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Evaluating the Joint Efficiency of German Trade Forecasts
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A nonparametric multivariate approach
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Abstract

I analyze the joint efficiency of export and import forecasts by leading economic research
institutes for the years 1970 to 2017 for Germany in a multivariate setting. To this end, I
compute, in a first step, multivariate random forests in order to model links between forecast
errors and a forecaster’s information set, consisting of several trade and other macroeco-
nomic predictor variables. I use the Mahalanobis distance as performance criterion and, in
a second step, permutation tests to check whether the Mahalanobis distance between the
predicted forecast errors for the trade forecasts and actual forecast errors is significantly
smaller than under the null hypothesis of forecast efficiency. I find evidence for joint fore-
cast inefficiency for two forecasters, however, for one forecaster I cannot reject joint forecast
efficiency. For the other forecasters, joint forecast efficiency depends on the examined fore-
cast horizon. I find evidence that real macroeconomic variables as opposed to trade variables
are inefficiently included in the analyzed trade forecasts. Finally, I compile a joint efficiency
ranking of the forecasters.
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1 Introduction

When forming macroeconomic expectations, economic agents tend to rely on professional fore-

casts (Carroll, 2003). The optimality of these forecasts is therefore of crucial importance when it

comes to policy making or investment decisions. Generally, a forecast is defined as optimal if it

is unbiased and efficient, i.e., if its forecast error is unpredictable (Mincer and Zarnowitz, 1969).

Correctly predicting trade developments plays a decisive role, as these dynamics greatly influ-

ence output growth and price levels through inflationary pressures from import prices (D’Agostino

et al., 2017). Furthermore, many macroeconomic forecasters use a disaggregated approach when

forming an economic growth (GDP) forecast. In other words, research institutes form individual

forecasts for all components of the GDP, such as exports or domestic demand, and conflate the

results to a prediction of overall output.1 Hence, optimal forecasts of GDP components are an es-

sential part of an optimal overall economic growth forecast. Research in this field mostly focuses

on predictions of private consumption (see, for instance, Vosen and Schmidt, 2011). Regarding

trade developments, Ito (1990) finds behavioral biases in expectations of importers and exporters

with respect to exchange rate changes, warranting a closer inspection of macroeconomic trade

forecasts. Despite the important role of trade developments in macroeconomic forecasting, the

evaluation of trade forecasts has received little attention in the academic literature.

Research on trade forecasts has mostly focused on their formation, where one strand of liter-

ature aims at modeling economic environments to simulate trade dynamics by means of large

structural models (Hervé et al., 2011; Riad et al., 2012) and another strand of literature analyzes

time series models in order to optimize their forecasting performance (Frale et al., 2010; Jakai-

tiene and Dées, 2012; Keck et al., 2009; Yu et al., 2008). Despite the increased public attention

to German trade policy in recent years, studies with a focus on German trade are scarce. For

German and Swiss export forecasts, Grossmann and Scheufele (2019) show that survey-based

indicators improve forecast accuracy. Elstner et al. (2013) use manufacturing orders received for

1For a comparison of direct and disaggregated forecasting approaches, see, for instance, Angelini, Bańbura, and
Rünstler (2010) and Heinisch and Scheufele (2018).
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Germany, the real effective exchange rate, and an export expectations survey to forecast German

exports. Jannsen and Richter (2012) predict German capital goods exports by establishing a ca-

pacity utilization indicator for German trading partners. Regarding German imports, Grimme,

Lehmann, and Noeller (2018) introduce a leading indicator for total import growth based on the

import demand of a country’s main trading partners. Hetemäki and Mikkola (2005) compare

the forecast accuracy of German paper import forecasts computed by means of several univari-

ate time series models, single equation econometric models, multivariate systems models, and

combinations thereof. The evaluation of trade forecasts has not received much attention in the

literature, even though inefficient trade forecast can potentially be costly, if a protectionist trade

policy is pursued based on such forecasts.

Several research institutes in Germany frequently publish economic forecasts. The evaluation

of these forecasts is widespread and has received much attention in the scientific community.

Kirchgässner (1993) and Sinclair, Stekler, and Müller-Dröge (2016) combine early approaches

by Kirchgässner (1984) and Neumann and Buscher (1980) to rank several German research in-

stitutes based on the properties of their forecasts in a multivariate setting. Other studies focus on

the effects of costly forecast revisions (Kirchgässner and Müller, 2006), or analyze the change

of forecast accuracy over time (Heilemann and Stekler, 2013). Döpke and Fritsche (2006) use a

panel-based approach to analyze growth and inflation forecasts (for a time series approach, see

Kirchgässner and Savioz, 2001). Behrens, Pierdzioch, and Risse (2018a,c) use nonparametric

tree-based models in univariate settings to analyze German GDP growth and inflation forecasts.

Yet again, the evaluation of German trade forecasts has not received much attention, despite Ger-

many’s role as one of the largest exporters in the world and an increasing interest in Germany’s

trade policies in recent years. This study is a first attempt at closing this gap.

I focus on the evaluation of joint efficiency of trade forecasts for Germany in a multivariate set-

ting, as both export and import volumes determine a country’s net exports. Since net exports

are often in the focus of political debates on the introduction of protectionist trade policies, it

is crucial to consider both trade aggregates in a multivariate approach. Furthermore, macroeco-

nomic aggregates, such as the exchange rate or the oil price, tend to influence export volumes
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as well as import volumes at the same time (Engelke et al., 2019). New techniques for studying

the quality of a vector of forecasts in a multivariate setting have mushroomed in recent years.

