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Abstract

We fit CES and VES production functions to data from a numerical
bottom-up optimization model of electricity supply with clean and dirty
inputs. This approach allows for studying high shares of clean energy not
observable today and for isolating mechanisms that impact the elasticity
of substitution between clean and dirty energy. Central results show that
(i) dirty inputs are not essential for production. As long as some energy
storage is available, the elasticity of substitution between clean and dirty
inputs is above unity; (ii) no single clean technology is indispensable, but a
balanced mix facilitates substitution; (iii) substitution is harder for higher
shares of clean energy. Finally, we demonstrate how changing availability
of generation and storage technologies can be implemented in macroeco-
nomic models.
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1 Introduction

As of 2020, anthropogenic CO2 emissions have caused global warming of around
one degree Celsius, adversely affecting many dimensions of (human) life. To mit-
igate a further rise in temperatures, the use of fossil fuels must be substantially
reduced (IPCC, 2014). Since thermodynamic laws limit energy efficiency gains
in production (Meran, 2019), substituting clean, renewable inputs for dirty, CO2

emitting inputs is key (Bretschger, 2005).
In many macroeconomic models, especially growth models, the elasticity of

substitution captures how difficult it is to replace dirty with clean inputs in pro-
duction. It also determines whether, in the long-run, a complete shift from dirty
to clean inputs is feasible or not. In general, an elasticity of substitution above
unity is necessary to avoid a climate disaster (Acemoglu et al., 2012; Hémous,
2016; Greaker et al., 2018). Yet a profound bottom-up view on the top-down
elasticity of substitution is missing (Mattauch et al., 2015). This especially con-
cerns its technological determinants and its development for high shares of clean
inputs not observable today, but central for a future clean economy. We fill this
gap.

We generate production isoquants with a numerical bottom-up optimization
model of electricity supply that takes both economic and technological aspects
into account. Based on these data, we fit aggregate production functions and
the corresponding elasticity of substitution between clean and dirty inputs. As
we control the data generating process, we can both derive insights on the clean-
dirty substitutability, also for high shares of clean inputs that are not yet ob-
servable, and isolate channels that affect the elasticity of substitution. In our
analysis, we focus on electricity generation, a major source of anthropogenic
CO2 emissions (IPCC, 2014; IEA, 2019a). With the ongoing electrification of
transportation, heating, and industrial processes, the electricity sector will gain
further importance in the future. Thus, the sector’s elasticity of substitution
also gains relevance as an approximation for the elasticity of substitution for
aggregate production as used in macroeconomic models.

We make four contributions. First, using simulated data allows for examining
substitution patterns not observable to their full extent yet. This especially
applies to high future shares of clean energy sources that are a central part of
climate policies in many countries and entail a transformative change of the
energy supply structure. By contrast, empirical analyses today must rely on
data for only moderate shares. These contain only limited information on high
penetration rates of clean energy (Koetse et al., 2008; Ueckerdt et al., 2015). We

1



give support to this conjecture by showing that substitution rates for low shares
of clean energy cannot necessarily be transferred to future settings with high
shares.

Second, using a numerical bottom-up model allows for isolating the mecha-
nisms that shape the elasticity of substitution between clean and dirty inputs.
Our model accounts for the most relevant clean energy technologies, incorpo-
rating their technological and economic characteristics. This comprises different
types of energy storage as well as weather-dependent wind and solar electric-
ity, whose supply does not necessarily match demand in time. In the model,
we switch on or off single technologies to inspect how their availability impacts
substitution possibilities. Our results show that dirty inputs are not essential for
production and that a balanced mix of clean generation and storage technologies
most easily substitutes dirty inputs. No single clean technology is indispensable.
Yet without any storage, substitution becomes particularly hard for high shares
of clean energy.

Third, we apply both a production function with a constant elasticity of
substitution (CES), as often used in empirical and theoretical research, and a
more flexible variant with a variable elasticity of substitution (VES). The lat-
ter allows for the possibility that substitution may become over-proportionately
difficult with a rising share of clean energy. Both specifications show a good fit
to the simulated data. When extrapolating substitution patterns from low to
high shares of clean inputs, the CES function tends to underestimate required
clean inputs, while the VES function tends to overestimate it. Given necessary
abstractions in the numerical model, the CES specification likely fits real-world
data better.

Fourth, we show that installed generation capacities, a common input mea-
sure (see Papageorgiou et al., 2017), can give rise to non-convex production
isoquants. That is, capacities do not necessarily reflect an increasing difficulty
in the substitution of clean for dirty energy sources, but rather the contrary. We
suggest the sum of investment and variable costs as an alternative input measure
that captures the idea of increasingly difficult substitution, is easy to interpret,
and can readily be used in macroeconomic models.

Our paper is most closely related to Papageorgiou et al. (2017). Employing a
binary distinction between clean and dirty inputs, they estimate the elasticity of
substitution for a panel of industry-level data from 26 OECD countries for the
years 1995-2009. Imposing a CES structure on production, Papageorgiou et al.
(2017) find a cross-country elasticity of about 1.8 in the electricity-generating
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sectors, which implies that dirty inputs are not essential for electricity produc-
tion. In an extension, Malikov et al. (2018) abandon the CES structure and
apply non-parametric estimation methods. They find an elasticity of substitu-
tion above unity only for about two-thirds of the observations. Moreover, their
results suggest that the assumption of a constant elasticity of substitution needs
to be rejected in favor of a more flexible structure.

In contrast, Wiskich (2019), using a theoretical model of electricity genera-
tion based on generic aggregate clean and dirty inputs, demonstrates that the
degree of substitutability may decrease for future high shares of clean inputs.
Similar to Malikov et al. (2018), he shows that more flexible structures can ap-
proximate the decreasing elasticity of substitution predicted by his electricity
generation model better than the CES approach. Like Wiskich (2019), we use
an ex ante model. Yet we explicitly implement several pivotal aspects of elec-
tricity production, like an explicit time resolution that captures the temporal
variability of renewable supply and the central role of storage. This allows for
deriving more and richer conclusions, also relating to the theoretical literature
and existing empirical evidence.

The remainder of this paper is structured as follows. Sections 2 and 3 intro-
duce the numerical model, data, and scenario assumptions. Section 4 discusses
two different input measures and the resulting production isoquants. The fitting
of production functions is explained in Section 5. Section 6 presents the results,
and Section 7 discusses limitations as well as implications for theoretical and
empirical research. Section 8 concludes.

2 Numerical Model

We analyze production in the electricity sector with a numerical bottom-up op-
timization model. It takes into account the central economic and technological
trade-offs between clean and dirty technologies. The model minimizes the total
costs of electricity supply over one year in hourly resolution. Thus, it determines
the first-best benchmark from the perspective of a benevolent social planner with
perfect foresight and complete information. With all capacities endogenous, the
solution mimics an equilibrium on a frictionless electricity market with perfect
competition. The model is a linear program that is numerically solved to global
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optimality. For transparency and reproducibility (Pfenninger, 2017), model code
and all input data are available open-source under a permissive license.1

Exogenous model inputs comprise costs and availability limits for each tech-
nology as well as hourly time series of electricity demand and availability of
renewable energy sources. Endogenous model variables are investments and con-
secutive hourly use for all electricity generation and storage technologies. The
model result is the cost-minimizing capacity mix of clean and dirty technologies
as well as the corresponding investment and operational costs for an exogenously
set share of clean generation. The model focuses on one country and abstracts
from an explicit spatial resolution.

The objective function (1a) sums the annualized investment and annual fixed
costs κi for storage (st) as well as clean (cl) and dirty (di) generation capaci-
ties N .2 Operational costs κv accrue for hourly electricity supply Gh from dirty
technologies as well as storage loading −→S h and storage energy withdrawal ←−S h.

Z =
∑
di

κidiNdi +
∑
cl

κiclNcl +
∑
st

(−→κ i
st

−→
N st +←−κ i

st

←−
N st + κistNst

)

+
∑
h

[∑
di

κvdiGh,di +
∑
st

(←−κ v←−S h,st +−→κ v−→S h,st

)]
(1a)

As dirty technologies, we denote conventional plants that emit CO2 through
burning fossil fuels, such as natural gas power stations. As clean technologies,
we denote renewable plants that do not emit CO2 when operating, such as wind
and solar power. Beyond emissions, clean and dirty technologies differ in two
important respects.

First, clean technologies do not incur variable costs because they do not
require any fuel to operate. Dirty technologies require fossil fuels that come at a
cost. This difference is reflected in the objective function (1a). Second, the supply
of dirty technologies is dispatchable. Their full capacity is available in each hour,
and plants can generate electricity whenever required or optimal in terms of the
model’s objective. The supply of clean technologies is variable. This variability,
also referred to as intermittency, means that plants cannot be switched on at
discretion, but generate electricity according to natural conditions, i.e., in hours
when the wind blows or the sun shines. These hours do not necessarily coincide

1This numerical model is a variant of the power sector model DIETER; in previous research,
it is used to analyze questions on renewable energy and electrical storage (Zerrahn and Schill,
2017; Zerrahn et al., 2018). Code and data are available under Stöckl and Zerrahn (2020).

2Throughout the exposition, capital Roman letters denote variables, small Roman letters
sets, and Greek letters parameters.
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with hours of high demand. Therefore, electrical storage assumes a mediating
role to align supply and demand in time.

