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Non-technical summary

Research Question

Different macroprudential stress tests were proposed in the literature, which account

for potential contagion effects in financial networks. While these models were useful

for building intuition about how shocks may propagate through the system, their

capability to accurately predict whether a given bank will default has not been the

focus of the literature. It is well-known that different models may yield very different

stress testing results. We therefore propose a backtesting framework that assesses the

predictive performance of different fire-sale stress test models and allows to choose the

most accurate model from a set of alternatives.

Contribution

We introduce a generalized fire-sale stress test model that captures a wide range of

behavioral assumptions with regards to banks’ liquidation dynamics under stress. The

literature has proposed alternative behavioral assumptions in this regard, all of which

are covered by our generalized model. We build a network of common asset holdings

using public balance-sheet data for U.S. commercial banks in 2007. We then compare

the model predictions with the list of actual defaults that occurred in the U.S. during

the years 2008-2010. In order to assess the relative performance of these network

models, we also use several alternative benchmarks.

Results

We identify two asset classes for which the model has predictive power, independently

of the assumed liquidation dynamics. We then show how the behavioural assump-

tion yielding the most accurate model depends on the size of the initial shock and on

secondary market liquidity. We also identify, for different liquidation dynamics, the

optimal number of liquidation rounds. Overall, our analysis shows that properly cali-

brated macroprudential stress tests can have predictive power superior to alternative

benchmarks that do not account for the network of common asset holdings.



Nichttechnische Zusammenfassung

Fragestellung

In der Literatur wurden verschiedene makroprudenzielle Stresstests vorgeschlagen, wel-

che mögliche Ansteckungseffekte aufgrund von Netzwerkverbindungen zwischen Finan-

zintermediären berücksichtigen. Diese Ansätze haben unser Verständnis verbessert, ob

und wie sich Schocks in solchen Netzwerken ausbreiten können, doch wurde bisher

kaum untersucht, inwiefern diese Ansätze den Ausfall von Kreditinstituten vorhersa-

gen können. Aus der Literatur ist bekannt, dass verschiedene Stresstest-Methoden sehr

unterschiedliche Ergebnisse liefern können. Wir schlagen einen Backtesting-Ansatz vor,

der die Güte der Vorhersagen verschiedener Ansätze quantifiziert und aus verschiede-

nen Ansätzen das präziseste Modell auswählt.

Beitrag

Wir schlagen ein verallgemeinertes Stresstest-Modell für Notverkäufe vor, welches ver-

schiedene Verhaltensannahmen bezüglich des Liquidationsverhaltens von Banken im

Stressfall berücksichtigen kann. In der Literatur wurden diesbezüglich unterschiedliche

Verhaltensannahmen untersucht, welche alle von unserem Modell abgedeckt werden.

Basierend auf öffentlichen Bilanzdaten konstruieren wir das Netzwerk überlappender

Wertpapier-Portfolios zwischen US-Banken im Jahr 2007. Wir vergleichen die Progno-

sen des Modells mit den tatsächlichen Ausfällen von US-Banken in den Jahren 2008

bis 2010. Um die relative Prognosegüte der Modelle zu bestimmen, nutzen wir auch al-

ternative Prognoseansätze, welche das Netzwerk überlappender Bankenportfolios nicht

berücksichtigen.

Ergebnisse

Wir identifizieren zwei Klassen von Wertpapieren für welche das Netzwerkmodell be-

sondere Prognosegüte aufweist, unabhängig von der jeweils getroffenen Verhaltensan-

nahme bzgl. des Liquidationsverhaltens von Banken. Wir zeigen, dass die Prognosegute¨

der Modelle von der Stärke des Ausgangsschocks und von der Sekundärmarktliquidität

abhängt. Zudem hängt die optimale Anzahl an Liquidationsrunden des Modells wie-

derum vom unterstellten Liquidationsverhalten ab. Insgesamt zeigen unsere Analysen,

dass angemessen kalibrierte makroprudenzielle Stresstests eine bessere Prognosegüte

erzielen können als Ansätze ohne Netzwerkkomponente.
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1 Introduction

The interconnectedness of the financial system has been considered by many as an
important source of systemic risk (Haldane and May (2011)). Ever since the global
financial crisis of 2008-09, the literature on network models of the financial system
has grown rapidly (see Glasserman and Young (2016) for a recent survey). Much of
the literature has focused on the development of contagion network models and vari-
ous stress test models based on different assumptions have been introduced (Baranova
et al. (2017); Bardoscia et al. (2016); Battiston et al. (2012); Caccioli et al. (2014);
Cont and Schaanning (2017); Duarte and Eisenbach (2015); Eisenberg and Noe (2001);
Elsinger et al. (2006); Fricke and Fricke (2020); Greenwood et al. (2015); Huang et al.
(2013)). With the exception of Huang et al. (2013), relatively little work has been
devoted to empirically testing the capability of any given stress test model to pre-
dict actual bank defaults (and survivals) during crisis periods. Of course, generally
speaking, stress tests are not a prediction tool. However, given that stress tests may
be used as early-warning indicators, it is important to calibrate models in a way that
they can capture dynamics that were observed during the most recent crisis period.
This is particularly important given that a multitude of models have been introduced
in the literature. Moreover, considering the importance of stress testing in monitor-
ing systemic risk, these questions are not of merely academic interest but of utmost
practical importance. In fact, policymakers and regulators are well aware of the fact
that the outcomes of stress tests crucially hinge upon the underlying model (e.g., Niep-
mann and Stebunovs (2018); Siemsen and Vilsmeier (2018)). Our paper contributes to
the literature by providing a structured approach to picking the desired model -based
on the researcher’s/policymakers’ specific criteria of interest- from a set of available
options.

Broadly speaking, the existing literature considers mainly two contagion chan-
nels for banking/financial networks: (i) direct contagion in the interbank borrow-
ing/lending network, and (ii) indirect price-mediated contagion due to common asset
holdings (overlapping portfolios). Here we look at the second contagion channel, which
appears to be more relevant in general (Caccioli et al. (2014); Glasserman and Young
(2015)). This contagion mechanism is based on the idea of fire sales in asset mar-
kets: when a leveraged bank faces a loss, it may need to liquidate (part of) its assets.
The corresponding market impact decreases the prices of the liquidated assets further,
which creates a vicious circle where banks may need to sell even more assets in a
falling market. Two extreme types of banks’ liquidation dynamics have been proposed
in the literature, namely the model of Caccioli et al. (2014) and Huang et al. (2013)
and the model of Greenwood et al. (2015): in the former, banks are assumed to sell
their assets only after they have defaulted (threshold dynamics). In the latter, banks
are assumed to sell their assets whenever their leverage ratio is off-target (leverage
targeting dynamics). In order to acknowledge that the actual liquidation behaviour of
banks might lie somewhere in-between these extremes, we propose a fire sales model
that interpolates between them. The model contains a one-parameter (γ) family of
non-linear functions, which determines the volume of assets that a bank liquidates in
response to a loss. Intuitively, modest (large) values of γ can be interpreted as the
tendency of banks to follow leverage targeting (threshold) dynamics.
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We then use the model to predict actual bank defaults for a range of liquidation
dynamics, i.e., different values of γ. Our goal is to identify the value(s) of γ that
perform(s) best in terms of predictive accuracy with regards to actual bank defaults
and survivals. Following Huang et al. (2013), we use U.S. commercial bank balance
sheet data for the last quarter of 2007, and we apply a shock that is meant to mimic
the onset of the subprime crisis. We then assess whether the different models manage
to accurately predict the actual defaults that occurred during the years 2008-10 based
on the list of bank failures published by the Federal Deposit Insurance Corporation
(FDIC).

Our main findings are as follows: the performance of the stress test model strongly
depends on the type of initial shock being imposed. On the one hand, systematic
shocks tend to yield relatively poor results in terms of predictive power. On the
other hand, idiosyncratic shocks can yield much better results, but strongly depend
on which asset class is being shocked initially. Our approach allows to identify those
asset classes that appear most relevant. Based on this identification, we find that the
stress test model displays a better performance than a random benchmark, irrespective
of the assumed liquidation dynamics. The model is also superior, in most instances,
to a standard logistic regression model that does not account for the network of com-
mon asset holdings: with leverage and total assets as the sole explanatory variables.
Furthermore, we find that the best performing liquidation dynamics depend on the
other model parameters, namely the size of the initial shock and the level of market
liquidity. We also discuss the fundamental differences between network models and
statistical/econometric models in general, and argue that the former are more appeal-
ing to the application of macroprudential stress tests. Lastly, we show that allowing
for asset class-specific market impact parameters can improve the model performance,
while accounting for multiple rounds of asset liquidation can affect the performance
of the model. In particular, we show that considering only the first round of asset
liquidations appears most accurate for a model with small γ (banks act as leverage
targeters), while accounting for multiple rounds of asset liqudiations provides better
resuts for larger γ (banks only liquidate in case of default).

