24.86 23.24 5.42 1.76 35.66 14,594 DHS (2005)

Precipitation (Ln_nightlights)
The average precipitation measured within the 2 km 
(urban) or 10 km (rural) buffer surrounding the DHS 
survey cluster (in milimeters) in 2015.

87.11 89.13 59.99 0.17 368.69 17,289 DHS (2015)

Precipitation (Ln_GCP)
The average precipitation measured within the 2 km 
(urban) or 10 km (rural) buffer surrounding the DHS 
survey cluster (in milimeters) in 2005.

84.96 92.79 63.01 0.08 288.50 13,733 DHS (2005)
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Table A.2: Descriptive statistics (control variables) 

Variable (dependent variable in 
respective sample)

Description Median Mean Std. Dev. Min Max Obs Source

Landlockedcountry (Ln_GDP_region) 0 0.10 0.30 0 1 9,472
Landlockedcountry (Growth) 0 0.13 0.34 0 1 1,527
Landlockedregion (Ln_GDP_region) 1 0.54 0.50 0 1 9,472
Landlockedregion (Growth) 1 0.60 0.49 0 1 1,527

dist_gg (Ln_GDP_region) 29,424 179,507 323,358 0 2,099,284 9,487

dist_gg (Growth) 55,018 202,807 348,378 0 2,099,284 1,527

km_length_coast (Ln_GDP_region) 0 462 3,801 0 103,225 9,487
km_length_coast (Growth) 0 346 2,944 0 103,225 1,527
nbr (Ln_GDP_region) 0 0.43 0.50 0 1 9,487

nbr (Growth) 0 0.47 0.50 0 1.00 1,527

nbr_nr (Ln_GDP_region) 1 1.59 0.87 0 8.00 9,472
nbr_nr (Growth) 1 1.63 0.85 0 8.00 1,527
Latitude (Ln_GDP_region) 37.47 33.50 16.47 0.02 69.95 9,472
Latitude (Growth) 38.17 34.02 16.83 0.02 69.95 1,527
Area_sqkm (Ln_GDP_region) 14,448 85,603 273,708 28 3,920,299 9,472
Area_sqkm (Growth) 11,031 64,796 228,508 28 3,920,299 1,527

Malaria_ecology (Ln_GDP_region) 0.01 1.09 2.72 0 28.68 9,472

Malaria_ecology (Growth) 0.01 1.20 3.12 0 28.68 1,527
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Dummy variable that is equal to 1 if the region is landlocked, 0 otherwise.

Number of borders to other countries incl. A region's own country border.

Dummy variable that is equal to 1 if the region has a border to another region 
in a neighboring country, 0 otherwise.

Length of coast in km.

Area in square kilometers.

Dummy variable that is equal to 1 if the country is landlocked, 0 otherwise.

The ratio of 1 over 1 plus the region's average distance to the nearest coastline 
in thousands of kilometres. Higher values for this variable indicate that a 
region is closer to the coast, smaller values indicate larger average distances to 
the coast. Gennaioli et al. (2014) create an equal distance projection of the 
Collins-Bartholomew World Digital Map and a map of the coastlines. With 
these two maps Gennaioli et al. (2014a) create a raster with the distance to the 
nearest coastline of each cell in a given region. In order to obtain the average 
distance to the nearest coastline, the authors sum the distance to the nearest 
coastline of all cells within each region and divide that sum by the number of 
cells in the region.

Latitude of the centroid of each region calculated in ArcGIS.

The “malaria ecology” index of Kiszewski et al. (2004) measures the risk of 
being infected by Malaria. The index variable ranges from 0 to 39 with higher 
values indicating a higher risk and thus less Malaria stability. The index takes 
into account both climatic factors and the dominant vector species to give an 
overall measure of the component of malaria variation that is exogenous to 
human intervention. The index is calculated for grid squares of one half degree 
longitude by one half degree latitude. Regional averages are calculated via 
ArcGIS.
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Table A.2 continued: Descriptive statistics (control variables) 

 

Variable (dependent variable in 
respective sample)

Description Median Mean Std. Dev. Min Max Obs Source

Ln_Cum_Oil_Gas_Prod 
(Ln_GDP_region)