Sinclair, Stekler, and Carnow (2012) for instance, have adapted the Holden and Peel (1990) ap-

proach to weak and strong forecast efficiency to a multivariate setting. They use a VAR model

on growth, inflation, and unemployment forecasts to analyze their bias and efficiency, and the

Mahalanobis distance to assess forecast accuracy. In a multivariate setting, the Mahalanobis

distance is a superior performance metric compared to the Euclidean distance as it captures cor-

relations between the response variables (for further details on the Mahalanobis distance, see

McLachlan, 1999). The Mahalanobis distance is used as performance metric for macroeconomic

forecasts in several studies (see, e.g., Banternghansa and McCracken, 2009; Sinclair and Stekler,

2013; Sinclair, Stekler, and Carnow, 2015). Behrens, Pierdzioch, and Risse (2018b) incorporate

the Mahalanobis distance in a nonparametric multivariate random forest model to study the joint

efficiency of GDP growth and inflation forecasts. Multivariate tree-based models have first been

introduced by Segal (1992) (see also Breiman, 2001; Segal and Xiao, 2011). I adapt the Behrens

et al. (2018b) model to a trade setting, where I analyze the joint efficiency of trade forecasts for

Germany. I use a novel data set, consisting of annual export and import forecasts for the years

1970 to 2017 with a forecast horizon of half-a-year and one year. Forecasts are available for

four leading German economic research institutes, a collaboration of German forecasters, and

one international forecaster. By means of these data, I compute multivariate random forests to

model links between forecast errors and a forecaster’s information set, which, in this study, con-

sists of several trade and macroeconomic predictor variables. The reason I use a nonparametric

tree-based approach is that linear forecasting models or evaluation techniques run into problems

with the data at hand, as they exhibit relatively few and irregularly spaced observations, as well

as possible nonlinearities among the predictor variables or between predictor and response vari-

ables.2 A nonparametric approach overcomes resulting problems, such as a lack of degrees of

freedom or model misspecification issues.

2For details on the analyzed data, see Section 3.
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The remainder of this paper is structured as follows: I establish the concept of multivariate

random forests in chapter 2. In chapter 3 the data are presented and chapter 4 outlines the

empirical analysis. In chapter 5 I conclude.

2 Multivariate Random Forests

In order to motivate my nonparametric tree-based approach to test for joint forecast efficiency, I

first ellaborate on the problems which may arise when using the widely recognized linear Mincer

and Zarnowitz (1969) approach, before introducing multivariate random forests. Using a linear

ordinary least squares (OLS) regression framework, Mincer and Zarnowitz define a forecast as

efficient and unbiased if the realization of a given variable equals its forecast plus a residuum.

However, several problems arise: First, the researcher has to define a linear function to model the

relationship between the predictor and the forecast, a-priori, where the choice of predictor can

be economically motivated but is still arbitrary to some degree. Second, with only one predictor,

the implemented information set is quite narrow. One could argue to add further predictors, yet,

this results in a loss of degrees of freedom and is especially problematic if a researcher only

has a limited number of observations available, as is the case with the study at hand. Another

option would be to reestimate the linear model with different combinations of predictors, which

could quickly become a trial-and-error search. Furthermore, the relationship between the pre-

dictors and the forecasted variable might not always be linear. While this can, to some degree,

be embedded in a linear regression framework, for instance, by means of squared predictors or

indicator functions, again, the nonlinear relationship needs to be predefined by the researcher

and can take on many more forms than quadratic or piecewise constant functions. Analogous

assumptions need to be made if the researcher suspects an interdependency between two pre-

dictors. Once more, the two predictors could be linked multiplicatively in the OLS framework.

However, this does not allow for a flexible interaction between the chosen predictors.

A way to overcome these drawbacks is to use a multivariate random forest model.3 Roughly

3For a comprehensive introduction to tree-based models, see Hastie et al. (2009) and James et al. (2015). For
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speaking, tree-based models let the data decide on an appropriate form to model interdependen-

cies, rather than, a-priori, fitting a possibly misspecified model, which is not supported by the

data. Tree-based models are nonparametric approaches that very broadly operate in a two step

process.

1. The predictor space, Xt , consisting of all possible combinations of the predictor variables,

{x1t ,x2t , ...,xit}, is split into non-overlapping regions, R, using a subset of the analyzed

dataset, the training data.

2. By means of the remaining test data, the so called out of bag data, a prediction is made for

every observation based on the region to which it is assigned. The prediction is the mean

of all response variables, i.e. the vectors of forecast errors, et+1, in that region.

I now turn to the question how the predictor space is partitioned by the tree. To simplify the

explanation of the basis of this recursive and binary process of region building, I first examine a

univariate tree and use a notation similar to the one used by Hastie et al. (2009), where I drop the

time index, t. In a first step, the whole data set is located at the top of the tree and all observations

are part of one single region. Here, at the first node or root of the tree, similar to a standard least-

squares regression, the residual sum of squares (RSS) is minimized by choosing a partitioning

predictor, j, and a cut point, c, to split the dataset. This split creates two subsequent regions and

observations are sent down the left branch to region one, R1, if j ≤ c and down the right branch

to region two, R2, if j > c. Formally, the regions are built, such that R1( j,c) = {x j|x j ≤ c} and

R2( j,c) = {x j|x j > c} solve min j,c{RSS1 +RSS2}, where RSSm = ∑x j∈Rm( j,c)(ei− ēm)
2, with

ēm = mean{ei|x j ∈ Rm( j,c)}, m = {1,2}, and ei being a forecast error sent to region m. This

process of partitioning the predictor space is continued until an a-priori defined stopping criterion

is met. Stopping criteria are for instance a minimum number of response variables, i.e. forecast

errors, at the terminal nodes or a maximum number of overall nodes. Figure 1 depicts this process

further details on random forests, see Breiman (2001) and on multivariate random forests, see Segal and Xiao (2011).
For a numerical example of a multivariate random forest, see Behrens et al. (2018b).
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of region building. In the left panel an exemplary tree is depicted. At each node, the dataset is

divided into two further regions. At the root, data with partitioning predictors x1 > c1 are sent

to the right child node, where another split occurs. Here, data with x1 ≤ c3 are sent to the left,

reaching a terminal node, or leaf, where the tree predicts a mean forecast error of ē3. Data with

x1 > c3 are sent to the right node, with the partitioning predictor x2. If x2 > c4, ē5 is the mean

forecast error for these data, otherwise ē4. Analogous, for data with x1 ≤ c1, the prediction of

the forecast error is ē1 if x2 ≤ c2 and ē2 if x2 > c2. The panel on the right shows the predictor

set which has been partitioned by this exemplary tree. It nicely depicts how a single tree fully

describes the whole feature space. For all combinations of values of xi, with i = {1,2}, the tree

predicts the respective mean forecast error of each region.

Figure 1: Binary and Recursive Region Building Process of a Univariate Regression Tree

e3 e4 e5e1 e2

x1 ≤ c1

x1 ≤ c3

x2 ≤ c4x2 ≤ c2

e1

e2

e3

e4

e5

c2

c4

c1 c3

X2

X1

Note: Left panel: Exemplary univariate regression tree with partitioning predictors, xt , split points, ck, and mean
response of forecast errors, ēi. With t = {1,2},k = {1 : 4}, i = {1 : 5}. Right panel: Partitioned feature space with
the respective mean responses of forecast errors for each region. Example based on James et al. (2015, Figure 8.3).