For the different storage technologies st, investments into storage power in-
put −→N st, power output

←−
N st, and storage energy Nst capacities are mutually in-

dependent. The storage power capacities specify how much electricity can enter
or leave the storage in an hour; the energy capacity specifies how much energy
can be kept inside the storage.

A market-clearing condition (1b) equates electricity demand δh and supply in
hourly resolution, as is standard in many electricity markets. The left-hand side
is augmented by electricity demand that flows into storage; the right-hand side
contains electricity supply from storage. As is standard in numerical bottom-
up models, we assume that short-run electricity demand is inelastic. Electricity
can hardly be substituted by other energy carriers in the short run, and most
customers do not see real-time prices. Therefore, we assume that the demand
side does not adjust its intended electricity consumption on a short time scale.

δh +
∑
st

−→
S h,st =

∑
di

Gh,di +
∑
cl

Gh,cl +
∑
st

←−
S h,st ∀h (1b)

Capacity bounds ν for each technology may constrain investment according
to spatial or political limitations (1c), and generation of dirty plants may be no
larger than installed capacities (1d). For the variable clean technologies, time
series of exogenous capacity factors φh,cl ∈ [0, 1] render their hourly availability.
Excess renewable electricity supply can be curtailed at no cost, indicated by the
inequality in Equation (1e), and does not have to be integrated into the market-
clearing condition through storage. In that way, the model trades off storage
investments with investments in renewable energy sources whose excess supply
is not used at times (Zerrahn et al., 2018).

Ndi ≤ νdi, Ncl ≤ νcl,
←−
N st ≤ ←−ν st,

−→
N st ≤ −→ν st, Nst ≤ νst ∀cl, di, st (1c)

Gh,di ≤ Ndi ∀h, di (1d)

Gh,cl ≤ φh,clNcl ∀h, cl (1e)

The filling level of a storage Sh,st equals the filling level in the previous hour
plus the energy that enters the storage and minus the energy that leaves the
storage (1f). Storage filling and withdrawal are subject to losses, represented by
the respective efficiency ηst. An additional constraint equates the filling levels in
the first and last periods. Storage input, output, and filling levels may not exceed
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installed capacities (1g). Likewise, storage input may not exceed the currently
available volume of the storage, and storage output may not exceed the current
filling level (1h). To impose a realistic relation between power and energy invest-
ments, electricity from a full storage can be supplied for at most τst hours (1i).
For simplicity, we may impose equal investments into installed capacities for
storing in and out.

Sh,st = Sh−1,st +−→η st

−→
S h,st − 1←−η st

←−
S h,st ∀h, st (1f)

−→
S h,st ≤

−→
N st,

←−
S h,st ≤

←−
N st, Sh,st ≤ Nst ∀, h, st (1g)

−→η st

−→
S h,st ≤ Nst − Sh−1,st,

1←−η st
←−
S h,st ≤ Sh−1,st ∀h, st (1h)

Nst ≤ τst
←−
N st ∀st,

←−
N st = −→N st (1i)

Eventually, Equation (1j) implements that generation by clean technologies
must match a pre-specified share ι ∈ [0, 1] in overall annual electricity gener-
ation. If only one dirty technology is available, this approach is equivalent to
implementing a varying level of emissions. We later vary this share to analyze
substitution between clean and dirty inputs.

∑
h,cl

Gh,cl = ι
∑
h

(∑
cl

Gh,cl +
∑
di

Gh,di

)
(1j)

3 Input Data and Scenarios

To concisely focus on the peculiarities of clean and storage technologies, we
consider natural gas as the only available dirty technology. From the perspective
of the numerical model, other dirty technologies such as coal do not qualitatively
impact the substitution between clean and dirty. As they are dispatchable and
have positive variable costs, they share the central characteristics of natural gas.
Sensitivity calculations show that results are preserved when coal is an option.
Additionally, from a policy perspective, more emission-intensive coal plants are
a worse fit for a low-carbon energy supply.

Clean technologies comprise wind power - both onshore and offshore - as
well as solar photovoltaics. As mature renewable technologies, they are central
in long-term energy outlooks in the decarbonization strategies of many coun-
tries (IEA, 2019b). Moreover, their potential is less limited than for hydro en-
ergy, for which many good sites are already exploited. For one scenario, we also
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consider electricity generation from biomass and hydro energy as clean technolo-
gies.3

We consider the three most mature types of electrical storage: lithium-ion
batteries, pumped-hydro storage, and power-to-gas storage. These three tech-
nologies show a trade-off concerning the specific investment costs for power and
energy capacities. Batteries have low investment costs for storage power and
high costs for energy. This means that large investments into energy capacities
are rather uneconomical, rendering them a suitable short-term storage for a few
hours. In contrast, power-to-gas storage has high specific investment costs for
power capacities – electrolyzers and fuel cells that convert electricity to hydrogen
and back – but low costs for energy capacities. Thus, it is a suitable long-term
storage for several weeks. The ratio of investment costs for pumped-hydro storage
is in between, rendering it a medium-term storage. For convenience, investments
into capacities for storing in and out are equal for batteries and pumped-hydro
storage. This does not apply to power-to-gas storage because electrolyzers, for
storing in, and fuel cells, for storing out, are, in any case, separate objects.

Numerical assumptions on costs and availability of all technologies are based
on established medium-term projections for Germany. Appendix A.2 gives a full
description of the input data. Variable costs of dirty plants are derived from
fuel costs and technological efficiency. As we implement the level of clean gen-
eration through a mandatory quota (1j), we do not consider costs for emission
certificates. Annualized specific investment costs are derived from overnight in-
vestment costs and the technical lifetime of plants.

To study technological possibilities for substitution, we vary the share ι of
clean generation in total annual electricity generation (1j) between 0 and 95%
in one-percentage-point increments. The result is the hull of the cost-minimizing
combinations of clean and dirty electricity generation and storage capacities, i.e.,
the production isoquants. In a later step, these capacity data, and derived cost
data, are used to fit the CES and VES production functions as a continuous
representation of electricity generation from clean and dirty inputs.

In general, the model can accommodate shares up to 100%, yet we argue
that the analysis of such high shares is not reasonable in this framework. Given
long-term climate policies, it is not conceivable to see 100% clean electricity
generation in isolation without taking into account the decarbonization of other

3Hydro energy supply is also variable and has no variable costs. Biomass combustion incurs
variable costs and is dispatchable, i.e., does not depend on exogenous weather conditions.
To account for biomass resource availability, an additional model constraint limits annual
generation to 7000 hours per year at maximum capacity, leaning on values for Germany.
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energy end uses, like mobility or heat. These would add new demand patterns
and temporal flexibility, in turn, impacting the substitutability between clean
and dirty energy. Section 6.4 presents a stylized model extension; yet a detailed
treatment is beyond the scope of this paper. The bar of 95% is high enough
to observe very high shares of clean inputs, but low enough not to give rise
to implausible results. For convenience, we start with 0.01% clean energy; a
share of zero percent can imply a division by zero when fitting the production
functions. This minor technical point does not alter the findings.

A number of scenarios (Table 1) systematically explore how different technolo-
gies affect the scope for substitution. Scenario Germany leans on Papageorgiou
et al. (2017). It features the clean, non-emitting energy sources onshore wind,
offshore wind, and solar photovoltaics (PV), as well as run-of-river hydro power
and biomass. Dirty technologies comprise natural gas plants. As scheduled by
German policy, coal power is not part of the energy mix. All three storage tech-
nologies are available. Except for natural gas plants, batteries, and power-to-gas
storage, capacities require sizable dedicated space. For instance, wind and solar
power cannot be deployed in arbitrary amounts within a country. Therefore,
in scenario Germany, we assume upper bounds for investments according to es-
tablished projections given German spatial resources. As such projections vary,
we pursue a conservative approach and pick pessimistic values for the potential
expansion of clean technologies in Germany (Table A.2). In line with German
legislation, nuclear power is no option for electricity generation.

To derive more general insights on the determinants of substitutability, seven
stylized scenarios depart from the German setting and allow for generally unlim-
ited investments in clean technologies (Table 1). Scenario All features natural
gas, wind, and solar power as well as all three storage types. Four scenarios vary
the availability of storage (No sto, No bat, No phs, No p2g), and two scenar-
ios vary the availability of clean generation technologies (Wind only, PV only).
Focusing on readily scalable clean technologies, we do not consider run-of-river
hydro and biomass power, whose capacities are either largely exploited or highly
limited. Thus, it is little insightful to assume future expansions.
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Table 1: Scenarios

Dirty Clean

Natural

gas

Wind

onshore

Wind

offshore

PV Bio

energy

Run-

of-river

hydro

Battery

storage

Pumped-

hydro

storage

Power-

to-gas

storge

Germany × × × × × × × × ×

All × × × × × × ×

No sto × × × ×

No bat × × × × × ×

No phs × × × × × ×

No p2g × × × × × ×

Wind only × × × × × ×

PV only × × × ×

4 Measuring Clean and Dirty Inputs

In the following, we take the results of the numerical model for each share of
clean energy as data and analyze the resulting production isoquants. These give
a first understanding of the substitution between clean and dirty inputs.