0 0 0.01 0 0.12 9,472

Ln_Cum_Oil_Gas_Prod (Growth) 0 0 0.01 0 0.12 1,527

Ln_Pop_density (Ln_GDP_region) 4.12 4.02 1.74 -4.65 10.06 9,467
Ln_Pop_density (Growth) 4.15 4.07 1.70 -4.03 9.73 1,527
CapitalisinRegion (Ln_GDP_region) 0 0.05 0.22 0 1.00 9,472
CapitalisinRegion (Growth) 0 0.05 0.23 0 1.00 1,527
Ln_GDP_country (Ln_GDP_region) 9.00 9.00 1.05 5.90 11.56 9,472
Ln_GDP_country (Growth) 8.86 8.85 0.96 6.26 11.14 1,527
Latitude (Ln_nightlights) 8.27 7.49 17.99 -30.59 42.43 19,051
Latitude (Ln_GCP) 10.94 8.80 17.17 -30.53 42.43 14,910

All_Population_Count (Ln_nightlights) 36,260 105,362 225,056 0.03 5,947,797 18,247

All_Population_Count (Ln_GCP) 29,883 89,975 190,116 1.95 5,205,736 14,451

Aridity (Ln_nightlights) 24.25 25.56 18.61 0.02 136.13 17,289

Aridity (Ln_GCP) 22.46 26.28 19.32 0.01 103.05 13,733

drought_episodes (Ln_nightlights) 5.00 5.43 2.68 1 10.00 13,205

drought_episodes (Ln_GCP) 5.00 5.03 2.90 1 10.00 10,250

Enhanced_Vegetation_Index 
(Ln_nightlights)

3,043 2,966 1,086 7.00 6,093 18,683

Enhanced_Vegetation_Index (Ln_GCP) 2,982 2,991 1,124 39.00 6,246 14,642

Frost_Days (Ln_nightlights) 0 0.73 2.33 0 28.69 17,289

Frost_Days (Ln_GCP) 0 0.53 1.72 0 26.81 13,733
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(Logarithmized) cumulative oil, gas and liquid natural gas production from the 
time production began to 2000. Oil and liquid natural gas were collected in 
millions of barrels. Gas was collected in billions of cubic feet and divided by 6 
to convert to millions of barrels of oil equivalents.

Logarithm of the population density which is measured as people per square 
kilometres in a region.

Dummy variable that is equal to 1 if the region contains a national capital city, 
0 otherwise.

Logarithm of the gross domestic product per capita in a country (in constant 
2005 PPP US$).

Latitude

The count of individuals living within the 2 km (urban) or 10 km (rural) buffer 
surrounding the DHS survey cluster in 2015/2005 (number of people).

The dataset represents the average yearly precipitation divided by average 
yearly potential evapotranspiration in 2015/2005, an aridity index defined by 
the United Nations Environmental Programme (UNEP). Index between 0 
(most arid) and 300 (most wet).
The average number of drought episodes (categorized between 1 (low) and 10 
(high)) for the areas within the 2 km (urban) or 10 km (rural) buffer 
surrounding the DHS survey cluster location based on 1980-2000 precipitation 

The average vegetation index value within the 2 km (urban) or 10 km (rural) 
buffer surrounding the DHS survey cluster in 2015/2005. Vegetation index 
value between 0 (least vegetation) and 10000 (Most vegetation).

The average number of days in which the minimum temperatures of the 
location surrounding the DHS survey cluster within 2 km (urban) or 10 km 
(rural) buffers met the criteria to be categorized as a “frosty” day in 
2015/2005. Frost days is a synthetic measurement that is based off of the 
minimum temperature. The full formula to calculate the number of days can be 
found in the cited Harris et al. (2014) or in New, Hulme, and Jones (2000).
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Table A.2 continued: Descriptive statistics (control variables) 

 

  

Variable (dependent variable in 
respective sample)

Description Median Mean Std. Dev. Min Max Obs Source

global_human_footprint (Ln_nightlights) 36.79 43.15 20.11 0 100 18,971

global_human_footprint (Ln_GCP) 38.51 44.60 19.63 0 100 14,878

growing_season_length (Ln_nightlights) 9.00 8.27 3.57 1 16 18,465

growing_season_length (Ln_GCP) 9.00 8.42 3.80 1 16 14,470

Irrigation (Ln_nightlights) 0.10 9.40 20.26 0 100 18,604

Irrigation (Ln_GCP) 0.12 9.29 19.84 0 100 14,594

ITN_Coverage (Ln_nightlights) 0.62 0.60 0.23 0 1 10,202

ITN_Coverage (Ln_GCP) 0.01 0.08 0.10 0 0.42 7,666

Malaria_Incidence (Ln_nightlights) 0.17 0.20 0.15 0 0.71 10,202

Malaria_Incidence (Ln_GCP) 0.30 0.31 0.19 0 0.75 7,666

Malaria_Prevalence (Ln_nightlights) 0.11 0.17 0.15 0 0.81 10,202

Malaria_Prevalence (Ln_GCP) 0.25 0.29 0.22 0 0.97 7,666

PET (Ln_nightlights) 3.77 3.84 0.77 1.93 7.33 17,289

PET (Ln_GCP) 3.82 3.92 0.83 2.21 7.65 13,733
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The average annual potential evapotranspiration (PET) (millimeters per year) 
within the 2 km (urban) or 10 km (rural) buffer surrounding the DHS survey 
cluster location in 2015/2005.