In addition to the above-cited literature, our paper mainly contributes to the fol-
lowing streams of the literature: first, our generalization of existing stress test models
captures a wide range of banks’ asset liquidation behaviour in response to some initial
shock. In this sense, our work is analogous to Bardoscia et al. (2016) who analyse
counterparty risk within interbank networks. Second, our paper adds to the literature
on backtesting risk models. While backtesting microprudential risk models is now
common practice among market practitioners (e.g., Cavestany and Rodŕıguez (2015);
Dańıelsson (2011); Philippon et al. (2017)), relatively little attention has been devoted
to the case of macroprudential stress tests. Our methodology allows us to compare
the performance of different models and thus to identify the most accurate stress test
model, given some exogenous parameters. This is similar to the approach of Huang
et al. (2013), who test the predictive performance of the threshold model. In our
work, we use the same methodology but allow for different liquidation dynamics and
different combinations of the initial shock/market liquidity parameters. Lastly, our pa-
per is also related to the literature on reverse stress testing (e.g., Grigat and Caccioli
(2017)). Fundamentally, reverse stress testing is concerned with identifying scenarios
that would lead to a certain stress testing outcome. In our analysis, the outcomes that
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we wish to match are individual defaults/non-defaults.

The remainder of this paper is structured as follows: in section 2 we present the
model. Section 3 provides details on the data sets being used in the paper. Section 4
contains the model application and section 5 concludes.

2 Model dynamics

We consider a financial network of N banks and M assets. A link exists between bank
i and asset j if i invests in j. We should note that the network is bipartite, which
implies the absence of inter-bank and inter-asset links.

Each bank i holds a portfolio of risky assets {Qt
i,1, ..., Q

t
i,M−1} ≥ 0 and cash Qt

i,M =
Ct
i ≥ 0 at time t. Let f tj be the price of asset j at time t, with the price of cash

remaining constant over time (f tM = f 0
M ∀t), which we assume to be discrete. The

total value of bank i’s investment portfolio is therefore:

Ati =
M∑
j=1

Qt
ijf

t
j . (1)

Each bank i is financed with a mix of equity Et
i and liabilities Lti with a balance-sheet

identity:
Ati ≡ Et

i + Lti, (2)

and bank i does not default at time t if:

Ati ≥ Lti. (3)

The weight of asset j in bank i’s portfolio is defined as:

wtij =
Qt
ijf

t
j

Ati
. (4)

The total number of outstanding shares of asset j held in the system is denoted as:

βj =
N∑
i=1

Q0
ij. (5)

Finally, the leverage of bank i, is defined as the ratio of its total assets to its equity,

λti =
Ati
Et
i

, (6)

and λ0i is bank’s i initial leverage. λ0i will be of particular interest for the leverage
targeting model.
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The steps of the contagion algorithm can be summarized as follows:

1. We impose an initial shock on the value of some asset(s).

2. Banks update the value of their portfolios. A decline in the values of its assets
can lead banks to liquidate part of their holdings, if they target their leverage
ratios to some extent. If the decline is large enough to make the bank default,
it will liquidate all its holdings. In the threshold model, asset liquidations only
occur in the case of default.

3. Asset liquidations generate price impact, so the value of an asset is recomputed
depending on the volume of the asset that has been liquidated.

4. Back to step 2 (optional).

Let us discuss these steps in more detail.

2.1 Step 1: Initial shock

Suppose we initially impose a shock on asset j by reducing its value to a fraction
p ∈ [0, 1] of its original value:

f 1
j = p0jf

0
j . (7)

Note that larger (smaller) values of p correspond to smaller (larger) shocks.

Assuming that a given bank i holds asset j in its portfolio, the initial shock leads
to a reduction of its total assets:

A1
i = A0

i −Q0
ij(1− p0j)f 0

j . (8)

The absolute return on assets of bank i at time 1 is therefore:

φ1
i = −(A1

i − A0
i )

A0
i

(9)

and bank i’s updated equity becomes:

E1
i = E0

i − φ1
iA

0
i , (10)

while its liabilities remain unchanged, L1
i = L0

i .

Note that bank i’s updated leverage ratio reads as:

λ1i =
(1− φ1

i )A
0
i

(1− φ1
i )E

0
i − φ1

iL
0
i

≥ λ0i . (11)

Hence, in response to a drop in asset prices, leverage will mechanically increase when
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liabilities remain fixed (Adrian and Shin (2010)). Finally, bank i has not defaulted if

φ1
i ≤

1

λ0i
. (12)

2.2 Step 2: Response to the shock (asset liquidation)

The change in bank i’s total assets may trigger it to liquidate some of its assets: if the
devaluation is sufficiently large to make bank i default, that is when Equation (12) is
no longer satisfied, bank i liquidates all of its remaining assets. On the other hand, if
it has not yet defaulted, bank i may sell part of its assets.

Let us start by looking at the leverage targeting model of Greenwood et al. (2015).
In their model, bank i has a fixed leverage target: λ0i . As shown in Eq. (11), the initial
shock will increase the bank’s leverage, and the bank will have to liquidate a fraction
of its assets to maintain its original leverage target λ0i . In this case, the total volume
of the liquidated asset (in monetary units) is therefore specified as:

Π1
i = A1

i

(
1− λ0iE

1
i

A1
i

)
. (13)

To accommodate for the case where bank i defaults and needs to sell all of its
remaining assets, we modify the function Π1

i in Equation (13) as follows:

Π1
i = A1

i min

(
1− λ0iE

1
i

A1
i

, 1

)
. (14)

In contrast to the leverage targeting model, the threshold model (Caccioli et al.
(2014); Huang et al. (2013)) assumes that bank i will only liquidate assets when it
defaults. One might hypothesize that actual bank behaviour might lie in-between these
two extreme behaviours. Therefore we introduce a one-parameter non-linear functional
form, G1

i (φ) that interpolates between them. In order to derive the functional form
of G1

i (φ), we start by looking at Equation (14), which describes the behaviour of
bank i in the leverage targeting model. We want to modify the equation such that
it also encompasses the behaviour of bank i in the threshold model. We do this by
incorporating G1

i (φ) in Equation (14), such that:

Π1
i = G1

i (φ)A1
i min

(
1− λ0iE

1
i

A1
i

, 1

)
. (15)

In the leverage targeting model we have:

G1
i (φ) = 1, (16)

while in the threshold model:

G1
i (φ) =

{
0, if φ1

i ≤ 1
λ0i
,

1, otherwise.
(17)
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To interpolate between leverage targeting and threshold dynamics, we introduce
the function G1

i (φ):

G1
i (φ) = min

[
e
γ

(
φ1i−

1

λ0
i

)
, 1

]
, (18)

where γ ∈ (0,∞) is a free parameter that is related to a bank’s propensity to follow
threshold liquidation dynamics.

For example, by setting γ = 0, we recover the leverage targeting model, in which
the amount of assets that a bank liquidates is linear in its losses. For γ > 0, the
response of the bank is non-linear, and it has a convex shape. This means that the
bank will increase its rate of liquidation as losses increase. Eventually, in the limit
γ →∞, we recover the threshold model. This is shown in Figure 1, where we present
a comparison between different values of γ in term of liquidation volume as a function
of absolute return.
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Fig. 1: The volume of assets liquidated (relative to total assets) as a function of the loss in
value of assets for a portfolio with an initial leverage of 10, for different values of γ in the
model.

Following the liquidation procedure, we recompute the total assets of bank i as:

A
1+ 1

2
i = A1

i − Π1
i . (19)

Notice that we use time t = 1+ 1
2

for the new total assets in Eq. (11). This is to clarify
that the change is due to an intermediate step between time t = 1 (when the bank
liquidates part of its asset) and time t = 2 (when asset prices decrease because of the
liquidation), which we will discuss next.

