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Abstract: 

Few textbooks in mathematical economics cover optimal timing problems. Those which cover them do it 
scantly or in a rather clumsy way, making it hard for students to understand and apply the concept of optimal time in 
new contexts. Discussing the plentiful illustrations of optimal timing problems, we present an elegant and simple 
method of solving them. Whether the present value function is exponential or logarithmic, a convenient way to solve it 
is to convert the base to the exponential number e, thus making it easy to differentiate the new objective function with 
respect to time t. This convenient method of base conversion allows to find a second-order derivative and to use the 
second-order condition as a proof of optimum. 
 

Keywords: optimization of functions of one variable, continuous time, optimal timing, discounted present value, 
future value. 
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1. Introduction 
Optimal timing problems represent an interesting set of illustrations related to economic dynamics 

and the role of the time factor in economic decision making. These are economic applications of univariate 
calculus where the argument is time and, given a specific objective function, usually the net present value 
of an asset or an economic resource, the optimal time or period of appropriating or harvesting the 
respective resource must be found which maximizes that value. These are problems which answer the 
question when is the best time, i.e., when is it best to pick up the resource, to harvest the crops or to sell 
the asset the value of which appreciates with time. Resources could generally be classified as appreciating 
or depreciating in value terms. Optimal timing problems study resources whose value appreciates with time 
in terms of rate of growth. When an economic resource loses value with the passage of time, that is, its 
discounted present value falls, optimal timing problems demonstrate its depreciation in the context of its 
rate of decay. 

Various illustrations could be given of resources whose value grows as time goes by. Examples of 
this type answer questions such as when is the best time to pick olives, oranges, or peaches in the orchard, 
tomatoes in the garden, flowers in a flower plant or a greenhouse, grapes in the vineyard so that to produce 
wine. Except crops such examples ask when it is best to cut trees so that to maximize the value of lumber 
or to receive highest yields from selling it. Also from the realm of environmental and natural resource 
economics we may seek to find when to harvest fish or other from a common-pool or a common access 
resource. Optimal timing problems have relevance not only to mathematical but to environmental 
economics as well. Examples from mining and extraction depict resources whose value depreciates with 
time, for instance, extraction of oil from an oil well, mining from mines, etc. With extraction and mining the 
value of the resource will be declining with time as the resource gets depleted and it becomes harder to 
extract it. 

Examples of appreciating assets beyond the scope of agricultural and environmental economics 
include artifacts, collection items and jewelry. Such examples ask when the best time is to sell a ruby, a 
Picasso picture, or a golden Rolex. In view of their diverse illustrations it is puzzling that most economic 
textbooks ignore optimal timing problems or present them mostly or only in the context of financial 
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economics. The usual representation in economic literature is that of the principal and the interest where 
the discounted value of a financial asset (say a deposit) is sought to be maximized. The net present value 
can be traced using either a given simple or a compounded interest. This limited framework within which 
optimal timing is presented makes it uninteresting for undergraduate students who cannot always see the 
diverse and plentiful illustrations that optimal timing problems pose. The paper studies the essence, 
importance, validity and variety of optimal timing problems as they are covered in mathematical economics. 
Part 1 is a brief introduction. Part 2 elaborates on the diverse applications of optimal timing, its increasing 
importance and relevance to economic decision making. Part 3 covers some useful approaches to teaching 
and solving optimal timing problems elegantly including base conversion, derivatives of exponential and 
logarithmic functions, etc. The paper ends with conclusions. 
 