The average of an index between 0 (extremely rural) and 100 (extremely 
urban) for the location within the 2 km (urban) or 10 km (rural) buffer 
surrounding the DHS survey cluster based on 1995-2004 data. It is created 
from nine global data layers covering human population pressure (population 
density), human land use and infrastructure (built-up areas, nighttime lights, 
land use/land cover), and human access (coastlines, roads, railroads, navigable 
rivers).

The length of the growing season in days (reported in one of 16 categories) for 
the area within the 2 km (urban) or 10 km (rural) buffer surrounding the DHS 
survey cluster location based on data collected between 1961 and 1991. 1: 0 
days; 2: 1 - 29 days; 3: 30 - 59 days; 4: 60 - 89 days; 5: 90 - 119 days; 6: 120 - 
149 days; 7: 150 - 179 days; 8: 180 - 209 days; 9: 210 - 239 days; 10: 240 - 
269 days; 11: 270 - 299 days; 12: 300 - 329 days; 13: 330 - 364 days; 14: < 
365 days; 15: 365 days; 16: > 365 days.
The average proportion of the area within the 2 km (urban) or 10 km (rural) 
buffer surrounding the DHS survey cluster location equipped for irrigation in 
2005.
The average number of people within the 2 km (urban) or 10 km (rural) buffer 
surrounding the DHS survey cluster location who slept under an insecticide 
treated net the night before they were surveyed in 2015/2005.

(Rate!)The average number of people per year who show clinical symptoms of 
plasmodium falciparum malaria within the 2 km (urban) or 10 km (rural) 
buffer surrounding the DHS survey cluster location in 2015/2005.

The average parasite rate of plasmodium falciparum (PfPR) in children 
between the ages of 2 and 10 years old within the 2 km (urban) or 10 km 
(rural) buffer surrounding the DHS survey cluster location in 2015/2005.
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Table A.2 continued: Descriptive statistics (control variables) 

 

  

Variable (dependent variable in 
respective sample)

Description Median Mean Std. Dev. Min Max Obs Source

proximity_to_national_borders 
(Ln_nightlights)

30,870 60,730 76,116 3.42 594,383 19,052

proximity_to_national_borders 
(Ln_GCP)

35,808 65,852 75,878 1.17 551,786 14,911

Proximity_to_Protected_Areas 
(Ln_nightlights)

49,560 64,738 59,398 0 634,071 19,052

Proximity_to_Protected_Areas 
(Ln_GCP)

44,801 60,165 55,590 0 455,946 14,911

proximity_to_water (Ln_nightlights) 41,398 82,153 103,324 0 696,903 19,052

proximity_to_water (Ln_GCP) 41,509 80,076 97,399 0 698,653 14,911

Rainfall (Ln_nightlights) 1,004 1,064 723 0 5,574 18,805

Rainfall (Ln_GCP) 1,045 1,159 812 0 4,875 14,673

Slope (Ln_nightlights) 0.85 1.81 2.35 0 23.13 19,004

Slope (Ln_GCP) 0.83 1.77 2.23 0 22.80 14,881

Wet_Days (Ln_nightlights) 8.29 8.32 4.32 0 23.67 17,289

Wet_Days (Ln_GCP) 8.55 8.84 4.62 0 22.42 13,733
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The average number of days receiving rainfall within the 2 km (urban) or 10 
km (rural) buffer surrounding the DHS survey cluster location in 2015/2005.

The geodesic distance (meters) to the nearest international borders in 2014.

The geodesic distance (meters) to the nearest protected area as defined by the 
United Nations Environment World Conservation Monitoring Centre in 2017. 
Examples of protected places include national parks, national forests, and 
national seashores. The dataset includes both aquatic and terrestrial protected 
areas.
The geodesic distance (meters) to either a lake or the coastline in 2017. For 
this extraction we used only the lakes dataset (L2) at full resolution and the 
shoreline dataset (L1), also at full resolution, in the GSHHG database. The 
datasets used were based on the World Vector Shorelines, CIA World Data 
Bank II, and Atlas of the Cryosphere.

The average annual rainfall (in millimeters) within the 2 km (urban) or 10 km 
(rural) buffer surrounding the DHS survey cluster location in 2015/2005.