I now adapt this process to a multivariate setting, in which the response variable is a vector,

et+1, of forecast errors, for instance computed from export and import growth forecasts. Hence,

an appropriate RSS measure, which measures the distance of the vector of forecast errors, ei,
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sent to node m from the vector of the means of all response variables in region m, ēm.4 To this

end, I use the Mahalanobis distance as multivariate residual sum of squares (MRSS) measure

as it appropriately weights the distance between ei and ēm to account for differences in the vari-

ances of the studied forecast errors and possible correlations (McLachlan, 1999). It is defined as

MRSSm = ∑x j∈Rm( j,c)(ei− ēm)V−1(ei− ēm)
′, where V−1 is the variance-covariance matrix of the

forecast errors.5 When V−1 is the identity matrix, the Mahalanobis distance equals the Euclidean

distance (see, for example, Sinclair, Stekler, and Müller-Dröge, 2016). Another advantage of the

Mahalanobis distance is, that, besides exchanging MRSS for RSS, the computation of a multi-

variate regression tree is the same as in the univariate case. In fact, there are two differences

between a multivariate and a univariate regression tree. The first one being the different mea-

sures of the residual sum of squares. The second difference is that a multivariate tree predicts a

vector of response variables, i.e. et+1, at the terminal nodes and a univariate tree predicts single

responses, i.e. et+1.

The specific feature of a random tree is that for every split only a random subset of the elements

of Xt is considered as partitioning predictors at each node of a tree. This characteristic decor-

relates the predictions from individual trees and speeds up computations. However, a common

problem with tree based models is that their potentially complex and hierarchical structure causes

predictions of a single univariate or multivariate tree to be highly variable. In order to overcome

this issue, I compute random forests, which use a large number of trees, grown independently

from each other, to model the response variable (Breiman, 2001). I use bootstrap resampling and

estimate a random tree on every bootstrapped dataset.6 A further advantage of using a bootstrap

is that it automatically generates out of bag test data, by means of which the performance of

a random tree can be measured using the Mahalanobis distance as performance criterion.7 In

Section 4.1, I will elaborate on the Mahalanobis distance as key performance measure in my

4I again drop the time index, t, for simplification.
5For the case of a region-specific covariance matrix, see Segal (1992).
6For an introduction to bootstrap resampling, see for instance James et al. (2015).
7For an introduction to out of bag error estimation and an application to regression trees, see Hastie et al. (2009).
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analysis.

3 The Data

I use a novel data set on annual export and import growth forecasts for Germany published by six

economic research institutes. The list of forecasters comprises four German economic research

institutes (alphabetical order): Deutsches Institut für Wirtschaftsforschung Berlin (DIW), Ham-

burgisches Weltwirtschaftsarchiv/-institut (HWWI), ifo Institut für Wirtschaftsforschung Munich

(ifo), Institut für Weltwirtschaft Kiel (IfW); one collaboration of German economic research in-

stitutes: Gemeinschaftsdiagnose (GD); and the Organisation for Economic Co-operation and

Development (OECD) as an international forecaster to check for a possible advantage due to

geographical proximity of German forecast institutes (see for instance, Bae et al., 2008; Berger

et al., 2009; Malloy, 2005). Forecasts are available for the years from 1970 to 2017, where the

number of forecasts per year differs across forecasters and decades. I focus on annual forecasts

with a forecast horizon of one year (1Y) and half-a-year (.5Y), due to data availability. The for-

mer are published at the turn of the year, whereas the latter are published mid-year. An exception

are the forecasts formed by GD, which are published roughly two months before the other fore-

casts, namely in April and October. GD’s forecasts, therefore, exhibit a longer forecast horizon

than the other forecasts. In addition to the forecast data, I use initial release data from the German

statistical office to measure realized values of export and import growth.8 The German statistical

office publishes such realized values for national accounts data of the previous year within the

first months of a given year. In using these data, the effects of data revisions are minimized.

I subtract these realized values for export and import growth from the forecast for the respective

year to compute the forecast error (see also, Behrens et al., 2018a), et(h),i,z = ŷt(h),i,z− yt,z. Here,

ŷt(h),i,z denotes the h= {0.5, 1}-year-ahead annual forecast formed by forecaster i for z= {export,

8Data taken from ”Wirtschaft und Statistik“ publications: https://www.destatis.de/EN/Publications/
WirtschaftStatistik/WirtschaftStatistik.html.
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import} for year t = {1970 : 2017}. After the German reunification the forecasters switch from

forecasts for West-Germany to forecasts for reunified Germany at different dates between 1992

and 1993. I account for this by adjusting the corresponding time series for realized export and

import growth for each forecaster.

Table 1: Descriptive Statistics of Forecast Errors

Forecaster Horizon N MEAN RMSE RMAE N MEAN RMSE RMAE

Exports Imports

DIW ...555YYY 36 0.20 2.33 1.37 36 0.71 2.89 1.43
111YYY 48 -0.78 5.06 1.98 48 -0.28 3.95 1.76

HWWI ...555YYY 31 -0.11 2.41 1.32 31 0.24 2.76 1.44
111YYY 43 -0.14 4.99 1.96 42 0.35 3.98 1.77

ifo ...555YYY 41 -0.06 2.37 1.37 41 0.02 2.27 1.29
111YYY 44 -0.50 4.70 1.91 44 -0.09 3.48 1.66

IfW ...555YYY 39 0.26 2.74 1.42 39 0.57 2.43 1.40
111YYY 47 -0.84 4.32 1.83 47 0.08 3.44 1.66

GD ...555YYY 46 -0.58 3.77 1.72 47 -0.10 3.15 1.54
111YYY 48 -0.16 5.29 2.00 48 0.13 4.20 1.80

OECD ...555YYY 46 0.38 3.19 1.58 46 0.29 3.51 1.60
111YYY 46 0.09 5.47 2.00 46 0.29 4.16 1.74

Notes: N: Number of observations. MEAN: Arithmetic mean. RMSE: Root-mean-squared error. RMAE: Root-mean-absolute error. .5Y:
Half-a-year. 1Y: One year.

Table 1 shows the descriptive statistics for the forecast errors of all forecasters in the sample.

