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1 Introduction

In structural vector autoregressive (VAR) analysis, shocks of interest are
sometimes identified by using an instrument variable or proxy (e.g., Stock
and Watson (2012), Mertens and Ravn (2013), Piffer and Podstawski (2018),
Kilian and Lütkepohl (2017, Chapter 15)). In these so-called proxy VARs
it is commonly assumed that the impact effects of the structural shocks are
time-invariant even if the reduced-form VAR is heteroskedastic. The assump-
tion of time-invariant impact effects is often implicitly made although het-
eroskedasticity is allowed for in inference by using heteroskedasticity-robust
bootstrap methods for impulse responses, for example. Such an approach
is used, for instance, in Mertens and Ravn (2013), Piffer and Podstawski
(2018), Dias and Duarte (2019) and Alessi and Kerssenfischer (2019). Other
authors using proxy VARs consider variables in their models that may in-
duce heteroskedasticity and they assume that it does not affect the impulse
responses (e.g., Gertler and Karadi (2015) and Caldara and Herbst (2019)).

The objective of this study is to clarify the assumption of time-invariant
impact effects of the structural shocks in heteroskedastic proxy VAR mod-
els and draw attention to important implications. It is argued that time-
invariance of the impulse responses cannot be taken for granted when the
errors are heteroskedastic. We develop an asymptotically valid test which
can be used to investigate the time-invariance of the impact effects of the
shocks. The usefulness of the test in small samples is demonstrated by a
Monte Carlo simulation experiment.

We reconsider studies by Cesa-Bianchi, Thwaites and Vicondoa (2020)
and Dias and Duarte (2019) which use heteroskedastic proxy VAR models
and assume time-invariant impulse responses. We apply our test to con-
front the data with the time-invariance assumption. The study by Cesa-
Bianchi et al. (2020) considers the transmission of monetary policy shocks in
the United Kingdom (UK). The VAR model errors are clearly heteroskedas-
tic and our test rejects the assumption of time-invariant impulse responses.
Some impulse responses are clearly distinct in the different volatility regimes.
This outcome shows that in empirical studies, it is advisable to test the as-
sumption of time-invariant impulse responses and do not take it for granted.
Our second example is based on Dias and Duarte (2019). It investigates
the impact of monetary policy shocks on housing rents in the United States
of America (US). We find that the model errors display clear changes in
volatility during the sample period. However, our test does not find evidence
against the implicit assumption of time-invariant impulse responses.

The remainder of the paper is structured as follows. The precise model
setup and the implicit assumption of time-invariance in heteroskedastic proxy
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VAR models are discussed in Section 2. The test for time-invariant impact
effects of the structural shocks is developed in Section 3 and its small sample
properties are explored in Section 4. The test is applied to two example
models in Section 5 and conclusions are presented in the final section.

2 Proxy VAR Models

2.1 Model Setup

Consider a K-dimensional reduced-form VAR model

yt = ν + A1yt−1 + · · ·+ Apyt−p + ut,

where ut is a zero mean white noise process with nonsingular covariance
matrix Σu, i.e., ut ∼ (0,Σu).

The vector of structural errors, wt = (w1t, . . . , wKt)
′, is assumed to have

instantaneously uncorrelated components, i.e., its covariance matrix is diag-
onal. The structural errors are obtained from the reduced-form errors, ut, by
a linear transformation, ut = Bwt, where B is the matrix of impact effects
of the structural shocks. Suppose there is an instrumental variable (proxy)
zt satisfying

E(w1tzt) = c 6= 0 (relevance), (1)

E(wktzt) = 0, k = 2, . . . , K, (exogeneity). (2)

Then the first column of a constant multiple of B can be estimated by using
zt as an instrument. More precisely, denoting the first column of B by b,
E(utzt) = cb. In other words, the covariance between the reduced-form errors
ut and the proxy zt is a multiple of the first column of B.

Now suppose that there is heteroskedasticity such that

E(utu
′
t) = Σt = Σu(m) for t ∈ Tm, m = 1, . . . ,M, (3)

where Tm = {Tm−1 + 1, . . . , Tm} (m = 1, . . . ,M) are M given volatility
regimes associated with consecutive time periods. The volatility changes
occur at time periods Tm for m = 1, . . . ,M − 1, with T0 = 0 and TM = T ,
the overall sample size. The change points Tm are assumed to be known to
the investigator or they may be predetermined by some statistical procedure.
In any case, the volatility changes are not driven by the variables of the model
but are assumed to occur exogenously.

To justify the relevance condition in (1) for a heteroskedastic model, the
impact effects of the first shock must be assumed to be invariant to the
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heteroskedasticity. Such an assumption may be justified if there exists a
decomposition of the regime dependent covariance matrices such that

Σu(m) = BΛmB
′, m = 1, . . . ,M, (4)

where Λm = diag(λ1,m, . . . , λK,m) (m = 1, . . . ,M) are diagonal matrices with
strictly positive diagonal elements. Clearly, choosing wt = B−1ut provides
a time-invariant transformation which results in uncorrelated components of
wt across the whole sample. Such covariance matrices are typically assumed
in the literature on identification through heteroskedasticity (see Kilian and
Lütkepohl (2017, Chapter 14)).

For M = 2, the covariance matrices Σu(1) and Σu(2) can always be
decomposed as in (4) (e.g., Lütkepohl (1996, p. 86)). Although a time-
invariant B matrix for the decomposition (4) exists in this case, that B
matrix may not reflect the impact effects of the structural shocks of interest.
Of course, there are many other decompositions of Σu(1) and Σu(2) which
imply that the impact effects of the shocks depend on the volatility regime.
Consider, for example, Cholesky decompositions Σu(m) = B(m)B(m)′, m =
1, 2, where B(m) is a lower-triangular matrix with positive diagonal elements.
If these transformation matrices are used to get the structural errors as wt =
B(m)−1ut, the wt have identity covariance matrix throughout the sample
period and the heteroskedasticity in the reduced-form errors, ut, is solely
due to the time-varying impact effects, B(m).

If there are three or more volatility regimes (M ≥ 3), then a decomposi-
tion of the associated covariance matrices as in (4) imposes a restriction on
the covariance matrices which may not be compatible with the data or the
specification of the structural shocks (see Angelini, Bacchiocchi, Caggiano
and Fanelli (2019) for an example). In that case, the matrix of impact effects
of the shocks, B(m), depends on the covariance regime. If the impact effects
of the shocks vary over time, the relevance condition in (1) may have to be
modified to allow for a time-varying covariance between the instrument and
the first structural shock,

E(w1tzt) = cm 6= 0, t ∈ Tm, m = 1, . . . ,M (relevance). (5)

Hence, E(ztut) = cmb(m) and the first column, b(m), of B(m) may also
depend on the volatility state m.