2. Validity and importance of optimal timing 

Optimal timing problems are a suitable pedagogical tool to learning in an introductory course in 
mathematical economics or quantitative methods in the social sciences as part of program requirements. 
From a purely mathematical point of view, they are a very good setting for presenting optimization, one of 
the key aspects of mathematical economics, in particular, and of economics, in general. As they represent 
simple optimization of a function of one variable, they serve a good pedagogical purpose where the student 
can see how an economic function is maximized, what its best value is as well as that of the argument. 
Rather than using the standard and somewhat routine examples of profit maximization (in terms of output in 
the simple case of one variable or the output levels of two or more products in the multivariate case) and 
production function (where output is maximized given certain input conditions), optimal timing problems 
optimize a function in terms of time and study economic events dynamically. Thus they represent a simple 
illustration of economic dynamics without the need to go into dynamic programming or dynamic 
optimization at this very early stage of education and just using the tools of static optimization. Also 
mathematically, optimal timing problems are richer than the simple polynomial functions of profit (where 
total revenues and total costs are involved and where the highest degree is cubic) in that they demonstrate 
interesting exponential and logarithmic functions. Thus, it is normal to cover optimal timing problems in the 
chapter on exponential and logarithmic functions as types of inverse functions. The introduction of the 
exponential number e, having wide applications in economics, is a further advantage to the teaching of 
optimal timing. The professor could, for instance, relate the discussion to elasticity, its estimation and 
econometric analysis. While students learn a new perspective of optimization and best values, they do not 
have to go into the bogey of multivariate calculus and optimizing functions of two and more variables. The 
latter require knowledge of quadratic forms, first- and second-order differentials, Hessian matrices and 
determinants at best (in the unconstrained case) and bordered Hessian matrices and determinants at worst 
(in the constrained case). 

From a general pedagogical and didactic point of view, this set of problems teaches students about 
natural and environmental resources, how they can be used optimally, how they should be stored, what 
waiting time is, how it relates to interest rate, etc.1 Many dwell on examples from agriculture which expands 
student knowledge to the subject of agricultural economics. Meanwhile, the student understands that 
optimal time does not mean optimal quality and that the two are not quite identical. For instance, students 
learn that waiting time to grow grapes in order to produce wine for sale to consumers is shorter than that 
needed to produce and store wine for personal consumption.  They are surprised to find out that bananas 
are picked unripe in order to be exported or sold later in the stores where optimal time accounts for their 
growth at the time of transportation and distribution. With the help of optimal timing they learn to distinguish 

 
1 For optimal timing problems in relation to environmental policy see Pindyck, R. S. 2002. Optimal Timing Problems in 
Environmental Economics. Journal of Economic Dynamics and Control, 26: 1677-1697. 
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firm profit from customer satisfaction where optimal time maximizes profit to the firm or entrepreneur, not 
consumer utility. If the entrepreneur were to produce for self-satisfaction, that is, being the consumer 
himself, and in the form of a household activity (or as part of the do-it-yourself sector) he would wait much 
longer to obtain the best taste of products.2 

Optimal timing problems are rarely covered in mathematical economics textbooks and their 
coverage is usually superficial. One reason why they are neglected might be the disagreement among 
economists about the validity of optimal timing models. Generally, they are refuted by some economists 
who do not consider them realistic in that they fail to correctly describe the path or function by which an 
economic resource or asset grows. More specifically, Samuelson (1976), discussing the economics of 
forestry, observes that “standard managerial economics, and actual commercial practice, both tend to lead 
to an optimal cutting age of a forest that is much shorter than the 80 or even 100 years one often 
encounters in the forestry literature.”3 Exploring his tree-cutting example further, he maintains that many of 
the assumptions made in an optimal tree-cutting model are unrealistic. These, in his view, include: “(1) 
knowledge of future lumber prices at which all outputs can be freely sold, and future wages of all inputs; (2) 
knowledge of future interest rates at which the enterprise can both borrow and lend in indefinite 
amounts; … (3) knowledge of technical lumber yields that emerge at future dates once certain expenditure 
inputs are made (plantings, sprayings, thinnings, fellings, etc.) … (4) [the condition] that each kind of land 
suitable for forests can be bought and sold and rented in arm’s length transactions between numerous 
competitors … so as to earn the same maximum rent obtainable at the postulated market rate of interest.”4 
He observes that tomorrow’s lumber prices, as well as future interest rates, are not knowable today, and 
that given the uncertainties of interest and profit yields one cannot guarantee that the enterprise will at each 
date be able both to borrow and to lend in indefinite amounts at one interest rate.5 Furthermore, the rotation 
period which maximizes the sustained yield of a forest is so long that at positive interest rates and market 
rent for land, it will bankrupt the enterprise, or alternatively, ignoring rent land and maximizing the internal 
rate of return will bring so short a rotation period that growing trees will be impossible. To these limitations 
optimal timing problems face one can add the difficulty of estimating the particular function by which an 
economic resource grows. The process of estimating requires robust knowledge of the specific field of 
environmental science, mining, arts or other plus further expertise in marketing the respective product. The 
future value function must be estimated promptly usually by empirically observing the growth of the asset or 
natural resource, which is a difficult endeavor. Thus, the growth of a specific tree species to be planted, 
logged and sold as timber or other, must be observed tightly so that to maximize the correct present value 
function and estimate the exact waiting time. 