4.1 Non-Convex Production Isoquants

To start with, we employ clean and dirty production capacities (in gigawatts,
GW) as input measure, as commonly used in the literature (see, e.g., Papageor-
giou et al., 2017). Figure 1 shows the resulting production isoquant based on our
simulated data for scenario Germany. For storage, we take the output capacity
because it adds to generation. Any storage that is already installed for zero
percent clean energy is added proportionately to dirty and clean capacities ac-
cording to the share of clean and dirty energy.4 All storage beyond this baseline
dirty-only value is added to clean capacities because it is built to complement
rising clean energy shares.

4Specifically, for zero percent clean energy, all storage capacities are added to dirty inputs;
for one percent clean energy, one percent of the storage capacities installed for zero percent
clean energy are added to clean capacities and 99 percent to dirty capacities, and so forth.
This assignment only applies to the minor part of storage that is already installed for zero
percent clean energy.
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Figure 1: Production Isoquant Using Clean and Dirty Capacities - Scenario
Germany

Given the temporal variability of clean renewable generation – the supply of
wind and solar power varies with daytime, season, and weather conditions and
does not have to coincide with demand – one should expect that substituting
clean for dirty inputs becomes more difficult as the share of clean inputs rises,
yielding a convex production isoquant. This is also what some empirical papers
conclude (e.g., Papageorgiou et al., 2017). Yet the isoquant for our simulated
data is non-convex, showing concave segments separated by kinks. Analogous
findings also prevail for all other scenarios, where kinks separate concave, oc-
casional linear, and convex parts. Concavity implies an increasing marginal
product of input factors, rather than a decreasing or constant one. Puzzling at
first glance, we argue that capacities are not a meaningful proxy for inputs be-
cause they do not reflect the underlying substitution in electricity generation. In
general, capacities are not equal to generation, which is the quantity of interest.5

Using capacities as input measure, isoquants are shaped by typical character-
istics of clean electricity generation. Specifically, the concave segments are due to
storage. It helps to make better use of clean but variable wind and solar power.
Without storage, the proportion of clean energy from wind or solar power that
exceeds demand in an hour must be curtailed. The optimization model trades
off cost-minimal investments into storage and clean generation. Instead of over-
proportionately greater clean generation capacities, smaller but cost-intensive

5Appendix A.1 discusses how to reconcile a capacity-based, convex production isoquant as
estimated by Papageorgiou et al. (2017) with our simulated data.
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investments into storage are optimal and better exploit clean capacity additions.
In particular, this applies to high shares of clean energy, where situations in
which clean supply exceeds demand occur more frequently. The kinks in the iso-
quants are due to limited potentials to invest in certain technologies that arise
from country idiosyncrasies such as spatial limitations. If a potential limit is
reached, investment must resort to the next expensive technology to raise the
share of clean generation.

4.2 A New Measure

Instead of installed capacities (in GW), we suggest using clean and dirty electric-
ity system costs (ESC, in Euros) of capacities. They comprise investment, fixed,
and variable costs of generation and storage, as also captured by the objective
function of the numerical model.6 As above, for the minor part of storage already
built for a case without clean generation, costs are attributed to the dirty and
clean ESC proportionately to the share of dirty and clean energy. Costs of any
further storage that complements clean energy expansion are attributed to the
clean ESC.7 All costs refer to a specified time interval, in our case a year, with
investment costs annualized and variable costs summed up. Figure 2 shows the
corresponding isoquant for scenario Germany.

0 5 10 15 20 25 30
0

10

20

30

40

Figure 2: Production Isoquants Using Clean and Dirty Electricity System Costs
- Scenario Germany

6Appendix A.3 gives a formal definition using the nomenclature of the numerical optimiza-
tion model.

7In a sensitivity analysis, Papageorgiou et al. (2017) also use a metric based on invest-
ment costs of generation capacities but neglect variable costs. Applied to our simulated data,
isoquants are again non-convex.
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Using ESC has several advantages over generation capacities. First, they
carry the notion that substitution of clean for dirty generation becomes increas-
ingly difficult for high shares of renewables. While it does not necessarily be-
come harder capacity-wise, costs rise over-proportionately due to the variability
of clean generation. A diversified clean capacity mix between wind and solar
helps to supply electricity more evenly. This diversified mix must resort to tech-
nologies that are more expensive, yet available at times when cheaper renewable
generation is not. Additionally, for medium to high shares of clean energy, more
costly storage investment complements variable clean generation.

Second, ESC fully capture the trade-off between investment, fixed, and vari-
able costs characterizing clean and dirty generation technologies. In general,
variable clean technologies have rather high specific investment costs, but zero
variable costs. In contrast, dirty technologies, such as natural gas plants, have
relatively low specific investment costs and high variable costs.

Third, ESC directly provide information on substitution costs. These would
be difficult to retrieve from aggregate clean and dirty capacities as they comprise
various technologies at a broad range of costs. Moreover, as a cost metric, ESC
readily apply to more aggregate macroeconomic models - either as annual flows in
terms of final good production/money or, alternatively, as short-lived (one year)
capital stock assigned to clean and dirty electricity generation, respectively. In
the latter case, one can interpret variable inputs, such as natural gas, as being
provided by a part of the dirty capital stock assigned to drilling capacities.8

Finally, the elasticity of substitution obtains an intuitive interpretation when
using ESC: the higher the elasticity of substitution, the lower the increase in the
exchange rate between clean and dirty inputs – i.e., the marginal rate of technical
substitution – as the share of clean inputs increases. That is, ceteris paribus, for
an increasing share of clean inputs, the clean ESC increase less if the elasticity
of substitution is higher.9

5 Fitting Procedure

Using our simulated data, we fit two widely used types of production functions.
First, we fit the standard two-input CES production function introduced by Ar-

8In macroeconomic models, inertia of the power sector can be introduced by extending
capital stock lifetime and the depreciation period, with input costs increasing proportionately.

9Formally, the elasticity of substitution is defined as σ ≡ d ln(D/C)
d ln(MRT SC,D) , where C and D

denote the clean and dirty ESC, respectively.
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row et al. (1961) and also used by Papageorgiou et al. (2017). We apply a
factor-neutral, time-invariant efficiency parameter, but abstract from directed
technological change over time because technology-specific efficiencies are con-
stant in our numerical bottom-up model. The resulting CES production function
reads:

Eι = A
(
αC

σ−1
σ

ι + (1− α)D
σ−1
σ

ι

) σ
σ−1

+ ει, (2)

where ι denotes the share of clean generation for the simulated data points. The
output is total electricity generation Eι in megawatt hours, Cι, Dι ≥ 0 are clean
and dirty inputs in terms of ESC, A > 0 is overall efficiency, the parameter α ∈
(0, 1) captures the relative importance of inputs, the elasticity of substitution is
captured by σ ∈ (0,∞), and ει is the error term.10

Second, for the alternative VES production function, the elasticity of substi-
tution depends on the ratio of clean to dirty inputs, cι = Cι/Dι. This represents
the idea that, ceteris paribus, substitutability can change with rising shares of
clean inputs. We use the following parsimonious specification introduced by Re-
vankar (1971):11

Eι = ADa
ι [Cι + baDι](1−a) + ει, (3)

with the parameter constraints a ∈ (0, 1], b > −1 and cι ≥ −b. These parameter
constraints guarantee that the standard properties of a neoclassical production
function are fulfilled (Karagiannis et al., 2005). The input ratio-dependent elas-
ticity of substitution is given by:

σ (cι) = 1 + b

cι
> 0, (4)

for which σ R 1 if b R 0. That is, depending on b, the elasticity of substitution is
either always above or below unity and decreases or increases in cι, respectively.12

Following the existing literature (e.g., Papageorgiou et al., 2017; Kemfert,
1998; Bodkin and Klein, 1967), we determine the production function parameters
with the best fit using a nonlinear optimization that minimizes the mean squared
error with respect to output (MSE).13 Also the comparison of the CES and VES
specifications as well as their prediction performance is based on the MSE. We do

10For convenience, we do not consider the special cases of a Leontief, Cobb-Douglas, and
von Neumann production functions, i.e., σ = 0, σ = 1, and σ =∞.

11See Karagiannis et al. (2005) for a detailed discussion of the properties of this specification
of a VES production function.

12Growiec and Mućk (2019) develop more flexible VES specifications where the elasticity
can cross the threshold value of unity. Yet, in general, these variants lack a closed-form
representation.

13Mathematica code is available under Stöckl and Zerrahn (2020)
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not use the R2 because it is not valid for nonlinear models (Spiess and Neumeyer,
2010).

6 Results

6.1 General Results

Table 2 shows the fitted elasticities of substitution for the CES and VES produc-
tion functions taking the clean and dirty ESC as inputs.14 We use three different
samples of the simulated data: the full (c0-c95) sample, a lower (c0-c50) sample,
and a higher (c51-c95) sample. The lower sample represents shares of clean energy
as mostly observed today. The higher sample represents a future setting.