2.3 Step 3: Fire sales generate price impact

We previously introduced Π1
i , the total volume of assets liquidated by bank i. Now we

specify, π1
ij, the asset-specific liquidation volumes of bank i. In line with the literature

(Cont and Schaanning (2017); Fricke and Fricke (2020); Greenwood et al. (2015)),
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banks are assumed to liquidate assets proportional to their current portfolio weights
(pro rata liquidation). This assumption is supported by empirical studies on asset
sales of banks and investment funds during market stress (e.g., Jiang et al. (2017)).1

Therefore, bank i sells a total number of shares asset j equal to:

π1
ij =

w1
ijΠ

1
i

f 1
j

. (20)

In line with empirical evidence, this additional selling pressure generates market
impact, which leads to a further devaluation of the assets. Let x1j be the fraction of
asset j that has been liquidated at time t = 1,

x1j =

∑N
i=1 π

1
ij

βj
. (21)

The market price of asset j at time t = 2 is updated to:

f 2
j = Ψj(x

1
j)f

1
j , (22)

where Ψj is the market impact function of asset j. Given that prices react to asset
liquidations, this will cause further mark-to-market losses to banks. We should note
that banks can also “liquidate” cash (banks use cash to repay existing debt), but
without any market impact.

The assumed functional form of Ψj varies across different stress test models (see
Appendix A.1 for classification of existing fire sales models), and we refer the interested
reader to Cont and Schaanning (2017) for a comprehensive discussion of this topic.
Similarly, many studies make a simplifying homogeneity assumption with regards to
the market impact function (e.g. Greenwood et al. (2015)). Put simply, this means
that all assets are assumed to be equally liquid, i.e., Ψj = Ψ ∀ j. In line with the
literature, we therefore use a linear market impact function and make the homogeneity
assumption in our main specification. Formally, an asset’s price depends linearly on
the fraction of shares that have been liquidated up to that time relative to the total
volume held in the system, that is: Ψj(x) = 1−αx1j . The price of asset j at time t = 2
then becomes:

f 2
j =

(
1− αx1j

)
f 1
j , (23)

where α is the parameter that reflects the market reaction to asset liquidations. More
illiquid assets should have higher values of α: a value of α = 0 corresponds to an
infinitely liquid asset whose price does not change in response to asset liquidations.
This would be the case for cash holdings, for example. On the other hand, a value of
α > 0 corresponds to a less liquid asset whose price reacts to assets liquidations.

Later on, we will relax the homogeneity assumption (see section 4.4) and the lin-
earity assumption (see Appendix).

1An alternative approach would consist of banks selling the most liquid assets first (waterfall liq-
uidation). In a setting with homogeneous price impacts, however, the two approaches are equivalent.
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2.4 Step 4: Back to step 2 (optional)

We have described the first complete iteration round of the model, which results in
asset liquidations generating price impact. Following this update in asset prices, banks
will experience another decline in their total assets, which will again trigger them
to liquidate (part of) their assets. Therefore, one can consider further rounds of
liquidation in the model by going back to step 2.

3 Data

As usual, once a stress test model has been developed, it is calibrated on empirical data
sets to perform counter-factual simulations regarding the stability of the underlying
financial networks (Baranova et al. (2017); Bardoscia et al. (2016); Battiston et al.
(2012); Cont and Schaanning (2017); Di Gangi et al. (2018); Duarte and Eisenbach
(2015); Elsinger et al. (2006); Fricke and Fricke (2020); Greenwood et al. (2015); Huang
et al. (2013); Levy-Carciente et al. (2015); Ramadiah et al. (2020); see also Upper
(2011) for related works).2

Following Huang et al. (2013), our data come from two sources: first, we take
U.S. commercial banks’ balance sheet data from Wharton Research Data Services3 for
2007-Q4. The data set contains the balance sheet of N =7,783 active U.S. commercial
banks, with holdings broken up into M = 14 broad asset classes (see Table 1 for a
list of asset classes). This gives us the empirical equivalent of matrix Q, which is the
bipartite financial network with dimension 7,783 banks × 14 assets. We also have
information on the total assets, total liabilities, and equity of each bank. Note that
most of the asset classes considered here are loans, and therefore are clearly illiquid.
However, we should stress that many of these can indeed be traded on secondary
markets (see, e.g., Drucker and Puri (2009)).4

The second data set is a list of bank failures from the Federal Deposit Insurance
Corporation (FBL-FDIC)5 for the period 1/1/2008 - 7/1/2011. During this period a
total number of 370 banks failed; for 306 of these we have the corresponding balance
sheet data from the first database. Hence, roughly 4% of the banks in our sample
defaulted during the financial crisis period.

In the following, we apply our stress test model to the bipartite network from the
first data set. We then compare the list of banks that the model predicts to default
and the actual list of bank failures. We aim to identify the best performing model that
correctly classifies both the 4% of banks that defaulted and the 96% of banks that
did not default.

Fundamentally, our paper is related to the growing literature on reverse stress test-

2Alternatively, theoretical analyses are performed on stylized synthetic data sets to study the effect
of particular financial networks topologies (e.g., Nier et al. (2007)).

3https://wrds-web.wharton.upenn.edu/wrds/
4For example, Keys et al. (2010) note that the market of securitized mortgage loans reached $3.6

trillion prior to the crisis.
5https://www.fdic.gov/bank/individual/failed/banklist.html
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Index Asset class
Total

amount
(million $)

Relative
amount (%
tot. assets)

1 Loans for construction and land development 774.67 6.10
2 Loans secured by farmland 247.54 1.95
3 Loans secured by 1-4 family residential properties 3058.64 24.09
4 Loans secured by multi-family (> 5) residential properties 185.11 1.46
5 Loans secured by non-farm non-residential properties 1234.33 9.72
6 Agricultural loans 224.31 1.77
7 Commercial and industrial loans 1605.34 12.64
8 Loans to individuals 1351.53 10.64

9
Obligations (other than securities and leases) of states and
political subdivision in the U.S.

282.80 2.23

10 Loans secured by nonfarm nonresidential properties 98.68 0.78
11 Held-to-maturity securities 772.17 6.08
12 Available-for-sale securities, total 2221.73 17.50
13 Premises and fixed assets including capitalized lease 145.26 1.14
14 Cash 496.93 3.91

Total assets 12,699.04 100

Table 1: Overview of the asset classes used in the exercise. There are 14 asset classes in total:
except for cash, the other 13 asset classes are less than perfectly liquid (asset liquidations
generate market impact). The third column is the total amount of each asset class (in million
$), and the fourth column is the corresponding percentage share of total assets.

ing (e.g., Grigat and Caccioli (2017)), which aims to identify (stress) scenarios that are
compatible with a certain stress testing outcome. Here the outcome is the default/non-
default of individual banks. From this perspective, while one might be worried that
our approach may be prone to overfitting, we argue that our approach is not actually
concerned with fitting the optimal parameter γ in an statistical/econometric sense.
Rather, we wish to find the value(s) of γ that replicate(s) as closely as possible the
behavior of U.S. banks during the crisis. We will return to this point in Section 4.3.
Of course, future research should explore to what extent the findings vary for different
countries and for different time periods.

4 Results

4.1 Experimental setup

Let us spell out some assumptions and introduce some definitions that we use in this
study. All assets start out with the same initial price:

f 0
j = 1,∀j ∈ {1, ...,M},

and we start the cascading process by reducing the value of an asset j ∈ {1, ...,M −1}
to a fraction p of its original value (p ∈ {0, 0.01, 0.02, ..., 0.99, 1}. In this sense, a large
(small) value of p corresponds to small (large) initial shock. With regards to the market
impact function, Ψ, we iterate over different values of α (α ∈ {0, 0.01, 0.02, ..., 0.99, 1})
and, initially, we assume that this value is homogeneous across assets (except for cash,
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for which we always consider α = 0). We will relax the homogeneity assumption below.

In the following, we will show results for all possible combinations of p and α, but
we mainly focus on the results for a restricted range of parameters. Since the majority
of asset classes considered here are relatively illiquid, we follow Ramadiah et al. (2020)
and focus on the upper range of the market impact parameter (α ∈ [0.6, 1]).6 Moreover,
in line with previous studies on price-mediated contagion (Ramadiah et al. (2020),
Cont and Schaanning (2017), Greenwood et al. (2015)), we consider relatively small
initial shocks (p ∈ [0.6, 1]). This makes intuitive sense, given that network models of
systemic risk are based on the idea that relatively small shocks can amplify through
the network and thus potentially have large effects overall.

Concerning the number of liquidation rounds, we mainly focus on the first iteration
round, which is in line with the approach of Greenwood et al. (2015) and Fricke
and Fricke (2020). More specifically, the first three steps of the contagion algorithm
described at the beginning of section 2 are only performed once, and the optional
fourth step is left out. This approach differs from the analysis of Huang et al. (2013),
where the contagion algorithm is iterated until convergence. We later compare the
model accuracy when allowing for multiple rounds of asset liquidations.