 
2 Industrial wine producers, for instance, are said to produce wine for domestic consumption by methods different from those 
applied in the market, for instance, picking grapes later than the general produce, picking the best grapes, using a different 
technology or different ingredients, storing the wine longer and keeping the best wine for home consumption. 
3 Samuelson, P. A. 1976. The Economics of Forestry in an Evolving Society. Economic Inquiry, Vol. 14(December): 466-492, p. 
467. 
4 Italics in the original, p. 470. 
5 Samuelson continues with an example of a consulting firm which applied dynamic programming to the tree-cutting problem 
where the “computer spun out of control and generated a negative… imaginary root for the equation.” This according to 
Samuelson demonstrates that if economic modeling is applied and realistic profit rates are to be reached, it does not pay to keep 
a forest in existence at all (Samuelson 1976, p. 467). Furthermore, he notes that the assumption of low interest rates as they 
apply to forestry is faulty where “the interest rate is the enemy of long-lived investment projects” (Samuelson 1976, p. 473), and 
that lumber prices are wrongly presumed by analysts to be constant at relatively low levels. Samuelson’s paper stresses some 
optimal timing mistakes made even by prominent economists such as Irving Fisher, Kenneth Boulding, Harold Hotelling, John M. 
Keynes, to name a few. The paper also uncovers some of the divergences between economists, on the one hand, and foresters 
and environmentalists, on the other. 
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Yet, things have changed since the time Samuelson wrote about the economics of forestry. With 
the development of science waiting time has consistently been reduced rendering optimal timing problems 
valid and more relevant to today’s economic reality. Artificial selection, cultivation, genetic modification, and 
other methods of biotechnology have led to substantially reducing the growing time for biological resources. 
The time to harvest plants such as trees, flowers, vegetables, and fruits has been shortened dramatically 
with the help of fertilizers, phosphates, artificial lightening, etc., all of which stimulate species growth 
immensely but few of which existed at the time Samuelson described environmental management. Bio-
cultivation has led to planting and breeding the most rapid and prosperous breeds and species with the 
sole purpose to reduce waiting time. This reduction is, in effect, a reduction of the opportunity cost of 
waiting since, in congruence with Samuelson’s conclusion, the interest rate is the opportunity cost of money 
which the investor could alternatively put in the bank for an interest or other, instead of a difficult, strenuous 
and risky agricultural undertaking. Trees used to produce lumber which in the past have taken 40 years to 
grow, now take 20 years. By bringing down the opportunity cost of money the reduction in waiting time has 
made various environmental and natural resource projects much more attractive than in the past. 
Generally, science and biotechnology have somewhat changed the behavior of environmental managers 
and businessmen, from one of exploration and depletion to one of preservation and sustainability. Such is 
the example of fisheries where with the help of biotechnology fishermen have turned to growing fish in 
artificial or semi-artificial conditions rather than overuse common-pool resources, as the established cliché. 
Fishermen today are far less prone to overharvesting but, on the contrary, much more oriented to the 
optimal use, preservation and harvesting of a natural endowment. In the special conditions of artificial fish 
farming, the use of artificial insemination, optimal temperature, feeding, etc., has increased yields from 
sustainable fishing immensely. 