For an impulse response analysis based on proxy VARs, the size of the
shock of interest is typically fixed such that its impact effect is the same
across volatility regimes. Estimating the impact effects of the first shock
via the instrument in this case remains valid if b(m) is time-invariant, i.e.,
b(m) = b for m = 1, . . . ,M . In other words, if only the variance of the
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first shock changes with the volatility regime while the impact effects remain
time-invariant, the proxy VAR approach can be used in the usual manner. In
general, it may be worth checking the assumption of time-invariant impact
effects if there is heteroskedasticity and we will propose a suitable test in the
next section.

Although we have considered a model with exogenous volatility changes
in the foregoing discussion, a similar analysis is relevant for models with
other types of heteroskedasticity or conditional heteroskedasticity. For ex-
ample, the volatility changes may be driven by a Markov switching process
as in Lanne, Lütkepohl and Maciejowska (2010) and Herwartz and Lütkepohl
(2014). In these models it is also assumed that there are M distinct volatility
states which may or may not be associated with different impact effects of
the shocks.

3 Testing for Time-varying Impact Effects

In this section, a test is developed for time-varying impact effects if there is
heteroskedasticity of the type specified in (3) with known volatility change
points Tm, m = 1, . . . ,M . For notational simplicity, we develop the test in
terms of the unobserved reduced-form errors ut and then discuss the modifi-
cations implied by replacing them with estimated residuals ût.

We continue to assume – without loss of generality – that the instru-
ment identifies the first shock, as in the previous section and, for sim-
plicity, we denote by b(m) the vector of covariances E(ztut) for t ∈ Tm.
Moreover, the first element of b(m) = (b1(m), . . . , bK(m))′ is assumed to
be nonzero, i.e., b1(m) 6= 0, and we define the (K − 1)-dimensional vector
β(m) = (b2(m), . . . , bK(m))′/b1(m). For m, k ∈ {1, . . . ,M}, m 6= k, we wish
to test the pair of hypotheses

H0 : β(m) = β(k) versus H1 : β(m) 6= β(k). (6)

In the following, a suitable test statistic is presented.
Let

b̂(m) =
1

τmT

∑
t∈Tm

ztut, (7)

be an estimator of the first column b(m) of B(m) in volatility regime m ∈
{1, . . . ,M}. We assume that τm = (Tm − Tm−1)/T is a fixed fraction of the
sample size so that Tm − Tm−1 → ∞ with T . Moreover, ut and zt are such
that b̂(m) is consistent and asymptotically normal,

√
T
(
b̂(m)− b(m)

)
d→ N (0, τ−1m Σb(m)), (8)
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where
d→ denotes convergence in distribution. Under general conditions, such

a result follows from a central limit theorem, i.e., if ztut is independently,
identically distributed (iid) for Tm or a martingale difference sequence. We
also assume that ztut is such that

Σ̂b(m) =
1

τmT

∑
t∈Tm

(ztut − b̂(m))(ztut − b̂(m))′

is a consistent estimator of Σb(m).
Slutsky’s theorem implies that for β̂(m) = (b̂2(m), . . . , b̂K(m))′/b̂1(m),

√
T
(
β̂(m)− β(m)

)
d→ N (0, V (m)) , (9)

where

V (m) =
1

τm

∂β(m)

∂b(m)′
Σb(m)

∂β(m)′

∂b(m)

is the ((K−1)× (K−1)) asymptotic covariance matrix with ∂β(m)
∂b(m)′

denoting

the ((K − 1)×K) matrix of partial derivatives of β(m) with respect to the
elements of b(m), that is,

∂β(m)

∂b(m)′
=


− b2(m)
b1(m)2

1
b1(m)

0 . . . 0

− b3(m)
b1(m)2

0 1
b1(m)

0
...

...
. . . 0

− bK(m)
b1(m)2

0 . . . 1
b1(m)


and ∂β(m)′

∂b(m)
=
(
∂β(m)
∂b(m)′

)′
. It may be worth noting that this matrix has rank

K − 1 and, hence, the covariance matrix of the asymptotic distribution in
(9) is nonsingular. Consequently, by asymptotic independence of β̂(m) and
β̂(k) for m 6= k, we get that, under the null hypothesis H0 : β(m) = β(k),
the test statistic

η = T
(
β̂(m)− β̂(k)

)′ (
V̂ (m) + V̂ (k)

)−1 (
β̂(m)− β̂(k)

)
d→ χ2(K−1). (10)

Thus, we can use this statistic for testing the pair of hypotheses (6). In the
test statistic in expression (10), the estimators of the covariance matrices are
obtained as

V̂ (m) =
1

τm

∂̂β(m)

∂b(m)′
Σ̂b(m)

∂̂β(m)′

∂b(m)
,
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where all elements of b(m) in ∂β(m)
∂b(m)′

are replaced by their estimators from

b̂(m).
As mentioned earlier, in practice estimated errors ût have to be used

instead of the true reduced-form errors ut. Let η̂ be the test statistic corre-
sponding to η in (9) when the ut are replaced by the ordinary least squares
(OLS) residuals ût. The test statistic η̂ has the same asymptotic distribution
as η under mild conditions because the estimator of b(m) can be viewed as
a two-step GMM estimator as considered in Newey and McFadden (1994).
For this result to hold, the assumption of consecutive observations in each
subsample Tm is not essential. The important condition for the asymptotic
distribution in (10) to hold is that the number of observations in each volatil-
ity regime goes to infinity such that the asymptotic result in (8) is valid.

4 Monte Carlo Simulation

We have performed a simulation study to investigate the small sample prop-
erties of the test. In particular, we are interested in the rejection frequencies
under the null and alternative hypotheses in finite samples, the dependence
on the strength of the instrument, the magnitude of the model in terms of
the number of variables and the VAR lag order.

4.1 Setup of Monte Carlo Study

4.1.1 DGP 1

Our first data generating process (DGP) is a three-dimensional VAR(1) with
reduced form

yt = A1yt−1 + ut (11)

and a matrix of autoregressive slope coefficients

A1 =

0.79 0.00 0.25
0.19 0.95 −0.46
0.12 0.00 0.62

 .
This matrix has eigenvalues 0.95, 0.90, and 0.51 and, hence, the process is
stable with some persistence due to two roots close to the unit circle. Such
features are occasionally met in practice.
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Furthermore, we consider three volatility regimes (M = 3) with impact
effects matrix B(m) = I3 for m = 1, 2, 3 under the null hypothesis (H0) and

B(1) = I3, B(2) =

1 0 1
2 1 4
4 6 6

 , B(3) =

 4 2 1
−2 2 8

2 1 10


for the three volatility states under the alternative hypothesis (H1). This
choice implies that

β(1) =

(
0
0

)
, β(2) =

(
2
4

)
and β(3) =

(
−0.5

0.5

)
,

such that the three vectors to be tested are clearly distinct. To study the
properties of the test, we also have to consider the asymptotic variances V (1),
V (2) and V (3) of their estimators. They also depend on characteristics of
the DGP and the proxy variable which will be specified subsequently.