Slope (in degrees) is a measurement of how rough the terrain around a DHS 
cluster is in 1996. The United States Geological Survey GTOPO30 digital 
elevation model was processed into slope by using the slope tool in ArcMap 
10.5.0.
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Table A.3: Baseline regressions for the effect of temperature on regional income when accounting for country fixed effects for seven year-subsamples 

 

  

Dependent variable
(1)

Ln_GDP_region
1950

(2)
Ln_GDP_region

1950

(3)
Ln_GDP_region

1950

(4)
Ln_GDP_region

1960

(5)
Ln_GDP_region

1960

(6)
Ln_GDP_region

1960

(7)
Ln_GDP_region

1970

(8)
Ln_GDP_region

1970

(9)
Ln_GDP_region

1970

(10)
Ln_GDP_region

1980
-0.030*** 0.009 -0.031 -0.021*** -0.004*** -0.01 -0.013 -0.003 -0.011 -0.005

(0.011) (0.016) (0.02) (0.007) (0.0004) (0.016) (0.009) (0.007) (0.011) (0.009)
0.092 -0.11 -0.443***

(0.196) (0.12) (0.129)
-0.044** -0.018* -0.011

(0.02) (0.009) (0.013)
0.00001 -0.0004 -0.0001
(0.001) (0.001) (0.001)

Country FE YES YES YES YES YES YES YES YES YES YES
Time FE NO NO NO NO NO NO NO NO NO NO
Observations 210 210 210 285 285 285 316 316 316 537
R2 0.782 0.803 0.782 0.839 0.844 0.839 0.873 0.881 0.873 0.889

Residual Std. Error
0.406

(df=200)
0.388

(df=198)
0.407

(df=199)
0.397

(df=270)
0.392

(df=268)
0.397

(df=269)
0.408

(df=296)
0.396

(df=294)
0.409

(df=295)
0.401

(df=509)
F Statistic 136.9*** 132.3*** 129.9*** 135.5*** 138*** 131*** 172.1*** 178.4*** 167.2*** 261.3***

temperature

Poor

temperature x Poor

temperature²

Note: The regressions estimate the effect of temperature on logarithmized regional GDP p.c. in regressions with the dummy variable Poor (1 if regional GDP is below sample average; 0 otherwise) and its interaction with temperature, as well as 
temperature squared. Regressions are run with Gennaioli et al. (2014) data subsamples for the years 1950, 1960, 1970, 1980, 1990, 2000, 2010 with country fixed effects. Robust clustered standard error estimates (country-level) are presented 
below the coefficients. Significance levels are indicated by *p<0.1; **p<0.05; ***p<0.01.
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Table A.3 continued: Baseline regressions for the effect of temperature on regional income when accounting for country fixed effects for seven year-

subsamples 

 

 

Dependent variable
(11)

Ln_GDP_region
1980

(12)
Ln_GDP_region

1980

(13)
Ln_GDP_region

1990

(14)
Ln_GDP_region

1990

(15)
Ln_GDP_region

1990

(16)
Ln_GDP_region

2000

(17)
Ln_GDP_region

2000

(18)
Ln_GDP_region

2000

(19)
Ln_GDP_region

2010

(20)
Ln_GDP_region

2010

(21)
Ln_GDP_region

2010
-0.012** -0.01 0.01 0.008 -0.009 -0.006 0.003 -0.033** -0.007 0.003 -0.033**
(0.005) (0.016) (0.009) (0.011) (0.015) (0.012) (0.011) (0.016) (0.012) (0.009) (0.014)

-1.160*** -1.149*** -0.913*** -0.711***
(0.262) (0.427) (0.112) (0.09)
0.015 0.003 -0.008 -0.012

(0.012) (0.015) (0.012) (0.008)
0.0002 0.001 0.001** 0.001**
(0.001) (0.001) (0.001) (0.001)

Country FE YES YES YES YES YES YES YES YES YES YES YES
Time FE NO NO NO NO NO NO NO NO NO NO NO
Observations 537 537 844 844 844 1,209 1,209 1,209 1,051 1,051 1,051
R2 0.906 0.889 0.902 0.912 0.903 0.88 0.916 0.883 0.833 0.893 0.837