Most observations (N = 48) are available for one-year-ahead forecasts of DIW and GD, whereas

HWWI contributes the fewest observations (N = 31) for their half-a-year-ahead forecasts. The

mean forecast errors are close to zero or at least smaller than one. Regarding the root mean

squared error (RMSE) and root mean absolute error (RMAE) statistics, the results are, as one

could have anticipated, generally larger for the one-year-ahead forecasts. Compared to mean

forecast errors, RMSEs, and RMAEs usually obtained in the more common analyses of Ger-

man inflation and growth forecasts, the depicted statistics are relatively high (see, for instance,

Behrens, Pierdzioch, and Risse, 2018a; Döpke, Fritsche, and Pierdzioch, 2017). This is most
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probably due to the fact that trade aggregates tend to be rather volatile and therefore harder to

predict. Döhrn and Schmidt (2011), for instance, analyze German macroeconomic forecasts and

find that exports, imports, and investments are the most volatile components of GDP.

Table 2: Predictors

Predictors Group ln Lag Description Source

Production Germany M - Real Y 1 Year-on-year rate of change of the monthly OECDGerman total manufacturing output.

Production United States M - Real Y 1 Year-on-year rate of change of the monthly OECDU.S. total manufacturing output.

Production France M - Real Y 1 Year-on-year rate of change of the monthly OECDFrench total manufacturing output.

Production United Kingdom M - Real Y 1 Year-on-year rate of change of the monthly OECDU.K. total manufacturing output.

Production Italy M - Real Y 1 Year-on-year rate of change of the monthly OECDItalian total manufacturing output.

Production Netherlands M - Real Y 1 Year-on-year rate of change of the monthly OECDDutch total manufacturing output.

Order inflow M - Real Y 1 Year-on-year rate of change of the industrial orders BUBAreceived for Germany; calendar and seasonally adjusted.

Unemployment M - Real N 1 Monthly unemployment rate (in percent of civilian BUBAlabor) for Germany; calendar and seasonally adjusted.

Oil price M - Prices Y 0 Year-on-year rate of change of the monthly FREDcrude oil price (WTI); dollars per barrel.

Climate M - Survey N 0 Monthly ifo business tendency survey for manufacturing for FREDGermany; half-a-year-ahead tendency, seasonally adjusted.

Climate (expectations) M - Survey N 0 Monthly ifo business tendency survey for manufacturing for FREDGermany; situation in six months; seasonally adjusted.

OECD leading (normalized) M - Composite N 2 Monthly normalized OECD composite OECDleading indicator for Germany.

Real effective exchange rate T - Prices Y 1 Year-on-year rate of change of the monthly narrow BISeffective exchange rate for Germany; CPI-based.

Exports T - Real Y 12 12-months-lag of the year-on-year rate of change of FREDGerman value goods exports; seasonally adjusted.

Imports T - Real Y 12 12-months-lag of the year-on-year rate of change of FREDGerman value goods imports; seasonally adjusted.

Export Prices T - Prices Y 1 Year-on-year rate of change of the monthly index of German DESTATISexport prices; standard international trade classification.

Import Prices T - Prices Y 1 Year-on-year rate of change of the monthly index of German DESTATISimport prices; standard international trade classification.

Consumer Prices M - Prices Y 0 Year-on-year rate of change of the monthly German BUBAconsumer price index; calendar and seasonally adjusted.

Producer Prices M - Prices Y 0 Year-on-year rate of change of the monthly German FREDdomestic producer price index for manufacturing.

Notes: BIS - Bank for International Settlements, https://www.bis.org/statistics/index.htm; BUBA - German Central Bank,
http://www.bundesbank.de/Navigation/EN/Statistics/statistics.html; DESTATIS - Federal Statistical Office of Germany,

https://www.destatis.de/EN/FactsFigures/FactsFigures.html; FRED - Federal Reserve Bank of St. Louis,
https://fred.stlouisfed.org/; OECD - Organisation for Economic Co-operation and Development, http://stats.oecd.org/. ln:

natural logarithmic transformation, Y - yes, N - no, M - Macroeconomic variable, T - Trade variable. − Lag: Publication lags in months added
where necessary (Drechsel and Scheufele, 2012, table 3).

Table 2 summarizes the predictors I use to model a forecaster’s information set at the time of
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forecast formation. A recent study of euro-area trade by D’Agostino et al. (2017) has shown

that accounting for the interaction of macroeconomic and trade variables is essential to accu-

rately predict future trade developments. I follow their approach and include, in addition to

several macroeconomic variables, trade variables, namely export and import prices for Germany,

German export and import volumes lagged by one year, as well as the German real effective ex-

change rate, which serves as a measure of international price competitiveness (see also Grimme

et al., 2018; Lehmann, 2015). Consistent with recent research on German growth and inflation

forecasts (Behrens et al., 2018c; Döpke et al., 2017) my list of macroeconomic predictors to as-

sess the state of the German economy comprises German industrial orders, German consumer

and producer price indices, the German unemployment rate, industrial production for Germany,

and the oil price. I furthermore add industrial production for Germany’s main trading partners

since 1970, i.e. the United States, France, the United Kingdom, Italy, and the Netherlands, as

a leading indicator of the respective country’s economic development (see, e.g., Guichard and

Rusticelli, 2011, who show that industrial production indices can improve trade forecasts).9 Due

to possible delayed effects of a change in the real effective exchange rate, I add the last four

lags of the German real effective exchange rate as predictors (for evidence of a J-curve effect

for German trade partners, see Hacker and Hatemi-J, 2004). Following Frale et al. (2010) and

Lehmann (2015), I also use macroeconomic survey data as predictors, namely German business

tendency surveys for manufacturing (current and future tendency). As a composite indicator, I

include the normalized OECD leading indicator for Germany. The predictors are available on a

monthly basis. I account for a publication lag of the forecasts by using predictors lagged by one

period. In other words, if a forecast was published in, for instance, December, I assume that it

is based on predictors available in November (regarding the publication lags of the predictors, I

follow Drechsel and Scheufele, 2012). As aforementioned, I model the information available to

a forecaster when he or she formed a particular forecast. I therefore follow Behrens et al. (2018c)

and use a backward looking moving-average of order 12 to minimize data revision effects on the

9Due to data availability and the reason that China has only fairly recently become one of Germany’s main
trading partners, I do not include China’s industrial production in my list of predictors.
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CPI, PPI, the real effective exchange rate, industrial production, orders, and trade variables, as

for these predictors only revised time series are available (see also, Pesaran and Timmermann,

1995).

4 Empirical Analysis

4.1 The Model

For computations I use the R Core Team (2018) programming environment for statistical com-

puting and the add-on package "MultivariateRandomForest" (Rahman, Otridge, and Pal, 2017).