Following standard conventions, we normalize the variances of the struc-
tural innovations in the first state to unity (Λ1 = I3). In line with comparable
studies (Lütkepohl and Schlaak, 2018), we set the structural innovations’ rel-
ative variances for the states m = 2, 3 such that a noticeable volatility pattern
is generated. To achieve this, we choose

Λ2 = diag(4, 9, 12) and Λ3 = diag(1, 4, 9).

Our setup implies that we draw the heteroskedastic structural innovation wt
from

wt ∼ N (0,Λm), for m = 1, 2, 3,

and we compute the heteroskedastic reduced-form residuals as ut = B(m)wt.
Note that the time-varying instantaneous impact effects matrix and the
volatility change of wt contribute to the heteroskedasticity of ut. Using (11)
and the previous specifications, we generate the data recursively with starting
values y0 = 0.

Finally, as in Caldara and Herbst (2019), the proxy zt is generated by
assuming a linear relation with the instrumented structural innovation w1t,

zt = φw1t + vt, (12)

where φ and the error vt determine the strength of the correlation between
zt and w1t. In principle, φ may vary for the different volatility regimes. We
keep it constant at φ = 1, however, and instead vary the strength of the
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proxy by changing the variance of the error vt which is a noise term that
mimics measurement errors of the instrument. It is generated independently
of w1t as

vt ∼ N (0, σ2
v(m)),

where the variance may change with the volatility regime. This setup implies
a time-varying volatility of the instrument which can be observed in many
time series of instruments that are used in the literature (see, for example,
Romer and Romer, 2010; Miranda-Agrippino and Ricco, 2017).

Note that the strength of the relation between the instrument and the
shock w1t determines how well the impact effects of the shock can be esti-
mated and these estimates are the basis of our test statistic. Therefore it
is important to note that the correlation between the instrument and the
structural error w1t can change with the variance of w1t. The variance of zt
is Var(zt) = φ2Var(w1t) + σ2

v(m). Hence, the correlation between w1t and zt
is

Corr(w1t, zt) = φ
√

Var(w1t)
/√

φ2Var(w1t) + σ2
v(m) .

We consider the three different cases presented in Table 1. In Cases 1 and 2,
the correlation between w1t and zt remains time-invariant across the sample,
whereas in Case 3 the correlation and, hence, the strength of the instrument
changes with the volatility regime, while the parameters of the relation (12)
remain time-invariant. Instead of varying the measurement error variance
σ2
v(m), we could have kept this variance constant throughout the sample

period and instead vary the parameter φ in the relation (12). That would not
affect the empirical rejection frequencies of our test as long as the correlation
between the proxy and the error term remains unchanged.

Having specified the characteristics of our DGP, we can also work out the
asymptotic covariance matrices, V (m), of the estimated β(m) and we present
them also in Table 1.1 It is important to note that asymptotic covariances
differ considerably for the different volatility regimes. The estimator β̂(1) has
clearly the smallest asymptotic variances, while β(2) and β(3) are estimated
less precisely in all three cases. This feature is expected to have an impact on
the small sample power of the test as well. Note also that the V (m) depend
on the strength of the instrument. Generally, a stronger instrument implies
more precise estimators of the β(m), as one would expect.

Data are simulated for sample sizes T = 300, 600, 1200. The two break-
points of the volatility states are set at T1 = 1

3
T and T2 = 2

3
T . We use 5000

replications of each simulation design.

1The underlying matrices Σb(m) were computed by simulation.
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Table 1: Specifications Used for DGP 1

Case σ2v(m) Corr(w1t, zt) V (1) V (2) V (3)

1
σ2v(1) = 0.2346
σ2v(2) = 0.9383
σ2v(3) = 0.2346

0.9 ∀t
[

3.73 −0.10
−0.10 3.71

] [
48.86 87.69
87.69 334.90

] [
150.71 159.37
159.37 178.28

]

2
σ2v(1) = 3
σ2v(2) = 12
σ2v(3) = 3

0.5 ∀t
[

12.09 −0.33
−0.33 11.81

] [
161.94 291.98
291.98 1098.91

] [
490.49 517.39
517.39 577.28

]

3 σ2v(m) = σ2v = 1
0.7071, t ∈ T1
0.8944, t ∈ T2
0.7071, t ∈ T3

[
6.05 −0.17
−0.17 5.96

] [
49.48 88.81
88.81 339.15

] [
244.26 257.86
257.86 287.96

]

4.1.2 DGP 2

To investigate the performance of our test for larger VAR models, as they
are often encountered in practice, we consider a specification based on a
data set for the crude oil market used in a proxy VAR study by Känzig
(2019). Changes in volatility of oil market data have been diagnosed and
studied in a number of previous papers (e.g., Lütkepohl and Netšunajev
(2014), Lütkepohl, Meitz, Netšunajev and Saikkonen (2020)). Exact details
of the model setup and its parameters are given in Appendix A.1.

In our simulations we are fitting 6-dimensional VAR(13) models to the
generated series. Thus, the model involves a large number of parameters.
We consider two (M = 2) or three (M = 3) variance regimes. The B matrix
under H0 and the B(1), B(2), B(3) matrices used under H1 are also given in
Appendix A.1.

The variances of the structural shocks are specified as follows:

Λ1 = I6, Λ2 = diag(0.5, 1, 2, 4, 8, 12), Λ3 = diag(2, 4, 8, 12, 16, 24),

if three volatility regimes are used. When two volatility regimes are consid-
ered, only Λ1 and Λ2 are used. The structural errors have Gaussian distribu-
tions such that wt ∼ N (0,Λm) and the reduced-form errors are computed as
ut = B(m)wt. These errors are used to generate yt samples for T = 300, 600,
and 1200. Volatility change points are at T1 = 1

2
T for M = 2 and at T1 = 1

3
T

and T2 = 2
3
T for M = 3. In the simulations, we assume knowledge of the

correct change points but also investigate the properties of the test when a
change point is misspecified.

The instrument, zt, is generated as in equation (12) with time-invariant
φ = 0.5 and σ2

v(m) = σ2
v = 0.5 which implies the following correlations
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between shock and proxy:

Corr(w1t, zt) =


0.5774 for t ∈ T1,
0.4472 for t ∈ T2,
0.7071 for t ∈ T3.

Thus, for this DGP, the correlation is moderate at best.
In Appendix A.1 we also show the β(m) vectors and the corresponding

asymptotic covariance matrices of their estimators. Clearly, β(1) is estimated
more precisely than β(2) and β(3). In fact, the estimator of β(2) has the
largest asymptotic variances. Again, this is expected to affect the power of
our test for time-varying impact effects.