Time has also worked favorably for arts, increasing the popularity of artifacts, jewelry, antiques, 
etc. As people become more affluent, they get more sophisticated and as they get more sophisticated, they 
tend to appreciate art more. Thus, valuable or rare art objects become more desirable and a much 
preferred investment even by ordinary people. This is especially true at the time of an economic or financial 
crisis when material or financial assets of low value must be converted into objects that serve as a store of 
value. Mighty investors find themselves more willing to buy expensive ware and luxury items when market 
demand for their products has fallen by putting their money in an expensive jewel, golden watch or a 
famous artist’s drawing, the value of which would appreciate with time. Waves of bank runs, consistent 
inflation that devalues fiat money and other shocks have taught investors that keeping a deposit for an 
interest in the bank is not always the best thing to do. 

Generally, textbook authors do a poor job revealing the nature and applications of optimal timing 
problems. Interesting illustrations are missing and the numerical examples given are rather dull and 
elementary. Problems present the simplest case of a natural exponential function or expression for the 
future value of an economic resource where the base is the natural exponential number e and never go 
deeply into more sophisticated cases or situations of a general base or a logarithmic function (natural or 
general). 

Ian Jacque (2006) in his “Mathematics for Economics and Business,” a basic-level text, discusses 
optimal time in the context of investment decisions and present value. He introduces interest compounding, 
relating thus present value to future value in the discrete case. Pemberton and Rau (2001) briefly introduce 
the formula for continuous compounding and discounting and discuss time in economics. However, they 
only define rate of growth in relation to rate of change and stop there leaving the reader without any 
practical illustrations of those two. Sydsaeter and Hammond (2006) also discuss present and future value 
showing the interesting case of implicit differentiation. They demonstrate optimal timing in the general case 
where they use the implicit-function rule to show the negative effect interest rate has on optimal time. 
However, more detailed, numerical examples showing different situations and diverse future value 
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functions are missing and the only illustration given refers to harvesting trees again. The tree-cutting 
example seems to be an ongoing theme of most textbooks. Students, therefore, cannot fully comprehend 
the variety and width of optimal timing problems applied to diverse situations. Baldani et al. (2001) 
emphasize intertemporal consumption showing the relationship between present and future consumption. 
They also demonstrate net present value of an income stream and solve a constrained optimization of 
consumption. However, there is no relevance to natural resource economics, sustainable harvesting or 
growth of an initial endowment. Similar is the discussion in Silberberg (2000) who as well presents 
intertemporal choice in the context of utility maximization. Then a more thorough coverage follows 
discussing Fisherian investment in the context of trees again and giving interest rate as their optimal rate of 
growth. In fact, Silberberg (2000) moves into the Fisher equation of the real and nominal interest rate and, 
finally, into stocks and flows. Nicholson (1992) whose intermediate-level microeconomics text is also more 
mathematically oriented follows Silberberg’s pattern. After discussing discounted present value from the 
point of view of financial economics, where he presents the perpetual case of a long-lived machine or of a 
perpetual asset or bond, he shows the continuous case of a sum (integral) of present values. In addition to 
the rental rate of a machine he covers the “tree-cutting” example again obtaining the optimal harvesting age 
for trees and analyzing the effect of interest rate on it. This is followed by an interesting discussion into 
human and physical capital as well as the standard case of future versus present consumption in the 
discrete case and considering two periods only. The analysis continues with optimal control theory, stocks 
and flows, similar to that in Silberberg (2000). 

