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Abstract

Stochastic Delay Differential Equations (SDDE) are Stochastic Functional Differential Equations
with important applications. It is of interest to characterize the L2-stability (stability of second
moments) of solutions of SDDE. For the class of linear, scalar SDDE we can show that second
comoment function of the solution satisfies a partial differential equation (PDE) with time delay and
derive a characteristic equation from it determining the asymptotic behaviour of the second moments.
Additionally we derive a necessary criterion for weak stationarity of solutions of linear SDDE.
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1 Introduction

Let (2, F,P) be a probability space provided with an increasing right-continuous filtration F =
{ Ft }te[0,00)- Stochastic Delay Differential Equations (SDDE)

dX(t) = F(t, Xy)dt+ G, Xy)dW(t), t€[0,00) , (L.1)
X = & te[-r,0 . '
where
(W (), Ft )tefo,00) is a standard Brownian motion,
T € [0,00) is the non-negative delay-time,
Xe={X(s)|set—mt} CC(-T,0,R),te€[0,00) is a segment at t, (1.2)
EeC([-m,0],R) is a Fo-measurable random variable,
F,G € C(R xC([-T,0],R),C([-7,0],R)) parameter funcions.

are a standard tool in the modelling of realistic phenomena in biology, physics, economics in particular
in presence of time-delayed feedback processes.

It is of interest to investigate the long term behaviour of solutions of SDDE in form of the time
evolution of the second moment of solutions, that is ms (t) = E[|X (¢)|?] for ¢ — oco. For general SDDE
like (1.1) it is hard to achieve exact results due to possible non-linearity of the parameter functions F,
G and due to the memory. However, in the case of linear, time-homogeneous SDDE one can consider
the so-called comoment function K3 (¢,s) = E[ X (t) X(s)], into which m% is embedded. Using Fubini
theorems and the linearity of integrals we can show that K3 satisfies a certain PDE with time delay
which is called (time-continuous) amplified system. In addition to this we will show that solutions of
amplified systems have some special properties. One of the important properties is that its solutions are
completely determined by its values on a diagonal ,strip® D2 = {(t,s)|s,t € [-7,00),|t — 5| < T}.
This allows to use results from the semigroup theory to derive a characteristic equation in (complex)
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eigenvalues and corresponding eigenfunctions. The real part of the eigenvalues determines the behaviour
of m¥ for t — co. A second result from the investigation of the amplified system is a necessary criterion
for weak stationarity of solutions of linear, scalar SDDE.

As an example we want to consider a pa.rticular linear, scalar SDDE :

AX () = (aX(t) + Xt — 7)) dt + (boX () + by X(t — 7)) dW(t),  t€[0,00),  (1.3)

with real parameters ag, a1, bg, b1 and its discretizations. This will give us an idea how the amplified
system for (1.3) looks like. Furthermore this provides us with an important link to the time-evolution of
those stochastic recurrence relations which are the result from the application of numerical methods to
linear SDDE. Let us choose here the numerical method , Euler explicit® and set the discretization step
width to h = 7. Then we obtain a numerical solution Y = {Y,, },cw satisfying:

Yori=Yo+h (aan + alYn_l) + \/E (ban + b1Yn_1) €nt1, n € N, (14)

where {€,}nen is a sequence of i.i.d. N(0,1)-distributed random variables. As in [4] was pointed out
the second moments of {Y,, },cw satisfy a deterministic recurrence relation - the so-called (time-discrete)
amplified system. Following the notations in [4] it is:

Zny1=AZp (1.5)
where o T
Zn1 = (B ] EYn 1 Yo, E[YZ]) T,
(]. + aoh) + b%h 2(1 + aoh)alh + 2bgb1 h (alh)2 + b%h . (16)
A= 1+ agh arh 0
1 0 0

The first row of this recursion reads as

EY?,] = EN7+h((2a0 +b3) E[Y;7] + 2(a1 + bobr) B[YnY, 1]+ b7 E[Y,2 ,])

. 1.7
12 ( (a2 + a2) BlY,[? + 2a0a1 E[Y,Y_1] + a2 E[V2 ,)) (7

Summing up both sides over the first n recurrence elements results in

E[Y2,] = EYF]+ 3 (2a0 E[Y] + 2a1 E[Y;Yi—1] + b5 E[Y}'] + 2bobs E[YiYi—1] + b7 E[Y,]) h
k=0

+h E ( ((1(2) + b%) E[Ykz] + 2a9a; E[YkYk_l] + a% E[Ykz_l] ) h .
k=0
(1.8)

Assuming the equidistant lattice (fo — 7) + 7IN and considering the step functions > 7 o Yy, 111, 1..1)

equation (1.8) is equivalent to
E[Xn(tn+1)’] = B[Xn(to)’]

+2k2i:0( ao B[ X (tk)?] + a1 B[ X5 (tx) Xn(tk—1)] ) (trt1 — tr)

+ kZZ:ﬂ(b% E[X 5 (tk)2] + 2bob1 E[Xn () Xa(tr — 7)] + 52 E[Xn(tr — 7)2]) (trsr — tr)

+hk§0((a(2) + 03) E[Xp(tr—1)2] + 2a0a1 E[Xp (tx) Xn (tk—1)] + a?E[Xp (tr-1)?] ) (k1 — k) )
= E[X4(to)?]

+2 t:{H( aoB[X1(s)?] + a1 E[Xn(5) Xn (s — 7)] )ds

tnt1

—+ f (B2 E[Xh(8)?] + 2bob1 E[X1(8)Xh(s — 7)] + b3 E[X (s — 7)?] )ds

t'n.+1

+h tf (a2 + B3) E[X,(s — 7)2]) + 2apa1 E[Xp(s)Xn(s — 7)] + a2 E[Xx(s — 7)?]) ds .
' (1.9)



If we let h converge down to zero in (1.9) and take into account that then step-function X} converges to
the exact solution X of (1.3) in the Delfour-Mitter space M([—7,T],R) (see [6]) we expect X to satisfy:

E[X(t)?] = E[X(0)?*]+ ftZaO]E[X(s)z] +2a;E[X (s)X (s —17)] ) ds
0 (1.10)
+ [b3 E[X (5)%] + 2boby E[X (s — 7)2?] + b} E[X (s — 7)?] ) ds.
0
The second row of the recurrence relation (1.5) reads as
E[Y,41Y,] = E[Y,?] + h(ao E[Y,2] + a1 E[Y,,Y,, 1])) - (1.11)

Here summing up does not lead to the cancellation of summands on both sides. Furthermore, increasing
the dimension of the discrete problem by letting h tending to 0 leads to possibly infinite sums. However
we observe that (1.12) is equivalent to

1

(B [Ys1Ya] — BIY2)) = (a0 BIYZ] + a1 B[V, Yo 1)) (112)

n

or

H(EX (tn + D)X ()] —BX(t)X(t)]) = (aoB[X(tn)*] + aiB[X (tn) X (tn —7)]) . (1.13)

Revisiting the first row of the recurrence scheme (1.5) from that point of view we see that we can restate
it similarly as

# (E[X (tn + )] = E[X (t,)°]) = 2(a0E[X (t,)°] + a1 E[X (t,) X (£, — 7)])
+(8 E[X (tn)?] + 2bob1 E[X (t,) X (t, — 7)] + B2 B[ X (¢, — 7)%] (1.14)
+h(2a0a1)E[X (tn) X (tn — 7)] + A3 E[X (t, — 7)?] .

The equations (1.13) and (1.14) show, that for the numerical method ,Euler explicit® the recurrence
relation (1.5) of the second order moments of the generated numerical solution ¥ can be understood as a
system of equations involving particular difference quotients. Like (1.10) this leads to a conjecture for a
(time-continues) amplified system of the linear SDDE: a PDE with time-delay satisfied by the comoment
function of the exact solution X of (1.7).

In this paper we do not want to consider the relation between time-discretized and time-continuous
amplified systems. Instead our focus lies on the time-continuous amplified systems. In section 2 we derive
the PDE with time-delay which is satisfied by the comoment function K;° of the exact solution. We
also consider existence and uniqueness of solutions of this PDE and its smoothness properties. In section
3 we introduce a strong continuous semigroup associated to the (time-continuous) amplified system as
well as a characteristic equation in eigenvalues and eigenfunctions of its generator. In section 4 we derive
necessary criteria for the weak stationarity of solutions of scalar, linear SDDE. Section 5 provides some
additional knowledge which is used. Furthermore it contains the proofs of statements which are too long
or not instructive in their respective sections.

2 The amplified system embedding the second moments of a
linear SDDE

As usual we assume a probability space (2, F, P) which is provided with an increasing, right continuous
filtration I = {F;};c[0,00)- Let us consider the linear SDDE

dX(t) = })X(s + u) da(u) dt + fX(s + u) db(u) dW (s), t € (0,00), (2.1)
X = ) ' te [0
where
(W (t), Ft )ielo,o0) is a standard Brownian motion,
£eC([-7,0,R) is a Fo-measurable random variable,
a,b € ([-7,0],R) are functions of bounded variation, (2.2)
7 € [0,00) is the non-negative delay-time.



Here we are interested in the asymptotic behaviour of the second moments of solutions of (2.1). That
is we are interested in behaviour of the second moment’s function of X

ma¥:  [—7,00) — R

te[-ro0) — m¥(t)i=E[X®)?]. (2.3)
for t — oo. In the second subsection it turns out that the time derivative of mzX on [0,00) does not
depend on the values of ms and time only. Due to the memory in (2.1) it depends on the values of the
comoment function (of order 2) of X

K¥: [-7,00)2 — R 9.4
tr€lemo0) —  KX(t)=E[X(®)X(r)]. (2-4)
So instead of considering m3 we investigate the comoment function K3 and will see in a later
subsection that K5° satisfies a PDE with time delay. In the following this PDE is referred to as the
amplified system as it describes the dynamics of K5 and as m is ,embedded® into KX by m (t) =
KX (t,t). In a further subsection we describe the existence and uniqueness of solutions of the respective
PDE. In the last subsection we collect further properties of the comoment function K5X.
But before starting to consider m3 and KsX, in the next subsection we provide basic results on

existence and uniqueness of solutions of (2.1) and existence of its moments in a first subsection.

2.1 Existence and uniqueness of solutions of linear SDDE

There are some standard references about existence and uniqueness theorems. We present here basic
results from [6]. Recall, that (1.1) in fact is an integral equation

Xt = X(0) +fF(s,XS) ds+fG(s,Xs) dW (s), t €[0,00) , (2.5)
0 0

X@) = £&@) te[-7,0] .
with the stochastic It6-integral and satisfying (1.2).

DEFINITION 2.1
A solution of (1.1) and (2.5), respectively, is then a stochastic process (X, [—7, 00) ) which is adapted
to Flo,00) and satisfies (1.1).

Let us introduce the following spaces.

DEFINITION 2.2
Let t(),T € [—T, OO)7 ]Fto,T = {ft}tE[OVto,T]' Define:
(@) Let f € ([to,T] x Q,R) be adapted to Fy, 7.

T
Define ||f|lrez(ito,11m) = E[tflf(s)|2d8]
0
I fllaez,, ((to,71,R) o= E[ sup [f(s)[?]
s€[to,T]

(ii) M2([to,T),R) :={f € to,T) x Q| f adaptedtoFs, r and ||f||M2([t0,T],1R) <o},
(i11) M2, ([to, T],R) := { f € [to, T] x Q| f adaptedtoFs, 7 and || fl| a2, (10,11, R) < 0} -

sup

Then the following theorem provides conditions for the existence and uniqueness of solutions of (1.1).