To investigate how important it is to specify the volatility model correctly,
we not only consider the implications of misspecifying the volatility change
points, but we also perform the test by assuming a heteroskedasticity model
as in (3) when the change in variance is in fact generated by some other
mechanism. More precisely, we have also generated a change in volatility by
a smooth transition (ST) mechanism such that

E(wtw
′
t) = (1−G(γ, ψ, t))Λ1 +G(γ, ψ, t)Λ2, (13)

where a standard logistic transition function,

G(γ, ψ, t) = (1 + exp[− exp(γ)(t− ψ)])−1,

is used. It depends on parameters γ and ψ and time t is chosen as transition
variable. Using this model to generate the volatility changes implies that the
volatility change from Λ1 to Λ2 occurs smoothly over a number of periods,
depending on the parameters γ and ψ. The latter parameter determines the
location of the variance change while γ determines the speed of the transition
from variance regime Λ1 to Λ2. Large values of γ imply a fast transition.

A transition from one volatility regime to another one over a number of
sample periods may be more plausible in some situations in empirical stud-
ies than an instantaneous volatility adjustment in one period. Therefore it
is of interest to explore the properties of our test if a one time volatility
change is assumed although the actual volatility change is spread out over
a longer period. We have used ψ = 0.5T and γ = −

√
T/10 in our simula-

tions which ensures a variance change roughly in the middle of the sample
which is largely completed over about 20% of the respective sample size.
For example, for T = 600, the transition from variance regime Λ1 to Λ2 is
basically completed between observations 240 and 360 of the sample. We
also let the impact effects of the shocks change smoothly with the transi-
tion function G(γ, ψ, t) from B(1) to B(2) such that the covariance structure
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of the reduced-form residuals smoothly changes from Σu(1) = B(1)B(1)′ to
Σu(2) = B(2)Λ2B(2)′. The number of replications of each simulation exper-
iment is again 5000.

4.2 Simulation Results

4.2.1 DGP 1

The simulation results for the first DGP are summarized in Table 4 for the
case when a VAR(1) is fitted. Since we also want to investigate the effect
of the magnitude of the VAR model, we have in addition fitted VAR(12)
processes to the data that are actually generated by a VAR(1) and report
the results in Table 5. In both cases there are three variance regimes and we
have generated data both under H0 and H1 to explore the finite sample test
size and power. The nominal significance level in both tables is 5%.

Table 2: Relative Frequencies of F -Test for Weak Instrument Below 10 in
Simulations of VAR(1)

Case 1 Case 2 Case 3

Sample size m = 1 m = 2 m = 3 m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

T = 300 0.000 0.053 0.002 0.011 0.731 0.478 0.000 0.057 0.061
T = 600 0.000 0.000 0.000 0.000 0.325 0.078 0.000 0.000 0.000
T = 1200 0.000 0.000 0.000 0.000 0.023 0.001 0.000 0.000 0.000

Table 3: Relative Frequencies of F -Test for Weak Instrument Below 10 in
Simulations of VAR(12)

Case 1 Case 2 Case 3

Sample size m = 1 m = 2 m = 3 m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

T = 300 0.000 0.170 0.012 0.107 0.859 0.673 0.000 0.176 0.176
T = 600 0.000 0.001 0.000 0.000 0.427 0.131 0.000 0.001 0.001
T = 1200 0.000 0.000 0.000 0.000 0.033 0.001 0.000 0.000 0.000

Before looking at the results for our test for time-varying impact effects, it
may be worth taking a look at the results in Tables 2 and 3, where we record
the relative frequencies of standard F -tests for weak instruments (e.g., Kilian
and Lütkepohl (2017, Section 15.2.1)) to produce values below 10 for the H1

processes in our simulations. In applied work, a threshold of 10 is usually
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Table 4: Relative Rejection Frequencies for 3-dimensional VAR(1) Model of
Pairwise Tests of H0 : β(m) = β(k) for m, k = 1, 2, 3 and m 6= k (Nominal
Significance Level 5%, Volatility Change Points T1 = 1

3
T and T2 = 2

3
T , 5000

MC Repetitions)

Case Sample Data generated under H0 (size) Data generated under H1 (power)

size β(1) = β(2) β(1) = β(3) β(2) = β(3) β(1) = β(2) β(1) = β(3) β(2) = β(3)

1 T = 300 0.068 0.065 0.065 0.866 0.972 0.756
T = 600 0.057 0.056 0.056 0.979 1.000 0.962
T = 1200 0.046 0.056 0.049 1.000 1.000 1.000

2 T = 300 0.042 0.048 0.046 0.580 0.395 0.209
T = 600 0.054 0.050 0.046 0.747 0.819 0.499
T = 1200 0.047 0.048 0.051 0.915 0.995 0.840

3 T = 300 0.064 0.062 0.063 0.857 0.802 0.575
T = 600 0.059 0.057 0.054 0.977 0.996 0.905
T = 1200 0.050 0.054 0.051 1.000 1.000 0.998

used to classify an instrument as sufficiently strong (see also Stock, Wright
and Yogo (2002)). In other words, the numbers in Tables 2 and 3 indicate how
often an instrument would have been classified as weak in our simulations.
This feature is clearly linked to the correlation between the shock and the
proxy and it is seen in the tables that for Case 2 and small and moderate
sample sizes, the instrument would be classified as weak in a large number
of cases. For example, for T = 300, for the second regime the proxy would
have been classified as weak instrument in more than 73% and 85% of the
replications, if VAR(1) and VAR(12) processes are fitted, respectively. For
larger sample sizes and a more strongly correlated proxy and shock, a weak
instrument problem would not be diagnosed very often in any of the cases
and regimes. However, it is, of course, of interest whether our test for time-
varying impact effects also has power when the instrument is weak and thus,
the impact effects cannot be estimated very precisely. This is the reason for
including Case 2 in our simulations.

Now looking at the relative rejection frequencies of our test in Tables 4
and 5, the following observations can be made.

1. The empirical test size and power tend to improve with larger sample
sizes as they should be. In other words, the relative rejection frequen-
cies tend to move closer to the nominal significance level of 5% under
H0 and they increase with increasing sample size under H1.

2. The empirical size in all cases is close to the nominal size of 5%. This

12



Table 5: Relative Rejection Frequencies for 3-dimensional VAR(12) Model
of Pairwise Tests of H0 : β(m) = β(k) for m, k = 1, 2, 3 and m 6= k (Nominal
Significance Level 5%, Volatility Change Points T1 = 1

3
T and T2 = 2

3
T , 5000

MC Repetitions)

Case Sample Data generated under H0 (size) Data generated under H1 (power)

size β(1) = β(2) β(1) = β(3) β(2) = β(3) β(1) = β(2) β(1) = β(3) β(2) = β(3)

1 T = 300 0.073 0.066 0.066 0.805 0.882 0.651
T = 600 0.059 0.059 0.057 0.967 1.000 0.941
T = 1200 0.050 0.059 0.053 1.000 1.000 1.000

2 T = 300 0.045 0.036 0.034 0.455 0.233 0.152
T = 600 0.052 0.047 0.044 0.703 0.731 0.447
T = 1200 0.046 0.048 0.051 0.906 0.991 0.821

3 T = 300 0.070 0.055 0.059 0.786 0.616 0.458
T = 600 0.057 0.056 0.053 0.964 0.982 0.867
T = 1200 0.052 0.054 0.053 1.000 1.000 0.998

result holds even for the smaller sample sizes and if a large VAR(12)
model is fitted. It holds for all three types of proxy variables. For
Case 1, where the correlation between the proxy and the first structural
shock is 0.9 and, hence, it is rather large across the sample, the rejection
frequencies are slightly larger than 5% when the sample size is small
(T = 300). Even then the relative rejection frequencies under H0 are
well below 0.075 in all situations reported in the tables.