Table 2: Fitted Elasticity of Substitution (σ)

CES VES

full lower higher full lower higher

σ σ σ σc0 → σc95 σc0 → σc50 σc51 → σc95

Germany 3.94 6.13 3.25 > 1000→ 1.22 > 1000→ 2.29 9.79→ 1.58

All 6.46 13.32 5.66 > 1000→ 1.51 > 1000→ 4.14 17.61→ 2.21

No sto 1.84 9.09 0.94 > 1000→ 1.04 > 1000→ 2.97 0.88→ 0.99

No bat 6.46 13.32 5.66 > 1000→ 1.51 > 1000→ 4.14 17.62→ 2.21

No phs 5.57 10.68 6.67 > 1000→ 1.40 > 1000→ 3.38 23.60→ 2.42

No p2g 3.88 12.38 1.60 > 1000→ 1.22 > 1000→ 3.88 2.99→ 1.15

Wind only 5.44 9.47 7.51 > 1000→ 1.35 > 1000→ 3.01 29.39→ 2.51

PV only 3.28 5.29 1.81 > 1000→ 1.21 > 1000→ 1.95 3.54→ 1.23

As our first central result, the elasticity of substitution is always above unity
as long as some storage is available. This holds for both the CES and VES
specifications. That is, given there is some flexibility to integrate variable renew-
able electricity, the elasticity of substitution of the fitted production functions
indicates that dirty inputs are not essential for electricity production and that a
complete shift to clean inputs is feasible. This finding also preserves the results

14Table A.5 presents a complete list of all fitted parameters.
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of the numerical bottom-up model, in which electricity supply can be completely
satisfied with clean inputs.15

Second, for the CES specification, the elasticity of substitution in the higher
sample is always smaller than in the lower sample. That is, substitution is more
difficult for higher shares of clean inputs. Adding greater amounts of clean energy
requires increasingly costly investments in respective capacities. Also in the
VES specification, the elasticity in the higher sample decreases to smaller values
than in the lower sample. Moreover, in the VES specification, the elasticity of
substitution falls in the share of clean generation, except for the scenario without
storage.16
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Figure 3: Fitted Production Functions for the Full Sample and Predicted Pro-
duction Functions Based on the Lower Sample - Scenario Germany

Third, in all scenarios, both production functions have a good fit for the sim-
ulated data. While the MSE (given in squared megawatt hours, MWh2), as our
optimality criterion (Table 3), does not have an intuitive interpretation, the good

15In the numerical model, 100% clean inputs are feasible even without storage (scenario No
sto), yet the fitted CES and VES production functions pick up a massive cost increase for high
shares of clean energy. By extrapolating this cost increase to the highest shares, which are not
included in this analysis, the fitted functions wrongly imply essentiality of dirty inputs for the
higher sample, i.e., σ < 1.

16Yet, even for an increasing elasticity of substitution, as in the higher sample of scenario No
sto, the difficulty of substituting clean for dirty inputs measured in absolute terms, i.e., the
marginal rate of technical substitution (MRTS), always increases.
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fit of the CES and VES production function becomes clear from Figure 3, which
depicts the best-fit production isoquants for the full sample in scenario Germany.
It illustrates the gap between predicted (solid dark gray line) and required clean
inputs (black dots) for given production and dirty inputs, represented by the
vertical distance between the fitted production isoquant and the simulated data
points. Averaged over all clean generation shares, the gap (in absolute terms)
amounts to around 0.30 and 0.35 billion euros for the fitted CES and VES pro-
duction functions, respectively, compared to 31.45 billion euros of average total
ESC. This low gap highlights the good fit for scenario Germany. In the other sce-
narios, the fitted production functions also show a good fit (Tables A.3 and A.4
and Figures A.1-A.7).

In most scenarios, the CES function provides a slightly better fit than the
VES in terms of the MSE. This is due to the rather restrictive (linear) evolution
of the elasticity implied by the VES production function and the predetermined
convergence to, or divergence from, unity (Equation 4). Only in three scenarios
where central technologies are unavailable (No sto, No p2g, PV only), does the
VES specification fit the simulated data better. Here, costs to accommodate very
high shares of clean generation rise sharply, which seems to be better represented
by the VES.

Table 3: Mean Squared Error (MSE) w.r.t. output (E) - in MWh2

full lower higher higher|lower

CES 2.455 · 1013 1.332 · 1012 8.378 · 1012 7.269 · 1014

VES 3.463 · 1013 3.496 · 1012 1.775 · 1013 2.808 · 1015

Calculation: (|Ŷι − Yι|Dι,Cι )2/n, where Ŷι is predicted output of the fitted pro-
duction function given Dι and Cι. n denotes the number of data points.
Note: higher|lower is the MSE of the higher sample based on the fitted parameters
of the lower sample.

Fourth, while both CES and VES show a good fit within the sample, they
differ with respect to out-of-sample predictions. This is especially relevant if one
is interested in substitution patterns for high shares of clean energy when only
data for low shares is available. If we fit the CES function for the lower sample
(solid light gray line) and extrapolate it to the higher sample (dashed light gray
line), this underestimates the necessary clean inputs as Figure 3a illustrates for
scenario Germany. This reflects that the elasticity of substitution for the lower
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sample has a greater numerical value than for the higher sample. Consequently,
the MSE in that branch of the production function is higher (Table 3). By
contrast, the VES function, when based on the lower sample, overestimates the
necessary investment in clean inputs for the higher sample (Figure 3b). The
VES approach picks up a rate of decrease for the elasticity of substitution from
the lower sample that is too large for the higher sample. For scenario Germany,
the average gap (in absolute terms) between predicted and required clean inputs
in the higher sample is 1.46 billion euros for the CES and 6.16 for the VES,
compared to average ESC of 34.00 billion euros. Qualitatively, the same results
hold for the other scenarios (Tables A.3 and A.4 and Figures A.1-A.7). Only if
no storage is available (scenario No sto), also the VES function underestimates
costs for higher shares if based on the lower sample.

6.2 Availability of Clean Technologies

In the following, we derive results on how specific clean technologies impact
the substitutability between clean and dirty inputs. For convenience, we only
consider the fitted CES function because it is more tractable, common, and
generally performs no worse than the VES approach.

Storage

If no storage is available (scenario No sto), demand must be covered by dirty
generation from natural gas whenever the supply of clean renewable energy is
low. This makes achieving high shares of clean energy difficult, reflected by a
particularly low elasticity for the higher sample (Table 2). For low shares of
clean energy, the absence of storage is less relevant, indicated by an elasticity of
substitution well above unity for the lower sample. Thus, when only considering
the lower sample, the central relevance of storage for high shares of renewable
clean energy is not sufficiently reflected by the elasticity of substitution.

If storage investments are possible, the elasticity of substitution is substan-
tially higher. By shifting energy from hours with high clean supply to hours of
low clean supply but high demand, storage helps to even out the variability of
wind and solar power. With more options available, also the costs of electricity
production are necessarily lower (or equal) with storage compared to the case
without storage for every share of clean generation.

Among the storage technologies, long-term power-to-gas storage sticks out. If
only short-term batteries and medium-term pumped storage provide flexibility
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(scenario No p2g), the substitutability of clean for dirty inputs is comparably
low (σ = 3.88 for the full sample compared to σ = 6.46 in scenario All). This
effect is aggravated in the higher sample (σ = 1.60 compared to σ = 5.66 in
scenario All), but less pronounced in the lower sample (σ = 12.38 compared
to σ = 13.32 in scenario All). Thus, especially high shares of clean energy require
long-term flexibility to serve demand at times with low renewable supply. For
instance, in scenario All, the power-to-gas storage bridges up to more than a
month. In contrast, short-term batteries do not play a pivotal role (scenario No
bat).

Clean Generation

In general, no specific clean technology is indispensable. A geographical or in-
stitutional feature that may impede the deployment of a specific clean technol-
ogy does not impede a full transition to clean production. Still, a diversified
mix of clean capacities yields the highest elasticity of substitution. The full
set of technologies can best exploit their complementary characteristics. If only
wind is available (scenario Wind only), the elasticity of substitution is fitted
with σ = 5.44; if only solar photovoltaics is available (scenario PV only), the
elasticity of substitution is fitted with σ = 3.28. Having both available (scenario
All) raises the elasticity to σ = 6.46.

This gives rise to two insights. First, as relatively cheap workhorse technology
with a decent energy yield, wind power is a good foundation for the transition
to clean energy. Second, costs, annual energy yield, and the timing of the energy
yield of clean generation technologies complement each other. Photovoltaics is
cheaper than onshore wind – investment costs per megawatt hour of potential
energy output are around 35 euros compared to around 46 euros17 – but the
timing when solar energy is produced is less well aligned with demand. Its
output is zero during nights and generally low during winter. Making the energy
available when needed would require greater investments in storage. Therefore,
a clean input combining temporally more even wind, low-cost solar, and different
types of storage shows the lowest rate of cost increases if the share of clean energy
rises. This is illustrated in Figure 4, showing the production isoquants with a
cost break-down by clean technologies for scenarios All and PV only.

17Per unit of capacity, photovoltaics has both lower investment costs (by about half) and a
lower annual energy yield (by about one-third) than onshore wind. Taken together, costs per
potential energy output are lower. We denote the output as potential because excess generation
may be curtailed.
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Figure 4: Production Isoquants and Cost Breakdown for Clean Technologies -
Scenario All

Finally, if generation capacities are limited, for instance, due to scarce sites
for wind and solar power, the elasticity is lower (scenario Germany, σ = 3.94),
compared to the unrestricted optimum (scenario All, σ = 6.46).