Theorem 2.3
Let the initial function & be in C([—T,0],R), the parameter functions F, G satisfy:
(1) (Lipschitz condition)
VT € (0,00)HKT,n € (0700) such that V‘P:w € C([_T7 0]7R) with ||(p||C([f‘r,0],]R) \Y% ”¢||C([7T,0],]R)
andVt € [0,T]:
IF(t,9) = Ft,0)P VG 9) — Gl WP < Kr lle = DI _roym
(#3) (Growth condition)
VT € (0,00) K1 € (0,00) such that Vo, € C([-7,0],R), Vt € [0,T]:

F(t,0) PV IGHL ) P < Kr 1+ [9l2 0y om)

4



Then it holds:
(1) The SDDE (1.1) has a unique solution X .

(2) VT € (0,00): X € M*([-7,T],R) and X € M2, ([-7,T],R).
In the equation (2.1) the parameter functions F' and G are defined by:
0 0

Vi € C([-7, 0L R), t € [0,00): Ft,0) = [ o(w) da(w) and Glt,) = [ p(w) db(u) -

T T

As a, b are functions of bounded variation the conditions 2.3.(¢) and 2.3.(i¢) are satisfied.
Let K2, =2(|a]>V [b]*). Then Y¢,% € C([-7,0],R), t € [0, 00) it holds:

1 () — () da()? V| () — 9 db(wf? < 2 al? V IR, 0D o~ Yl oy -

-7

1 () da)2 V] o) ) < (142 al? v 02) (7, 0)) Bl oy -

Hence by 2.3.(1), 2.1 has a unique solution X. Due to 2.3.(2), any solution X as second moments and
comoments.

2.2 my, K5 and the amplified system

When investigating the time evolution of second moments of solutions X of (2.1) then it is natural to
ask whether m (t) = E[ X (¢)?] satisfies a kind of differential equation. Following this approach we have
a closer look at the difference quotient

Lim¥(t+n) -m¥@) =

A (E[X(t+h)?*-X()?]) (2.6)

S| =

where h € [0,00), t € (0,00) and try to determine its limit for A | 0. The main reason why the existence

of a limit of (2.6) for h can be expected is that X (¢ 4+ h)? — X (¢)? can be represented as a quadratic

polynomial of X (t) and of the state increments Ax (t,h) = X (t+ h) — X (¢). However, as X is a solution

of the SDDE (2.1) Ax (¢, h) can be represented as a sum of integrals resulting from the SDDE (2.6). More
precisely it holds:

L(E[X(t+h)® - X(H?])
= FE[X({t+h)+ X)) (X({E+h)—X(t))]
£

t+h 0 +h 0
= FE[(2X(t)+ [ [X(s+wu)da(u)ds+ [ [X(s+u)db(u)dW(s))
ten o th o
( { _fX(s + u)da(u) ds + { _fX(s + u)db(u) dW (s) ) ]
= +( 2EB[X(t) t;fh_jf)X(s + u)da(u) ds ] (2.7)
+ 2E[ X (t) tJfrh ﬁX(s + u)db(u) dW (s) ]
h oo t+h 0
+ E[ [ [X(s+u)da(u)ds [ [X(s+u)da(u)ds]
n 0 tn 0
+2E[ [ [X(s+wu)da(u)ds [ [X(s+u)db(u)dW (s)]
ten o " Tn o
+ E[ [ [X(s4+uwdb(u)dW(s) [ [X(s+u)db(u)dW(s)]).
t —7 t —7



In the following we consider each of the five summands of the last equation in (2.7) separately and
compute the respective limits for h | 0.

t+h 0 t+h 0
(i) +E[X(t) f_fX s + u)da(u) ds] = +IE[ tf JX (@)X (s + u)da(u) ds]
P x —[ fo X (s +u)]da(u) ds
113?01 +E[ X (t) tfh ?X(s + u)da(u) ds | = f]E[X X(t +u)] da(u), (2.8)
t —7 —T
t+h 0 0 t+h
(i) FE(X() [ JX(+ud@dVe)] = FEXE [ { X (s + u) dW (s) db(u) ]
- 1p [fX f X (s + u) dW (s) db(u) ]
e iﬁE[X f X (s + u) dW (s) ] db(u)
= %_f f X(s +u)dW(s) | Fi]]db(u)
0
Ité—iitegral %,‘rf db( )
= 0
t+h 0
lg‘rLr(} %]E[X(t) ‘[,fX($+u) db(u) dW(s)] = 0, (2.9)
t+h 0 t+h 0
(ii0) | + B[ [ [X(s+u)da(u)ds [ [X(s+u)da(u)ds] |
t thh i
Fu%mz %f f |E[sz+u ) da(u er—i—u)da( )] | dsdr
t+h " 0 N
pS kB X (s w) datu) P12 JX (54 w) da(u) P12 ds dr,
t+h 0 th o -
1’%\{%|%]E[ [ JX(s+u)da(u)ds [ [X(s+u)da(u)ds] |
< timd T T XG4+ dal) 12 B X+ ) dat) 2112 ds dr,
S 0, t t -7 -7 (210)
t+h 0 t+h 0
(iv) | B[ [ [X(s+u)da(u)ds [ [X(s+ u)db(u)dW(s)] |
b thoo 0 t+h
. | +E[ [ [ [X(s+wu) [ X(r+v)dW(r)db(v) da(u)ds] |
tho 0 t+h
Fu%im - tf_f_fE[X(s+u) { X (r+v)dW(r) ] db(v) da(u) ds |
h
LS RS VB0 XG40 aW ) ) | i) o) ds
s T SR 0 (TR 07 10 bl diaf) ds
t+h 0 o t+h 0
1}5{)1| +E[ { JX (s + u) da(u) ds tf_fX s+ u) db(u) dW (s)] |
< 1’551 Ht}h fo ;]E[X(s+u) 1/2 f E[ X (r +v)? ] dr)Y/? djb|(v) d|a|(u) ds,
< 0, (2.11)



t+h O t+h 0
() B[ [ [X(s+u)db(u)dW(s) [ [X(s+u)db(u)dW(s)]

o e o
Ité—i:tegTal % f E[ fX(S + ’LL) db(u)2 ] ds
t+h (; 0
P f [ [E[X(s+u)X(s +v) ] db(u) db(v) ] ds ,
t+h 0 T ko
Yim B[ f X (s +w) db(w) dW(s) [ [X(s+u) db(u) dWW(s)]
= fofolE[X (s +u)X (s +v) ] db(u) db(v) ] ds . (2.12)

The same considerations can be taken for the difference quotient

S (m (6= 1) = md (1)) = S (BLX(~ B = X()°]). (213)

where t € (0,00), h € [0,t) and we obtain:

LEMMA 2.4
Let X be a solution of (2.1), t € [0, 0).
Then it holds:

(1) hm F(E[X (t + h)?] — E[X(t)%]) =2 fO]E[X(t +u) X(t)] da(u) + E[ X (¢t + u) X (t + v) ] db(u) db(v),

(#i4) hm +(E[X (t + h)?] — B[X (t)? 2f1E[X t+ u) X (t)] da(u) +

-7 —

00
)
(i) tim 4 (BLX (¢ — 7] = BIX(57) :2f°E[X<t+u>X<t>]da<u) [ JELX(+u) X (4 v) ] db(w) db(v).
}_fOIE[X(t +u) X(t+v)] db(u) db(v).
Proof:
(i) Follows from (2.8) - (2.12).

(1) Deferred to the appendix.
(#97) Combine (¢) and (44). 0

The previous lemma shows, that the derivative of the function m at t € (0,00) does not depend
only on {E[X(r)?] },et—r,yy (m3 on [t — 7,]) but as well on all comoments {E[ X () X (r) ]}, eft—r.g
r € [t—7,t] (on K3X). So in order to characterize m% one necessarily has to consider K.

REMARK 2.5

(1) This result is natural. The time evolution of second moments of sequences { X, }nc_k(n)+N, where
k(h) = 7/h € N represented the length of memory and h € (0,00) a step width, generated by a
certain class of numerical schemes (see [4]) can be described exactly by the recurrence relation (1.5).
This recurrence relation is a recurrence relation which does not include only { E[ Xy, ] }ne—k(n)4+N-
Instead it is a recurrence relation on the vector of all comoments { E[ X, ; X;, ;] }; j=o,....k(n)- SO
the previous lemma generalizes this result to the time-continuous case.

(#4) In the introductory section it was observed that for the numerical scheme ,Euler explicit“ the
linear recurrence relation can be restated as a representation of difference quotients (E[ X2 ;] —
E[X2])/h and (E[Xpt1 Xpn—r] — E[ X, Xp—r])/h, v € {0,...,k(h)}, in terms of a function of
{E[Xn—r }r=o0,....k(h)-

Hence following the observations of remark 2.5.(ii) we consider now in addition to the previous difference

quotients in m or equivalently of K5 in direction (1,1) the difference quotients

(K3 (t+h,r) = K3 (t,r)) = %(E[X(Hh)X(T‘)]—]E[X(t)X(T)]) (2.14)

S| =

where t € [0,00), r € [-7,1), h € (—t,00). In order to show the existence of the limit of (2.14) for h | 0
we proceed as before and represent Ax (¢, h) with integrals coming from the SDDE (2.1). It is easy to see
that for h with |h| < |t — 7| it holds:



#(E[(X(E+h)X(r)]-E[X(#) X(r)])

t+h 0 t+h 0

= RELC [ X5+ da(u) ds + {_fo s +u) db(u) AW (s) ) X (r) ]
L=k ttfhjm[x(s+u)x<r)]da( ds+ TfIE[X f X (s +u) dW (s) ] db(u) )
= 1 t;fh TfoE[X(s +u)X(r) ] da(u) ds +_Tf]E[X r)E[ tf X (s +u)dW(s) | F¢]]db(u))
T t:th_jE[ X(s +u)X (r)] da(u) ds +_le[ X(r)0] db(u) )
th 0

%(tf JE[ X (s +u)X(r)] da(u) ds,

%h(m[(x(wh)— () fIE (t +u)X(r) ] da(u). (2.15)

The same procedure can be applied to show the existence and to determine the limit of the difference

quotient
1

—h
where t € (0,00), 7 € [-7,t), h € [0,t — r). This allows us to conclude:

(K5 (t—h) — K5 (t)) =_lh( E[ (X (¢ —h) - X(#)X(r) ] (2.16)

LEMMA 2.6
Let X be a solution of (2.1).
Then it holds:

(@) hm #(E[X(t+h) X(r)] - E[X(t) X fIE (t+u)X(r)]da(u), te]0,00),r€[-T,t),
) hm #(E[X(t—h) X(r)] - E[X(t) X flE (t+u)X(r)]da(u), te(0,00),r€[-T,t),
(i41) hin F(EB[X(t+h) X(r)] - E[X(t) X flE (t+u)X(r)]da(u), te(0,00),r€[-T,t).
Proof:

(i) Follows from (2.15).
(7) Deferred to the appendix.
(#4i) Follows from (i) and (¢4).
O
The properties of comoments of E[ X (t) X (s)], t,s € [—7,00), which have been presented in lemma
2.4 and lemma, 2.6 can be extended by the observation that

th,t2 € [—T,OO) : E[X(tl)X(t2)] = E[X(tz)X(tl)] R

Vit €[-r0] s E[X(t) X(t2)] = B[€(t2) €t2)] - 10
So collecting the results of lemma 2.4, lemma 2.17 and (2.17) we see that K< satisfies the system
LK (2, 7)) _2fK (t + u,t) da(u) + ; fK t +u,t+v) db(u) db(v), t € (0,00) ,
LK (2, 7)),— 0+_2fKut ) da(u +f;K(u,v (u) db(v),
LK (2,7)) :_fK (t +u,7) da(u), t € (0,00),r € [-T7,1) , (2.18)

AR emor = [K () da(w)

K(t1,t2) = K(t2,t1), t1,ta € [-T,00) ,

K(tl,tQ) :k(tl,tg), tl;t2 € [_T;O]



with the initial function k(tl,tz) = E[X(tl),X(tz) ], t1,12 € [—7', 0]

DEFINITION 2.7

The system (2.18) of equations is called amplified system.