Concerning the propensity of banks to follow threshold dynamics (parameter γ),
we consider values of γ ∈ {0, 1, ..., 49} ∪ {∞}. Recall that a value of γ → ∞ means
that banks exactly follow threshold dynamics, i.e. they only liquidate assets in case of
default. On the other hand, lower values of γ indicate a tendency to follow leverage
targeting dynamics. For each value of γ from our set of values, we perform a stress
test and measure the prediction accuracy of the corresponding model. To this end, we
evaluate each model’s ability to identify bank failures and non-failures during financial
distress correctly. Here we use the standard receiver operating characteristic (ROC)
curve (Egan (1975); Swets et al. (2000)) which shows the fraction of correctly identified
bank failures (true positive rate/TPR) versus the incorrectly classified failures (false
positive rate/FPR). A random classifier would yield a diagonal line (from bottom left
to top right) in the ROC space; see Figure 2. In contrast, a perfect model produces
points closer to the top left corner in the ROC space.

In the following, each value of γ will produce one ROC curve. Each point cor-
responding to this curve corresponds to one combination of p and α, i.e., the size of
the initial shock and asset illiquidity. In order to test the model accuracy for each
combination of p and α we use Youden’s J statistic (Youden (1950)), which is defined
as :

Jγ,p,α = TPRγ,p,α − FPRγ,p,α. (24)

The value of J ranges from 0 to 1. J = 0 indicates the performance of a random
classifier, while J = 1 denotes the performance of a perfect model. Figure 2 illustrates
the computation of J .

Unless otherwise stated, in our analysis below we always exclude bankruptcies due
to the initial shock and focus on failures due to the contagion process only. This is
to separate the effect of shock propagation/amplification via the fire sale mechanism

6For α = 0.6, the asset price drops by 6% when 10% of the asset is liquidated; for α = 1, the price
drops by 10% when 10% of the asset is liquidated.
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Fig. 2: Illustration of Youden’s J statistic. The red point in the ROC space corresponds
to FPR = 0.3 and TPR = 0.7. The value of J of this point is displayed by the dotted line
(J = 0.7− 0.3 = 0.4). Larger values indicate a better model performance.

from the influence of the initial shock. (In the Appendix, we take a closer look at
defaults due to the initial shock.) Moreover, to compare the accuracy of the network
models with some benchmarks, we also plot two other ROC curves in each figure: i)
a random classifier, and ii) a standard logistic regression model with bank leverage
and total assets (in logs) as explanatory variables.7 We believe that this benchmark is
a reasonable starting point since it does not include any information on the network
of common asset holdings. (In Section 4.3 we will introduce a more sophisticated
benchmark model that also includes network information.)

We also note that, in the following analysis, the ROC curve of the logistic regression
benchmark and that of the network model come from slightly different samples: in the
former, we consider failures of all banks in the data set, while in the latter we only
consider failures due to the contagion process and exclude those due to the initial
shock. Our aim here is therefore to look at the comparison between the accuracy of
contagion dynamics and a benchmark that uses bank features as predictive variables.
We should highlight that if we also considered failures due to the initial shock for the
network model, we would obtain more superior ROC curves compared to those that
we show here.8 Therefore, if anything, in comparison with the logistic regressions, the
accuracy of the network model is biased downwards.

4.2 Model performance

Apart from the model-specfic parameters (in our case: p, α, and γ), the researcher
needs to decide what kind of shock should be imposed (e.g., idiosyncratic or system-
atic). In the case of idiosyncratic shocks, one also has to decide which asset class(es)

7See Appendix A.2 for details on the regression model.
8See Appendix A.4

11



should be shocked. In the following, we will show how to pick the relevant asset classes
in terms of how the stress test model performs in the classification exercise. We will
then focus on the results for the most relevant asset classes only (exemplary results
for less relevant asset classes can be found in the Appendix). As it turns out, the
two relevant asset classes that we identify (asset class 1: loans for construction and
land development; asset class 5: loans secured by non-farm non-residential properties)
made up less than 15% of banks’ total assets before the crisis. Interestingly, these two
asset classes are exactly those that were problematic during the global financial crisis
(Cole and White (2012); Huang et al. (2013)).

4.2.1 Identifying relevant asset classes

The stress scenario to be studied is to be defined by the researcher. One näıve approach
would be to run the model multiple times, with different asset classes being hit by the
initial shock and then averaging the results over the different shock scenarios. However,
as shown in Figure 3, this yields very poor classification results. Specifically, we run
the stress test model separately for each asset class (except for cash) and compute the
average of the TPR/FPR across all shock scenarios for each parameter combination.
The ROC curves in Figure 3 are quite close to those of a random classifier (and
substantially below those of a logistic regression), suggesting that this approach has
very little predictive power.

Shocked asset
class (j)

Complete parameter range Restricted parameter range

Mean Std Min Max Prob Mean Std Min Max Prob

1 0.276 0.212 -0.000 0.593 0.215 0.241 0.224 -0.000 0.592 0.379
2 -0.034 0.040 -0.149 0.199 0.662 -0.007 0.010 -0.066 0.003 0.997
3 0.011 0.033 -0.139 0.140 0.908 0.017 0.019 -0.064 0.119 0.975
4 0.023 0.032 -0.000 0.347 0.960 0.004 0.004 -0.000 0.042 1.000
5 0.120 0.121 -0.000 0.420 0.433 0.137 0.142 -0.000 0.420 0.420
6 -0.042 0.049 -0.132 0.199 0.545 -0.006 0.007 -0.037 0.010 1.000
7 0.043 0.039 -0.000 0.215 0.687 0.049 0.051 -0.000 0.213 0.575
8 -0.020 0.049 -0.197 0.093 0.774 -0.025 0.045 -0.178 0.047 0.781
9 -0.000 0.011 -0.124 0.033 0.982 0.000 0.002 -0.013 0.030 1.000
10 -0.000 0.002 -0.004 0.033 1.000 -0.000 0.000 -0.000 0.003 1.000
11 0.013 0.045 -0.095 0.207 0.689 0.006 0.035 -0.052 0.198 0.899
12 -0.006 0.053 -0.120 0.112 0.852 0.004 0.035 -0.147 0.110 0.895
13 0.000 0.012 -0.002 0.264 0.993 -0.000 0.000 -0.000 0.003 1.000

Table 2: Unconditional average of Youden’s J statistic (across all combinations of γ, p, and
α) when imposing an initial shock on each asset class separately.

In order to disentangle this somewhat disappointing finding, we show separate
results for the individual asset classes in Table 2. In particular, we compute the
average value of Youden’s J statistic (Equation (24)) along all (p, α, γ) combinations
for each asset class. Note that a random classifier corresponds to J = 0, while a perfect
classifier would correspond to J = 1. In order to assess the significance of the reported
J statistics, we also perform a simple simulation-based significance test: first, we
simulate the ROC curve for a random classifier with the same number of observations
as the data. (With a sufficiently large number of observations, the expected value of
the ROC curve converges to the 45 degree line shown in the Figures.) This gives us the
distribution of J for a random classifier. For each asset class j, we can then count how
many of the observations fall within the 5% confidence interval of the random classifier.
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Fig. 3: ROC curves of the model with γ = 0, 5, 20 and γ → ∞, resp., for the
average results of initial shock across all asset classes (except cash). Each dot
represents a true positive/false positive rate pair for a specific combination of the initial
shock (p) and the market impact parameter (α). We highlight the results for the restricted
range of parameters (low initial shock and high market impact) in red; blue corresponds to
parameter combinations outside this range. The black dashed line is the ROC curve of a
corresponding logistic regression model with bank leverage and total assets (log-transformed)
as explanatory variables, and the red diagonal line is the ROC curve of a random classifier.
A model closer to the top left corner of the TPR/FPR space is considered more accurate.
Here we consider only the first round of asset liquidations, and exclude bank failures due to
the initial shock in the model assessment.
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This number is reported as Prob in Table 2. Based on this simple significance test, we
find that the unconditional J statistic (both for the complete parameter range, and for
the restricted parameter range) is not significantly different from zero for any of the
asset classes; in fact, for most asset classes, we find that close to 100% of the J statistic
fall within the confidence interval of a random classifier. Put differently, imposing an
idiosyncratic shock on most of the asset classes yields results that are indistinguishable
from those of a random classifier.9 Table 2 also shows that for asset classes 1 and 5
the unconditional results are slightly better: approximately 60% of the J statistics fall
outside the 5% confidence bands of the random classifier. While these findings would
still not count as statistically significant at reasonable confidence levels, we treat these
two asset classes as the most relevant ones in what follows.