Macroeconomic Representation of Technology Availability

As a guidance for macroeconomic analysis, we find that changing the elastic-
ity of substitution is well suited to reflect changing technology availability in a
CES framework. We illustrate this point for scenarios Wind Only and No phs
compared to scenario All.

Specifically, we first re-normalize the CES for a reference scenario (All) in c0

and then re-fit σ to best fit the simulated data of the scenario of interest (No
phs, Wind only).18 Figure 5 illustrates the good fit for scenario All employing
the elasticity of substitution σ̃ that is re-fitted to best fit scenarios Wind only
and No phs, respectively.19

18Unlike for changing α and A, the elasticity of substitution has no effect on production in
the normalization point. Given that the costs of electricity production converge to the same
value for all scenarios with production entirely based on fossil fuels, c0 appears as the ‘natural’
normalization point. See Klump et al. (2012) for an introduction to normalization.

19Re-fitting parameters α or A instead yields two drawbacks. First, the reference scenario
All and the re-fitted isoquant have no common starting point in c0, where costs are equal.
Second, the results have a worse fit compared to re-fitting σ.
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Figure 5: Re-Fitted Elasticity of Substitution σ̃ for Scenarios Wind only and No
phs, based on Scenario All

Consider the fully fitted scenarios first. Without pumped storage or with only
wind (solid light gray lines), the clean ESC for non-zero shares of clean energy are
higher and increase more strongly than in scenario All (solid black lines). This is
also reflected by the lower elasticity of substitution. The isoquants based on the
re-fitted elasticity of substitution σ̃ closely track this pivoting (dashed light gray
lines). The re-fitted elasticities also closely resemble the elasticities in the fully
fitted original scenario, yet are somewhat lower (Table 4). Likewise, at 0.242
and 0.238 billion euros, the average gaps between predicted and required clean
inputs remain low compared to average overall ESC of 36.43 and 34.44 billion
euros for scenarios Wind only and No phs, respectively. Still, they are slightly
higher than in the fully fitted original scenarios.

Table 4: Re-Fitted Elasticity of Substitution σ̃

σ MSE Av. gap

(in bn e)

σ̃ MSE Av. gap

(in bn e)

All 6.46 4.798 · 1012 0.122

Wind only 5.44 6.224 · 1012 0.171 5.80 9.661 · 1012 0.242

No phs 5.57 5.393 · 1012 0.137 6.16 1.150 · 1013 0.238

Calculation: Production functions are renormalized in c0 (see Klump et al., 2012). The
elasticity σ̃ is obtained by re-optimizing σAll to best fit the simulated data of Wind only and
No phs while holding AAll and αAll constant.
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6.3 Lower Costs of Clean Technologies

A central question, especially when deriving policy recommendations from macroe-
conomic models, is whether lower costs of clean inputs change the elasticity of
substitution. To this end, we fit CES functions in the most reduced and com-
prehensive scenarios (No sto, All) for sensitivities with costs for all clean and
storage investments lower by 25% and 50%.

Table 5: Elasticity of Substitution for Lower Costs of Clean Inputs

σ σ−25 % σ−50 %

No sto 1.84 1.84 1.84

All 6.46 6.40 6.44

Table 5 shows the resulting elasticities. Without storage, a uniform cost
reduction that leaves the relative costs of inputs within the clean aggregate un-
changed also leaves the elasticity of substitution unchanged. Moving along the
production isoquant, the rate at which the ratio of clean and dirty costs evolves
is identical. Yet the absolute cost increase is always lower (Figure 6a).
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Figure 6: Production Isoquants for Cost Sensitivities
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Qualitatively, the same result arises for the rich scenario All (Table 5), albeit
the lower costs of all clean generation and storage technologies slightly alter the
elasticity of substitution. The reason is that cheaper storage triggers higher
optimal storage investments that benefit both clean and dirty generation. Also
for dirty capacities, storage allows for shifting output to hours of high demand,
increasing the utilization rate, and lowering optimal capacities. Thus, the cost-
optimal combination of clean and dirty inputs, and the elasticity of substitution,
change to some extent as well. Also here, the absolute cost increase is lower, the
more costs are reduced (Figure 6b).

As a central insight, a uniform cost reduction of clean inputs leaves the elas-
ticity of substitution largely unaffected. This reflects that the elasticity captures
the technological difficulty of replacing clean for dirty inputs. As a relative mea-
sure, it informs about cost changes, but is mute about absolute costs. Thus, for
the same elasticity, absolute costs for a given share of clean inputs may differ
substantially (Figure 6).

6.4 Extension: Electrification of Other Sectors and Flex-
ible Demand

If climate goals are pursued stringently, energy demand beyond current electric-
ity demand will be decarbonized through electrification based on clean electricity.
This new demand from heating, mobility, or industry will likely be flexible, for
instance, drawing on heat or chemical storages (IPCC, 2014). In a stylized model
extension, we examine whether the additional temporal flexibility facilitates sub-
stitution, by allowing for making better use of excess renewable energy supply, or
whether the additional demand makes substitution more difficult. To this end,
we add a variable Dx

h representing hourly electricity demand from an unspeci-
fied sector to the demand side of the market-clearing condition of the numerical
model (1b).

δh +
∑
st

−→
S h,st +Dx

h =
∑
di

Gh,di +
∑
c

Gh,cl +
∑
st

←−
S h,st ∀h (1b’)

We further assume that this additional demand in an hour must not exceed
a threshold νx, reflecting given capacities of some conversion facility, and must
add up to a total of δx over the year, reflecting full flexibility when it is satisfied.

Dx
h ≤ νx ∀h,

∑
h

Dx
h = δx
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We assume that δx is either 10% or 25% of annual current electricity demand,
with νx equal to 20 or 50 gigawatts, respectively. Otherwise, the additional
scenarios, denoted by AllX10% and AllX25% , are identical to scenario All and
feature natural gas, wind and solar power as well as three storage types.

The results show that additional, but flexible, demand from electrification
facilitates substitution of clean for dirty inputs. For the CES production func-
tion, the elasticity for the full sample is σ = 7.58 and σ = 9.71 for scenarios
AllX10% and AllX25% , respectively, compared to σ = 6.46 in scenario All. Also
for the VES production function, the elasticity decreases to higher values with
flexible electrification of other sectors in place.20 Thus, if additional future elec-
tricity demand is sufficiently flexible, it helps to make better use of variable clean
generation when it is available, enabling an easier substitution.

7 Discussion

7.1 Limitations of the Numerical Bottom-Up Model

The numerical model allows for inspecting mechanisms of electricity production
not (yet) observable in empirical data. To this end, it requires assumptions on
its boundaries and numerical inputs. Below, we discuss how these impact the
results and the fitted elasticity of substitution.

Concerning model boundaries, we generally abstract from sources of flexi-
bility beyond electrical storage. First, we analyze one generic country, based on
data for Germany, in isolation and do not consider cross-border exchange of elec-
tricity. For larger geographical areas, supply of different clean technologies better
complements each other, leading to a smoother temporal supply pattern (Brown
et al., 2018; Schlachtberger et al., 2017). If wind is low in one place, it may be
high in another. Second, current electricity demand, modeled as inelastic, will
likely become more flexible. With the spread of digital energy management, pri-
vate households and industrial processes can re-schedule planned consumption to
times of high clean energy supply, although the literature suggests a rather mod-
est positive effect on flexibility (Kwon and Østergaard, 2014; Schill and Zerrahn,
2018). In general, any further source of flexibility would enhance the substi-
tutability of clean for dirty inputs as our extension for a generic electrification of
other sectors shows (Section 6.4). As this is of special relevance for high shares

20Complete results are compiled in Table A.5.
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of clean inputs, the actual cost increase may be slower than the simulated data
suggests.

Moreover, in our numerical model, we pursue a greenfield approach with all
capacities endogenous. Results reflect the long-term elasticity between clean and
dirty inputs. In contrast, adding clean capacities to an existing energy system
with long-lived assets tends to be more difficult (Fouquet, 2016), and, in a short-
run perspective, the elasticity is likely lower (Mattauch et al., 2015; Pottier et al.,
2014).

Concerning numerical assumptions, we rely on data for wind and solar energy
based on a historical German technology park. On the one hand, the current en-
ergy yield per installed wind turbine or solar panel is likely higher than reflected
in our input data (Staffell and Pfenninger, 2016). This may add to underesti-
mating substitutability. On the other hand, our stylized scenarios assume no
capacity limits for investments in clean technologies. While this helps to isolate
the technological substitutability, expansion may be restricted in real-world set-
tings. Additionally, if site quality worsens upon expansion of clean capacities,
substitution becomes more difficult, especially for high shares of clean inputs.

7.2 Implications for Macroeconomic Modeling

Both the CES and VES production functions show a similar, and good, fit to
the simulated data. This challenges the idea that the increasing difficulty in
the substitution of clean for dirty inputs is best accommodated by a production
function that allows for a decreasing elasticity of substitution, like the VES (cf.
Wiskich, 2019).21 In fact, even for a constant elasticity, the exchange ratio be-
tween clean and dirty inputs in absolute terms, i.e., the marginal rate of technical
substitution (MRTS), increases in the share of clean inputs.

While both production functions can replicate the rising difficulty of input
substitution, our results indicate that the VES approach may rather overestimate
this increase, while the CES approach rather underestimates it, albeit, in most
cases, to a lower extent.