A function K € [—T,00)2, R) satisfying (2.18) is called solution of (2.18).

A function k = K|[_, o2 € ([-7,0]?,R) is called initial function (of the amplified system).

2.3 Solutions of the amplified system

In the previous subsection we considered the comoment function K5¢ of a solution X of (2.1) and
observed that it satisfies the amplified system (2.18). In this subsection we want to consider amplified
systems (2.18) and collect some properties their solutions. First of all we see that the solutions of (2.18)
are symmetric functions. This makes it sometimes convenient to consider solutions of (2.18) on only
selected subsets of R?. That is why we introduce the set K? - (c) along with further helpful sets.

DEFINITION 2.8

Let c € R.
Define A(R?) = {(t)eR?*|teR} ,
Ki(c) = {(ti,t2) €lc,00)?}
KiAle) = Ki()\AR?),
K3 o(¢) = {(t,t2) €[c,00)?[t1 >t}
() = {(t1,t2) €[c,00)? |t1 > 12} .

In addition to the symmetry, we see that solutions of the amplified system (2.18) have a special structure.
This special structure consists in that the dynamics of solutions of (2.18) on ]Ki(—r) can be decomposed
into a dynamics along the ray into direction (1,1) and starting in (—7, —7) and a dynamics along rays
into directions (1,0) and starting points on the diagonal A(R?)NIK3 (—7). In order to make this rigorous
we introduce the functions:

DEFINITION 2.9

ys(t) = K(t7 S)a s € [_7—7 OO), te [57 OO), (2 19)
2(t) = K(t,t), te[-7,00). '
and reformulate the amplified system (2.18) as an integral equation, that is for all (¢,s) € K3 (—7):
tN(s+T) s—r t 0
ys()=2(s)+ [ [ yrgu(s)da(u)dr+ [ [ ys(r+u)da(u) dr, s € (0,00)
s -7 8 —1V(s—r
t —TV-—r (t )0
ys®) = [ Yerons((r+u)Vs)da(u)dr+ [ [ ys(r+u)da(u)dr, s € [-7,0],t € [0,00)
0 -7 0 —7V—r
ys(t) = k(t, s), t € [-7,0],
t 0 t 00
2(t) =2(8) +2f [yrtu(r) da(u) dr + [ f J Yrt(uro) (r + (w V v)) db(u) db(v), s € (0,00),
z(t) =k(t,t), t € [-7,0].
(2.20)
This shows that for all s € [—7,00) the function y, satisfies the deterministic DDE
0
#'(t) = [a(t+u)da(u), t€[sV0,00),
2(t), s € (0,00), t=s, (2.21)
z(t) = Yins(t V 8), s€ (0,00), t€[s—T1,5),
k(t,s) s € [-1,0], t € [-7,0].

In particular we observe that for all s € [—7, 00) the functions y, solve a linear DDE with the same linear
parameter function a but with specific start functions. For s € (0,00) the start function of y is ys on



the interval [s — 7, s] and is a function which takes the values y,(s), r € [s — 7, 5) and z(s) at r = s. For
s € [—7,0] however, the start function of y, is ys on the interval [—7, 7], where it is completely determined
by the values of the initial function k.

Furthermore, the function z satisfies the equation

J Yeru(t) daf )+jjyt+(w> (t+ (uVv)) db(u) db(v), ¢ €[0,00), (2.22)

2(0) = k(0,0).

Next we consider the question of existence and uniqueness of solutions of the amplified system. In there
previous subsection we have seen, that if the functions a,b € ([—7,0], R) are suitable parameter functions
and if k = E[£(.) £(-)] € ([~T,0]? is a suitable initial function & of (2.1) that then the comoment function
of the corresponding solution X of (2.1) provides a solution of (2.20). Here we want to find conditions on
a, b, k which do not rely on an SDDE and which allow the system (2.20) to have a unique solution.

We start with a simple but helpful lemma.

LEMMA 2.10
Let Ki, K» be two solutions of the amplified system (2.20).

Then it holds:
(Z) VA, A2 € R: A\ K7 + A K5 is a solution of (220)

(74) Let A := K5 — K;. Then A satisfies the system:
Vt € 0,00):
t 00
AK(t,t) = AK(0,0) +2f fAK u+r,r)da(u)dr+ [ [ [AK(u+r,v+r)db(u)db(v)dr,
-7 0—7—7

Vs € [T, ),te(sVO,oo)
AK(t,s) = AK(sV0,s) + f fAKu+r,)da(u)dr,

sVO—7
Proof: (2.23)
(z) Obvious.
(73) (2.23) is the integral form of (2.1). 0

2.10.(47) indicates that a growth bound for the difference of two solutions of (2.20) in terms of the difference
of their initial functions can be gained by the application of a Gronwall-type lemma. However, as A is
two dimensional, this requires a suitable choice of a one-dimensional ,error“-function which quantifies
the difference A and to which the Gronwall lemma can be applied. The following lemma provides the
result.

DEFINITION 2.11
Let AK solution of (2 20). Deﬁne

(i) Clab1) = 2fd|a| )+ f fd|b| ) dJb|(v) < oo,
(1) Ksup([—T, ]2, ) ={ke ([—T, 0%, R) | l|kllc(—r,02,m) < 00}, the class of bounded initial functions,

(448) Osup(t) :=sup{ | AK(u,v) || u,v € [-7,1] }, an error function.

LEMMA 2.12
Let K;, K» be solutions of the amplified system (2.18) with respective initial functions k1, ko,

ko — ki1 € /Csup([—T, 0]2, ]R,)
Then it holds:
Vt,s € [-T,00) : |Ka(t,5) — K1(t,s)| < |lks — ki lle(i—r,02,r) €€ (@57 (EVaVO)

Proof:

10



(1) By lemma 2.10.(4) it follows for all ¢t € (0, 00):
t 00
|AK (t,1)] < 05up(0 +2f fdlal Gsup(r) dr +g J [ dlbl(w) dJb|(v) Gsup(r) dr

< 85up(0) + fC a,b,7)8(r) dr .
Hence with lemma 2. 10 (44) it also follows for all t > sV 0 > —7:
t 0
|AK(t,s)| < |AK(sV0,8)|+ [ [dla|(u)dsup((r+u)VsVO0))dr

sVO-T
sVO0

it 0
< Gsup(0) + [ Cla,b,7) Ssup(r) dr + [ [ dla|(w) dsup((r +u) VsV O)dr
0 sVO-1
sVv0

< dsup(0) + of C(a,b,T) dsup(r) dr + j fd|a|(u) Osup () dr

sVO-T
< Gsup(0) + ftC(a, b, T) Osup(r) dr.
(3) From (2) we can concludz that for all ¢ € [0, oo)
sup{ | AK(t,7) || r € [-7,t] } < dsup(0 +fC’ a,b,7) Gup(r) dr
(4) Let t € [0,00), s € [-T,t). From (3) we can conclude

sup{ | AK(5,7) | | r€[-r,5]} < Guupl0) + sofocm, b,7) Buup(r) dr

IA

¢
< Geup(0) + [Cla,b,7) Ssup(r) dr
0
(5) Let t € [0,00). From (3), (4) we obtain:
i
Isup(t) < Osup(0) + [C(a,b,T) dsup(r) dr
0

The lemma of Gronwall shows then that Vt € [0, 00) : Jsyp(t) < Jsup(0) eC(@BTIE,
But then it holds for all ¢ > (s V0) > —7: |AK(t,8)| < gup(0) eC(@:07)E,
As for all t,5 € [—7,0] it holds: [AK (t,8)| < 054p(0), as AK is symmetric and as K| = ki1,
K5 |[—r,0) = k2, the proof is complete.

O

A reconsideration of (1) in the above proof reveals that the supremum in the factor || ks — k1 ||lc((-r02,R)
is the result of the estimations:

tAT —1 —71

IAK(0,0)+ [ [ [ AK(u+r,v+r)db(u)db(v)dr|

0 —7—7
< |AK(0,0)| + f f f |AK (u + r,v + )| d|b|(uw) d|b|(v) dr
SAT =1

|AK(s,0) + [ fAKu—}—rs)da( )dr|,

0
SAT —T

< |AK(s,0)| + { J |AK (u +7,35)|d|a|(u) dr, s € [-7,0].

Hence the result of lemma 2.12 can be improved by a more careful choice of the error function and a
refined analysis.

DEFINITION 2.13
Let AK solution of (2.20). Define:

11



(i) Vke([-7,0%R) :
k o2 = sup k(t,s
Il o -r002,m) tvse[_m]’ws:o{l (t;s)) |}

+2 sup {[ [ k(r+us)|dal(w)dr}
sE[—Eg] _2—7’
+ [ [ [1k(r+u,r+0)]|dDb|(u)dbd|(v)dr} .
0 —7 —7
(i1)  Kap([-7,0]%R)
= ke (=0 R) | VO>t>s>—1 k(t,s) = k(s,t),
VO>s> -1 k(,s) € LY[-7,0], R, dla|),
k€ LY([-7,0]%, R, db| @ d|b]),

&l o —r02m) < o0},

Gy = [ SPUBK® D | (19 €m0\ [7,01 ), te (0,00),
| TAK I, ,(—r02m) t=0.

LEMMA 2.14
Let K, K> be solutions of system (2.18) with the initial function k; and ko, respectively,

ko — ko € ICa’b( [—T, 0]2,IR).
Then it holds:
Vi,s€[-1,00): | Ka(t,s) — Ki(t,s) | <[ k2 — k1 ||, ,(—r02,R) eCasb,)(tvsvo)

Proof:
(1) For the following estimations we use the set
A, ={(t,u) eR?|te[-T,T,u€[-tA—-T,—1]} .
A, describes tuples (¢, u) for which ¢ +u € [—7,0].
Furthermore, for denotational convenience define
SP = sup  {[AK(t,s) |},
t,s€[—7,0],tVs=0

Sti= sup {J [|k(r+us)|dlal(u)dr}
s€[—7,0] 0—7
SZ:=[ [ [|k(r+u,r+v)]|db|(u)db|(v)dr .