Regarding the parameters of the model, I follow Behrens et al. (2018b) and adapt the common

approach in the relevant literature (see, e.g., Hastie et al., 2009) in setting the number of predic-

tors used for building a random forest to the square root of the number of total predictors, and I

set the number of terminal nodes to five observations.

Figure 2: Out of Bag Data in Random Forest
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Note: The figure illustrates out of bag predictions of an exemplary random forest for the half-a-year-ahead forecasts
of GD, computed by means of bootstrapped data.

12



The process of building a random forest consists, in a first step, of growing a series of {1:100}

single random trees. Each tree is grown from approximately two thirds of a bootstrapped data set.

Such a tree is subsequently used to compute predictions about forecast errors in the remaining

third of the bootstrapped data, i.e. the out of bag data. The plot in the left panel of figure 2

depicts for the one-year-ahead forecasts of GD a series of {1:100} random trees. It visualizes the

reason for growing a random forest instead of working with a single tree. In adding more trees

to the random forest, the high variability of the Mahalanobis distance, when using only a minor

number of trees, is reduced until it fluctuates around a low level. The plot on the right illustrates

that, in the process of growing a random forest, every data point is used at least once as an out

of bag prediction. Here, the N = 48 one-year-ahead forecasts of GD are depicted and when a

random forest consists of about 10 random trees, every observation has been used as an out of bag

prediction. Finally, the generated out of bag data are used to analyze the performance of a random

forest, which I measure by means of the out of bag Mahalanobis distance, measuring the distance

between the predicted forecast error and the actual forecast error. As opposed to the Euclidean

distance, the Mahalanobis distance captures possible correlations between the response variables

in a multivariate analysis (McLachlan, 1999). Finally, I use the Mahalanobis distance to infer

the joint efficiency of the analyzed trade forecasts. Obtaining the Mahalanobis distances in my

analysis follows a three-way process:

1. In building a random forest, the out of bag predictions of the single random trees are

averaged over all trees as the random forest grows.

2. The Mahalanobis distance is used to measure the distance between the predicted forecast

errors computed in step one and the actual forecast errors. In doing so, a series of {1:100}

Mahalanobis distances is recorded as the random forest grows.

3. Finally, the median and minimum of the series of Mahalanobis distances obtained in step

two is used as accuracy criterion.

The computation of the Mahalanobis distance is executed by means of a bias adjusted variance-

covariance matrix of the predicted and actual forecast error, V =
(Vêt+1+Vet+1)(N−1)

(N−2) , where N
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is the number of observations, V is the pooled variance-covariance matrix of the bias-corrected

variance-covariance matrices of êt+1 and et+1, with êt+1 denoting the averaged out of bag fore-

casts in a random forest obtained above in step one (see also, Behrens et al., 2018b).

To account for the fact that the computed median and minimum Mahalanobis distances are ran-

dom numbers, the aforementioned steps are repeated D = 1,000 times. In order to asses the

informative value of the obtained Mahalanobis distances, I run a permutation test by computing

a second series of Mahalanobis distances, which should not have any predictive value for the

forecast errors, and comparing these Mahalanobis distances with the ones computed by means

of the original data. The former Mahalanobis distances are obtained from estimating a multi-

variate random forest 1,000 times on a permuted data set, where the matrix of forecast errors is

permuted by sampling without replacement from the original data. Under the null hypothesis of

joint forecast efficiency, the set of predictors should neither have predictive power for the per-

muted forecast errors nor for the corresponding, original forecast errors. In other words, under

the null hypothesis, the Mahalanobis distance computed by means of estimating a multivariate

random forest on the original data should not be smaller than the Mahalanobis distance computed

by means of estimating a multivariate random forest on the permuted data.

In a final step, I test for the statistical significance of the difference between the Mahalanobis

distances, ∆M, by regressing it on a constant: ∆Mi = β + µi, with i = {1 : D} and µi being an

error term. The difference between the Mahalanobis distances is computed as ∆Mi = MO
i −MP

i ,

where MO
i is the D×1 vector of Mahalanobis distances estimated from the original data and MP

i

is the D×1 vector of Mahalanobis distances estimated from the permuted data. I therefore reject

the null hypothesis of joint forecast efficiency, if the estimated coefficient, β̂ , is significantly

negative. The estimates of such a constant are computed by means of an OLS regression model,

as well as a robust linear regression model (RLM) using Huber’s loss function. The latter model

is used as a robustness check in accounting for the tail behavior of the sampling distribution of

∆M.10

10I follow Behrens et al. (2018b) in this approach and use the R add-on package “MASS” for computations
(Venables and Ripley, 2002).
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Figure 3: Derivation of the Sampling Distribution of ∆M for IfW (1Y-Forecasts)
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Note: ∆M = MO−MP, i.e., ∆M is the difference between the median Mahalanobis distance computed by means of
the original data and the Mahalanobis distance computed by means of the permuted data.

The derivation of the sampling distribution of ∆M for IfW’s one-year-ahead trade forecasts is

exemplarily depicted in Figure 3. From a series of {1:100} Mahalanobis distances, similar to

the ones shown in the left panel of Figure 2, I select the median and minimum distance, which

are both random numbers. Next, the process is repeated 1,000 times and, as an example, the

left panel of Figure 3 illustrates the obtained sampling distribution of the median Mahalanobis

distances for IfW. Its shape is common for Mahalanobis distances, as they are distributed as

non-central F-distributions (McLachlan, 1999). The right panel shows the sampling distribution

of the differences between the Mahalanobis distances computed from the original and the per-

muted data. In order to account for negative skewness and excess kurtosis of the distribution,

I use ordinary OLS models as well as robust RLM models, when analyzing the mean of ∆M.
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Furthermore, negative skewness of the distribution is to be expected in the case that forecasts

are not jointly efficient. This is because if forecasts are jointly inefficient, at least one predictor

has predictive power, resulting, over multiple simulations, in a significantly shorter Mahalanobis

distance estimated on the original data relative to the one estimated on the permuted data. The

results presented in section 4.2 confirm this train of thought, as I find significant evidence against

the joint efficiency of IfW’s one-year-ahead trade forecasts.

4.2 Results

Table 3 depicts the results of the model’s basic specification. Bold numbers indicate significance

for a negative test statistic at least at the 5%-level. I only reject joint forecast efficiency when the

estimated coefficient is negative, the intuition being that a small Mahalanobis distance indicates

predictive power of at least one predictor. Hence, the Mahalanobis distance retrieved from the

original data should, on average, be smaller than the Mahalanobis distance retrieved from the

permuted data, producing a negative estimate of the coefficient and a rejection of joint forecast

efficiency.