3. Despite the similarity of the rejection frequencies under H0, the empir-
ical power is lower for the large VAR(12) model than for the smaller
VAR(1) (compare the corresponding entries of Tables 4 and 5). Thus,
the magnitude of the model affects the power but not the test size in
small samples.

4. A comparison of Cases 1 and 2 shows that the smaller correlation in
Case 2 undermines the power of the test in small samples but does not
have much of an effect on the rejection frequencies under H0, for the
sample sizes considered in our simulations. The power can be rather
low for small samples. For example, the power for T = 300 for test-
ing β(2) = β(3) is only 0.209 and 0.152 for the VAR(1) and VAR(12),
respectively. Clearly, if the instrument is not strong enough to esti-
mate the impact effects with reasonable precision, the test is not able
to discriminate well between the estimated impact effects of different

13



volatility regimes.

5. In Case 3, the correlation between the proxy and the first shock varies
over time. For all three volatility regimes it is between the correlation of
Cases 1 and 2. This feature is reflected in the power results in Tables
4 and 5 which are typically in between the corresponding results for
Cases 1 and 2.

Overall our results based on DGP 1 suggest that the empirical size of the
test and its power improve with increasing sample size. The empirical test
size is not much affected by the magnitude of the model and the strength of
the instrument. In contrast, the power declines with increasing magnitude
of the model and it increases with the strength of the instrument.

Of course, one may argue that the DGPs encountered in applied work have
rather different properties than our DGP 1. Therefore we have trimmed our
second DGP towards an empirical model. The results are discussed next.

4.2.2 DGP 2

Our second DGP is similar to a model from Känzig (2019) based on actual
data. The VAR model used is 6-dimensional and has lag order p = 13. Thus,
the fitted model is large. Results for the case with one variance change are
reported in Table 6. Given the results for DGP 1, it may be good to remember
that the correlation between the proxy and the first shock is 0.5774 and 0.4472
in the first and second volatility regimes, respectively. Thus, the correlation
is rather low.

For such a large model the relative rejection frequency of our test under
H0 is slightly below the nominal 5%, if the sample size is small (T = 300).
Even for a moderate sample size of T = 600, the relative rejection frequency
under H0 is only 0.037 if the true volatility change point is used for the test.
Thus, for large models the test tends to be conservative in small and even
moderate samples.

Interestingly, if the volatility change point is misspecified as it may easily
happen in practice, the relative rejection frequencies under H0 on the right-
hand side of Table 6 are slightly larger. However, the power declines if the
volatility change point is misspecified. Given the simulation results for DGP
1, the low power for small samples is likely to be partly due to the low
correlation between the proxy and the structural shock.

The performance of the test for a misspecified volatility change point is
further investigated in Table 7. In that table the relative rejection frequencies
of our test are given for two different volatility change points although the
true underlying generation mechanism of the volatility change is a smooth
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Table 6: Relative Rejection Frequencies of 6-dimensional VAR(13) Model of
Tests of H0 : β(1) = β(2) (Nominal Significance Level 5%, True Volatility
Change Point at T1 = 1

2
T , 5000 MC Repetitions)

Assumed change point T1 = 1
2
T Assumed change point T1 = 2

5
T

Sample size Under H0 Under H1 Under H0 Under H1

T = 300 0.018 0.194 0.026 0.132
T = 600 0.037 0.605 0.040 0.416
T = 1200 0.040 0.934 0.043 0.819

Table 7: Relative Rejection Frequencies of 6-dimensional VAR(13) Model of
Tests of H0 : β(1) = β(2) (Nominal Significance Level 5%, Volatility Change
Generated by Smooth Transition, 5000 MC Repetitions)

Assumed change point T1 = 1
2
T Assumed change point T1 = 2

5
T

Sample size Under H0 Under H1 Under H0 Under H1

T = 300 0.022 0.184 0.026 0.161
T = 600 0.037 0.564 0.046 0.469
T = 1200 0.048 0.903 0.051 0.859
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Table 8: Relative Rejection Frequencies for 6-dimensional VAR(13) Model
of Pairwise Tests of H0 : β(m) = β(k) for m, k = 1, 2, 3 and m 6= k (Nominal
Significance Level 5%, Volatility Change Points T1 = 1

3
T and T2 = 2

3
T , 5000

MC Repetitions)

Data generated under H0 (size) Data generated under H1 (power)

Sample size β(1) = β(2) β(1) = β(3) β(2) = β(3) β(1) = β(2) β(1) = β(3) β(2) = β(3)

T = 300 0.013 0.058 0.016 0.096 0.503 0.037
T = 600 0.027 0.060 0.028 0.307 0.912 0.124
T = 1200 0.039 0.052 0.039 0.685 1.000 0.286

transition as explained in Section 4.1.2. Again the rejection frequencies un-
der H0 are not much affected compared to those reported in Table 6 for a
correctly specified change point (T1 = 1

2
T ). Even the reduction in power is

quite moderate if the incorrect volatility model with one change point at a
fixed fraction of the sample is assumed. Thus, our test is quite robust to
slight misspecifications of the volatility change point and the type of het-
eroskedasticity.

We have also performed simulations with three volatility regimes (M = 3)
and show the results in Table 8. For the null hypotheses H0 : β(1) = β(2)
and H0 : β(2) = β(3) the relative rejection frequencies under H0 are slightly
too small. Although they move towards 0.05 for increasing sample size, they
remain below 5% even for T = 1200. Note that both null hypotheses involve
the impact effects vector for the second volatility regime where the correlation
between the instrument and the structural shock is as low as 0.4472. Hence,
it is also not surprising that the corresponding empirical power is small. In
fact, for testing H0 : β(2) = β(3) and T = 1200, we get a relative rejection
frequency of 0.286. Such a low power is likely to be due to the low rejection
frequency under H0 and the quite low correlation between the proxy and the
shock. In any case, it may be worth remembering the potentially low power
of the test when the examples in Section 5 are considered.

4.2.3 Summary

The simulation results can be summarized briefly as follows. Larger samples
improve the empirical size and power of the test. The dimension and lag order
of the VAR process and precise knowledge of the type of heteroskedasticity
and the timing of the variance change do not affect the small sample rejection
frequencies substantially if the null hypothesis is true, although for large
models the test can be conservative. However, these features affect the power
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of the test in small samples. More precisely, the power declines for a model
of larger magnitude, i.e., with more variables and/or larger lag order. The
power can be improved by a more precise specification of the model for the
second moments and the timing of the volatility change.