Of the higher-level texts, Miller (1979) presents compounding and discounting in the discrete and 
continuous case with no reference to harvesting or natural resource economics but sticking solely to 
financial economics and the example of principal and interest. An advanced text such as de la Fuente 
(2000) does not make reference to optimal timing problems. Simon and Blume (1994), a standard textbook 
used in undergraduate mathematical economics courses, also refers to the present value of an investment 
decision discussing the discounted flow of revenues and annuities. The authors demonstrate the example 
in the case of both discrete and continuous discounting where it does not become clear how one obtains 
from the other, given the natural exponential number e. This leads to the section on optimal holding time 
where they introduce the rate of growth by the first-order condition. The example given is rather basic, 
using the future value of a real estate which grows exponentially and taking the specific form 

tetF 000,10)( = . The example solves the optimal time for selling the estate as 69.44 years, given that the 

interest rate will remain at 6% in the foreseeable future. A second-order condition is missing. The text 
continues with the differentiation of other functions and terms, all scattered around. Some interesting 
examples given in the exercises section include the sales of a rare book, wine and a parcel of land. 
However, the examples solved numerically cover only the simple case of a natural exponential number and 
never delve into more sophisticated situations. 

Few of the textbooks present the derivatives of exponential and logarithmic functions, both general 
and natural, where the two types could actually be related and the derivatives of a general exponential or 
logarithmic function could be obtained by converting those conveniently into a natural exponential or natural 
logarithmic function.6 Of the standard textbooks Chiang (1984) alone presents the derivatives of 
exponential and logarithmic functions, rate of growth of a simple function, rate of growth of composite 
functions, etc. He gives the interesting example of wine storage (with storage cost ignored) and the usual 
one of timber cutting where his examples end. Both examples are awkwardly solved, which makes it hard 
for students to follow the second-order condition and in the second example it is even missing. 

 
6 For reference see Todorova, T. 2010. Problems Book to Accompany Mathematics for Economists. Wiley-Blackwell. Hoboken: 
New Jersey. 
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3. Solving optimal timing problems elegantly 

Before throwing the student into sophisticated examples it is good to plainly cover base conversion 
and the rules of differentiating exponential and logarithmic functions. After discussing those generally we 
introduce base conversion which allows converting any general base b  into the number e , convenient to 

use in economic and mathematical analysis, or any general number a, that is, 
 

beb ln=    
baab log

=  
 
The method of base conversion to the natural exponential number e is key to the teaching of optimal timing 
where it is much easier to work with e  as the base when it comes to finding first-order and second-order 

derivatives of objective functions. It is good to remind students that when the base is 10 we speak of a 
common log, when it is e  we speak of a natural log. The formula for base conversion is as important in 

deriving the derivatives of exponential and logarithmic functions. Practical experience shows that students 
taking introductory mathematical economics have no difficulty dealing with logarithms, logarithmic and 
exponential functions, but find their differentiation particularly hard. A student-friendly approach is to 

mention that students already know that the derivative of the function te  with respect to time t  is the 

function itself, that is, 

t
t

e
dt

de
=  

 
The logarithmic equivalent of this natural exponential function is the simple logarithmic function tln  whose 

derivative with respect to t  is 
 

tdt

td 1ln
=  

 
These simple illustrations can be expanded to the more general cases where instead of the variable t  we 

have some function of it )(tf  with the following derivatives: 

)(
)(

)( tf
tf

etf
dt

de
=     

)(

)()(ln

tf

tf

dt

tfd 
=  

 
We can easily see that the first two simple derivatives are special cases of the last two when ttf =)( . A 

more interesting case is when the base is a number different from e , for example, some general base b , 

stressed only in Chiang (1984) both in the theoretical and problem section. Base conversion comes in 

handy now, where the derivative of the function tb  with respect to t  can be found as 
 

bbbe
dt

de

dt

db tbt
btt

lnlnln
ln

===   
( )

btdt

btd

dt

td b

ln

1lnlnlog
==  

 
In the most expansive case of a function )(tf  we have respectively 
 

bbtf
dt

de

dt

db tf
btftf

ln)( )(
ln)()(

==    
( )

btf

tf

dt

btfd

dt

tfd b

ln)(

)(ln)(ln)(log 
==  

 
We can refer to the usual timber cutting problem where for a given planted forest the value of 