I strongly reject joint efficiency of forecasts for DIW and IfW. In both cases, the estimated

coefficients for the half-a-year-ahead as well as the one-year-ahead forecasts are negative and

significant for the OLS and the RLM models, using both, the median and minimum Mahalanobis

distances. For ifo, on the other hand, I cannot reject joint forecast efficiency, as the coefficients

(.5Y- and 1Y-forecasts) and the test statistics (1Y-forecasts) are positive for all specifications.

Regarding HWWI, I cannot reject joint efficiency for the half-a-year-ahead forecasts. The esti-

mated coefficients are equal to zero and insignificant. The one-year-ahead forecasts, however,

appear to be jointly inefficient. In turn, for GD and OECD, I cannot reject joint efficiency of the

1Y-forecasts, whereas joint efficiency of the .5Y-forecasts is rejected. An exception is the coeffi-

cient of the RLM model for GD, computed using the minimum Mahalanobis distance, which is

insignificant.
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Table 3: Basic Specification

Forecaster Horizon βββ OLS tttOLS βββ RLM tttRLM βββ OLS tttOLS βββ RLM tttRLM

Median Minimum

DIW ...555YYY -0.005 -11.291 -0.004 -10.325 -0.002 -9.492 -0.001 -8.799
111YYY -0.002 -5.793 -0.002 -5.777 -0.001 -3.019 0.000 -2.145

HWWI ...555YYY 0.000 -0.130 0.000 0.371 0.000 0.173 0.000 0.936
111YYY -0.005 -10.818 -0.004 -9.885 -0.001 -6.848 -0.001 -5.067

ifo ...555YYY 0.004 7.514 0.004 9.118 0.002 5.399 0.001 7.814
111YYY 0.000 0.365 0.001 1.457 0.000 1.112 0.000 2.944

IfW ...555YYY -0.006 -13.503 -0.004 -12.578 -0.002 -9.768 -0.001 -9.666
111YYY -0.007 -18.181 -0.006 -18.625 -0.002 -12.681 -0.001 -13.283

GD ...555YYY -0.002 -3.818 -0.001 -2.514 -0.001 -3.185 0.000 -0.978
111YYY 0.002 4.534 0.002 5.881 0.000 2.129 0.001 3.809

OECD ...555YYY -0.005 -15.177 -0.004 -14.743 -0.002 -11.091 -0.001 -10.346
111YYY 0.004 7.986 0.004 10.060 0.002 7.730 0.002 9.285

Notes: Median: Results of permutation tests computed by means of the median of the Mahalanobis distance estimated for every random forest
consisting of 100 random trees. Minimum: Results of permutation tests computed by means of the minimum of the Mahalanobis distance
estimated for every random forest consisting of 100 random trees. Results are based on the computation of 1,000 random forests. OLS:
∆M is regressed onto a constant and results are obtained by an ordinary-least squares regression. RLM: ∆M is regressed onto a constant and
robust results are obtained by a robust regression using Huber’s loss function. ∆M = MO−MP, i.e., ∆M is the difference between the median
Mahalanobis distance computed by means of the original data and the Mahalanobis distance computed by means of the permuted data. β :
Estimated coefficient. t: t-test. .5Y: Half-a-year. 1Y: One year. Boldface numbers indicate significance at least at the 5% level (for a negative
test statistic).

In order to add further economic intuition to my analysis, I measure the importance of a certain

variable in growing a random forest by counting the times a predictor is selected as splitting

variable in a regression tree. I then sum up the variable importance measures of each tree and

compute the share of each predictor as a splitting variable in a random forest. This percentage

share is averaged over all bootstrapped random forests and presented in Figure 4. A high relative

importance indicates explanatory power of a certain predictor for the forecast error. This implies

that said predictor is not efficiently incorporated in the respective institute’s trade forecast. In

turn, a low relative importance indicates that the respective predictor has no explanatory power

for the forecast error, which implies that either the predictor has been efficiently incorporated

in an institutes trade forecast or that the respective variable generally has no predictive power

in a trade forecast. The variable importance plots show that the typical trade predictors in the

information set are more rarely selected as splitting variables than other macroeconomic vari-
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Figure 4: Variable Importance Plots
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Notes: Variable importance is measured by counting the times a predictor is selected as splitting variable in a
regression tree. Variable importance measures of all trees are summed up and the share of each predictor as a
splitting variable in a random forest is computed. This percentage share is averaged over all bootstrapped random
forests. Light grey bars indicate trade variables, dark grey bars indicate other macroeconomic variables.
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ables. Since the multivariate random forest randomly picks a subset of predictors from which to

choose to minimize the node impurity measure, i.e. the Mahalanobis distance, every predictor

has a certain share of being selected as splitting variable.

For all forecasters, most trade variables exhibit a relative importance of less than 4%, whereas the

top predictors are chosen as splitting variables twice as often. In the trade variable category, the

4%-mark is exceeded only by the real effective exchange rate and lagged German export volumes

for the half-a-year-ahead forecasts and by the lagged German import volumes for the one-year-

ahead forecasts. Among the top predictors, i.e. the predictors which are not used efficiently by

the forecasters and, therefore, contain information which can reduce forecast errors, are exclu-

sively macroeconomic variables. Especially survey indicators, such as the ifo business climate

survey, real macroeconomic indicators, such as the unemployment rate and industrial orders, as

well as price indicators, such as the consumer price index, seem to contain useful information

to reduce the forecast error for all forecasters and forecast horizons. Overall the variable im-

portance plots suggest that the forecasters use typical trade indicators efficiently, whereas other

macroeconomic predictors, receive insufficient attention. This observation lends support to the

aforementioned study of D’Agostino et al. (2017) who find for the Euro-Zone that, besides trade

variables, macroeconomic variables are important to accurately predict trade developments.

Furthermore, it is interesting to see whether OECD and ifo use the OECD leading indicator

and the ifo business climate index more efficiently due to possible information asymmetries.

However, the variable importance plots suggest that neither OECD nor ifo use the respective

predictors more or less efficiently than the other forecasters. For all institutes and for both fore-

cast horizons, the ifo business climate index is among the top predictors. The OECD leading

indicator is a middle-ranking predictor for all institutes and forecast horizons.