0 —7 —71
(2) For all t € (0,00) it holds:
AK(0,0) < S,

12



| AK(r + u,7)| d|a|(uw) dr

o

0
JAK(r +u,r)da(u) dr| <

< | 6(r) d|a|(u) dr < fd|a|(u) fté(r) dr ,
—T 0

O O
e

AK(r+ u,r + v) db(u) db(v) dr |

0
f | AK (r 4+ u,7 + v) | d|b|(u) d|b|(v) dr

IN
e o%ﬁ_“‘%o
*\%O

t 0 0
+f [ [ a(r) d|b|(u) d|b|(v) dr
0— 'r T

S2 4+ (f dibl(w) ) [6(r) dr
-7 0
By 2.10.(i%) then it follows:

IA

t t
AK (...t | < 82+ 82+ Cla,b,7) [50) dr < I AK Il ooy + Clarb7) [6(r) dr .
0 0
(3) Let 0o > s > —7. Then for all t € (0V s,00) it holds:
t 0
|AK(t,s)| < |AKOVs,s)|+| [ [AK(r+u,s)da(u)dr|
oVs—7
< (IAK I, ,=r02m) + Clab,T gé ) dr + f f5 ) dla|(u) dr) 10,00)(s)

H(SU+ [ [ 8 dial(w) (1= La, ((6w) dr + S1) 1i_p (s
0—7
< TAK ik, yq=roem) Lo, oo)( s) + (SO +57) 1[—T70](5)
0oVs

+ C(a,b,T) f& dr+fd|a| f&

0\/3
< IAK I, ,(-rop,m) + Cla,b,7) f&(r) dr
0
(4) Let t € (0,00). Due to (2), (3),V§>§> —7,t>5>0,t> s> —r it holds:
|AK(5,8)| < [|AK [ o2,r) + C(a;b,7) g5(7‘) dr

t
| AK HICa,z,([—T,OP,IR) + C(a,b,7) f(S(T’) dr,

d,b([7T7

IA

| AK(t,1) |

IA

” AK ||ICG,;,([—T,O]2,]R) + C(a7 ba T) 6(T) dr )

|AK(s)| < 1 AK ., (roem + Clasb,7) [8(r) dr .

ot L O O

Hence, using the definition of §(0), for all ¢ € [0, 00) it holds:
o(t) = sup{|AK(5,3)| | (5,3) € [-T,00)*\ [—T, 0> }
t
< NAK g, -ropr) T Cla,b,7 f&

Applying the lemma of Gronwall to § on [0, 00) we get the desired result. O

This growth bound for the difference of solutions is used now to show a criterion for uniqueness of
solutions.

COROLLARY 2.15

Let K, K> be two solutions of the amplified system (2.18) with the same initial function k € K, 5([—T,0]?,

Then it holds:
K = K.

Proof:
Vt,s € 1K3_(—'r) \ [-7,0]? it holds:

|Ks(t,s) — Ki(t,8)| < ||k —Ekllx,,(—ro2r) €@ V0 = 0.
As Ky |[—r,0) = k = K3 |[_7,0], the proof is complete.

13
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Furthermore we obtain trivially:

COROLLARY 2.16
Let K be a solution of the amplified system (2.20) with the initial function k& = 0.
Then it holds:

K=0.

Proof:
Ko =0 is a solution of the amplified system with the zero initial function.
Corollary 2.15 shows that K| is the unique solution.

Combining lemma 2.12 and corollary 2.16 we obtain a growth bound for solutions of (2.18)

COROLLARY 2.17
Let K be a solution of the amplified system (2.18) with the initial function k € Ko ([—7,0]%, R).

Then it holds:
Vt,s € [-7,00) : |K(t,8)] < |lkllk, ,(—r0p2,m) €00 EVVO)

Proof:
Let Ky = K, K1 = 0 and apply lemma 2.12 .

O
Finally we consider the existence of solutions of the amplified system. As a ,,tool“ we use the well-known
method of Picard-iterates.

DEFINITION 2.18
V(t,s) € [-1,00)%
Ko(t,s) == E(OAt,0N8)

Vn € IN define:
0>t s> -7 K1 (t,8) = k(t,s) ,
t 0
t>0: Knpi(t,t) = K,(0,0) + 2 f f Kn(r +u,r) da(u) dr
% 0 o
+ [ [ [ Ku(r+u,r+v)db(u)db(v)dr,

0—7—7

3

0
§>-1,t>0Vs: Kppi(t,s) = K,(0Vs,s) + [ [K,(r+u,s)da(u)dr.
0Vs —7
The sequence { K, },cn is called Picard-iterations and the K,,, n € IN, are called the Picard-iterates.

Theorem 2.19
Let K be a solution of (2.18) with the initial function k € K, ([—T,0]?,R).

Then it holds:
(i) VT €[0,00): {Kn}new forms a Cauchy-sequence on [—7,T)* with norm || |le(—r,1,R) -
(¢4) The system (2.18) has a solution K.

abr n+1 abr I
(iid) Vt,5 € [-7,T]: || K(t,5) = Kn(t,5)| < [kl ,(_rop.m) 2 (@D - EOW) _

Proof: (of theorem 2.22)
Deferred to section 5.5 .

COROLLARY 2.20
Let k € Kyup.

Then it holds:

(@) &l o (=r02,r) < (L+7C(a,b,7)) [klle-r02,Rr) >
(ii) k € Kop([-7,0)%,R) .

14



Proof:

IA

0 0
lklle(=r.02,r) + 27 [d|a](w)||kllc((=r02,r) + T ( [db](w) )?[|klle(=r02.R)

(1+7C(a,b,7)) |Ellc(-r02,R) -
(i4)  As ||kllc(—r0y2,r) < o0 and due to (3), [|k||x, ,([-r02,R) < 00

@ [Ellcao((-r02m)

IA

O
We have characterized conditions for the unique existence of solutions of the system (2.18). We also
know that comoment functions K3 of solutions X of linear SDDE (2.1) are solutions of the system
(2.18). This raises the question whether all solutions K of the system (2.18) are a comoment function
KX of a linear SDDE (2.1). This cannot be confirmed.

LEMMA 2.21

Let k€ C([-7,0]%,R) with k(t,t) < 0 for all t € [-7,0] .

Then it holds:
The solution K of system (2.18) with initial function k is not a comoment function of a solution
of the linear SDDE (2.1).

Proof:
k is negative on [—7, 0] N A(R?) whereas comoment functions are non-negative on [—7,0]? N A(R?).
O

2.4 Some properties of comoment functions satisfying the amplified system

In this subsection we consider some properties of comoment functions satisfying the amplified system.
We start with the continuity.

Theorem 2.22
Let K be a solution of (2.18) with the initial function k € C([-7,0]?,R).
Then it holds:

The system (2.18) has a continuous solution.

Proof:

15



(1) As in theorem 2.14 we consider the Picard-iterates introduced in (2.18).
Then V(t,s) € [-7,00)? it holds:
Ovs 0 Ovs 0 O
Knqi(t,s) = Ko(OAt,0A8)+ 2 [ [Ku(r+u,r)da(u)dr+ [ [ [Kn(r+u,r+v)db(u)db(v) dr
0 —7 0 —7—7
ovE 0

+ [ [JEKn(r+u,s)da(u)dr.
OVs —71
(2) By the assumption on k, Ky is continuous on [—7, 00)?.
(3) Fix n € IN and assume, that K, is continuous. Let ¢ > s > —, t > 5> —7 w.o.l.g.. Then it holds:
Kn+1 (tu 3) - Kn+1 (ta E) _
= Kn(0At,0ASs)— K,(0OAL,0A3)

ovs 0 ovs 0
2( [ [Kn(r+u,r)da(u)dr— [ [Kp(r+u,r)da(u)dr)
ovs 0 0 o 0vs 0 0
+ [ [ [Kn(r+u,r+0v)db(u)db(v)dr— [ [ [Kp(r+u,r+v)db(u)db(v) dr
0(1/15 7;) T 0 T—T
+ [ JEKn(r+u,0Vs)— Ky(r+u,0V §)da(u) dr
e o ovte 0
+ [ JEKn(r+u,0V3)da(u)dr— [ [Kp(r+u,0V3)da(u)dr
0vVs—1 OV(sAs)—T
ovt 0 ovi 0
+ [ [Ku(r+u,0Vs)da(u)dr— [  [K,(r+u,0Vs)da(u)dr
OV(sAs)—T OV(sA5)—T
ovi 0 ovi 0
+ [ [K.(r+u,0V3)da(u)dr— [ [Ku(r+u,0V3)da(u)dr
OV(sA5)—T OVs—71

Hence: B
|Kn+1(t73) - Kn+1(ta§)| B
< |K,(0OAt,0AS8) — K,(OAE,0A3)|

+C(a,b,7) sup {|Kp(r+u,7)|}+ sup {| Kn(u,s) — K,(u,3) |}
r€[0V(sAS),0V(sV5)],u€[—T,0] u€[0Vs—7,0Vt]
+2 sup {| Kn(r +u,5) |} + sup {| Kn(r +u,5) |}
r€[0V(sA5),0V(sV5)],ue[—T,0] re[0V(0VE)A(0VE)),0V(EVE)],ue[—T,0]
e

as K, is continuous.
But then K, i is also continuous. By complete induction one obtains that Vn € IN : K, is
continuous.

(4) As Ikl ,q—ro2m) < Cla,b,7) [Iklle_r0p2,m) < 00, we know from lemma 2.22, that for all T €
[0,00) { K, }nen converges in the C([—7,0]%,R) to a limit K on each compact set [—7,T]. In (11)
of the proof of lemma 2.22 we derived, that for a all T € [0, ), t,s € [-7,T)> —[-7,0]%, n,m € IN:

n+m+1
| Kn+1(t>3) - Kn—i—m—i—l(tas) | S E | AKk(ta 3) |
k=n-+1

IN

n+1 abor k
||k||l€a,b([_T70]2,R) 2 (ec(a’b’T)T - kX_:OW) .

Hence for all T € [0,00) { K, }nen is a Cauchy-sequence in C([—T,0]%, R). As C([-7,0)%,R) is
complete, K is continuous. 0

In the previous theorem the continuity of a solution K of the amplified system (2.18) could be proved by
relying merely on the properties of the initial functions and on the amplified system. For more general
than continuous initial functions this is not so easy to achieve anymore. The reason is that the amplified
system (2.18) is a system of Gateaux-derivatives and not of Frechet-derivatives. Hence it provides
information about the solutions K on rays. However, local properties like continuity of K depend not
only on values of K on rays but on full-dimensional environments.

As we here are rather interested in comoment functions K3X of solutions of SDDE (2.1) than in general
solutions of the amplified system (2.18), we limit in the following to these functions. The comoment
functions K3 however have additional properties which are a consequence of the SDDE the process X
satisfies.
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Theorem 2.23
Let Viqi,ts € ]K2+(0) : A(tl,tz) = {h = (hl,hz) | (t1 + hi,to + h2) S ]K2+(O) },

X be a solution of (2.1) with comoment function K5,
VT €[0,00): sup {]E[|X( )2} < Cr < oo.
Then it holds:

' K2 (0) : li LK _ KX -
(i) Vy€(0,3),Vt1,t2 € K3(0): heA(tl,gr)l,|h|2»—>0”h”2| 5 (t1 + hi,ta + hy) 5 (t1,t2)] =0,
0
ii) Fory =1 Vit t, € K2(0): lim KX (t1 + hi,ty + hy) — KX(t1,t2)| < [d|b|(u) C
(“) or -y PR 1,02 € +( ) hEA(t ta), |h|2'—>0||h,||2 | 2 ( 1+ 1,02 + 2) 2 ( 1, 2)' __Tf | |(u) T,

(#i6) K5 is continuous on K2 (0).