Residual Std. Error
0.37

(df=507)
0.401

(df=508)
0.391

(df=802)
0.37

(df=800)
0.39

(df=801)
0.409

(df=1147)
0.342

(df=1145)
0.404

(df=1146)
0.411

(df=995)
0.329

(df=993)
0.406

(df=994)
F Statistic 273*** 255.8*** 205.9*** 256.4*** 207.5*** 211.2*** 302.2*** 215.6*** 89.96*** 145.2*** 91.42***

temperature

Poor

temperature x Poor

temperature²

Note: The regressions estimate the effect of temperature on logarithmized regional GDP p.c. in regressions with the dummy variable Poor (1 if regional GDP is below sample average; 0 otherwise) and its interaction with temperature, as well as temperature squared. 
Regressions are run with Gennaioli et al. (2014) data subsamples for the years 1950, 1960, 1970, 1980, 1990, 2000, 2010 with country fixed effects. Robust clustered standard error estimates (country-level) are presented below the coefficients. Significance levels are 
indicated by *p<0.1; **p<0.05; ***p<0.01.
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Table A.4: Baseline regressions for the effect of temperature fluctuations on nightlights and 

gross cell production in 2015 and 2005 when accounting for country fixed effects 

 

  

Dependent variable
(1)

Ln_nightlights
(2)

Ln_nightlights
(3)

Ln_GCP
(4)

Ln_GCP
-0.122 -0.163** -0.020 -0.033
(0.087) (0.066) (0.02) (0.03)

-5.489*** -1.212***
(0.349) (0.179)

0.132*** 0.024
(0.039) (0.03)

Country FE YES YES YES YES
Time FE NO NO NO NO
Observations 15,533 15,533 14,130 14,130
R2 0.371 0.58 0.84 0.891

Residual Std. Error
2.646

(df=15495)
2.163

(df=15493)
0.379

(df=14098)
0.312

(df=14096)
F Statistic 247.4*** 549.1*** 2381*** 3491***

Diff_min_max_temp

Poor

Diff_min_max_temp x Poor

Note: The regressions estimate the effect of the difference beween the highest and the lowest temperature (measured in a year) on 
logarithmized regional nightlights (gross cell production) in regressions with the dummy variable Poor (1 if regional nightlights 
(gross cell production) is below sample average; 0 otherwise) and its interaction with temperature. Nightlights (gross cell 
production) regressions are run with DHS data for the year 2015 (2005) with country fixed effects. Robust clustered standard 
error estimates (country-level) are presented below the coefficients. Significance levels are indicated by *p<0.1; **p<0.05; 
***p<0.01.
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Table A.5: Baseline regressions for the effect of temperature in December and July on nightlights and gross cell production in 2015 and 2005 when 

accounting for country fixed effects 

 

  

Dependent variable
(1)

Ln_nightlights
(2)

Ln_nightlights
(3)

Ln_nightlights
(4)

Ln_nightlights
(5)

Ln_nightlights
(6)

Ln_nightlights
(7)

Ln_GCP
(8)

Ln_GCP
(9)

Ln_GCP
(10)

Ln_GCP
(11)

Ln_GCP
(12)

Ln_GCP
0.231*** 0.253*** 0.346*** 0.004 -0.001 0.072
(0.071) (0.049) (0.082) (0.013) (0.02) (0.046)

-2.114*** -7.194*** -1.021* -1.375***
(0.597) (0.742) (0.619) (0.285)

-0.106*** -0.0001
(0.024) (0.025)

-0.003 -0.002
(0.003) (0.001)

0.152*** 0.02 0.045 -0.019** -0.027*** -0.036
(0.056) (0.044) (0.352) (0.009) (0.01) (0.044)

0.123*** 0.016
(0.036) (0.013)

0.002 0.0004
(0.008) (0.001)

Country FE YES YES YES YES YES YES YES YES YES YES YES YES
Time FE NO NO NO NO NO NO NO NO NO NO NO NO
Observations 15,533 15,533 15,533 15,533 15,533 15,533 14,130 14,130 14,130 14,130 14,130 14,130
R2 0.387 0.586 0.388 0.378 0.581 0.378 0.839 0.89 0.841 0.841 0.892 0.841

Residual Std. Error
2.613

(df=15495)
2.147

(df=15493)
2.611

(df=15494)
2.632

(df=15495)
2.161

(df=15493)
2.632

(df=15494)
0.379

(df=14098)
0.314

(df=14096)
0.377

(df=14097)
0.377

(df=14098)
0.311

(df=14096)
0.377

(df = 14097)
F Statistic 264.6*** 563.2*** 258.6*** 254.6*** 550.1*** 248.1*** 2372*** 3445*** 2327*** 2400*** 3519*** 2326***

jul_temperature²

dec_temperature

Note: The regressions estimate the effect of the july and december temperature on logarithmized regional nightlights (gross cell production) in regressions with the dummy variable Poor (1 if regional nightlights (gross cell production) is below sample average; 0 
otherwise) and its interaction with temperature, as well as july and december temperature squared. Nightlights (gross cell production) regressions are run with DHS data for the year 2015 (2005) with country fixed effects. Robust clustered standard error estimates 
(country-level) are presented below the coefficients. Significance levels are indicated by *p<0.1; **p<0.05; ***p<0.01.