timber is an increasing function of time tV 3=  but note that the base is chosen to be general, rather than 

the easy exponential case. At an interest (discount) rate of r  the present value of timber is 
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rttrt eVetA −− == 3)(  which serves as the objective function to be maximized. Chiang (1984) is the only 

author presenting this interesting case of a general base different from e, but followed by a very awkward 
solution using the rate of growth. Chiang takes the log of the net present value function, differentiates it with 
respect to time to present it in the form of a rate of growth and finally expresses the first derivative )(tA  in 

terms of the present value function )(tA , where at the optimum the first derivative should be zero. A more 

elegant way to solve the example is converting the base to e so that to account for the discounting factor. 
Rather than, for instance, applying the product rule, which is clumsy and hardly convenient to use in the 
second-order condition, we proceed as, 
 

rttrttrtt eeeetA −−− === 3ln3ln3)(  
 
At this point it is easy to apply the first-order condition of maximization by simply differentiating an 

exponential function of the type ,)(tfe  as follows 
 

0
2

3ln
)(

2

3ln
)( 3ln =








−=








−== − r

t
tAr

t
e

dt

dA
tA rtt  

 

Since present value is positive, i.e., 0)( tA , the first derivative )(tA  can be zero only when 
t

r
2

3ln
= , 

that is, for 
2

2
*

4

3ln

r
t =  giving the optimal number of years after which the timber should be cut. At an interest 

rate of 10%, for example, the optimal number of years is approximately 30 years, or 
 

30
2.0

098.1
2

* 







=t  years 

 
To prove that present value is, indeed, maximized we resort to the second-order condition 
 

 0
4

3ln
)(

4

3ln
)(

2

3ln
)()(

0









−=








−+








−=

tt
tA

tt
tAr

t
tAtA  

 
The first term in the second derivative is 0 because at the maximum the first derivative is 0= )(tA , while 

the second term has a negative sign. Thus, we prove that the second derivative is negative and 30* t  

years is an optimal solution. The method is smooth and can be applied to various situations and optimal-
timing decisions. A good illustration is a speculator in precious stones who has purchased a ruby that is 

increasing in value according to the function t

oeVtV =)( , where t  is time measured in years and oV  is 

some initial value of the ruby. This time the base is the simple exponential number but the example is 

interesting in that students are surprised to find out that the initial value oV  of the ruby (at the initial moment 

or at 0=t ) has no effect on optimal time t . At a discount rate of 8% per year, for instance, we find 
 

tt

o

rtt

o eVeeVtA 08.0)( −− ==   008.0
2

1
)( 08.0 =








−= −

t
eVtA tt

o       39
16.0

1
2

* =t , 
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that is, the speculator should sell the ruby in approximately 39 years to maximize its present value. 
Students see that, since optimal time t  depends solely on the interest rate, it is unaffected by the initial 

value oV . The second-order condition proves maximum, i.e., 
 

0
4

1
)(0

4

1
08.0

2

1
)(

2323

08.0 







−+=








−+








−= −

t
tA

t
eV

t
AtA tt

o  

 
The example could be modified by giving a specific number for the initial value or slightly changing the 
function in the exponent. For instance, an investment could be valued approximately by the function 

tetf 2.0000,50)( = where the student has to find the relative change in the value of the investment, that is, 

its rate of growth, in, say, 10 years. A simple rate-of-growth formula gives 
 

0316.0
10

1.01.0

)000,50(2

)000,50(2.0

)(

)(
2.0

2.0

====


tet

e

tf

tf
t

t

 or approximately 3.16% 

 
Or the example of a coin and stamp dealer who calculates that his collection will appreciate after t  years 

by the formula 
4

000,1$)(
t

etV =  in dollar terms. An annual discount rate of 8% results in an optimal time 
*t of nearly 10 years when the dealer should sell the collection in order to maximize the return. 