Note that our findings on asset classes 1 and 5 are in line with Cole and White
(2012), who found that banks with high levels of commercial real estate loans were
particularly affected during the recent global financial crisis. Indeed, we find that
the classifications are significantly better compared to those of a random classifier for
initial shocks on these two asset classes. We will therefore focus on results from these
two asset classes in most of what follows (examples of results from less relevant asset
classes can be found in the Appendix).

4.2.2 Results for the two most relevant asset classes

The different panels in Figure 4 show the ROC curves based on γ = 0, 5, 20 and γ →∞,
when imposing an initial shock on asset class 1. Figure 5 shows the corresponding
results when imposing initial shock on asset 5 instead. Each dot in the ROC curve
corresponds to the result of the stress test for a particular combination of p and α.
Red dots correspond to the results for the restricted range of parameters, blue dots
indicate results outside this range. Overall, we find that the model performs better
than a random classifier for all values of γ for these two asset classes. This can be
seen from Figures Figure 4 and Figure 5, where the ROC curves lie above diagonal
lines. In most instances, we also find that the model is compared to the logistic
regression model, which indicates that the network of common asset holdings indeed
contains useful information to predict defaults. However, for different values of γ, the
same combinations of p and α can end up in different locations of the ROC space. For
example, for larger γ (bottom panels in Figure 4 and Figure 5), the red dots cover only
a limited range within the TPR/FPR space. This is due to the fact that values closer
to the top right corner of the TPR/FPR space correspond to a larger number of banks
that are being predicted to default. Meanwhile, red dots correspond to the results for
the restricted range of parameters (low initial shock and high market impact). For
higher values of γ, banks are less aggressive in terms of their leverage targeting, and
therefore liquidate fewer assets during distress. Hence, when γ is large and the initial
shock is small, bank defaults are rare and shocks propagate slowly through the system.
For smaller values of γ, this changes dramatically: when banks’ propensity to target
their leverage ratios is strong, shocks can propagate more easily through the network

9We also perform standard two-sample Kolmogorov-Smirnov tests to compare the different distri-
butions of the J statistic with the one of the random classifier. Here we reject the null hypothesis for
all asset classes.
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Fig. 4: ROC curves of the model with γ = 0, 5, 20 and γ → ∞, resp., with initial
shock on loans for construction and land development (asset class 1). Each dot
represents a true positive/false positive rate pair for a specific combination of the initial
shock (p) and the market impact parameter (α). We highlight the results for the restricted
range of parameters (low initial shock and high market impact) in red; blue corresponds to
parameter combinations outside this range. The black dashed line is the ROC curve of a
corresponding logistic regression model with bank leverage and total assets (log-transformed)
as explanatory variables, and the red diagonal line is the ROC curve of a random classifier.
A model closer to the top left corner of the TPR/FPR space is considered more accurate.
Here we consider only the first round of asset liquidations, and exclude bank failures due to
the initial shock in the model assessment.

15



0 0.2 0.4 0.6 0.8 1

False positive rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
 p

o
s

it
iv

e
 r

a
te

 = 0

0 0.2 0.4 0.6 0.8 1

False positive rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
 p

o
s

it
iv

e
 r

a
te

 = 5

0 0.2 0.4 0.6 0.8 1

False positive rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
 p

o
s

it
iv

e
 r

a
te

 = 20

0 0.2 0.4 0.6 0.8 1

False positive rate

0

0.2

0.4

0.6

0.8

1
T

ru
e

 p
o

s
it

iv
e

 r
a

te
  

Fig. 5: ROC curves of the model with γ = 0, 5, 20 and γ → ∞, resp., with initial
shock on loans secured by non-farm non-residential properties (asset class 5).
Each dot represents a true positive/false positive rate pair for a specific combination of
the initial shock (p) and the market impact parameter (α). We highlight the results for
the restricted range of parameters (low initial shock and high market impact) in red; blue
corresponds to parameter combinations outside this range. The black dashed line is the
ROC curve of a corresponding logistic regression model with bank leverage and total assets
(log-transformed) as explanatory variables, and the red diagonal line is the ROC curve of a
random classifier. A model closer to the top left corner of the TPR/FPR space is considered
more accurate. Here we consider only the first round of asset liquidations, and exclude bank
failures due to the initial shock in the model assessment.
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(see section 4.4). As we see from the top panels in Figure 4 and Figure 5, the red dots
now also cover a broader range within the TPR/FPR space. These findings suggest
that there may be different regimes in the (p, α) plane, for which different values of γ
are best performing.

4.2.3 Model performance in the (p, α) plane

In the following, we now discuss the model performance in the (p, α) plane and check
for each combination of (p, α) which value of γ yields the most accurate model. Specif-
ically, we find the value of γ for which Jγ,p,α is maximized:

γopt(p, α) = arg max
γ

Jγ,p,α. (25)

As noted previously, here we focus only on the results for the two most relevant asset
classes (1 and 5). In the following, we differentiate between results for the complete
(p, α) range, and results for the restricted range with relatively small initial shocks
and relatively large price impact parameters.

Complete Parameter Range. The values of γopt(p, α) are shown as a heatmap
in Figure 6(a) and Figure 7(a), for shocks on asset class 1 and 5, respectively. The
Figures suggest the existence of three different regions characterized by different values
of γopt: two of these regions (denoted as regions 1 and 3) indicate that the threshold
model appears to be best (γopt(p, α) → ∞).10 There is also an intermediate region
(denoted as region 2) where the best performing value of γ is smaller, such that the
leverage targeting model yields more accurate results (γopt(p, α) → 0). Note that
there are also some cases in region 2 where something in-between the threshold model
and the leverage targeting approach is best. Overall, it should be clear that the best
performing γ varies across different (p, α) combinations.

In order to take a closer look at the accuracy of the best performing model in each
regime, Figure 6(b) and Figure 7(b) show the value of Jγopt,p,α in the (p, α) plane. As we
previously discussed, a random classifier would correspond to J = 0, while a perfect
model corresponds to J = 1. The results suggest that region 1 is characterized by
small values of J , which is incidentally not driven by the model’s failure to accurately
identify bank defaults (high FPR, but low TPR), but simply because the model does
not identify any default (low FPR and low TPR). Since this region is characterized
by modest values of (p, α), the exogenous shock would not be adequately amplified to
trigger further contagion in the system. On the other hand, regions 2 and 3 display
relatively high values of J (J > 0.4).

Finally, to get a feeling for the variation in model accuracy for different values of
γ, Figure 6(c) and Figure 7(c) show the differences in performance between the best
and the worst model in the (p, α) plane:

δ = max
γ

Jγ,p,α −min
γ
Jγ,p,α, (26)

10We also see a few cases in region 1 where the accuracy of all values of γ is equivalent (shown in
white).
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Fig. 6: Results from imposing an initial shock on asset class 1 (loans for construc-
tion and land development).(a) The variation of γopt (based on Youden’s J statistic)
in different (p, α) regimes. Warmer (colder) colors refer to larger (smaller) values of γ, and
white is used whenever the accuracy of all γ are equivalently similar. We look at the range
of γ ∈ {0, ..., 49} ∪ {∞}, and γ = 50 in this plot corresponds to γ → ∞. (b) values of J
of the corresponding most accurate γ in different regimes of p and α. (c) The variation of
model accuracy between the values of J of the most accurate and the least accurate γ in
different regimes.
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Fig. 7: Results from imposing an initial shock on asset class 5 (loans secured by
non-farm non-residential properties). (a) The variation of γopt (based on Youden’s J
statistic) in different (p, α) regimes. Warmer (colder) colors refer to larger (smaller) values
of γ, and white is used whenever the accuracy of all γ are equivalently similar. We look at
the range of γ ∈ {0, ..., 49}∪{∞}, and γ = 50 in this plot corresponds to γ →∞. (b) values
of J of the corresponding most accurate γ in different regimes of p and α. (c) The variation
of model accuracy between the values of J of the most accurate and the least accurate γ in
different regimes.
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Note that δ ranges between 0 (where both models have a similar value of J) an 1 (if
one model is a perfect model while the other is a random classifier).

As shown in the figures, we again obtain high values of δ for most (p,α) combina-
tions in regions 2 and 3. Hence, properly tuning γ can substantially improve model
accuracy. This also implies that there is no contagion algorithm that is always the
best, but rather the best performing value of γ depends on the specific values of p and
α. Note that the results are consistent for both of the most relevant asset classes.