jul_temperature x Poor

Poor

dec_temperature x Poor

dec_temperature²

jul_temperature
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Table A.6: Baseline regressions for the effect of temperature on regional income, regional 

growth, nightlights and gross cell production when accounting for country and partly time fixed 

effects in subsamples without extreme outliers 

 

 

  

Dependent variable
(1)

Ln_GDP_region
(2)

Ln_GDP_region
(3)

Ln_GDP_region
(4)

Growth
(5)

Growth
(6)

Growth
-0.005 0.006 -0.026** -0.002 -0.032 -0.001
(0.007) (0.009) (0.012) (0.013) (0.025) (0.013)

-0.615*** 0.534*
(0.113) (0.318)
-0.012 0.031
(0.009) (0.022)

0.001* -0.00003
(0.001) (0.001)

Country FE YES YES YES YES YES YES
Time FE YES YES YES NO NO NO
Observations 9,436 9,436 9,436 1,495 1,495 1,495
R2 0.859 0.885 0.86 0.754 0.763 0.754

Residual Std. Error
0.435

(df=9308)
0.393

(df=9306)
0.433

(df=9307)
0.925

(df=1412)
0.908

(df=1410)
0.925

(df=1411)
F Statistic 445.3*** 554.3*** 447.2*** 52.7*** 54.0*** 52.0***

temperature

Poor

temperature x Poor

temperature²

Note: The regressions estimate the effect of temperature on logarithmized regional GDP p.c., regional growth, logarithmized nightlights and logarithmized gross 
cell production in regressions with the dummy variable Poor (1 if regional GDP/nightlights/gross cell production is below sample average; 0 otherwise) and its 
interaction with temperature, as well as temperature squared. Regressions are run with a subset to the Gennaioli et al. (2014), the DHS 2015 and the DHS 
2005 dataset without outliers (if a region's regional GDP, growth, nightlights or gross cell production exceeds five times the sample average) with country and 
partly time fixed effects. Robust clustered standard error estimates (country-level) are presented below the coefficients. Significance levels are indicated by 
*p<0.1; **p<0.05; ***p<0.01.

Dependent variable
(7)

Ln_nightlights
(8)

Ln_nightlights
(9)

Ln_nightlights
(10)

Ln_GCP
(11)

Ln_GCP
(12)

Ln_GCP
0.167** 0.213*** 0.376** -0.013 -0.027** 0.051
(0.067) (0.064) (0.184) (0.011) (0.011) (0.061)

-2.081* -1.432***
(1.092) (0.349)

-0.089** 0.019
(0.043) (0.013)

-0.005 -0.002
(0.005) (0.001)

Country FE YES YES YES YES YES YES
Time FE NO NO NO NO NO NO
Observations 14,507 14,507 14,507 14,107 14,107 14,107
R2 0.297 0.499 0.298 0.856 0.907 0.857

Residual Std. Error
2.639

(df=14469)
2.227

(df=14467)
2.637

(df=14468)
0.354

(df=14075)
0.284

(df=14073)
0.353

(df=14074)
F Statistic 165.1*** 369.9*** 161.6*** 2,705*** 4,184*** 2,633***

temperature

Poor

temperature x Poor

temperature²

Note: The regressions estimate the effect of temperature on logarithmized regional GDP p.c., regional growth, logarithmized nightlights and logarithmized gross 
cell production in regressions with the dummy variable Poor (1 if regional GDP/nightlights/gross cell production is below sample average; 0 otherwise) and its 
interaction with temperature, as well as temperature squared. Regressions are run with a subset to the Gennaioli et al. (2014), the DHS 2015 and the DHS 
2005 dataset without outliers (if a region's regional GDP, growth, nightlights or gross cell production exceeds five times the sample average) with country and 
partly time fixed effects. Robust clustered standard error estimates (country-level) are presented below the coefficients. Significance levels are indicated by 
*p<0.1; **p<0.05; ***p<0.01.
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Table A.7: Baseline regressions for the effect of temperature on regional income, regional 

growth, nightlights and gross cell production with control variables when accounting for 

country and partly time fixed effects 

 

  

Dependent variable
(1)

Ln_GDP_region
(2)

Ln_GDP_region
(3)

Ln_GDP_region
(4)

Growth
(5)

Growth
(6)

Growth
0.005 0.015* -0.004 0.022 -0.02 0.015

(0.008) (0.008) (0.015) (0.028) (0.028) (0.051)
-0.343*** 0.126

(0.086) (0.385)
-0.013** 0.047
(0.007) (0.029)