An interesting pedagogical example is a general present value function rtetVtA −= )()( , where the 

future value is not exactly known but taken generally. Again, using our simple technique of base conversion 

we can demonstrate to students that at the optimal time *t , future value grows exactly at the rate of interest 

r , that is, rtV =)( , where 
 

rttVrt eetVtA −− == )(ln)()(     0)()(
)(ln

)()( =−=







−= rtVtAr

dt

tVd
tAtA   

 
Furthermore, using the second-order condition and the implicit function rule, we can check that even in the 

general case optimal time *t  depends negatively on the interest rate r. 
 

   0
)(

)(
)(

)()()()(
2

2

2

2

0








 −
=







 −
+−=

+
V

VVV
tA

V

VVV
tArtVtAtA


  

0
)(

)(
),(

*

*
* =−


= r

tV

tV
rtF  

0
)()(

1
2

2

2

2

*

*


−

=
−

=−=
VVV

V

V

VVVF

F

dr

dt

t

r  (negative by SOC) 

 
The example of a large wood products company which has planted hybrid trees and has 

determined that the value )(tV  of this timber (in millions of dollars) is increasing over time according to the 

exponential function )168lg(16)( += ttV  involves a common logarithm in the exponent. At an interest rate r  of 

6% per year, the company should cut the timber for maximum profit in approximately 18 years since 
 

tttt eetA 06.0)168lg(4ln206.0)168lg(16)( −+−+ ==  
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The example could be transformed into a general log such as ttV 26log28)( +
=  where at an interest rate r  

of 10% per year, a diamond should be sold in 12 years which will maximize profit to his owner since 
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The logarithmic form of the exponent could as well be transformed into a parametric problem 

where students could be asked to establish the effect of certain parameters on optimal time. An example 
could be a large orange producer in Greece the value )(tV  of whose produce (in millions of dollars) is 

increasing over time according to the exponential function cbtatV += ln)( , where 0,, cba , ea   and t  

is time for oranges to ripe. Assuming that the discount rate is r , students may be asked to find optimal time 
t  for the producer to pick oranges such that the present value of the harvest is maximized and to see how 

t  is related to the three coefficients cba ,,  and the interest rate r . A similar task is for them to find the 

optimal time to pick bananas for a large banana producer in Ecuador who has determined that the value 

)(tV  of the produce (in millions of dollars) is given by bctatV −= ln)(  again specifying the parameters, i.e., 

( 0,, cba  and ea  ). The example of an olive producer in Spain for whom the value )(tV  of the olive 

produce is estimated to be 
dctbatV +

=
log)( ( 1 ba  and 0, dc ), is taking a general, rather than a 

natural, log in the exponent. Examples could as well include paintings and museums as the famous Prado 
museum in Madrid which owns a painting by El Greco. Experts in the field have evaluated that its value 

)(tV  is increasing over time according to the exponential function  .2)( 52 += ttV  At an annual interest rate 

constant at 8 percent, Prado computes that it is optimal to sell El Greco’s painting in about 35 years. Or the 

famous Thyssen museum which owns a Picasso painting whose value grows by the function 822)( += ttV  

and which at an annual interest rate of 10 percent should be sold in 20 years.  
 
3. Conclusion 

These are only a few of the ample illustrations of optimal timing problems which could be covered 
in a course in mathematical economics. Examples are easy for students to comprehend while expanding 
their knowledge of mathematics or operations with logarithms, exponents, logarithmic and exponential 
functions. Through the method of base conversion students learn to swiftly differentiate a net present value 
function and its derivative so that to use first- and second-order condition. Optimal timing allows covering 
essential economic models and applications using the instruments of univariate calculus. Yet, the student 
feels like a true discoverer and an economist having found an optimal value within a simple framework and 
using simple techniques. Students see real-life illustrations of economic modeling which stops being 
abstract and obscure. Our purpose as teachers is to make math less intimidating and the subject of 
mathematical economics more lovable for students. Innovative and easy methods of familiarizing students 
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with some mathematical tools as well as expanding economic applications of mathematics to new settings 
such as optimal decisions in time are ways to attract student attention to the subject of mathematical 
economics. 
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