A high-level overview of our main findings can be found in Table 3. In practice,
once the size of exogenous shock and the strength of market impact have been cali-
brated, one can select the corresponding best performing value of γ that we provided
in Figure 6 and Figure 7.

Market impact (α)
weak

0 . α . 0.3
moderate

0.3 . α . 0.7
strong

0.7 . α . 1

Initial
shock (p)

large
0 . p . 0.3

All dynamics
mostly the

same

Threshold
dyamic

Threshold
dynamic

moderate
0.3 . p . 0.7

All dynamics
mostly the

same

Intermediate
region

Threshold
dynamic

small
0.7 . p . 1

All dynamics
exactly the

same

Leverage
targeting

Leverage
targeting

Table 3: The best performing liquidation dynamics for different combinations of the
exogenous shock and the market impact parameter.

Restricted Parameter Range. We now take a closer look at the model perfor-
mance in the regime of small initial shocks (p ∈ [0.6, 1]) and high market impact
parameters (α ∈ [0.6, 1]). The results for the restricted range of parameters are high-
lighted in Figure 6 and Figure 7 as the area inside the black dashed line square (bottom
right corner). Interestingly, Figure 6(a) and Figure 7(a) show that the best perform-
ing liquidation parameter γ in this range lies in-between leverage targeting and the
threshold dynamics. Furthermore, we also observe from Table 3 that the best per-
forming model in this range switches from the leverage targeting (high price impact,
small shocks) to the threshold dynamics (high price impact, moderate shocks).

These results can be explained as follows: with smaller values of γ, banks target
their leverage ratios more aggressively. Hence, they will liquidate more assets during
distress. When the initial shock is small (e.g. p = 0.9), banks only observe a small
decline in their total assets and shocks are therefore unlikely to spread. That is, unless
banks decide to liquidate a considerable amount of their assets. Accordingly, the shock
propagation and the (accurate) default prediction can only be observed for the model
with γ = 0 (leverage targeting).

As the initial shock becomes larger (e.g. p = 0.7), the best performing γ shifts
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to the region that lies in between leverage targeting (γ = 0) and threshold dynamics
(γ → ∞). The reason for this is the following: shocks can now spread even if banks
only decide to liquidate a moderate amount of their assets, since losses from the initial
shock are larger. Accordingly, a more accurate model uses an intermediate value of
0 > γ > ∞. In particular, the leverage targeting model that was best for small
shocks now overestimates the number of defaults, such that the increase in its false
positive rate (the number of banks that it incorrectly predicts to default) is faster than
the increase in its true positive rate (the number of banks that it correctly predicts
to default). Therefore, models with intermediate γ (e.g. γ ∈ [20, 30]) become more
accurate.

4.3 Comparison with a more sophisticated benchmark

The results suggest that network models have some predictive power, as they pre-
dict defaults better than both a random classifier and the simple logistic regression
benchmark. An obvious question is how well the model performs relative to more so-
phisticated benchmarks. For this purpose, we specify an enhanced logistic regression,
which also includes information on the network of common asset holdings. Specifically,
we include each bank’s relative amount of holdings of each asset class (defined as the
portfolio share).11 As shown in the regression results in Table A.3 in the Appendix,
the parameter on log(Leverage) now turns out insignificant. Only the parameters
on log(TotalAssets), and on asset classes 1 and 8 are significant. Nevertheless, the
pseudo-R2 now increases substantially from 0.01 to 0.17.

In Figures 8 and 9, we plot the performance of this benchmark against that of the
network model when we shock assets 1 and 5 respectively. The results indeed suggest
that the enhanced logistic regression appears to perform better than the network
model. This, however, should not be taken as a defeat for the network model since
the enhanced logistic regression model is subject to strong overfitting to the subprime
crisis: the model has been trained to discriminate between banks that defaulted and
those that did not after the 2008 shock, which mostly affected asset classes 1 and
5 (Cole and White, 2012). For this type of shock, the model performs quite well,
but it would not be able to provide any predictions under slightly different scenarios
(e.g., different exogenous shocks), which is however important from a macroprudential
policy perspective.

More generally, in contrast to statistical/econometric models, network models have
not been developed or optimized for prediction purposes. Rather, network models
have primarily been used for developing intuition about the dynamics of contagion, its
parameter sensitivity, and to perform scenario analysis. This is particularly true for
the growing literature on reverse stress testing. The higher flexibility of the network
model can be seen in Figure 10, where the exogenous shock affects asset 8. The fact
that the network model does not perform better than the random benchmark is due to
the fact that the model predicts the default of different banks with respect to the case
when assets 1 and 5 are shocked, while the logistic regression always predicts exactly

11To deal with collinearity, we exclude asset classes 10 and 13 in the regression, which account only
for less than 2% of the aggregated balance sheet.
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the same banks to default in both cases.
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Fig. 8: ROC curves of the model with γ = 0, 5, 20 and γ → ∞, resp., with initial
shock on loans for construction and land development (asset class 1). Each dot
represents a true positive/false positive rate pair for a specific combination of the initial
shock (p) and the market impact parameter (α). We highlight the results for the restricted
range of parameters (low initial shock and high market impact) in red; blue corresponds to
parameter combinations outside this range. The black dashed lines is the ROC curve of an
enhanced logistic regression model with bank leverage and total assets (log-transformed) and
investments in all asset classes but 10 and 13 (defined as the portfolio share) as explanatory
variables. The red diagonal line is the ROC curve of a random classifier. A model closer to
the top left corner of the TPR/FPR space is considered more accurate. Here we consider
only the first round of asset liquidations, and exclude bank failures due to the initial shock
in the model assessment.

4.4 Extensions

In the following, we assess to what extent the model performance can be improved
by means of two separate model extensions: (1) heterogeneity in the market impact
parameter (αj) across different asset classes; (2) multiple rounds of asset liquidations.
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Fig. 9: ROC curves of the model with γ = 0, 5, 20 and γ → ∞, resp., with initial
shock on loans for construction and land development (asset class 5). Each dot
represents a true positive/false positive rate pair for a specific combination of the initial
shock (p) and the market impact parameter (α). We highlight the results for the restricted
range of parameters (low initial shock and high market impact) in red; blue corresponds to
parameter combinations outside this range. The black dashed lines is the ROC curve of an
enhanced logistic regression model with bank leverage and total assets (log-transformed) and
investments in all asset classes but 10 and 13 (defined as the portfolio share) as explanatory
variables. The red diagonal line is the ROC curve of a random classifier. A model closer to
the top left corner of the TPR/FPR space is considered more accurate. Here we consider
only the first round of asset liquidations, and exclude bank failures due to the initial shock
in the model assessment.
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Fig. 10: ROC curves of the model with γ = 0, 5, 20 and γ →∞, resp., with initial
shock on loans for construction and land development (asset class 8). Each dot
represents a true positive/false positive rate pair for a specific combination of the initial
shock (p) and the market impact parameter (α). We highlight the results for the restricted
range of parameters (low initial shock and high market impact) in red; blue corresponds to
parameter combinations outside this range. The black dashed lines is the ROC curve of an
enhanced logistic regression model with bank leverage and total assets (log-transformed) and
investments in all asset classes but 10 and 13 (defined as the portfolio share) as explanatory
variables. The red diagonal line is the ROC curve of a random classifier. A model closer to
the top left corner of the TPR/FPR space is considered more accurate. Here we consider
only the first round of asset liquidations, and exclude bank failures due to the initial shock
in the model assessment.
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4.4.1 Heterogeneity of market impact

So far, we considered the case of a homogeneous market impact parameter αj =
α for all assets (except for cash). In the following, we relax this assumption and
explore to what extent this improves the model performance. Our main goal here is to
show, by proof-of-concept, that there are simple example cases that lead to a superior
performance. For this purpose, we assume that the two relevant asset classes (1 and 5),
are ten times less liquid compared to the other asset classes. Figure 11 and Figure 12
compare the model performances for homogeneous (top panels) versus heterogeneous
market impact parameters (bottom panels) for the cases γ = 0 (Figure 11) and γ = 20
(Figure 12). Each column in the figures corresponds to an initial shock on a specific
asset class. For all asset classes, we see that ROC curves for heterogeneous market
impact are superior to those for homogeneous market impact.
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Fig. 11: Comparison between ROC curves of model with homogeneous market impact
parameters (top panels) versus model with heterogeneous market impact (bottom panels).
Each column corresponds to an initial shock on a specific asset class (see Table 1 for the
classification). Here we consider γ = 0.