0.0003 0.0003
(0.0005) (0.002)

0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

-0.126*** -0.110*** -0.118*** -0.079 -0.098 -0.072
(0.041) (0.038) (0.04) (0.11) (0.11) (0.118)

-0.00000* -0.0000 -0.00000* -0.00000 -0.00000 -0.00000
(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)
-0.00000 -0.00000 -0.00000 0.00001 0.00001 0.00001
(0.00000) (0.00000) (0.00000) (0.00001) (0.00001) (0.00002)
-0.081*** -0.083*** -0.082*** 0.218 0.213 0.218

(0.025) (0.021) (0.025) (0.23) (0.227) (0.229)
0.043* 0.044** 0.045** -0.196 -0.194 -0.194
(0.022) (0.021) (0.02) (0.154) (0.15) (0.156)
0.018** 0.017* 0.018** -0.036** -0.036** -0.036**
(0.009) (0.009) (0.009) (0.015) (0.017) (0.015)

0.00000** 0.00000** 0.00000** -0.00000 -0.00000 -0.00000
(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

0.03 0.028 0.027 0.019 0.016 0.016
(0.021) (0.018) (0.02) (0.045) (0.046) (0.049)
1.371 1.672 1.203 9.046 8.114 8.953

(2.236) (1.682) (2.22) (9.739) (9.859) (9.42)
-0.0003 0.001 0.003 -0.06 -0.059 -0.057
(0.016) (0.015) (0.016) (0.074) (0.075) (0.065)

0.335*** 0.282*** 0.329*** 0.319 0.385* 0.315
(0.049) (0.044) (0.047) (0.217) (0.221) (0.209)

0.905*** 0.736*** 0.906*** -11.071*** -9.906*** -11.099***
(0.104) (0.091) (0.103) (2.299) (1.947) (2.349)

0.166*** 0.148*** 0.166*** -0.105 -0.09 -0.105
(0.026) (0.025) (0.026) (0.092) (0.093) (0.089)

Country FE YES YES YES YES YES YES
Time FE YES YES YES NO NO NO
Observations 7500 7500 7500 1505 1505 1505
R2 0.918 0.927 0.918 0.64 0.642 0.64

Residual Std. Error
0.333

(df=7366)
0.314

(df=7364)
0.333

(df=7365)
1.699

(df=1411)
1.695

(df=1409)
1.7

(df=1410)
F Statistic 616.9*** 691.5*** 613.1*** 26.92*** 26.57*** 26.62***
Note: The regressions estimate the effect of temperature on logarithmized regional GDP p.c., regional growth, logarithmized nightlights and logarithmized gross cell 
production in regressions with the dummy variable Poor (1 if regional GDP/nightlights/gross cell production is below sample average; 0 otherwise) and its interaction with 
temperature, temperature squared, as well as with a large number of control variables. Regressions are run with the Gennaioli et al. (2014), the DHS 2015 and the DHS 2005 
dataset with country and partly time fixed effects. Robust clustered standard error estimates (country-level) are presented below the coefficients. Significance levels are 
indicated by *p<0.1; **p<0.05; ***p<0.01.

temperature x Poor

Ln_Cum_Oil_Gas_Prod

Ln_Pop_density

CapitalisinRegion

Ln_GDP_country

YearsofEducation

Latitude

Area_sqkm

Malaria_ecology

km_length_coast

nbr

nbr_nr

Temperature

Poor

Temperature²

Landlockedcountry

Landlockedregion

dist_gg
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Table A.7 continued: Baseline regressions for the effect of temperature on regional income, 

regional growth, nightlights and gross cell production with control variables when accounting 

for country and partly time fixed effects 

 

  

Dependent variable
(7)

Ln_nightlights
(8)

Ln_nightlights
(9)

Ln_nightlights
(10)

Ln_GCP
(11)

Ln_GCP
(12)

Ln_GCP
0.036 0.028 0.455 -0.011 -0.065 0.041

(0.049) (0.077) (0.333) (0.013) (0.044) (0.044)
-1.389 -2.308*
(1.786) (1.328)

0.01 0.062
(0.064) (0.047)

-0.01 -0.001
(0.008) (0.001)

-0.032 -0.028 -0.028 -0.033** -0.021* -0.032**
(0.037) (0.035) (0.038) (0.016) (0.012) (0.016)

0.00000*** 0.00000*** 0.00000*** 0.00000 0.00000
(0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

-0.016 -0.014 -0.014 -0.003 -0.003
(0.018) (0.018) (0.017) (0.01) (0.009)
0.050* 0.042 0.051* -0.012 -0.009 -0.012
(0.03) (0.032) (0.03) (0.01) (0.009) (0.01)