Proof: (of theorem 2.23)
(1) Let ty,t2 € [0,00), h = (hy,h2) € A(t1,t2). For any t,h € R define M(t,h) := (¢t + h) V¢ and
m(t,h) := (t + h) A t. Then it holds:

| K55 (t1 + h,t2 + ho) — KX (t1,12) |

<LK (t + hasta + ho) = K5 (b + hay o) | + | K5 (b1, 82 + ho) — K3 (t,12) |
< |EI(X(t+h) = X(8)) X (82 + he) ]| + [ E[X (1) (X (2 + h2) — X (22) )] |
M(tl,hl) 0 M(tl,h1) 0
< |E[ [ [X@w+r)da(u)drX(t2+ho)]|+|E[ [ [X(u+7r)db(u)dW(r)X(t2 + ha)]|
m(tl,hﬁ"l’ m(tl,hla'T
M(tz,hz) 0 M(tz,hQ) 0
+ E[X(t1) [ [X@w+r)da(u)dr]|+|E[X(#) [ [X(u+r)db(u)dW(r)]]
m(ta,ho)yT m(ta,hoyT
M(tl,h1) 0 0 M(tl,h1)
< | [ JEX(u+4r)X(ts+ho)]da(u)dr|+|[El [ X(u+7r)dW(r)X(ta + he)]db(u)]
Fubini  p(ty by -7 -7 m(t1 h1)
M(t2,h2) 0 0 M (t2,h2)
+ [ [JE[X(t)X@u+r)]da(u)dr|+|[E[X(t) [ Xu+7r)dW(r)]db(u)|
m(ta,ho)-T -7 m(ta,h2)
M(tl,hl) 0 0 M(tl,hl)
< R () X+ ho) el dr o+ B[ X () dWG) Xt + ho) )bl ()
ensen m(t1,h1)—7’ -7 m(t1,h1)
M(tz,hz) 0 0 M(tz,hz)
+ [ JE[Xt)X(u+r)|]da|(u)dr + [E[|X(t) [ X(u+7r)dW(r)|]db|(u)
m(tg,hz)*‘r -7 m(tg,hz)
M(tl,hl) 0 . -
< S JE[IX(u+r)P2E[|X (t2 + ho)[*]2 d|a|(u) dr
Hoélder m(t1,h1)—T
0 M(t1,h1) . )
+ [ O [ E[X(u+r)]dr)z E[|X(t2 + ho)|* ]z d|b|(u)
-7 m(t1,h1)
M(tz,hg) ()1 ' 1 1
+ [ JE[IX@)P]: E[X(u+7)]?] dla|(u)dr
m(tg,hz)_"'
0 . M (t2,h2) .
+  JE[X ()] ( (f )E[|X(U+7‘)| Jdr)z d|b|(u)
-7 m(ta,ho
0 M(tl hl) 0 M(tl,hl) . s
s (J (f )E[|X(U+7‘)| 1% dr dla|(w) + [ ( (f I)E[|X(u+7‘)|2]d7‘)5dlbl(u))EHX(tz+h2)|2]5
ubini —7 (¢ by =7 m(t1,h1
0 M(ta,ho) ) M (ta,h2) . .
+(f (f : E[X (u+1)[*]2 dr d|a|(u) + ( (f : E[[X (u+7)[]dr )z dbl(u) ) E[|X (t:)[*]2
—7 m(te,hs m(tz,ha
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(2) For v € (0,3), t; € [0,00), i = 1,2, it holds:
) M(ti,hi) ) .
lim E[| X (u+r)?]dr)z < C? ,

vera B o ¥ S BIX @ nFldE < G

[N

o M(t,’,hi) - 1
lim Lo [ E[Xu+r)Edr < m  |h]?CZ =0,
hEA(t1,t2), =0 [hi |2y hEA(t1,t2),h—0 i
[Ai
s € 0,1] -
(3) Hence it follows (i = 1,2)
1 ) M(ti,hi) ) .
f 0 5)- 1 ]E X d 2
orye @) ”h”g(m(tif,m [1X (u+7)2]dr)2
= lim  |hypy el 1 (M(Thi)E[|X(u+r)|2]dr)% =0
 hEA(tnta)he0 [T R ]
) o X M(ti,hi) ) X
for v = =: lim El|X(u+r dr )3
v=1 a0 T Bl )
1_ |h‘% 1 M(thhi)]E X 2 d 1 C%
= im i u+r r)z < )
hEA(tr,t2),hm0 a7 Ihil2 (mu,-f,h,-) wenFlar)= < o
L ) M(ti,h,’) s
f 0,z]: li E[|X 21z d
orye @Ozl T m(tif’hi) [1X (u + )2 ] dr
1 1 [h:]” 1 M(ti,hi)E X 211
= i N i z 2 = .
hE (i1 1), k0 L2 N \hilm(t{hi) [1X(u+r)*]2dr 0
This proves the theorem. O

In the previous theorem we have proven the continuity of a comoment function KX of a solution X of
(2.1). We have proven even more: a Holder-continuity. The Hélder-continuity indicates that the comoment
functions K5 have a certain smoothness. So next we want to investigate the Frechet-differentiability of
comoment functions K.

In a first step we investigate whether the trajectories of the SDDE posses already a smoothness property.
The motivation is that for a deterministic linear DDE

() = /x(t—l—u)da(u), t€[0,00) (2.24)

-7

it can be shown that the trajectories become increasingly smoother with the time evolving ([2]). However,
for solutions X of (2.1) this is not true anymore as the following example of the scalar geometric Brownian
Motion shows:
dX(t) = aX(t)dt+ pX(t)dW(t), t € [0, 00) (2.25)
X0) = €¢€eR

It is a well-known fact that the trajectories of solutions X () = ¢ e(a_g)f*ﬁwm are almost sure nowhere
differentiable on [0, c0).

On the other hand it is known that the expectations of solutions X of (2.1) satisfy the DDE (2.27). Hence
the expectations of the trajectories E[ X (¢)] possess the smoothing property on [0, 00). So it is reasonable
to expect more regularity of comoment functions KX than just continuity.

The following theorem confirms this expectation except a minor limitation. It can be shown that the
comoment function K3 is Frechet-differentiable on K3 A(7)-

An essential part of the proof consists in using the linearity of expectations, integrals and of showing that
occurring expectations satisfy inhomogeneous affine DDE related to (2.27). The next auxiliary lemma
illustrates this. But first we introduce:

DEFINITION 2.24 0o .
Let zy be the solution of the scalar DDE () = [ z(t+u)da(u), t>0, (2.26)

Then z is called the fundamental solution of (2.26) .

18



LEMMA 2.25
Let s € [tg,00), v € [-7,0], h € Ry,

Y a F;-measurable random variable,

G(t;s,h,v) = E[X(t) thX(r +v)dW(r)Y], t € [to, 00),
G(t;s,h) = E[X(@#) s}rh foX(r +v) db(u) dW (r) Y], t € [tg,00),

Then it holds for all ¢ € [tg, 00):

G(t;s,h,v) = t/\(}+h)$0(t -7r) fo E[X(r+u) X(r+v)Y ]db(u)dr ,
— t/\(z+h) _To 0
G(t;s,h) = Ik mg(t—r)_f_f E[ X (r +u) X(r +v)Y ]db(u) db(v) dr .

Proof:
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(1) For all t € (s,00) it holds:
G(t;s, h,v) = E[ X (t)

hX(F—I—v) dW (7)Y ]

~—+

" X(F+v) AW Y]

%-T—m

E[ X (s)

CE[[ [X(r+wdaw)dr [ X(F+0) dWE Y]
X(+ u) db(w) dW(F) | X(F +v) dW(F) Y]

s

+

"’%«* “ie e
N

+ flE[X (r+u) S}‘h X (7 +v) dW (7)Y | da(u) dr
tT/\( +h)

+ J E[X(r+uw) X(r+v)Y]drdb(u)

T—o “%«.

0 tA(s+h)
G(r+u;s,h,v)da(u)dr+ [ [ E[X(r+u)X(r+0v)Y ]drdb(u)

-7 8

G(r + u; s,v, h) da(u) dr + ft fOIE)[X(r +u) X(r +v) Y ] db(u) 15 514 (r) dr .

§—T

Ité—integral

Fubini

I
I

\‘%O “SO

For all ¢ € [to, s] it holds:
G(t; s, h,v)

s+h
E[ X (t) f X(F+0)dW(F) Y]

-  E[E| thX(f+v)dW(F)|fs]X(t)Y]

Ito—integral

(2) From (1) follows that G(- + s;s, h,v) satisfies the affine DDE:
0

'(f) = _;f z(t + u) da(u) + g(t), t>0, (2.27)
z(#) = 0, t<o0,
where o
g) = [E[X({E+s+u) X({E+s+0v)Y ]dbu) Ly ), t>0 .

-7
From theory of affine DDE it is known ([2], pp.174), that a solution z of (2.27) can be represented
by a variation-of-parameters formula. Using the initial function 0 we conclude:
i
z(l) = [ wo(t —7)g(F)dr t>0. (2.28)
0
xo is the so-called fundamental solution of (2.27) and is defined above.
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(3) From (2) it follows for all t € (s,00):
G(t; s, h,v) f:z:o t—r) f E[X(r+u) X(r+v) Y] db(u) 1f; s4n ) dr

—T

= f:cg (t—r) f E[ X (r+u) X(r+v) Y] db(u) 1f s4n(t) dr (2.29)
: M(fwwo (t=7) [EX( +u) X(r+v) Y] db(u) dr

Hence it follows for all ¢ € (s,00):

0

G(t;s,h) P J G(t; s, h,v) db(v)
To tA(s+h) 0
= f f zo(t—7r) [E[X(r+u) X(r+v)Y ]| db(u) dr db(v) (2.30)
t/\(s+h) 0 7(;
o J ozt —r) [ [E[X(r+u) X(r+v)Y ]db(u)bdbv) dr .
s —T—T D
Now we are prepared to prove:
Theorem 2.26
The comoment function K5¢ of a solution X of (??) is Frechet-differentiable on ]K (7).
The Frechet- denvamve of K3 is:
00
(K9 (t, s fKXt—i—us da(u fK (t,s +v) da(v) + zo(t — 5) ffKQX(.s:—I—u,s—l—v)db(u)db(v))T
and is continuous on K3 A (7).
Proof:
Deferred to section 5.5 .
O

2.5 An example for amplified systems corresponding to comoment functions
of order p =2

Consider the geometric Brownian motion defined by

dX(t) = aX(@)dt+pX({t)dW(t), te (0,0),

X0 = ¢. (2.31)
It can be easily verified that the exact solution of (2.31) is
X(t) = £ el $8HOW D), e (0,00)
X has the comoment function
KX(t,5) = 2eott(aths, o>t>s>0, =TF¢].
It holds:
L KX (2,2) 3= = %026(20‘"‘62” = 2ac2e2e+B)t 4 22020480t = 90 KX (¢ t) + B2KX (t,t) ,
L RX(2,8) ey = TPt H8Y)s = geReatt(ath)s = aK(t,s) . -
For any 7 € [0,00), the SDE (2.31) can be considered as an SDDE (232
0 0
dX() = _TfX(t + u) da(u) dt +_TfX(t + u)d b(u) dW (t), t € (0,00) (2.33)
X(@) = £d(t) te[-7,0]
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where a = adg and b = 3 dp.
Then it holds:

jf)KQX(t + u, 8) da(u) = aK(t,s), t € ]0,00), s €[0,1],
oo (2.34)
J [K5(t + u,t +v) db(u) db(v) = B2K5(t,1), t €0, 00).

Hence (2.32) and (2.34) show that the comoment function K satisfies the amplified system.
Furthermore, the Frechet-derivative of K5 does exist for all ¢ > s > 0 and is

KX (t,5) = (¢ a et @t8s (2 (q 4 g2) gatt(ats®)s)T
2

On the other hand, the fundamental solution of

0

() = / (0 + 1) da(u) dt

is g = e*(t=#)_ Furthermore, for ¢ > s > 0 it holds:
0 2
JKX(t +u,s)da(u) = 2 aeott(@th)s

-7
0

0
JEX(t +v,8)da(v) + zo(t — 8) [K5 (s +u,s +v) db(u) b(v) = ?« et (@tB)s 4 galt=s) (2 g2 o(2a+B)s

—r _r
CZ (Oé + ﬂ2) eat+(a+ﬁ2)s .