As the VES function neither provides a significantly better overall fit nor
prediction performance, this favors using the more tractable CES function for
electricity production within aggregate macroeconomic models. Particularly in
computable general equilibrium (CGE) models, where the CES specification is

21See Growiec and Schumacher (2008) and Stöckl (2020) for CES-based macroeconomic
models in which the elasticity of substitution can increase over time, either exogenously or due
to investment in research.
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standard, our findings suggest that conveniently integrating electricity generation
based on the CES specification is viable.

Yet, the limitations of the numerical model discussed above may understate
or overstate the difficulty of substitution. An understated difficulty rather leans
toward a VES approach; an overstated difficulty rather leans toward a CES
approach. Any applied macroeconomic work must, thus, carefully evaluate its
setting and boundaries. Our discussion sets forth the relevant mechanisms.

7.3 Relation to Empirical Work

In our numerical bottom-up model, we have full control of the data generating
process. For simplicity, we assume constant costs and efficiencies of each clean
and dirty input for all shares of clean energy. Thus, the fitted production func-
tions allow for conveniently interpreting the elasticity of substitution as reflecting
the technological difficulty in the transformation toward clean production.22

In contrast, when using observed data in empirical work, the substitution,
cost-change, and efficiency channels cannot be easily disentangled. For instance,
without further assumptions, the effect of increasing input costs cannot be dis-
entangled from changes in costs due to more difficult substitution.23 Thus, an
empirical specification may suffer from bias due to insufficient or wrong account-
ing for cost-changes or technological progress.24 As a consequence, the observed
effective elasticity of substitution may overstate or understate the underlying
technological elasticity of substitution.25 In any case, when comparing the re-
sults of our numerical optimization model to empirical results, these two elasticity
concepts should not be mixed up.

22In principle, a numerical approach can also accommodate costs or efficiencies that change
with increasing deployment of capacities or policy interventions. However, this requires special
care when interpreting the fitted elasticity of substitution. We leave this avenue for future
research.

23For instance, if costs in our numerical model linearly decrease in the shares of clean gener-
ation, from +10% for ι = 0 to −10% for ι = 100 the fitted elasticity in the CES specification
is σ = 11.31 (scenario All±10% in Table A.5), compared to σ = 6.46 in scenario All.

24See, e.g., Diamond et al. (1978) for a discussion of the impossibility to identify both the
elasticity and technological progress at the same time without further assumptions.

25Knoblach and Stöckl (2020) discuss the difference between the technological elasticity of
substitution (EOS) and the observable effective elasticity of substitution (EES), which is usually
estimated in empirical studies and also comprises institutional factors such as preferences for
specific technologies.
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8 Conclusion

We derive production isoquants from a numerical bottom-up optimization model
of electricity production. To this end, we vary the share of clean energy and fit
CES and VES production functions to the simulated data. Central results show
that (i) the elasticity of substitution between clean and dirty inputs is above
unity as long as some energy storage is available. That is, dirty inputs are not
essential for production; (ii) substitution is harder for higher shares of clean
energy; and (iii) no single clean technology is indispensable for a complete shift
to clean production but a balanced mix makes a transition easier. For high shares
of clean inputs, in particular long-term storage facilitates substitution.

In relation to macroeconomic analysis, both the CES and VES production
functions show a good fit to the simulated data. The CES approach is rather
optimistic and tends to underestimate required clean inputs when extrapolating
from low to high shares of clean generation; the VES approach rather underes-
timates it. For the CES approach, we show that technology availability can be
readily accommodated by changing the elasticity parameter. In contrast to em-
pirical analysis, we control the data-generating process and, thus, can separate
technological substitutability from the effects of costs and efficiency on observed
substitution. For costs, a sensitivity shows that lower costs of clean inputs mit-
igate the cost increase, yet leave the elasticity of substitution largely unaffected
when relative costs within the clean aggregate do not change. Our results also
show that estimation results based on data for lower shares of clean inputs ob-
servable today contain only limited information regarding future higher shares
as the structure of energy supply changes.

While our numerical bottom-up model captures central aspects of clean en-
ergy supply, such as variability and storage, there is room for future research.
A stylized model extension shows that future flexible electricity demand from
other sectors, such as heating or further industrial processes, bears the potential
to facilitate the substitution of clean for dirty inputs. A more detailed analy-
sis must await another paper. Importantly, even if numerical assumptions and
abstractions necessary for a forward-looking numerical model are well grounded,
we refrain from taking specific numerical results on the elasticity at face value.
Rather, we use the numerical model as a tool to lay out mechanisms that shape
the substitutability between clean and dirty inputs in electricity production in
general.
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A Appendix

A.1 Reconciling the Empirical Results of Papageorgiou
et al. (2017) with Our Findings

Using clean and dirty generation capacities as input measure, we obtain non-
convex production isoquants for the data generated with our bottom-up opti-
mization model (Section 4.1). In contrast, also using capacities, Papageorgiou
et al. (2017) find a good fit of the convex CES function in an estimation of the
cross-country elasticity of substitution based on panel data of 26 OECD coun-
tries. The following considerations may help to reconcile the differently shaped
isoquants.

First, if restricted to lower shares of clean energy, also our data give rise to
roughly convex isoquants (Figure 1), which only become non-convex for the full
sample. Thus, the convexity found by Papageorgiou et al. (2017) may be driven
by the fact that the share of clean capacities is below 50% for about two-thirds
of all countries in their sample. However, it is not clear a priori that convexity
is preserved if the share of clean inputs increases further for more countries.

Second, in the sample of Papageorgiou et al. (2017), the share of clean capac-
ities varies substantially across countries, but hardly changes over time within
most countries. Thus, the estimated ‘synthetic’ CES production function com-
prises several segments of clean shares. Each is represented by a different country,
rather than capturing the rise of clean capacities for a specific country. This re-
quires the assumption that the elasticity of substitution is constant not only for
all shares of clean capacities within a country, but also across different countries.
However, country idiosyncrasies cast doubts on the latter assumption. As such,
it is not clear whether the substitution pattern for a country like Denmark, with
good wind but modest solar and hydro storage resources along with an already
high share of clean inputs, contains sufficient relevant information on an expected
future substitution pattern for a country like Mexico, with good solar and hydro
storage resources. Moreover, countries with a high elasticity of substitution may
be those that also have a high share of clean inputs because substitution is easier
for them.

Using a numerical model, production isoquants over the full range of possible
shares of clean inputs can be retrieved for the same unique and time-invariant
characteristics as observed for a specific country.
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A.2 Numerical Assumptions for the Bottom-Up Model

Table A.1 lists all assumptions for investment, fixed, and variable costs that en-
ter the numerical model. Annualized investment costs for generation (Schröder
et al., 2013) and storage (Pape et al., 2014; Schmidt et al., 2017; Welder et al.,
2018) technologies are derived from overnight costs and the technical lifetime
of the investment. Variable costs are derived from fuel costs and technical effi-
ciency (Schill and Zerrahn, 2018; Schröder et al., 2013).

Table A.1: Cost Assumptions as Used in the Numerical Model

Generation technologies Annualized investment and fixed costs (κi)

[EUR/MW(h)]a
Variable costs (κv)

[EUR/MWh]

Natural gas 66, 264 51.9

Wind onshore 110, 662 0

Wind offshore 240, 414 0

Photovoltaics 63, 407 0

Bio energy 227, 747 21.4

Run-of river hydro 192, 606 0

Storage technologies

Battery storage in 14, 399 0.3

outb 0 0

energy 33, 597 0

Pumped-hydro storage in 45, 995 0.6

outb 0 0

energy 418 0

Power-to-gas storage in 34, 116 0

out 51, 856 0.1

energy 35 0

Note: Investment and fixed costs rounded to integers, variable costs rounded to one decimal.
a: Investment and fixed costs in general in EUR/MW, for storage energy investments in EUR/MWh.
b: For convenience, investment costs for battery and pumped-hydro storage power only attributed to storing
in.

The efficiency parameters of the storages (not shown in the Table A.1) are−→η st =
←−η st = 0.97 for batteries, −→η st = 0.97, and ←−η st = 0.91 for pumped-hydro stor-
age, and −→η st = 0.70 and ←−η st = 0.60 for power-to-gas. The maximum storage
duration, technically the energy-to-power ratio, is τst = 4 for batteries, τst = 8
for pumped-hydro storage, and unlimited for power-to-gas storage. These values
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are in line with both current standard configurations and a sweet spot in the
trade-off between investment costs for power and energy capacities.

Using actual German data from the year 2016 (OPSD, 2018; Wiese et al.,
2019), hourly electricity demand sums to∑h dh = 479.9 Terawatt hours per year.
The capacity factors φh,cl of onshore wind, offshore wind, and solar photovoltaics
are derived from re-analysis weather data from the base year 2016 (Pfenninger
and Staffell, 2016; Staffell and Pfenninger, 2016). In line with a conservative
approach, the resulting energy yield of solar and, in particular, wind power is
pessimistic because (i) 2016 was a year with comparatively bad wind conditions;
and (ii) the weather data is applied to the stock of wind and solar plants existing
or approved by 2016. This stock contains a relevant proportion of old installations
with low efficiency. Due to technological progress, the actual future energy yield
is likely higher. The capacity factor of run-of-river hydro power, used in scenario
Germany, is taken from Schill and Zerrahn (2018).