5 Empirical Analysis

In the following, two empirical examples from the proxy VAR literature are
considered, where the authors use instrumental variables to identify shocks of
interest and which also have heteroskedastic errors. None of the studies allows
the heteroskedasticity to affect the impulse responses of the structural shocks.
Therefore we apply our test to investigate whether the implicit assumption
of time-invariant impulse responses is in line with the data.

5.1 Monetary Policy Transmission in the United King-
dom

Cesa-Bianchi et al. (2020) construct a time series of intra-day price varia-
tion of the 3-month Sterling future contracts around policy decisions of the
Monetary Policy Committee of the Bank of England. This series is used
as instrumental variable for monetary policy shocks in order to investigate
their impact on macroeconomic and financial variables in the United King-
dom. In their baseline specification, Cesa-Bianchi et al. (2020) consider a
7-dimensional VAR(2) model with a constant term for the variables

yt = (rt, cpit, urt, et, cs
uk
t ,mst, cs

us
t )′,

where rt is the nominal yield on the 1-year gilt, cpit is the consumer price in-
dex, urt describes the unemployment rate, et represents the nominal effective
exchange rate, csukt and mst are UK corporate and mortgage bond spreads,
respectively, whereas csust is a US corporate bond spread. All variables enter
the model in levels, the only exception to this rule is cpit which is in natural
logarithms. The data are monthly for the sample period 1992m1-2015m1
which implies a sample size of 277 observations, including presample val-
ues for the estimation, hence, T = 275. We use the data from Cesa-Bianchi
et al. (2020) and refer to that paper for further details on the precise variable
specifications and data sources.2

2The data set is available as supplementary material to the paper on the web page of
the European Economic Review.
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Figure 1: OLS residuals of UK monetary policy VAR(2) model. The solid red
line indicates the variance break in August 2008 suggested by the likelihood
based statistical criterion in (14).

Looking at the OLS residuals of the reduced-form VAR(2) model in Fig-
ure 1, it is obvious that the volatility of at least some of them has changed
during the sample period. Especially as of the onset of the Great Reces-
sion the residual series of all financial variables display a markedly distinct
volatility pattern. To identify the exact timing of the volatility break point,
we assume that the bankruptcy filing of Lehman Brothers bank in the US
and the turmoil on financial markets thereafter turned mild recessionary ten-
dencies in the UK into a severe long-lasting economic crisis. Therefore, we
choose August 2008 as preliminary volatility break and argue that September
2008 constitutes the beginning of a new volatility regime.3 Moreover, to back

3An LM test for heteroskedasticity as described in Lütkepohl (2005, pp. 600-601) yields
a test statistic of 138.33 which clearly rejects the null hypothesis at the 1% significance
level and, hence, provides strong evidence for a change in variance.
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up our economic arguments, for the precise timing of the volatility change,
we consider the Gaussian likelihood based criterion function

T1 log det Σ̂1 + (T − T1) log det Σ̂2, (14)

where Σ̂1 = T−11

∑T1
t=1 ûtû

′
t and Σ̂2 = (T − T1)

−1∑T
t=T1+1 ûtû

′
t are com-

puted from OLS residuals ût. We minimize this objective function over
T1 ∈ {112, . . . , T − 48} as we, first, exclude 63 observations at the begin-
ning due to missing values of the instrument (see Section 3.3 in Cesa-Bianchi
et al. (2020)) and, second, we eliminate another 48 observations at both the
beginning and the end of the sample to have a sufficient amount of obser-
vations for reliable estimation of the regime-specific covariance matrices and
the underlying structural parameters. The procedure confirms the volatility
change point in August 2008 (i.e., T1 = 198, see solid red line in Figure 1).
Hence, we apply our test for time-varying impact effects of the monetary pol-
icy shocks using a variance change in August 2008 (2008m8). The resulting
p-value of our test is 0.010. Because we found in the simulations in Section 4
that the test may have low power for large models and relatively small sam-
ples sizes, the p-value indicates that the assumption of time-invariant impact
effects is strongly rejected by the data.

We checked whether the F -statistics resulting from a regression of the
OLS residuals of the 1-year gilt on the instrument in both regimes exceeds
the value of 10, which is a well-established condition for a sufficiently strong
instrument in practice, as mentioned earlier. The F -statistics of 14.835 and
15.181, respectively, indicate that the instrument is informative for the un-
derlying structural innovations in both periods. Therefore we have estimated
separate impact effects for the two volatility regimes and present the corre-
sponding impulse responses in Figure 2. The confidence bands are obtained
by wild bootstraps to account for the possibility that there is more het-
eroskedasticity than what is captured by our model.4

4We generate the bootstrapped residuals u?t = ϕtût and the bootstrapped instrument
z?t = ϕtzt, where ϕt is a random variable following a Rademacher distribution, i.e., ϕt is
either 1 or –1 with probability 0.5. The bootstrapped residuals are then used to generate
bootstrapped data y?t recursively. Each bootstrap sample is based on identical presam-
ple values from the original data set as initial values, i.e., y?−p+1 = y−p+1, . . . , y

?
0 = y0.

The bootstrap procedure is repeated 5,000 times. Instead, Cesa-Bianchi et al. (2020) use
a moving-block-bootstrap to capture heteroskedasticity. It was shown by Brüggemann,
Jentsch and Trenkler (2016) and Jentsch and Lunsford (2019) that the latter is asymptot-
ically valid in heteroskedastic structural VAR models while the wild bootstrap does not
provide asymptotically correct confidence intervals. However, in small samples such as
ours with less than 100 observations for some subsamples, the wild bootstrap may have
advantages in a related setting (see Brüggemann et al. (2016) and Lütkepohl and Schlaak
(2019)).
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Figure 2: Responses to a monetary policy shock with pointwise 68% con-
fidence bands based on a wild bootstrap. Grey areas indicate confidence
intervals for the sample prior to the Great Recession from 1992m3-2008m8
and red areas represent confidence intervals for the the period during and
after the Great Recession from 2008m9-2015m1.
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In Figure 2 it can be seen that some impulse responses for short propaga-
tion horizons have non-overlapping 68% confidence intervals before and after
the volatility change. For example, the responses of the mortgage spread
is strikingly larger in the second volatility state for a propagation period of
roughly two years. This finding is similar, though less pronounced, for other
financial variables like the effective nominal exchange rate and the UK cor-
porate bond spread. Interestingly, also the response of the unemployment
rate to a contractionary monetary policy shock in the respective volatility
regimes varies quite substantially at short propagation horizons of roughly
ten months. In other words, according to our results, monetary policy shocks
in the UK have had different implications for the real economy in the two
subsamples. Prior to the Great Recession an increase of interest rates led
to a sizable and significant rise in unemployment. However, in the period
during and after the Great Recession, contractionary monetary policy shocks
were coupled with an initial decline in unemployment that lasted for several
months.