3 An approach to evaluate the evolution of quadratic moments

In the previous section we have shown that for a solution X of a SDDE (2.1) the second moments function
mz depends on and is embedded into the comoment function K3 of X. Furthermore we showed that
K3 satisfies the amplified system (2.3). In this section we want to consider the asymptotic behaviour of
K and derive a criterion for the asymptotic behaviour of mi.

First we start with some preliminary considerations. From (2.20) we know that for all s € [0,00), t €
[s — 7,00) KX (t,s) satisfies the DDE

z'(t) = f:v(t-i—u)da(u), t € [0,00) (3.1)

z(t) = ;ST te[-7,0] .

where £(t) = &(t) := KX (t+ s, s). From the theory about DDE ([5], [2]) it is known that the asymptotic
behaviour of K5¢ for t — co depends on ¢ and on the set

ola):={XeC| A z_fe’\“da(u)} . (3.2)

In particular for s = 0 one obtains:

LEMMA 3.1

Let X be solution of (2.18) and K5 its comoment function.

Then it holds:

(i) max(Re(o(a))) >0 = 3¢ such that from K3<(_,0) = £ it follows t@JKzX (t,0)| = oo.

(i1) max( Re(o(a))) <0 = Vk € Ksyp it follows tli)_m | K55 (t,0)] < oo.
oo
For s > 0 the start function ¢ (in (3.1)) depends on K5X. It is not obvious whether for any ¢ there exists

k € Ksup such that K5X(s + _,s) = £. So if Re(o(a)) C (—00,0] , for all s > 0 K5<(-,s) is bounded.
However, if Re(o(a)) N (0,00) it is not clear whether for all s > 0 there exist k¥ € Kyyp such that
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lim |KX(¢,0)| = oo.

t—o0

We have seen so far that we can characterize partially the asymptotic behaviour of K3¢ along rays
R(s) := {(t,s)|t € [s,00) } by o(a). However, in the focus of our interest is ma’. So a natural question
is whether it is sufficient to know the behaviour of K5 along rays R(s). The Holder-inequality leads to
the criterion:

LEMMA 3.2

Let X be solution of (2.18) and KX its comoment function,
Js € [0,00) : E[|X(s)|*] # 0.

Then it holds:
T [ FoX _ T | KX _
tIlgIJKZ (ta 8)' = = tllglolK2 (tat)l =00

Proof:
Eron X T X 1 X 1
tlir{.loK2 (t,S) S tlirgoKQ (tat)2 K2 (853)2' U

On the other hand, from the boundedness of K5 on rays R(s), s € [0,00), tll_rn | K55 (t,t)| < oo cannot
oo

be concluded. This proves the following example:

EXAMPLE 3.3
We continue the example from section 2.5. The comoment function of the geometric Brownian motions

is K(t,s) = ¢ e *+(@+8s Hence if @ < 0 and 2a + 82 > 0 it follows: tli)m K(t,t) = o0, Vs € [0,00):
oo

lim K (t,s) = 0.

t—o0

This makes it necessary to investigate K5 on A directly.

In standard references to DDE ([2], [5]) one can find two approaches to derive stability criteria for
solutions of the DDE (3.1) The first is to show via integration by parts that a solution z of solves a
renewal equation. The change into the frequency space then leads to criteria in terms of characteristic
equations (spectral theory). The second is to reformulate (3.1) as a linear ODE in a suitable Banach
space, to consider the solution operator of this equation, to show its semigroup properties and to use the
theory of semigroups to analyze the asymptotic behaviour (properties of the generator). Here we follow
the second approach for the equation (2.1). We start with a helpful observation.

LEMMA 3.4
Define D? = { (u,v) | u,v € [-7,00),|v—u [<7T}.
Any solution K of (2.18) is uniquely determined by its values on D2.

Proof:
(1) The function z satisfies the equation (2.22). But this shows that for any s € [0,00) the function
value z(s+7) is uniquely determined by the function values z(s) and {y,(v) | u,v € [s,s+7]>} C D.
(2) For any s € [0,00) the function y, satisfies the equation (2.21), a linear DDE. This shows that
for any s € [0,00) the function y, is uniquely determined by the function values { Ay,(v) | u €
[s—7,sl,v=5}U{y,(v) | u=s5,v€[s,s+ 7]} on [s,00).
(3) By (1), (2) follows the objective.
O
Hence, although the function K has two dimensions, its decisive dynamics occurs in D2, one-dimensional
along the axis A,. This one-dimensionality allows us to introduce a time-continuous solution group in
an suitable Banach space which describes the dynamics of K5 in D2. The aim is then to show that
the solution operator is a strong continuous semigroup and to apply well-known semigroup theory to
describe the asymptotic behaviour of the K5 along A,.
The Banach-space we consider is the Banach space (Kgyp([—7,0]%, R), || lle(=r.02,R))-
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DEFINITION 3.5
Let Tyup := { T(t) }e(0,00) be an operator family such that:

(1) Vte[0,00): T(t): Ksup([—7,0%, R) — Ksup([-T7,0)%,R) ,
(ii) Th)k=g <= a) Yu,ve€[-7,0?: g(u,v) = Ki(t +u,t +v) ,
b) K} solves (2.18) with the initial function k .

The following theorem states the main property of 7.

Theorem 3.6
Tsup 18 & strong continuous semigroup.

Proof:

(1) By theorem 2.22, for any k € Kup,([—7,0]%,R) we know that the solution K of (2.18) with initial
function k is continuous on [—7, 00)?.
Hence for any t € [0,00): T(t) : Ksup([—7,0]%, R) — Ksup([-7,0)%,R) .

(2) For any k € Ksup([—7,0]%,R) and u,v € [—7,0] it holds: (T'(0) k) (u,v) = K(0+u,0+v) = k(u,v).
Hence T'(0) = id.

(3) Let s € [0,00),t € [0V s,00). Define k = T(s) k and k = T(t — s)k. Let K} and Kj, be the solution
of (2.18) with initial function k and k, respectively. Define K} € ([—7,0]%,R) by: V¢,5 € [—7,00)
K (t,5) = K(s+t,5s+5).

(4) As K}, solves (2.18), by definition K} solves (2.18) as well. Furthermore, Vu,v € [—7,0]? it holds:
K§(u,v) = Ki(s + u,8 +v) = k(u,v). Hence K} = K.

(5) Yu,v € [-7,0)%it holds: (T'(t — s) k) (u,v) K;

Ky

t—s+u,t—s+v)
s+ (t—s+u),s+(t—s+wv))

Ki(t +u,t+v)
= (T'(t) k) (u,v) .

def’im't?on of T
But then it holds T'(t — s) T'(s) = T'(t). Hence Ty is a semigroup.
(6) Fix T > 0. By (1) K} is uniformly continuous on [—7,T]?. But then for any € € (0, 1) exists an § €
(0, 00) such that V&= (t1,t2),5 = (s1,82) with ||t — &2 < 6 it holds || K (t1,t2) — K(s1,52) ||2 < €.
But then for all h € (0,0): [| T'(h)k — k|lc(—r02,r) < €, hence flbii%(T(h)k —k)=0.

This shows that 7y, is strongly continuous.

definit?on of T

(4)

(
(

O
The time evolution of strong continuous semigroups can be characterized by the properties of its
generator. So next we investigate the generator of Tgyp.

DEFINITION 3.7
Let k € Ksup([—7,0]%, R). Define €, (t,5) = (—(t V 8)) A (T + (t A 5))s.
For all (t,s) € [-7,0]? define:

lim k(t+h,s+h)—k(t,s) 3 lim k(t+h,s+h)—k(t,s)
Dg(k)(t,s) = h—0,¢-(t,s) h ’ h—0,¢-(t,s) ’
o, otherwise

LEMMA 3.8
Let A be the generator of Tsyp.

Then it holds:
(i) VE € Koup([-7,012,R): Ak = Dg(k).
(i1) D(A) = {k € Ksup([~7,0*,R) | Dg (k) € Ksup([-7,0*, R), Vt € [~7,0) 3 53-k(t,0),

Vt € [-7,0): Dg(k)(t,0) = aitlk(t,O) +_;k(t,u) da(u),

Dg(k)(0,0) =2 ;k(u, 0) da(u) + ;fok(u, v) db(u) db(v) }.

-7 -7
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Proof:
(1) For any k € K([—7,0]%,R) let K} be the solution of (2.18) with the initial function k.
(2) Let k € D(A) C K([-7,0]%,R). Then it holds:

0= Jim || E(T(hh—k)= Ak llo-rop iy = im  sup {5 (t+h, s+h) =K (t, )~ (4R)(t,5) |}
—0 h—)Otse[ TO]

(3) From (2) it follows that for all ¢,s € [—7,0): (Ak) (¢,s) = nio. h1<m(t VR + (k(t+h,s+h) —k(t,s)).
Vs

(4) As k € D(A), Ak € Ksyup([—7,0]%, R). But then for all s € [—7,0] Ak is uniformly continuous on

R(s) ={(u,0)[(u,v) = (-7,8) + a(1,1), « € [0, —s] }.
(5) For all t,s € (—7,0] and h € (0,—7 — (t A 5)):

|25 (k(t —h,s —h) — k(t,s)) — A(t, s) |
<|f (k(t,s) —k(t —h,s —h)) — A(t —h,s —h) |+ |A(t — h,s — h) — A(t,s)]| .

By the uniform convergence in (2) and (5) it follows: llgrol| L (k(t—h,s —h) —k(t,s) )| = A(t, s).
(6) (3) and (5) show (7).
(7) For t € [-7,0) and —7 —t > h > —t it follows:

(4k) (t,0) = lim #(E(t+h,h) - K(t,0))
= lgm +(K(t+ h,h) — K(t+ h,0) + K(t + h,0) — K(t,0))

- lﬁ?& %f jK(t + h,r + u) da(u) dr + + (K (t + h,0) — K(t,0)) )

_ fK )+11m (K(t+ h,0) — K(t,0))

K continuous _

= k(t,u)d li Lk(t + h,0) — k(£,0)) .
& 7Tf (bw)dau) +  lm g (k(E+ R, 0) — K(5,0))

It follows:
(4k) (0,0) = lim # (K (h, h) = K(0,0))

h 0 h 00

= lfgr(}(%f JK(r+u,r)da(u) + [ [ [K(r+u,r+v)db(u) db(v) d
0—71 0—7—7

Koo 2 fOK(u, 0) da(u) + jo‘ fOK(u v) db(u) db(v)
= fok(u,O) da(u) + ; jo‘k(u v) db(u) db(v)
(8) (2), (3) show (ii). - T

O
We now consider the spectrum o(A4) of the semigroup 7gyp. It turns out that it can be determined and
characterized by a linear DDE with linear constraints.

DEFINITION 3.9
The equation

PO = M) = (=l t) N dau), te[-r.0]
0 - 00 (34)
MO = 2 {0 da(w) + [ [T(-lu—o) X dblu) db(v).

with A € C is called characteristic equation of order 2. Any A € C, for which (3.4) has a non-zero
solution f € C([-7,0],R) NC'([-7,0),R), is called an eigenvalue of order 2.