-0.0002** -0.0002* -0.0002** 0.00001 0.00003
(0.0001) (0.0001) (0.0001) (0.00003) (0.00003)

0.151 0.19 0.337 0.249 0.219
(0.894) (0.873) (0.945) (0.228) (0.177)

0.141*** 0.132*** 0.140*** 0.002* 0.002** 0.002*
(0.005) (0.008) (0.005) (0.001) (0.001) (0.001)
0.019 0.015 0.025 -0.03 -0.024 -0.029

(0.078) (0.076) (0.08) (0.032) (0.03) (0.032)
0.057*** 0.056*** 0.057*** 0.001 0.001 0.001
(0.014) (0.012) (0.014) (0.001) (0.001) (0.001)
0.908 1.244* 0.942 -0.550* -0.575* -0.563**

(0.589) (0.638) (0.576) (0.284) (0.311) (0.274)
-6.267* -5.965* -6.302* -0.078 0.03 -0.09
(3.779) (3.56) (3.81) (0.561) (0.534) (0.559)
2.077 2.016 1.952 -0.019 -0.121 -0.023

(3.195) (3.143) (3.19) (0.486) (0.467) (0.487)
-0.319 -0.256 -0.296 -0.057 -0.06 -0.053
(0.441) (0.421) (0.44) (0.068) (0.065) (0.066)

-0.00000 -0.00000 -0.00000 0.00000 -0.00000 0.00000
(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)
0.00000 0.00000 0.00000 -0.00000 -0.00000 -0.00000

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)
0.00000*** 0.00000*** 0.00000*** -0.00000 -0.00000 -0.00000
(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)
0.0005* 0.0004 0.0005* 0.0002* 0.0001 0.0002*
(0.0003) (0.0003) (0.0003) (0.0001) (0.0001) (0.0001)
-0.055 -0.057 -0.055 -0.02 -0.014 -0.019
(0.056) (0.053) (0.056) (0.017) (0.013) (0.017)

0.03 0.039 0.018 -0.013 -0.002 -0.014
(0.078) (0.076) (0.076) (0.02) (0.02) (0.021)

Country FE YES YES YES YES YES YES
Time FE NO NO NO NO NO NO
Observations 5231 5231 5231 5218 5218 5218
R2 0.619 0.625 0.619 0.763 0.804 0.764

Residual Std. Error
1.969

(df=5186)
1.952

(df=5184)
1.967

(df=5185)
0.325

(df=5177)
0.296

(df=5175)
0.325

(df=5176)
F Statistic 191.1*** 188.0*** 187.2*** 417.8*** 504.6*** 408.1***
Note: The regressions estimate the effect of temperature on logarithmized regional GDP p.c., regional growth, logarithmized nightlights and logarithmized gross cell 
production in regressions with the dummy variable Poor (1 if regional GDP/nightlights/gross cell production is below sample average; 0 otherwise) and its interaction with 
temperature, temperature squared, as well as with a large number of control variables. Regressions are run with the Gennaioli et al. (2014), the DHS 2015 and the DHS 2005 
dataset with country and partly time fixed effects. Robust clustered standard error estimates (country-level) are presented below the coefficients. Significance levels are 
indicated by *p<0.1; **p<0.05; ***p<0.01.

Proximity_to_Protected_Areas

proximity_to_water

Rainfall

Slope

Wet_Days

Irrigation

ITN_Coverage

Malaria_Incidence

Malaria_Prevalence

PET

proximity_to_national_borders

Aridity

drought_episodes

Enhanced_Vegetation_Index

Frost_Days

global_human_footprint

growing_season_length

All_Population_Count

Latitude

Temperature

Poor

temperature x Poor

Temperature²
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Table A.8: Baseline regression with country-level temperature and income data from Gennaioli 

et al. (2014) when accounting for country and time fixed effects in order to compare results 

with Burke et al. (2015,2018) 

 

Dependent variable
(1)

Ln_GDP_region
0.351*
(0.185)
-0.007
(0.026)

Country FE YES
Time FE YES
Observations 487
R2 0.98

Residual Std. Error
0.189

(df=358)
F Statistic 133.8***

Temperature

Temperature²

Note: The regressions estimate the effect of temperature and 
temperature squared on logarithmized regional GDP p.c.. Regressions 
are run with country-level data (country averages) from Gennaioli et al. 
(2014) with country and time fixed effects. Robust clustered standard 
error estimates (country-level) are presented below the coefficients. 
Significance levels are indicated by *p<0.1; **p<0.05; ***p<0.01.