The impact effects of a monetary policy shock in Figure 2 are also differ-
ent from the corresponding quantities presented in Figure 2 of Cesa-Bianchi
et al. (2020) for their baseline model, where, for example, the initial response
of unemployment and the mortgage spread are not significantly different from
zero. The size of the respective impact effects in the original paper lies in
between the impact effects in our Figure 2. Although Cesa-Bianchi et al.
(2020) use a different bootstrap method to construct confidence intervals
around their impulse responses, it is obvious that the estimated impact ef-
fects are quite different from ours.5 Even though our wild bootstrap may
understate the true uncertainty in the impulse responses and even though
our confidence intervals overlap with those of Cesa-Bianchi et al. (2020), our
test presents evidence that at least some of the impact effects are different
before and after the Great Recession. In contrast, the longer term effects
of the monetary policy shocks are similar in our Figure 2 and Figure 2 of
Cesa-Bianchi et al. (2020). Thus, the data support primarily differences in
the short-term effects of a monetary policy shock.

Despite the similarity of the long-term effects, this example shows that
it is important to allow for the possibility of time-varying impact effects if
shocks are identified by an instrument and the model errors are heteroskedas-

5As a robustness check, we have also computed impulse response functions with con-
fidence bands relying on the moving-block-bootstrap used by Cesa-Bianchi et al. (2020)
and show them in Figure A.1 in Appendix A.2. While our main results for the responses
of the mortgage spread and the unemployment rate still hold, others get somewhat more
ambiguous as expected from the small number of observations especially in the second
volatility regime.
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Table 9: Tests for Time-Varying Impact Effects of UK Model

H0 p-value

β(1) = β(2) 0.938
β(1) = β(3) 0.071
β(2) = β(3) 0.002

tic. Not accounting for this possibility can lead to biased impulse responses.
There are, of course, other events that may have caused changes in the

volatility of the series. We determined a second volatility change point by
keeping the break in August 2008 fixed and performing a search over the
remaining observations using a similar procedure as above based on the cri-
terion described in (14). Specifically, we ensure a minimum of at least 48 ob-
servations within one volatility regime. The criterion is minimized in August
2001, coinciding with the start of a long lasting economic upswing following
the Dotcom bubble slowdown of the early 2000s. Assuming three volatility
regimes, the first regime runs from March 1992 to August 2001 and may
be interpreted as medium volatility regime, whereas the second regime from
September 2001 to August 2008 is a period of markedly low volatility in
particular in the UK corporate bond spread series. The third regime coin-
cides with the period during and after the Great Recession from September
2008 to January 2015 and is coupled with high volatility notably in the two
corporate bond spreads (see Figure 1).

We have applied our test for time-varying impact effects and present the
p-values in Table 9. While the first null hypothesis, H0 : β(1) = β(2), gives
a p-value of 0.938 and, hence, cannot be rejected, the p-values are much
smaller for the other two null hypotheses in Table 9. The null hypothesis
H0 : β(2) = β(3) results in a p-value of 0.002 and is clearly rejected at
common significance levels. For H0 : β(1) = β(3) with a p-value of 0.071 the
situation is not quite so clear. Of course, not rejecting the null hypothesis at
a 5% level of significance may just be a problem of low power of our test as
diagnosed in the small sample simulations reported in Section 4.

Whatever the reason for our test results in this specific case may be,
it appears to be a good idea to check for time-varying impact effects in
heteroskedastic proxy VARs. As we have seen from our estimations, ignoring
the possibility may lead to distorted impulse responses.

5.2 US Monetary Policy and Housing Rents

Dias and Duarte (2019) investigate the impact of monetary policy shocks
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on housing rents in the US based on a proxy VAR. They use monthly data
from January 1983 to December 2017. Thus, the full sample size amounts to
420 observations including presample values. The variables of their baseline
model are

yt = (rt, ipt, cpit, ebpt, hrt)
′,

where rt is the 1-year treasury rate, ipt is industrial production, cpit is the
consumer price index, ebpt is the excess bond premium, and hrt represents
housing rents. All variables apart from the interest rate (rt) and the excess
bond premium (ebpt) are in logs. Dias and Duarte fit a VAR(12) model with
an intercept as their baseline model and they use an instrument from Gertler
and Karadi (2015) to identify the monetary policy shocks. The instrument
consists of the changes in the 3-months-ahead monthly federal funds futures
around the dates of monetary policy announcements. Dias and Duarte use
a moving-block-bootstrap method for their impulse responses that accounts
for possible heteroskedasticity. Thereby they acknowledge the possibility of
heteroskedasticity in the model errors.

We use the baseline setup and data from Dias and Duarte (2019) to in-
vestigate the time-invariance assumption underlying their study.6 Given the
sample period and looking at the VAR residuals in Figure 3, it is plausible
to allow for a change in volatility around the time of the outbreak of the
financial crisis in 2008/09. We have investigated possible regime switches at
the onset of the recession in November 2007 and one year later, in November
2008, around the time when short term interest rates reached the effective
zero lower bound and unconventional monetary policy measures were im-
plemented by the Federal Reserve. We also performed a search over possi-
ble volatility change points between January 1996 - December 2011 based
on the Gaussian likelihood criterion function given in expression (14). It
is minimized in September 2001. Thus, there is some evidence that there
is heteroskedasticity in the model errors with a change in volatility during
the recession following the burst of the Dotcom bubble and coinciding with
the 9/11 terrorist attacks. All possible volatility breaks are marked with red
lines in Figure 3.7 The resulting p-values of our tests for time-varying impact
effects are displayed in the upper panel of Table 10.

Considering any of the volatility change points, our test for time-varying
impact effects gives a p-values by far exceeding any conventional significance
level. Thus, our test does not find evidence of time-varying impact effects

6The data set can be found in the data archive of the Journal of Applied Econometrics.
7For all three possible break dates, the LM test for heteroskedasticity from Lütkepohl

(2005) has p-values very close to zero and strongly supports heteroskedasticity.
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Figure 3: OLS residuals of US housing market VAR(12) model. The solid red
lines indicate the three possible variance breaks in September 2001, November
2007, and November 2008 that are investigated.

in this model and sample period. Of course, the model is quite large and,
hence, based on our simulation results, one would expect the power of the
test to be low. However, in this situation the data give no indication for
concern about the time-invariance of the impact effects.

Of course, one may wonder whether our volatility model is suitable for this
data. After all, we are assuming only one volatility change point. Thus, we
have also considered refining the volatility regimes by combining the breaks in
the early 2000s and during the Great Recession. The results of these tests are
displayed in the lower panel of Table 10 and do not provide evidence against
time-invariant impact effects either. We also performed other robustness
checks by considering another volatility model based on a Markov-switching
in variances model and did not find evidence against time-invariant impact
effects of the monetary policy shocks. Thus, in this case our tests provide the
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Table 10: Results (p-values) of Tests for Time-Varying Impact Effects of US
Model

Regimes Change point(s)
Test for time-vary impact effects

β(1) = β(2) β(1) = β(3) β(2) = β(3)

M = 2
2001m9 0.953 – –
2007m11 0.888 – –
2008m11 0.997 – –

M = 3
2001m9, 2007m11 0.999 0.902 0.995
2001m9, 2008m11 0.947 0.998 0.982

reassuring result that the implicit assumption of time-varying impact effects
of the structural shock of interest appears to be in line with the data.