Theorem 3.10
Let X be a solution of (2.1) and K3* its comoment function.
Then it holds:

o(A) = op(A) = {AeC | Xiseigenvalue of order 2 }.
Proof:
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(6)

Ask € K([-7,0)%,R), K5 is continuous. Let ¢ > 7. By corollary (2.17) K5 satisfies an exponential
growth condition. Hence T'(t) maps bounded sets T'(t) S in C([—,0]?, R) into bounded sets T'(t) S
in C([-7,0]%,R). By theorem (2.23) K5° is Holder-continuous for all v € (0, ) and has a uniform
finite bound of the Holder-derivative for v = 1. Hence T(t) S is precompact in C([—7,0]*, R)
by the theorem of Arzela-Ascoli. Hence {7'(t)};c0,00) is eventually compact. But then it follows
o(4) = a,(4) (see [2]).

From the definition of the point spectrum we recall that A € o(A) iff 3k € D(A) : A —A) k= 0.
From (2) we conclude that Vt € [-7,0),s € (¢,0) : ’llli%% (k(t+h,s+h)—k(t,s)) = Ak(t,s). That
is for any w € [—7,0] z(r) := k(r + u, r) satisfies the linear ODE z'(r) = Az(r) for r € [-7 — u,0].
Define Yu € [—7,0] : f(u) := k(u,0).
By lemma 3.8.(ii) we know that f is differentiable on [—7,0).
Due to (3) and continuity of k it follows Vt,s € [—7,0] : k(t,s) = f(—|t — s|) e*tV3),
Let t € [-7,0). Then it holds:

—E= AR (0), = A - 70 —Tff(—u — ul) AV da(u).
Furthermore it holds:

S (k= AR)(0,0) = Af(0) =2 () da(u) — [ [5(~lu—ol) e dblu) db)

lemma 3.4.(it) _r ——r

The claim follows from the definition of the D(A).
O

Now as the theorem is proven we try to simplify the characteristic equation of order 2. Consider
g(t) = f(t) e~*. Then it holds

9O = “MEe N+ FHe
— —)\f(t) —At+/\f —/\t ff |u—t| A(uvt)—)\t da(u),

0
= — [g(~lu—t]) e} D7 da(u),

—T

As f,g € C([-7,0],R), this differential equation can be restated as an integral equation

gt) = +f fg —|u — s|) e* (u=3)10) dg(u) ds .
Furthermore it holds:
00 00
[ Jg(=|u—s|) e* (=370 dq(u) ds . [ [ g(=u—s|) er@=)"0) s da(u)
i ubini _7 %
0 u—t
= [ [ g(=lv]) "0 dv da(u)
_zt ¢ 0Av
o I J g(=|v|) e} da(u) dv

Hence

!

fg —|u — 5] ) e} (@=9)70) dq(y) ds

g) (a(v) —a(=7V (v+1t))er dv+ Yg(—v) (a(0) —a(v+1t))dv
0

g() (a(w) —a(=7V (v+1t))er dv+ fog(v) (a(0) —a(t—v) ) dv

(a(v) —a(=7V (v+1)) e’ + (a(0) — a(t —v)) 1y (v) ) g(v) dv

k)\(ta 1)) g(v) dv )
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where kx(t,0) = (a(v) — a(=7 V (v + 1)) ) ¥’ + (a(0) - a(t = v)) L0 (v).
This allows us to characterize the spectrum of the semigroup 7 as solutions of a Volterra-integral equation
with constraints.

Theorem 3.11
Let X be a solution of (2.1) and K5* its comoment function,

kx(t,v) = (a(v) —a(=7V (v+1))er + (a(0) —a(t —v)) I q(v) , tve€[-7,0],
o0 = 9O+ [kt o) dv el 3
Ag(0) = 2 fog(u) e da(u) + fo fog(—|u — v|) eMuAY) db(u) db(v) .

Then it holds:
o(A) = {XeC | 3Igel(-1,0],R)NC(-7,0),R): g satisfies (3.5) and g Z 0 }.

Proof:
Follows immediately from lemma 3.4, the above computations and the fact that e* is strictly positive

(implying f =0 < g = 0).
O

Finally we observe that the 7-dependent systems (3.4) and (3.5) can be rescaled to a standard problem.

LEMMA 3.12
Let 7€ (0,00) ,

a,b € ([-1,0],R) defined by Vu € [—1,0] : a(u) := Ta(ru), b(u) := /7b(Tu) .
Consider the systems

PO = A [H~fu— t) 0 dau), te[-1.0),
o ! o o (3.6)
AFO) = 2[f(u)da(u)+ [ [f(=|u—v])e*® db(u)db(v).
-1 —1-1
and
ka(t,v) = (a(v) —a(=1V (v+1)))er + (a(0) —a(t —v)) 1o (v), t,ve€[-1,0],
0
g(t) = g(O) +—if k,’,\(t,’l)) g(U) d’U, te [_170)7 (37)
Ag(0) = 2 fog(u) e\ da(u) + fo })g(—|u — v]) eMuAY) db(u) db(v).
-1 —1-1
Define o7(A) = { X € C| ewists f € C([-1,0],R) NC([-1,0),R): f satisfies (3.6) and f Z0} ,
o4(A) = {X € C| ewists g € C([-1,0],R) N C([-1,0),R): g satisfies (3.7) and g Z0} .
Then it holds:
ro(4) = op(4) = oy(4) (3.8)
Proof:
(1) Let A € 0(A) and f # 0 an eigenfunction corresponding to A satisfying (3.4).
Define f € C([—1,0],R) defined by: V@ € [-1,0] : f(a) = f(ra),
A=A, u=rT1U,v=10,t=rTt
Then for all @ € [—1,0] it holds:
0
(@) = /() = Arf(rd) = [f(=fr =7 DO dra(re))
= 3F(u) ~ [F(—lu - 8) N0 daga) |
-1
o 0 00 o
AO) = Mrf(0) = 2 [1(2) dira(r)) + | [F(-lrt —r2) XV d(/THre) /)

F(—|a —o]) MV db(@) db(v).

~—o
~—o

= zlff(a) da(w) +

—_

As f #0, X belongs to 0. Hence 70(A4) C oy (A).
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(2) Let A € oy and f # 0 an eigenfunction corresponding to X satisfying (3.6).
Define fGC([ ,0], ]R) by Vue[—T,O]:f(u):f(%).
A=2a=%0=2t=
Then for all £ € [, 0] 1t holds
FO) = 1) = () - [Tl = e EHv0 dla(zm))
= M) - ff (=l — #]) * (@=0Y0) da(u)

. 0o_ ~ 00 ~ ~ S o o
Af(0) = 2Af(0) = 2lff(%)d(%a ) + 1f 1f — |22 — Z8)) ATV q( - B(ZR)) d(J= B(ZY))
0 0

=2 })f(u) da(u) + [ [f(=|u—wv])e*®V?) db(u) db(v).

—-T—T7

As f #0, X belongs to o(A). Hence o5(A) C 70(A), and with (1) it follows of(A) = 70 (A).

(3) From lemma 3.11 it follows that o7 (A4) = o4(A).

Finally we conclude:

COROLLARY 3.13
Let X be a solution of (2.1) and K5 be its comoment function with initial function k € C([—7,0]?,R).
Then it holds:

(i) T 3X€o(A) with Re(X) > 0, then 3k € C([~7, 0], R) such that lim B[ |X(£)|?] = oo.
(1) TV X€a(A): Re(\) <0, then lim E[|X(t)*] =0.
(iii) f ¥ X € 0(A) : Re(\) <0, then [im B[[X(8)|*] < oo.

Proof:
(1) Let {(tn,8n)}new C D? be a sequence such that lim ¢, = lim s, = oo, Vn € N|t, —s,| < 7
- n—oo n—oe
and Tim |K(tn,sn)| = co. By the Holder-inequality: |K (tn, sn)| < |K(tn,tn)|? | K (sn,sn)|2. It
n—oo
follows: Lim |K (tn,t,)| V |K(8n,sn)| = 00
n— oo

(2) Let k € Koup([—7,0%, R).
If tli>m [|T(t) k”C([f‘r,O]Z,]R) = 00, by (1) it follows tli>m [(T()k) (t,t)| =

If lim I7°(t) klle=7,02,r) = 0, by (1) it follows Jim (T(t)k) (¢,t)|| = 0.
It sup {[|IT®)kllc-ro2r) } < klle—ropmy: sup {(TBF) ¢ DI} < klle-r02r)-
te[0,00 te[0,00) (1)
(3) The semigroup theory relates o(A) to [|T(t) kllc(—r,002,R)-

Define m(A) = max{ Re(\) | A € 0(4) }.
If m(A) > 0 then there exists k € Ksup([—7,0]%, R) such that 1tli)m (IT(t) klle (=7 02,m) = 00

If m(A) < 0 then for all k € Kyyp([—7,0]%, R): tli_m IT(t) kllc((—r,02,r) = O-
If m(A) = 0 then for all k € Ksyp([—7,0]%, R): tll_m IT(t) Ellc(—r02,R) < OC-
(4) From (1)-(3) follows the claim.

O
ExampLE 3.14
Consider the SDE describing a geometric Brownian motion:
dX (t) = apX (t) dt + bo X (t) dW (t), t € [0,00). (3.9
Then the system (3.4) is
1O = (A-a)fo, tel-r0) 5.10)

Af(0) 2a0 £(0) + b3 £(0).-
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and has the non-zero solutions

f(O) = Cf c 75 0,
f@t) = cper-adt, t € [-1,0], (3.11)
A = 2a9+ b(z)

On the other hand system (3.5) is

Ex(t,v) = agdo(v) (1 —8,(0)) e + ao (1 — 6;(v)) 111,01 (v),

0
g(t) = ¢(0)+ tfao 9(v) d(v), te[-,0], (3.12)
Ag(0) = 2a9g(0) + b5 9(0).

and has the non-zero solutions

g(0) = Cg, c#0,
g(t) = cge™t, t € [-1,0], (3.13)
A = 2a9+ bg

Obviously, if ¢y = ¢, one confirms g(t) = f(t) e .
Corollary 3.13 yields then that

(i) tl_igloE[X(tV]:oo 2a90+ b >0 ,
(i) Jim B[X(5)?] =0 2a0+ b2 <0 |

(id6) Yt € [0,00) : E[ X (¢)2] < E[X(0)2]0 2ao+b2=0 .

ExAMPLE 3.15
Consider the equation

dX () = (a0 X () + a1 X (t = 7)) dt + (b X (£) + by X (t — 7)) AW (2), t € [0, 00) (3.14)

Then X is a SDDE (2.1) where the parameter functions are a(u) = a16[_r, ) (t) + a0djo o0 (t) and
b(u) = b16[_7,00)(t) + bod[o,00) (t). For equation (3.14) the system (3.4) is

Fl) = (A—ao) f(t) —areMf(-7 1), te[-70],

Af(0) = 2a0f(0) +2a1f(—7) + (b5 + bie™*7) £(0) + 2boby f(—7). (3.15)
The system (3.5) is
kat,v) = aolee)(v) +ailr,ry)(v), t,v € [-,0],
o) = 9O +afiwdota | go)ed, teleno,  (3.10)
Ag(0) = 2aog(0) +t2a1 e‘*Tg(—TST+ (B2 + b2 e=77) g(0) + 2boby e=>7 g(—7).