Overall, the performance of the model improves for our specific choice of hetero-
geneity in α. In both figures, the ROC curves in the bottom panels lie above the
corresponding ones in the top panels, even if we assume the initial shock affects more
liquid asset classes. See, for example, the results for an initial shock on asset class 8
(loans to individuals, center column) and on asset class 11 (held-to-maturity securities,
right column).

4.4.2 The impact of multiple rounds of asset liquidations

So far we only included one round of asset liquidations in our stress test model. Here
we explore to what extent accounting for multiple rounds affects the predictive per-
formance of the model. In particular, we contribute to the debate as to whether one
should consider multiple rounds of asset liquidations. For example, Greenwood et al.
(2015) and Duarte and Eisenbach (2015) find that most of the contagion process is
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Fig. 12: Comparison between ROC curves of model with homogeneous market impact
parameter (top panels) versus model with heterogeneous market impact parameter (bottom
panels). Each column corresponds to an initial shock on a specific asset class (see Table 1
for the classification). Here we consider γ = 20.

captured by the first liquidation round. On the other hand, Cont and Schaanning
(2017) argue that this approach may lead to an underestimation of systemic risk.
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Fig. 13: (a) The number of bank failures that is correctly identified by the model (normalized
to the actual number of bank failures), as a function of γ and iteration round (t). (b) The
corresponding value of J as a function of γ and iteration round (t). The results correspond
to a combination of p and α in the restricted parameter range (p = 0.7 and α = 0.7).

We look at the effect of multiple rounds of liquidations along two different dimen-
sions: first, we check whether it increases the TPR (the number of bank failures that
the model correctly predicts) of the different models. To this end, we plot the TPR,
for several values of γ, as a function of the iteration round (t) in Figure 13(a).12 In line

12In the plot, we only show the results for p = α = 0.7 that correspond to an example from within
the restricted range of parameters that we considered (p, α ∈ [0.6, 1]). We note that the results are
robust for different parameters within (but also outside of) this range. For the sake of illustration, in
Appendix A.6, we show the same plot for p = α = 0.5.
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with the results of Cont and Schaanning (2017), we find that the model underestimates
the number of banks that fail when only one round of asset liquidations is included.
As expected, the number of bank failures increases with t for all values of γ and all
models approach TPR = 1 at some t. For example, the model with γ = 0 correctly
predicts the defaulted banks (TPR = 1) at t = 2. Note that, as γ becomes larger, the
model needs to include additional rounds of asset liquidations to correctly classify all
failed banks. For example, the model with γ →∞ reaches TPR = 1 at t = 8.

Second, we investigate to what extent the increased TPR from Figure 13(a) corre-
sponds to higher values of J . In this respect, higher (lower) values of J would suggest
higher (lower) accuracy, i.e. the TPR increases faster (slower) with t compared to the
FPR. To this end, we plot J as a function of the iteration round (t) in Figure 13(b).
Here we again observe that the dynamics of J depend on the assumed liquidation
dynamics: for small values of γ (e.g. γ = 0, 4, 10, 20), we see that the value of J
decreases over t. In other words, when banks are aggressive leverage targeters, the
model becomes most accurate at t = 1; in this case, including additional rounds of
asset liquidations reduces the accuracy of the model. This is in line with the findings
of Greenwood et al. (2015) and Duarte and Eisenbach (2015).

For larger values of γ, however, Figure 13(b) shows that the peak of J shifts further
to the right. In other words, when banks are less aggressive to leverage targeters,
considering multiple rounds of asset liquidations is more favourable. In this case,
bank defaults propagate more slowly through the system, such that additional rounds
of asset liquidations are necessary. We should note, however, that J decreases for
relatively large t, such that including too many rounds of asset liquidations will always
reduce the performance of the stress test model.

5 Conclusion

We studied a network model of price-mediated contagion via fire sales that interpolates
between two models that were previously considered in the literature. Our model
contains a free parameter, γ, which determines how aggressively banks target their
leverage ratios (and thus sell assets during distress). We tested the predictive accuracy
of the model on empirical data for U.S. banks during the recent global financial crisis.

Our analysis has important implications for the application of macroprudential
stress tests. To analyse the stability of financial networks due to price-mediated con-
tagion, one needs to make a number of assumptions, in particular with regards to
behavioral response of banks. In this paper, we showed that it is important to con-
sider a range of assumptions in relation to the behaviour of banks. We provided a
framework to do this in a structured manner by means of a free model parameter (γ)
and illustrated how the optimal value of γ depends on the choice of the other model
parameters, in particular the size of the initial shock and the market impact param-
eter. Moreover, we showed that the overall model predictive performance strongly
depends on: 1) the type of shock being imposed (systematic versus idiosyncratic), 2)
the asset class-specific market impact parameters, and 3) the number of liquidation
rounds considered in the stress test model.
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Our findings suggest several interesting paths for future research. First and fore-
most, we think it is of utmost importance to perform similar analyses on other data
sets. This paper specifically focuses on the behavior of U.S. banks during the global
financial crisis. Future research should therefore explore to what extent the findings
vary for different countries and/or different time periods. Another important follow-up
question is whether individual banks follow different behavioural strategies, i.e., con-
sidering different values of γ for each bank. This might further increase the predictive
accuracy of the proposed stress test model. Lastly, in line with most of the existing
literature we focused on a single layer of the banking network. Future work should
include additional layers in order to provide a more complete assessment of financial
system vulnerabilities.
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Cole, R. A. and L. J. White (2012). Déjà vu all over again: the causes of U.S. commer-
cial bank failures this time around. Journal of Financial Services Research 42 (1-2),
5–29.

Cont, R. and E. Schaanning (2017). Fire sales, indirect contagion and systemic stress
testing. Norges Bank Working Paper 2.
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A Appendix

A.1 Classification of existing network models of contagion
due to common asset holdings

In the main text, we consider network models of contagion due to common asset
holdings, for which two classes of dynamics have been proposed in the literature:
threshold dynamics (Caccioli et al., 2014; Huang et al., 2013), and leverage targeting
(Greenwood et al., 2015). Here we provide a summary of the models’ comparison
based on the type of market impact function and whether it assumes some form of
leverage targeting.

As shown in Table A.1, we note that the model of Huang et al. (2013) uses a linear
market impact and assumes that banks do not target their leverage. As in Huang
et al. (2013), the model of Caccioli et al. (2014) also disregards leverage targeting,
although the leverage targeting is incorporated in the extended version of the model.
However, contrary to Huang et al. (2013), the model of Caccioli et al. (2014) uses a
non-linear market impact. Similar to the extended version of Caccioli et al. (2014),
the model of Greenwood et al. (2015) incorporates leverage targeting, but assumes a
linear market impact function. Another proposed model in the literature is the model
of Cont and Schaanning (2017). They do not include pure leverage targeting, but
assume that banks have some regulatory constraint regarding their maximum leverage
and banks will only liquidate when they exceed that maximum threshold. Another
distinction between Cont and Schaanning (2017) and Greenwood et al. (2015) is that,
even though the model of Cont and Schaanning (2017) also assumes a linear market
impact for small volumes, they use a non-linear impact function with heterogeneous
price impacts for each asset class.

Market impact
linear non-linear

Leverage
targeting

not included Huang et al. (2013) Caccioli et al. (2014)

included with
threshold

Cont and Schaanning (2017)

included Greenwood et al. (2015)
Caccioli et al. (2014)

(extended)

Table A.1: Comparison between different existing network models of contagion due to
common asset holdings, based on the type of market impact function used and whether
leverage targeting is included or not.
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A.2 Logistic regression

In the main text, we plot the ROC curve of a standard logistic regression model.
This allows to make in-sample predictions by modelling the conditional probability
of observing bank i’s default. We denote this as Prob(yi = 1|X = xi), where xi is a
vector of leverage and total assets of bank i (both log transformed). Logistic regression
specifies this probability as:

Prob(yi = 1|X = xi) =
1

1 + exp(−xiβ)
, (27)

where β is a vector of parameter estimates for the explanatory variables (estimated
via maximum likelihood).

Table A.2 shows the results. As it can be seen from the table, the explanatory
variables (leverage and total assets) are significantly positively associated with the
probability of default.

Coefficient
Standard

error
t-stat

Intercept -8.74 0.60 -14.59 ***
log(Leverage) 1.15 0.20 5.77 ***
log(TotalAssets) 0.24 0.04 6.70 ***
Pseudo-R2 0.01
Obs. 7,783

Table A.2: Results from a logistic regression model to explain bank failures where the
dependent variable takes a value of one if a bank failed, and zero otherwise. The explanatory
variables are leverage and total assets (log transformed). *** indicates statistical significance
at the 0.1% level.