In order to account for possible sticky-information processing or rational inattention in a fore-

caster’s information set (see, e.g., Andrade and Le Bihan, 2013, on inattentive professional fore-

casters), I add the lagged realizations of the predictors to the set of predictors of the basic speci-

fication and report the results in Table 4.
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Table 4: Extended Information Set

Forecaster Horizon βββ OLS tttOLS βββ RLM tttRLM βββ OLS tttOLS βββ RLM tttRLM

Median Minimum

DIW ...555YYY -0.003 -6.052 -0.002 -5.265 -0.001 -4.546 0.000 -2.395
111YYY -0.002 -4.212 -0.001 -2.817 -0.001 -2.509 0.000 -0.008

HWWI ...555YYY -0.002 -3.446 -0.001 -2.148 -0.001 -2.851 0.000 -0.503
111YYY -0.006 -15.319 -0.005 -14.926 -0.002 -10.812 -0.001 -10.484

ifo ...555YYY 0.002 3.616 0.002 5.373 0.001 5.092 0.001 7.257
111YYY -0.001 -2.343 0.000 -0.952 0.000 -0.888 0.000 0.718

IfW ...555YYY -0.005 -10.704 -0.004 -10.337 -0.001 -7.266 -0.001 -6.900
111YYY -0.008 -19.647 -0.007 -19.338 -0.003 -14.679 -0.002 -14.144

GD ...555YYY -0.003 -6.608 -0.002 -6.366 -0.001 -5.128 -0.001 -4.671
111YYY 0.003 6.945 0.003 8.081 0.001 4.804 0.001 7.143

OECD ...555YYY -0.005 -15.019 -0.004 -13.942 -0.002 -10.750 -0.001 -10.421
111YYY 0.005 9.744 0.005 12.887 0.002 7.795 0.002 10.374

Notes: Median: Results of permutation tests computed by means of the median of the Mahalanobis distance estimated for every random forest
consisting of 100 random trees. Minimum: Results of permutation tests computed by means of the minimum of the Mahalanobis distance
estimated for every random forest consisting of 100 random trees. Results are based on the computation of 1,000 random forests. OLS:
∆M is regressed onto a constant and results are obtained by an ordinary-least squares regression. RLM: ∆M is regressed onto a constant and
robust results are obtained by a robust regression using Huber’s loss function. ∆M = MO−MP, i.e., ∆M is the difference between the median
Mahalanobis distance computed by means of the original data and the Mahalanobis distance computed by means of the permuted data. β :
Estimated coefficient. t: t-test. .5Y: Half-a-year. 1Y: One year. Boldface numbers indicate significance at least at the 5% level (for a negative
test statistic).

There is still evidence against the joint efficiency of half-a-year-ahead and one-year-ahead fore-

casts of DIW, however, the result for the latter using the minimum Mahalanobis distance for the

RLM specification becomes insignificant. The results for ifo change for the 1Y-forecast coef-

ficient, estimated by means of the median Mahalanobis distance and an OLS regression, which

is now significantly negative. For all other forecasts and specifications of ifo, I cannot reject

joint forecast efficiency. In addition to the one-year-ahead forecasts of HWWI, I reject, on the

basis of the extended information set, the joint efficiency of their half-a-year-ahead forecasts as

well. An exception is the RLM estimate for the minimum Mahalanobis specification, which

is insignificant. The results of GD and OECD are also qualitatively close to the ones obtained

in the basic specification of the model. There is evidence against the joint efficiency of their

half-a-year-ahead forecasts, where the estimated coefficient for the RLM specification, using the

minimum Mahalanobis distance of GD is now significantly negative. Finally, for IfW, the results
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also do not change qualitatively, I strongly reject the joint efficiency of forecasts for both forecast

horizons and all regression model specifications. What to take away from these results is, that for

most forecasters there is no major change in the results, when extending the assumed information

set by adding lagged realizations of the predictor variables. Only for HWWI, there seems to be

evidence that the lagged predictors have additional predictive power for the half-a-year-ahead

forecast errors.

Table 5: Without Financial Crisis

Forecaster Horizon βββ OLS tttOLS βββ RLM tttRLM βββ OLS tttOLS βββ RLM tttRLM

Median Minimum

DIW ...555YYY -0.006 -12.297 -0.005 -12.236 -0.002 -8.859 -0.001 -8.481
111YYY -0.003 -6.349 -0.002 -5.278 -0.001 -4.084 0.000 -2.829

HWWI ...555YYY 0.006 8.620 0.006 9.692 0.002 6.678 0.002 7.264
111YYY -0.006 -14.402 -0.005 -13.215 -0.002 -10.093 -0.001 -8.479

ifo ...555YYY 0.002 4.139 0.003 5.187 0.001 3.420 0.001 4.072
111YYY -0.001 -2.429 0.000 -1.237 0.000 -0.457 0.000 1.511

IfW ...555YYY -0.006 -13.090 -0.005 -13.645 -0.002 -9.863 -0.001 -9.803
111YYY -0.008 -17.898 -0.006 -17.937 -0.003 -13.085 -0.001 -12.284

GD ...555YYY -0.001 -3.157 -0.001 -2.161 0.000 -1.735 0.000 -0.402
111YYY 0.003 6.606 0.003 7.904 0.001 4.290 0.001 5.188

OECD ...555YYY -0.005 -13.919 -0.004 -13.938 -0.002 -10.876 -0.001 -10.220
111YYY 0.004 8.980 0.005 11.602 0.002 6.528 0.002 9.754

Notes: Median: Results of permutation tests computed by means of the median of the Mahalanobis distance estimated for every random forest
consisting of 100 random trees. Minimum: Results of permutation tests computed by means of the minimum of the Mahalanobis distance
estimated for every random forest consisting of 100 random trees. Results are based on the computation of 1,000 random forests. OLS:
∆M is regressed onto a constant and results are obtained by an ordinary-least squares regression. RLM: ∆M is regressed onto a constant and
robust results are obtained by a robust regression using Huber’s loss function. ∆M = MO−MP, i.e., ∆M is the difference between the median
Mahalanobis distance computed by means of the original data and the Mahalanobis distance computed by means of the permuted data. β :
Estimated coefficient. t: t-test. .5Y: Half-a-year. 1Y: One year. Boldface numbers indicate significance at least at the 5% level (for a negative
test statistic).