6 Conclusions

In heteroskedastic proxy structural VAR analyses it is typically assumed
that the impact effects of the shocks of interest and, hence, the impulse
responses at all propagation horizons are time-invariant and are not affected
by the change in variance. We show that this assumption cannot be taken
for granted in empirical studies in general. If the assumption is violated it
can lead to biased impulse response estimates.

In this study, we have developed a test for time-varying impact effects
of the shocks which is very easy to conduct. It can be applied even if it is
not known precisely when a change in variance occurred. Misspecifying the
volatility change point does not invalidate the test but may lead to reduced
power. Even if the mechanism that drives the heteroskedasticity is not in
line with the model assumed for our test, the test may have some power.

We have applied the test to two example models from the structural VAR
literature. In one of the example models, time-invariance of the impact effects
is rejected and in the other example model it is not rejected. The examples
illustrate that the issue is relevant for applied work. Therefore we propose to
test routinely for time-varying impact effects of a structural shock identified
by a proxy variable when the data underlying a proxy VAR analysis are
heteroskedastic. Our test is easy to perform and, hence, it opens up an easy
way to improve the credibility of empirical results based on heteroskedastic
proxy VARs.
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Appendix

A.1 Parametrization of DGP 2

DGP 2 used in our simulations is based on a data set for the crude oil market
from Känzig (2019). He considers a 6-dimensional baseline VAR(13) model
with a constant term for the variables

yt = (rpt, prodt, invt, ip
World
t , ipUSt , cpiUSt )′,

where rpt is the real price of oil, prodt is world oil production, invt repre-
sents world oil inventories, ipWorld

t is world industrial production, ipUSt is US
industrial production, and cpiUSt is the U.S. consumer price index. The data
are monthly for the sample period 1974m1-2017m12 which implies a sample
size of 528 observations.8

We fit a VAR(1) model to the data and get OLS estimates

ν = (53.578, 132.134,−51.649,−17.081,−4.098,−15.050)′,

A1 =


0.980 −0.066 0.028 0.142 0.013 −0.125
−0.003 0.869 −0.018 0.065 0.000 −0.002

0.005 0.059 0.991 −0.058 0.013 0.023
0.000 0.017 0.002 0.983 0.006 0.003
−0.002 0.008 −0.004 −0.008 0.993 0.012

0.002 0.015 0.006 −0.005 0.008 0.987


which are used as parameters for DGP 2. The eigenvalues of A1 have moduli

0.8681, 0.9734, 0.9859, 0.9859, 0.9984, 0.9915.

Thus, the process is close to a unit root process but is formally still stable
and very persistent.

We consider two (M = 2) or three (M = 3) variance regimes. Under
H0, we use the Cholesky decomposition of the estimated reduced-form error
covariance matrix,

B =


7.660 0.000 0.000 0.000 0.000 0.000
−0.012 1.480 0.000 0.000 0.000 0.000
−0.120 −0.018 1.033 0.000 0.000 0.000

0.109 0.056 0.033 0.593 0.000 0.000
0.052 0.139 0.011 0.418 0.561 0.000
0.113 0.017 −0.002 0.005 −0.006 0.233

 .
8The data set was kindly made available to us by Diego Känzig.
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Under H1, the first column of B(m) is replaced by the estimates that result
from assuming a volatility break in April 1991 (i.e., after the end of the
gulf war) for M = 2. For M = 3 an additional change in the volatility
pattern is assumed to occur in December 2007 (i.e., at the onset of the Great
Recession). The resulting estimates are rescaled with the standard deviation
obtained under H0. All other columns of B(m) remain as under H0. The
precise impact effects matrices under H1 are as follows:

B(1) =


7.660 0.000 0.000 0.000 0.000 0.000
0.529 1.480 0.000 0.000 0.000 0.000
−0.121 −0.018 1.033 0.000 0.000 0.000
−0.184 0.056 0.033 0.593 0.000 0.000
−0.189 0.139 0.011 0.418 0.561 0.000

0.034 0.017 −0.002 0.005 −0.006 0.233

 ,

B(2) =


7.660 0.000 0.000 0.000 0.000 0.000
−0.105 1.480 0.000 0.000 0.000 0.000

0.423 −0.018 1.033 0.000 0.000 0.000
−0.069 0.056 0.033 0.593 0.000 0.000

0.037 0.139 0.011 0.418 0.561 0.000
0.060 0.017 −0.002 0.005 −0.006 0.233

 ,

B(3) =


7.660 0.000 0.000 0.000 0.000 0.000
−0.143 1.480 0.000 0.000 0.000 0.000

0.469 −0.018 1.033 0.000 0.000 0.000
0.177 0.056 0.033 0.593 0.000 0.000
−0.162 0.139 0.011 0.418 0.561 0.000

0.208 0.017 −0.002 0.005 −0.006 0.233

 .
Thus,

β(1) =


0.0691
−0.0158
−0.0240
−0.0247

0.0044

 , β(2) =


−0.0137

0.0552
−0.0090

0.0048
0.0078

 , β(3) =


−0.0187

0.0612
0.0231
−0.0211

0.0272

 .

Moreover, the asymptotic covariance matrices of the estimated β(m) are

V (1) =


0.33 −0.01 0.01 0.03 0.00
−0.01 0.17 0.00 0.00 0.00

0.01 0.00 0.06 0.04 −0.00
0.03 0.00 0.04 0.08 −0.00
0.00 0.00 −0.00 −0.00 0.01

 ,
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V (2) =


1.15 −0.02 0.03 0.10 −0.00
−0.02 1.07 −0.00 0.01 0.01

0.03 −0.00 0.72 0.50 −0.00
0.10 0.01 0.50 1.64 −0.01
−0.00 0.01 −0.00 −0.01 0.34

 ,

V (3) =


0.44 −0.01 0.01 0.03 0.00
−0.01 0.42 0.01 −0.01 0.00

0.01 0.01 0.21 0.15 −0.00
0.03 −0.01 0.15 0.35 −0.01
0.00 0.00 −0.00 −0.01 0.07

 .
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A.2 Additional Impulse Responses
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Figure A.1: Responses to a monetary policy shock with pointwise 68% con-
fidence bands based on the moving-block-bootstrap methodology described
in Jentsch and Lunsford (2019) using a block length of l = 4. Grey areas
indicate confidence intervals for the sample prior to the Great Recession from
1992m3-2008m8 and red areas represent confidence intervals for the period
during and after the Great Recession from 2008m9-2015m1.
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