32



A.3 Enhanced logistic regression

Table A.3 shows the results of the enhanced logistic regression model with additional
explanatory variables.

Coefficient
Standard

error
t-stat

Intercept -7.28 2.94 −2.47∗

Asset-1 7.83 3.02 2.59∗∗

Asset-2 -2.04 3.74 −0.55
Asset-3 -2.33 3.07 −0.76
Asset-4 5.35 3.14 1.70
Asset-5 0.71 3.02 0.24
Asset-6 -0.11 3.33 −0.03
Asset-7 -0.23 3.06 −0.08
Asset-8 -10.21 4.48 −2.28∗

Asset-9 1.56 5.05 0.31
Asset-11 -2.45 3.28 −0.75
Asset-12 -1.75 3.04 −0.58
Asset-14 -6.68 4.34 −1.54
log(Leverage) 0.02 0.06 0.41
log(TotalAssets) 1.64 0.24 6.76∗∗∗

Pseudo-R2 0.17
Obs. 7,783

Table A.3: Results from the enhanced logistic regression model. The dependent variable
takes a value of one if a bank failed, and zero otherwise. The explanatory variables are lever-
age, total assets (both log-transformed) and the portfolio share of each asset class (excluding
asset classes 10 and 13). *, ** and *** indicates statistical significance at the 5%, 1% and
0.1% level.
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A.4 Initial shock versus contagion dynamics

In the main text, we focus on bank failures identified from the contagion dynamics
alone, and ignored failures due to the initial shock. In Figure A.1, we show the
comparison between defaults due to three different categories: (i) initial shock only,
(ii) both initial shock and contagion, and (iii) contagion only. First, we find that the
results of the second category are superior compared to those we presented in the
main text. In other words, the results shown in the main text likely underestimate the
performance of the network approach.
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(c) Initial shock only vs.
both initial shock and contagion.
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(d) Contagion only.
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(e) Contagion only.
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(f) Contagion only.

Fig. A.1: ROC curves of the defaulted banks predicted by the model with γ = 0 (left
panels), γ = 20 (middle panels) and γ → ∞ (right panels), with an initial shock on
asset class 1 (loans for construction and land development). Each dot represents a true
positive/false positive rate pair for a specific combination of the initial shock (p) and the market
impact parameter (α). We highlight the results for the restricted range of parameters (low initial
shock and high market impact) in red; blue corresponds to parameter combinations outside this
range. (a)(b)(c) ROC curves of bank failures identified due to the initial shock only vs. initial shock
and contagion (darker color vs lighter color), (d)(e)(f) from contagion only. The black dashed line
is the ROC curve of a corresponding logistic regression model with bank leverage and total assets
(log-transformed) as explanatory variables, and the red diagonal line is the ROC curve of a random
classifier. A model closer to the top left corner of the TPR/FPR space is considered more accurate.

Second, including the contagion mechanism improves the model output by identi-
fying defaults that are not due to the initial shock. Recall that values closer to the
top right corner of the TPR/FPR space correspond to a larger number of banks pre-
dicted to default. For the case of the initial shock only, the dots cover only a limited
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range within the TPR/FPR space. Meanwhile, for the case of both initial shock and
contagion, the dots cover a much broader range.

Moreover, Figure A.2 shows the total losses of all banks due to initial shock versus
due to contagion only, for γ = 0 (leverage targeting model). The results indicate
that the latter is relatively larger, indicating the importance of contagion dynamics in
explaining the results.
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Fig. A.2: Total losses (in billion USD) due to the initial shock and due to the contagion
dynamics only (first round of liquidation), for γ = 0. Results for initial shock on asset
class 1 (loans for construction and land development). The total pre-shock assets in
the network are 12.7 bn USD. Parameter p is the post-shock value of the asset (as a
fraction of the pre-shock value), where a lower p corresponds to a larger initial shock.
α is the market impact parameter, where a higher α corresponds to a more illiquid
asset.
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A.5 Shocking less relevant asset classes

We found that two asset classes (1 and 5) were most relevant in terms of our model
application. For the sake of completeness, here we show results when imposing an
initial shock on asset 8 (loans to individuals). Figure A.3 shows that all dots in the
ROC space now lie close to the diagonal or even below it. In other words, when
imposing an initial shock on less relevant assets, the model performs very similar to
or worse than a random classifier.
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Fig. A.3: ROC curves of the model with γ = 0, 5, 20 and γ → ∞, resp., with an
initial shock on loans to individuals (asset class 8). Each dot represents a true posi-
tive/false positive rate pair for a specific combination of the initial shock (p) and the market
impact parameter (α). We highlight the results for the restricted range of parameters (low
initial shock and high market impact) in red; blue corresponds to parameter combinations
outside this range. The black dashed line is the ROC curve of a corresponding logistic regres-
sion model with bank leverage and total assets (log-transformed) as explanatory variables,
and the red diagonal line is the ROC curve of a random classifier. A model closer to the
top left corner of the TPR/FPR space is considered more accurate. Here we consider only
the first round of asset liquidations, and exclude bank failures due to the initial shock in the
model assessment.
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A.6 Multiple liquidation rounds outside the restricted param-
eter range

In the main text, we present the results for p = α = 0.7 that are within the restricted
range of parameters. In the following, we show the corresponding results for p = α =
0.5 that are outside the restricted range of parameters. We find that the results are
consistent to those in the main text.

1 2 3 4 5 6 7 8 9 10

iteration round (t)

0

0.2

0.4

0.6

0.8

1

T
ru

e
 p

o
s

it
iv

e
 r

a
te

 p = 0.5,  = 0.5

 = 0

 = 4

 = 10

 = 20

 = 40

 = 80

 = 250

 = 500

  

(a)

1 2 3 4 5 6 7 8 9 10

iteration round (t)

0

0.2

0.4

0.6

0.8

1

 J

 p = 0.5,  = 0.5

(b)

Fig. A.4: (a) The number of bank failures that is correctly identified by the model (nor-
malized to the actual number of bank failures), as a function of γ and iteration round (t).
(b) The corresponding value of J as a function of γ and iteration round (t). The results
correspond to a combination of p and α in the non-restricted parameter range (p = 0.5 and
α = 0.5).
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A.7 Model accuracy with a non-linear market impact func-
tion

In the main text, we consider a linear market impact function (Ψj). Here we look
at the results of non-linear Ψj. To this end, we use a similar functional form as in
Caccioli et al. (2014), that is:

Ψj(x
t
j) = e−αx

t
j ,

for a range of α as in the main text, α ∈ {0, 0.01, 0.02, ..., 0.99, 1}. We plot the
corresponding ROC curves of this choice of Ψj in Figure A.5 (for initial shock on
asset: loans for construction and land development) and in Figure A.6 (for initial
shock on asset: loans secured by non-farm non-residential properties). We find that
the results of linear and non-linear market impact are qualitatively similar (see Figure 4
and Figure 5 to compare with linear market impact).
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Fig. A.5: ROC curves of the model with γ = 0, 5, 20 and γ → ∞, resp., with
an initial shock on loans for construction and land development (asset class
1). The plot is similar to Figure 4, but here we consider a non-linear market
impact function. Each dot represents a true positive/false positive rate pair for a specific
combination of the initial shock (p) and the market impact parameter (α). We highlight
the results for the restricted range of parameters (low initial shock and high market impact)
in red; blue corresponds to parameter combinations outside this range. The black dashed
line is the ROC curve of a corresponding logistic regression model with bank leverage and
total assets (log-transformed) as explanatory variables, and the red diagonal line is the ROC
curve of a random classifier. A model closer to the top left corner of the TPR/FPR space
is considered more accurate. Here we consider only the first round of asset liquidations, and
exclude bank failures due to the initial shock in the model assessment.
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Fig. A.6: ROC curves of the model with γ = 0, 5, 20 and γ → ∞, resp., with an
initial shock on loans secured by non-farm non-residential properties (asset class
5). The plot is similar to Figure 5, but here we consider a non-linear market
impact function. Each dot represents a true positive/false positive rate pair for a specific
combination of the initial shock (p) and the market impact parameter (α). We highlight
the results for the restricted range of parameters (low initial shock and high market impact)
in red; blue corresponds to parameter combinations outside this range. The black dashed
line is the ROC curve of a corresponding logistic regression model with bank leverage and
total assets (log-transformed) as explanatory variables, and the red diagonal line is the ROC
curve of a random classifier. A model closer to the top left corner of the TPR/FPR space
is considered more accurate. Here we consider only the first round of asset liquidations, and
exclude bank failures due to the initial shock in the model assessment.
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