Table A.2 lists the capacity bounds for investments in scenario Germany. For
all values, we follow rather pessimistic projections from established medium-term
outlooks for Germany.

Table A.2: Capacity Limits in Scenario Germany

Technology Capacity limit Source

Natural gas unlimited

Wind onshore 80.7GW UBA (2019)

Wind offshore 54.0GW Fraunhofer-IWES (2013)

Photovoltaics 275.0GW Fraunhofer-IWES (2013)

Bio energya 8.3GW BMWi (2020)

Run-of river hydroa 5.6GW BMWi (2020)

Battery storage unlimited

Pumped-hydro storageb 11.8GW, 82.6GWh Bundesnetzagentur (2018)

Power-to-gas storage unlimited

Notes: All numbers rounded to one decimal.
a: Capacities installed in Germany by 2019.
b: Scenario B2035, only storage power (in gigawatts, GW) given; for stor-
age energy (in gigawatt hours, GWh), we assume an energy-to-power ratio
of 7 hours, as for the pumped-hydro storages installed in Germany by 2019.
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A.3 Formal Definition of Electricity System Costs

Using the nomenclature of our numerical model, clean and dirty electricity system
costs (in Euros) are given by:

ESCcleanι =
∑
cl

κiclÑ
ι
cl + K̃ι − (1− ι) K̃0, (A.1a)

ESCdirtyι =
∑
di

(
κidiÑdi +

∑
h

κvdiG̃h,di

)
+ (1− ι) K̃0, (A.1b)

where a tilde indicates the optimal value from the numerical model for a clean
energy share of ι. They comprise annualized investment costs, annual fixed costs,
and variable costs of generation and storage summed up over the year, the latter
for convenience denoted as:

K̃ι ≡
∑
st

(
−→κ ist
−̃→
N
ι

st +←−κ ist
←̃−
N
ι

st + κistÑ
ι
st +

∑
h

(
−→κ vst
−̃→
S
ι

h,st +←−κ iv
←̃−
S
ι

h,st

))
(A.1c)

For the small part of storage K̃0 already built for a case without clean gener-
ation, costs are attributed to the dirty and clean ESC proportionate to the share
of dirty and clean energy. Costs of any further storage that complements clean
energy investment are attributed to the clean ESC.

A.4 Fitting Results - Figures and Data Tables
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Figure A.1: Fitted Production Functions for the Full Sample and Predicted
Production Functions Based on the Lower Sample - Scenario All
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Figure A.2: Fitted Production Functions for the Full Sample and Predicted
Production Functions Based on the Lower Sample - Scenario No sto
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Figure A.3: Fitted Production Functions for the Full Sample and Predicted
Production Functions Based on the Lower Sample - Scenario No bat
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Figure A.4: Fitted Production Functions for the Full Sample and Predicted
Production Functions Based on the Lower Sample - Scenario No phs
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Figure A.5: Fitted Production Functions for the Full Sample and Predicted
Production Functions Based on the Lower Sample - Scenario No p2g
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Figure A.6: Fitted Production Functions for the Full Sample and Predicted
Production Functions Based on the Lower Sample - Scenario Wind only
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Figure A.7: Fitted Production Functions for the Full Sample and Predicted
Production Functions Based on the Lower Sample - Scenario PV only
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Table A.3: Mean Squared Error (MSE) w.r.t. Output (E) - in MWh2

(a) CES

full lower higher higher|lower

Germany 2.455 · 1013 1.332 · 1012 8.378 · 1012 7.269 · 1014

All 4.798 · 1012 6.331 · 1011 1.799 · 1010 6.849 · 1014

No sto 5.017 · 1014 1.853 · 1012 8.966 · 1012 4.124 · 1016

No bat 4.798 · 1012 6.331 · 1011 1.799 · 1010 6.849 · 1014

Nophs 5.393 · 1012 1.205 · 1012 2.772 · 1011 1.156 · 1015

Nop2g 9.784 · 1013 7.654 · 1011 1.167 · 1013 2.564 · 1015

Wind only 6.224 · 1012 2.137 · 1012 5.544 · 1011 1.089 · 1015

PV only 4.637 · 1013 5.625 · 1012 2.108 · 1012 1.152 · 1015

All-25% 5.345 · 1012 6.403 · 1011 1.542 · 1010 6.995 · 1014

All-50% 5.666 · 1012 7.052 · 1011 1.566 · 1010 7.125 · 1014

No sto-25% 5.015 · 1014 1.860 · 1012 8.950 · 1012 4.121 · 1016

No sto-50% 5.023 · 1014 1.827 · 1012 8.891 · 1012 4.155 · 1016

AllX10% 5.668 · 1012 5.037 · 1011 4.424 · 1011 5.119 · 1014

AllX25% 3.840 · 1012 2.964 · 1011 2.847 · 1011 3.802 · 1014

All±10% 3.646 · 1012 2.253 · 1011 1.334 · 1011 3.495 · 1014

Calculation: (|Ŷι − Yι|Dι,Cι )2/n, where Ŷι is predicted output of the fitted production
function given Dι and Cι. n denotes the number of data points.
Note: higher|lower is the MSE of the higher sample based on the fitted parameters of
the lower sample.

(b) VES

full lower higher higher|lower

Germany 3.463 · 1013 3.496 · 1012 1.775 · 1013 2.808 · 1015

All 1.329 · 1013 2.793 · 1010 4.674 · 1011 5.982 · 1014

No sto 6.205 · 1013 2.414 · 1011 1.178 · 1013 5.834 · 1015

No bat 1.329 · 1013 2.793 · 1010 4.674 · 1011 5.991 · 1014

Nophs 3.342 · 1013 8.415 · 1010 1.551 · 1012 1.159 · 1015

Nop2g 5.352 · 1012 7.013 · 1010 4.173 · 1012 5.787 · 1013

Wind only 4.595 · 1013 3.010 · 1011 2.323 · 1012 1.944 · 1015

PV only 1.027 · 1013 1.346 · 1012 5.849 · 1012 2.960 · 1015

All-25% 1.316 · 1013 2.276 · 1010 7.008 · 1011 5.663 · 1014

All-50% 1.299 · 1013 6.044 · 1010 7.422 · 1011 5.245 · 1014

No sto-25% 6.200 · 1013 2.415 · 1011 1.175 · 1013 5.816 · 1015

No sto-50% 6.233 · 1013 2.642 · 1011 1.167 · 1013 6.085 · 1015

AllX10% 5.508 · 1012 5.190 · 1010 1.552 · 1011 2.773 · 1014

AllX25% 3.223 · 1012 6.410 · 1010 1.595 · 1011 6.105 · 1013

All±10% 2.056 · 1012 8.000 · 1010 3.762 · 1010 9.753 · 1012

Calculation: (|Ŷι − Yι|Dι,Cι )2/n, where Ŷι is predicted output of the fitted production
function given Dι and Cι. n denotes the number of data points.
Note: higher|lower is the MSE of the higher sample based on the fitted parameters of
the lower sample.
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Table A.4: Average Gap Between Predicted and Required Clean Input - in bn e

(a) CES

full lower higher higher|lower

Germany 0.296 0.049 0.221 1.464

All 0.122 0.047 0.010 1.704

No sto 2.317 0.080 0.527 11.854

No bat 0.122 0.047 0.010 1.704

Nophs 0.137 0.064 0.043 2.445

Nop2g 0.627 0.052 0.290 2.725

Wind only 0.171 0.102 0.063 2.685

PV only 0.539 0.148 0.152 2.421

All-25% 0.099 0.036 0.006 1.287

All-50% 0.069 0.026 0.004 0.870

No sto-25% 1.738 0.060 0.394 8.889

No sto-50% 1.160 0.040 0.262 5.939

AllX10% 0.144 0.046 0.049 1.487

AllX25% 0.127 0.039 0.034 1.400

All±10% 0.111 0.030 0.025 1.118

Calculation: (|Ĉι − Cι|Yι,Dι )/n, where Ĉι is predicted required clean
input of the fitted production function given Yι and Dι. n denotes the
number of data points.
Note: higher|lower is the average gap of the higher sample based on the
fitted parameters of the lower sample.