Next, I consider the possibility that the financial crisis of 2007/2008 affects my results. In recent

years, a large strand of literature has analyzed the effects of the 2007/2008 financial crisis on

forecast formation and evaluation (see, e.g., Drechsel and Scheufele, 2012; Frenkel, Lis, and

Rülke, 2011). I follow Behrens et al. (2018c), by excluding forecasts for the years 2007 and

2008. The intuition here is, that relatively large forecast errors produced in these years might bias
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the results of the whole sample.11 However, this does not seem to be a problem with the sample

at hand, as the results in Table 5 are very similar to the ones of the basic specification. In fact,

only ifo’s estimated coefficient of the 1Y-forecast using the median Mahalanobis distance and the

OLS model is affected in becoming significantly negative. Regarding all other forecasters, the

results do not change qualitatively. I still reject joint forecast efficiency for the half-a-year-ahead

and one-year-ahead forecasts of DIW and IfW. The OLS and RLM estimates are significantly

negative, showing that the (median and minimum) Mahalanobis distance computed by means

of the multivariate random forests estimated on the original data is, on average, significantly

smaller than the Mahalanobis distance computed by means of the multivariate random forests

estimated on the permuted data. For ifo, I cannot reject joint forecast efficiency in all but the

aforementioned case. With respect to HWWI, I continue to reject joint efficiency of their one-

year-ahead forecasts. Finally, there remains to be evidence against the joint forecast efficiency of

the .5Y-forecasts of GD and OECD, with one exception (.5Y-RLM-estimate using the minimum

Mahalanobis distance for GD).

I conclude my analysis of joint forecast efficiency of the six forecasters, by compiling an effi-

ciency ranking, reported in Table 7. In a similar way, Sinclair et al. (2016) and Behrens et al.

(2018b) use the Mahalanobis distance to compute a ranking for forecast accuracy and efficiency,

respectively. The rank of a forecaster is determined by summing up the t-statistics from the

model specifications, reported in Tables 3-5. The intuition behind this is, that a small negative

or positive t-statistic is evidence against a rejection of joint forecast efficiency, whereas a large

negative t-statistic leads to a rejection of joint forecast efficiency. Hence, the sum of a given fore-

caster’s t-statistics over all three scenarios is an indicator of the strength of evidence against joint

forecast efficiency of said forecaster. Summing up the t-statistics implies that a positive t-statistic

in one specification can compensate the effect of a negative t-statistic in another specification.

Overall, the results are robust to changes in the regression model specification (OLS/RLM) and

11In the same vein, I check for a possible bias due to large forecast errors in the time of German reunification. The
results for a sample, in which the forecasts for the years, in which the forecasters switch from forecasts for West-
to reunified Germany, are excluded, are hardly affected. The results are not reported but available from the author
upon request.
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to changes in computations using the median or minimum Mahalanobis distance. However, for

half-a-year-ahead and one-year-ahead forecasts, the results differ. Regarding the former forecast

horizon, ifo and HWWI lead the ranking with a positive sum of t-statistics. OECD, least efficient

in the .5Y-ranking, leads the ranking for the one-year-ahead forecasts followed by GD, both with

positive sums of t-statistics. DIW and IfW are in the lower ranks for the 1Y- as well as the .5Y-

forecasts. Based on these results, I cannot comment on a possible advantage due to geographical

proximity of German forecasting institutes, as the OECD’s rank drastically differs, depending on

the examined forecast horizon.

Table 6: Forecaster Ranking

Rank Horizon tttOLS tttRLM tttOLS tttRLM

Median Minimum

I

.5Y

ifo ifo ifo ifo
(15.269) (19.678) (13.911) (19.143)

II HWWI HWWI HWWI HWWI
(5.044) (7.915) (4.000) (7.697)

III GD GD GD GD
(-13.583) (-11.041) (-10.048) (-6.051)

IV DIW DIW DIW DIW
(-29.64) (-27.826) (-22.897) (-19.675)

V IfW IfW IfW IfW
(-37.297) (-36.560) (-26.897) (-26.369)

VI OECD OECD OECD OECD
(-44.115) (-42.623) (-32.717) (-30.987)

I

1Y

OECD OECD OECD OECD
(26.710) (34.549) (22.053) (29.413)

II GD GD GD GD
(18.085) (21.866) (11.223) (16.140)

III ifo ifo ifo ifo
(-4.407) (-0.732) (-0.233) (5.173)

IV DIW DIW DIW DIW
(-16.354) (-13.872) (-9.612) (-4.982)

V HWWI HWWI HWWI HWWI
(-40.539) (-38.026) (-27.753) (-24.030)

VI IfW IfW IfW IfW
(-55.726) (-55.900) (-40.445) (-39.711)

Notes: In order to compile the ranking of forecasters, the t-statistics given in Tables 3−5 are added up and the resulting values are reported in
parentheses. .5Y: Half-a-year. 1Y: One year.
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5 Conclusion

I contribute to research on the evaluation of the properties of German macroeconomic forecasts. I

build on research on the evaluation of forecasts in a multivariate setting (see, for instance, Sinclair

et al., 2012; Sinclair and Stekler, 2013; Sinclair et al., 2015). As opposed to the majority of

studies in this field, which analyze GDP growth and inflation forecasts, I study the joint efficiency

of trade forecasts. To do so, I use multivariate random forests, an approach brought forward by

Segal and Xiao (2011) and adapted to this context by Behrens et al. (2018b). The basis of my

research forms a novel data set on German trade forecasts for the years 1970 to 2017 of four

German economic research institutes, a collaboration of German forecasters and an international

forecaster.

For most forecasters, I find evidence against the joint efficiency of trade forecasts. Only for one

forecaster I can neither reject joint forecast efficiency for trade forecasts with a forecast horizon

of half-a-year, nor for trade forecasts with a forecast horizon of one year. For two forecasters I

find evidence against the joint efficiency of both half-a-year-ahead and one-year-ahead forecasts.

The trade forecasts of the remaining forecasters are either jointly inefficient in the shorter or in

the longer run. I compile a ranking of the six forecasters’ joint efficiency of export and import

forecasts. Finally, variable importance plots suggest that the forecasters use typical trade pre-

dictors more efficiently than other macroeconomic predictors, such as industrial orders, business

climate surveys, consumer prices, and the unemployment rate. This leads to the assumption that

a more efficient incorporation of these indicators could improve forecast accuracy, which could

be pursued in future research. Improving forecast accuracy is an important task when it comes to

policy making or investment decisions, as economic agents rely on professional forecasts when

forming macroeconomic expectations (Carroll, 2003).

In future research, the approach of using nonparametric tree-based models to asses the properties

of macroeconomic forecasts can be applied to forecasts for other variables and forecasts for other

countries. It is also interesting to find out whether the underlying loss function of a trade forecast

24



is of some other type than squared error loss, or to analyze possible behavioral biases in trade

forecasts (see, for instance, Ito, 1990, on wishful expectations).
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