(b) VES

full lower higher higher|lower

Germany 0.350 0.098 0.324 6.115

All 0.257 0.010 0.052 1.755

No sto 0.970 0.031 0.625 7.720

No bat 0.257 0.010 0.052 1.757

Nophs 0.441 0.018 0.104 2.959

Nop2g 0.151 0.017 0.177 0.679

Wind only 0.572 0.040 0.140 4.832

PV only 0.253 0.082 0.254 9.928

All-25% 0.191 0.006 0.048 1.281

All-50% 0.126 0.008 0.032 0.817

No sto-25% 0.727 0.024 0.469 5.784

No sto-50% 0.486 0.017 0.311 3.912

AllX10% 0.169 0.016 0.027 1.116

AllX25% 0.140 0.019 0.033 0.484

All±10% 0.096 0.017 0.013 0.224

Calculation: (|Ĉι − Cι|Yι,Dι )/n, where Ĉι is predicted required clean
input of the fitted production function given Yι and Dι. n denotes the
number of data points.
Note: higher|lower is the average gap of the higher sample based on the
fitted parameters of the lower sample.
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Table A.5: All Fitted Parameters of the CES and VES Production Functions

CES VES

full lower higher full lower higher

Germany

A = 0.032
α = 0.413
σ = 3.94

A = 0.032
α = 0.437
σ = 6.13

A = 0.032
α = 0.416
σ = 3.25

A = 0.021
a = 0.235
b = 3.160
σ > 1000
σ = 1.22

A = 0.025
a = 0.413
b = 1.153
σ > 1000
σ = 2.29

A = 0.016
a = 0.145
b = 8.207
σ = 9.79
σ = 1.58

MSE: 2.455 · 1013 1.332 · 1012 8.378 · 1012 3.463 · 1013 3.496 · 1012 1.775 · 1013

All

A = 0.030
α = 0.414
σ = 6.46

A = 0.030
α = 0.438
σ = 13.32

A = 0.030
α = 0.416
σ = 5.66

A = 0.016
a = 0.138
b = 7.279
σ > 1000
σ = 1.51

A = 0.019
a = 0.250
b = 3.153
σ > 1000
σ = 4.14

A = 0.014
a = 0.076
b = 17.336
σ = 17.61
σ = 2.21

MSE: 4.798 · 1012 6.331 · 1011 1.799 · 1010 1.329 · 1013 2.793 · 1010 4.674 · 1011

No sto

A = 0.028
α = 0.298
σ = 1.84

A = 0.029
α = 0.412
σ = 9.09

A = 0.028
α = 0.423
σ = 0.94

A = 0.025
a = 0.539
b = 0.670
σ > 1000
σ = 1.04

A = 0.021
a = 0.362
b = 1.845
σ > 1000
σ = 2.97

A = 0.029
a = 0.606
b = −0.118
σ = 0.88
σ = 0.99

MSE: 5.017 · 1014 1.853 · 1012 8.966 · 1012 6.205 · 1013 2.414 · 1011 1.178 · 1013

No bat

A = 0.030
α = 0.414
σ = 6.46

A = 0.030
α = 0.438
σ = 13.32

A = 0.030
α = 0.416
σ = 5.66

A = 0.016
a = 0.138
b = 7.280
σ > 1000
σ = 1.51

A = 0.019
a = 0.250
b = 3.152
σ > 1000
σ = 4.14

A = 0.014
a = 0.076
b = 17.341
σ = 17.62
σ = 2.21

MSE: 4.798 · 1012 6.331 · 1011 1.799 · 1010 1.329 · 1013 2.793 · 1010 4.674 · 1011

Nophs

A = 0.029
α = 0.395
σ = 5.57

A = 0.029
α = 0.423
σ = 10.68

A = 0.029
α = 0.384
σ = 6.67

A = 0.016
a = 0.154
b = 6.861
σ > 1000
σ = 1.40

A = 0.020
a = 0.303
b = 2.441
σ > 1000
σ = 3.38

A = 0.012
a = 0.064
b = 24.102
σ = 23.60
σ = 2.42

MSE: 5.393 · 1012 1.205 · 1012 2.772 · 1011 3.342 · 1013 8.415 · 1010 1.551 · 1012

Nop2g
A = 0.030
α = 0.395
σ = 3.88

A = 0.030
α = 0.435
σ = 12.38

A = 0.029
α = 0.484
σ = 1.60

A = 0.019
a = 0.255
b = 3.031
σ => 1000
σ = 1.22

A = 0.020
a = 0.267
b = 2.862
σ > 1000
σ = 3.88

A = 0.021
a = 0.287
b = 2.066
σ = 2.99
σ = 1.15

MSE: 9.784 · 1013 7.654 · 1011 1.167 · 1013 5.352 · 1012 7.013 · 1010 4.173 · 1012

Wind only

A = 0.028
α = 0.374
σ = 5.44

A = 0.028
α = 0.397
σ = 9.47

A = 0.028
α = 0.355
σ = 7.51

A = 0.014
a = 0.149
b = 7.971
σ > 1000
σ = 1.35

A = 0.019
a = 0.331
b = 2.322
σ > 1000
σ = 3.01

A = 0.011
a = 0.053
b = 34.266
σ = 29.39
σ = 2.51

MSE: 6.224 · 1012 2.137 · 1012 5.544 · 1011 4.595 · 1013 3.010 · 1011 2.323 · 1012

PV only

A = 0.028
α = 0.354
σ = 3.28

A = 0.028
α = 0.378
σ = 5.29

A = 0.028
α = 0.412
σ = 1.82

A = 0.019
a = 0.318
b = 2.482
σ > 1000
σ = 1.21

A = 0.023
a = 0.491
b = 0.997
σ > 1000
σ = 1.95

A = 0.019
a = 0.304
b = 2.795
σ = 3.54
σ = 1.23

MSE: 4.637 · 1013 5.625 · 1012 2.108 · 1012 1.027 · 1013 1.346 · 1012 5.849 · 1012

Continued on next page
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Continued from previous page (Table A.5)

CES VES

full lower higher full lower higher

All-25%

A = 0.034
α = 0.473
σ = 6.40

A = 0.034
α = 0.503
σ = 13.40

A = 0.034
α = 0.473
σ = 5.59

A = 0.021
a = 0.140
b = 5.392
σ > 1000
σ = 1.50

A = 0.024
a = 0.248
b = 2.401
σ > 1000
σ = 4.15

A = 0.018
a = 0.076
b = 13.039
σ = 17.40
σ = 2.21

MSE: 5.345 · 1012 6.403 · 1011 1.542 · 1010 1.316 · 1013 2.276 · 1010 7.008 · 1011

All-50%

A = 0.042
α = 0.558
σ = 6.44

A = 0.043
α = 0.595
σ = 13.61

A = 0.042
α = 0.555
σ = 5.57

A = 0.029
a = 0.140
b = 3.611
σ > 1000
σ = 1.50

A = 0.032
a = 0.244
b = 1.650
σ > 1000
σ = 4.19

A = 0.026
a = 0.076
b = 8.772
σ = 17.28
σ = 2.21

MSE: 5.666 · 1012 7.052 · 1011 1.566 · 1010 1.299 · 1013 6.044 · 1010 7.422 · 1011

No sto-25%

A = 0.031
α = 0.326
σ = 1.84

A = 0.033
α = 0.475
σ = 9.08

A = 0.032
α = 0.419
σ = 0.94

A = 0.028
a = 0.539
b = 0.503
σ > 1000
σ = 1.04

A = 0.025
a = 0.362
b = 1.382
σ > 1000
σ = 2.96

A = 0.033
a = 0.606
b = −0.088
σ = 0.88
σ = 0.99

MSE: 5.015 · 1014 1.860 · 1012 8.950 · 1012 6.200 · 1013 2.415 · 1011 1.175 · 1013

No sto-50%

A = 0.036
α = 0.368
σ = 1.84

A = 0.041
α = 0.565
σ = 9.20

A = 0.038
α = 0.413
σ = 0.94

A = 0.034
a = 0.539
b = 0.336
σ > 1000
σ = 1.04

A = 0.032
a = 0.359
b = 0.939
σ > 1000
σ = 3.00

A = 0.038
a = 0.606
b = −0.059
σ = 0.88
σ = 0.99

MSE: 5.023 · 1014 1.827 · 1012 8.891 · 1012 6.233 · 1013 2.642 · 1011 1.167 · 1013

AllX10%

A = 0.028
α = 0.428
σ = 7.58

A = 0.028
α = 0.449
σ = 17.87

A = 0.028
α = 0.438
σ = 5.25

A = 0.015
a = 0.120
b = 8.316
σ > 1000
σ = 1.61

A = 0.017
a = 0.198
b = 4.274
σ > 1000
σ = 5.31

A = 0.014
a = 0.079
b = 14.921
σ = 15.45
σ = 2.10

MSE: 5.668 · 1012 5.037 · 1011 4.424 · 1011 5.508 · 1012 5.190 · 1010 1.552 · 1011

AllX25%

A = 0.025
α = 0.440
σ = 9.71

A = 0.025
α = 0.459
σ = 27.47

A = 0.025
α = 0.448
σ = 6.54

A = 0.013
a = 0.094
b = 10.800
σ > 1000
σ = 1.85

A = 0.014
a = 0.137
b = 6.739
σ > 1000
σ = 7.82

A = 0.012
a = 0.062
b = 18.792
σ = 19.24
σ = 2.48

MSE: 3.840 · 1012 2.964 · 1011 2.847 · 1011 3.223 · 1012 6.410 · 1010 1.595 · 1011

All±10%

A = 0.030
α = 0.436
σ = 11.31

A = 0.030
α = 0.454
σ = 46.01

A = 0.030
α = 0.443
σ = 7.50

A = 0.015
a = 0.081
b = 13.130
σ > 1000
σ = 2.00

A = 0.016
a = 0.093
b = 10.978
σ > 1000
σ = 11.96

A = 0.014
a = 0.053
b = 22.485
σ = 22.62
σ = 2.72

MSE: 3.646 · 1012 2.253 · 1011 1.334 · 1011 2.056 · 1012 8.000 · 1010 3.762 · 1010

Continued on next pageAbbreviations: MSE: Mean Squared Error; σ := σcmin
ι

, σ := σcmax
ι

, where cmin
ι and cmax

ι denote the
minimum and maximum share of clean inputs within the sample.
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