Let @o = ao7, @1_= a17. Then the normalized coefficient functions @, b are defined by @(u) = @16[_1,0)(t)+
00[0,00) (t) and b(u) = b10[_1,00)(t) + bod[0,00)(t). Hence the normalized characteristic systems are

[l = (f—a_o)f(t)i—(_ll ektf(jl —_t),_ . t€[-1,0], (3.17)
Af(0) = 2a0f(0) +2a1f(=1) + (b3 + bie™?) f(0) + 2bobs f(-1).
and
Ex(t,v) = aoly,o () +arli—1,_1-¢(v), t,v € [-1,0],
g(t) = g(0)+ dgfog(v) dv + @, _}_tg(v) e dv, t € [-1,0], (3.18)
Ag(0) = 2a0g(0) +t2(_11 e_)‘g(—l)_-il- (b2 + b2 e=) g(0) + 2boby e~ g(—1).
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4 Weak stationarity

A side effect of considering the amplified system (2.18) is a characterization of weak stationary solutions
of (2.1).

DEFINITION 4.1
Let (Y, T), T C R, be a stochastic process with finite first order moments.
The function m}: T — R

t = mi@t):=E[Y(t)]
is called the first order moment or mean function.
If m} is constant in T then m] is called stationary mean function.
DEFINITION 4.2
Let (Y, T), T C R, be a stochastic process with finite second order moments.
The function K): T — R

t,s =  Ki(t,s)=TFE[Y(#)Y(s)]
is called the second order moment or comoment function.
If 3K € (R,R) such that V,t,s € T : K (t,5) = K(t — s), then K is called stationary comoment
function.

DEFINITION 4.3
Let (Y,[0,00) ) be a stochastic process with finite first and second order moments.

If m{ and K3 are stationary, then Y is called a weakly stationary process.
We consider now solutions X of (2.1). Then X has the following representation

Xt = +ftf0Xu+r da(u dr+ftf0Xu+r )db(u)dW (r) , te€ (0,00) , (4.1)
0—7 0—7

X)) = £(t) : te[-70] .

We use this representation to derive a criterion for a constant first moments function of solutions X of
(2.1).

Theorem 4.4
Let X be a solution of (2.1) with the first moments function mi*.
Then it holds: mi’ is stationary on [-1,00) & (i) Vte [ 7,0) 1 m{(t) = m¥(0) ,
(i3) 0 = m¥ 0 a( [-7,0])
Proof:
(1) Let Vt € [-7,00) : mi(t) =m¥(0 ) Then (i) is obvious. For t € [0, 00) it follows:
t 0
X =EX = E[ X
my (t) [X(®)] (41 Fubini +{_Tf (u+r)]da(u) dr
t o
= 0)+ [ [m¥(u+r)da(u)dr ,
o
mi<(0) = X))+ [ [mf( u)dr ,
0—7
0 = (O)G([ 7,0]) .

This shows (i%).
(2) Let (i) and (ii) be satisfied. By (4.1) for ¢ € [0, 00) it follows that m;® satisfies the DDE (here in
the equivalent integral representation):

z(t) = z(0) —}—bf jgm(u+r) da(u)dr , te€[0,00) ,

x(t) = miX(o) 3 te [_Ta 0] .
The above DDE has a unique solution. However as a([—7,0]) = 0, z(t) = m;*(0) solves the above
DDE. Hence m;* = m;(0) on [—7,00). O

Next we use the representation (4.1) to derive a criterion for stationary comoment functions K5 of
solutions X of (2.1).
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Theorem 4.5
Let X be a solution of (2.1) with the comoment function K<,

K3 satisfy (2.18) with the initial condition k € K, ([—T,0]%, R).
Then it holds:

(i) K5t is stationary on [~7,00) < Yu,v € [-T,0]? : k(u,v) = f(~|u — v|) where f € ([-7,0],R)

satisfies 00
0 _fo Yda(u) + [ [ f(~|u—v])db(u)db(v) ,
0 o
f&)=f0)+ [ [f(=|u—r]) da(u)dr , te[-,0] .
t—T1
(i4) If K5° is stationary on [—T,00), then Vs € [—T,00), % € [0,00): K5 (t + s,8) = z(f) where z

solves (3.1) with £ = k(_,0).
Proof:
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(1) If K¢ is stationary, then there exists K5 such that Vt,s € [-7,0] : K5<(t,5) = K5 (t — s).

Hence:
Vit s €[-7,00): Ki(t,t) =Kyt —1t)=K;(0)=K(s—s)=K5(s,s).
Vt>s> -1 K3X(t,8) = K5 (t — s) = K5(t — 5,0) .
(2) Define Vu € [-7,0] : f(u) = K5*(u,0) and Vt € [-7,0] : x4(t) = K5 (t,0). (1) implies:
Vte [0,00) 0 = %Kix(m m)lw:t >
for t = 0: 0 = LK@ )0
0 00
3o 2_fK2X (u,0) da(u) —I—_f_fKZX(u,v) db(u) db(v) ,
0 00
5o 2_ff(u) da(u) —I—_f_ff(u Av —uVv)db(u)db(v) ,
Vte[0,00): () = LKF(2,0)—
3o fOKQX (t+u,0)da(u) = jq:cf(t +u) da(u) .
veel-rol [0 = -t 0 N
18 z;(0)+ [ [zp(u+7r)da(u)dr
. 0—7
-t 0
f@ = f)+ {,ff(_“‘”') da(u) dr

This shows ,,=“ in (z) and (7).
(3) Let k and f given by (iii) and define z; to be the solution of (3.1) with § = f.
Define Vt,s € [—7,0]% K(t,s) := k(t,s),
Vs €[-7,00),t€[0,00): K(t+s,5):= K(s,t+5) := z4(t).
(4) Let u € [-7,0], v = 0. Then k(u,0) = f(uAO—uV0) = f(u).
(5) K defined in (3) satisfies by definition K|[_, g2 = k.
(6) Let s € [-7,00),t € [0V 5,00). Define t :=t — s. Then ¢t >0 and t = ¢ + s.
By definition of K it follows K(t,s) = K(f + s, s) = z ().

Hence:  li t+h, t 1 Lige(t+h)—zs(@)) =2 F).
ence hHOh%VS)th( K (t+ h,s) — (s)) hHOh;%VS)th(wf(+) z5(t)) = 24 ()

As z; satisfies (3.1), it follows: z';(f) = fa:f (t +u) da(u f.'L'f (t + u) da(u).

By definition of K, # it follows Vu € [—,0]: xf(tJr—u) K(t+u+s,s) =K(t+u,s).

0
H li K( i
ence: h;r(r(l)vs) . +(K(t+h,s)— K(t,s) f t + u,s)da(u)

(7) By definition of K, V¢ € [0,00) it holds: K(t, t) = a:f(O)
Hence hH})l’r}?Z_t F(K(t+h,t+h)—K(t,t))=0.

By definition of f, z; and K it follows that: .
Vu € [-r, 0] ) = mpw) = K(+ud),
Vu,v€[-7,01: fluAv—uVv) =zs(uhv—uVv) = K(t+u,t+v).

Hence: fof(u) da(u) = fOK'(t-i-u,t) da(u).

-7

fff uAv—uVv)db(u fOfOK'(t-I-u,t-l-U)db(u)db(v).

But then it follows by (#4):
lim L(K(t+h,t+h)—K(tt) =0

hi—0,h>—t P 0 00
=gff(u)da(u)—I—_f_ff(u/\v—qu)db(u)db(v)
:2f01?t+ut)da +f0fol?t+ut+v)db(u)db(v).

(8) By (3), (5), (6), (7) K solves the amplified system (2.18) with the initial function k.
As K solves (2.18) with the initial function k, too. By corollary 2.15 it follows KX = K.
This proves ,<=“ in (7).
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Now we can state necessary conditions on the existence of weakly stationary solutions of (2.1).

Theorem 4.6
Let X be a solution of (2.1) with the mean function m¥ and comoment function K3,

k € Kop([—T7,0]%, R) defined by: Vu,v € [-7,0] : E[ X (u) X (v)],
f € ([-7,0],R) defined by Yu € [—7,0] : f(u) = k(u,0),
xy solution of (3.1) with £ = f.

If X is weakly stationary on [—T,00), then it holds:

()  0=mi(0)a([-7,0])

(i) Vu,ve[—TO] ( v)=1f (|Ju—v|)
)

(i) 0 = 2ff aw) + | [ F—hu o) db(w) db(w) |
0
f@) = f(0)+ {_ff(—lu—TI) da(u)dr , te[-7,0,
(iv) K3(t,s) =zp(Jt—s|) .
Proof:
Combine the theorems 4.4 and 4.5. O

COROLLARY 4.7
If X is weakly stationary and k € Ksyup([—T, 0]%,R) then 0 is an eigenvalue of order 2 and f = k(-,0) is
an eigenfunction of order 2 of the generator of Tgyp. This is as the condition 4.6.(¢44) is (3.4) for A = 0.

EXAMPLE 4.8
We continue the example from section 2.5 and consider the geometric Brownian Motion.
If X has a stationary mean function by theorem 4.4 it follows:

0=E[X(0)]a.
If X has a stationary comoment function by theorem 4.5 it follows:
0 :2f0f(u+r)da( )+ fo fof(u/\v—qu)db(u)db(v) 0 =(2a+p%)f(0)
—T —T—T @ 0
£ = 1)+ [ [ F(~lu=r]) daw) dr @) =10) +a [ f@)dr
t—71

hence
f(0) =E[|X(0)]], f(t) = f(0)e~** and z;(t) = f(0)e*?,
KX (t,s) = E[|X(0)]e®** and 0 = (2a + #2) E[|X (0)[?] -

If X is weakly stationary by theorem 4.6 it follows (using the Jensen- and Cauchy-Schwarz-inequality)

0 # 2a + 2, Vt e [0,00) E[|X(0)]*] =E[X(0)]=0, or
0=2a+p8% 0#a, Vte[0,00) E[X(t)]=0 or
O=a=p

The mean function of X is m = E[{]e* .

Hence X has a stationary mean function iff E[£] =0 or 0 = .

The comoment function of X is KX (t,s) = E[£2 ] extVst(et+8?) ths — [ ¢2] e |t=sl+(2atp") ths
Hence X has a stationary comoment function iff E[¢2] = 0 or 0 = 2a + 2.

Finally, using the Jensen- and Cauchy-Schwarz-inequality, X is weakly stationary if and only if

0 # 20+ 2, E[&] =E[¢] =0, 0r
0=2a+p8% a#0, E[£]=0,or
0=2a+ B2 a=0.

In this case the necessary conditions are identical with the exact conditions.
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5 Appendix

5.1 The theorem of Fubini

Theorem 5.1
Let (X, A), (Y,B) measurable spaces,
1 a o-finite measure on (X, A), v a o-finite measure on (Y, B) .

(i) Let VY non-negative f € (X x Y,R), (Ax x Ay,B) -measurable,
fx(z) = 1{f(ﬂc,y) dv(y), fr(y) = 1{f(ﬂc,y) dv(y),

Then it holds:
(1) fx is non-negative, A-measurable, fy is non-negative, B-measurable

(2) Xfyf(w, y)dp @ v(z,y) = ){fx (z) dp(z) = ify (y) dv(y).
(ii) Let VY fe (X xY,R), (Ax x Ay, B) -measurable and j ® v-integrable.

fx (@) = [f(z,y) dv(y), fr(y) == [ f(z,y)dv(y),
Ax = {xYE X|flz,)isv — integ;;ble LAy ={y €Y |f(,,y)isu— integrable} .
Then it holds:
(1) Yz € X: f(z,-) is Ay-measurable, v-integrable on A$, and Ay € Ay,
(2) Yy €Y: f(_,y) is Ax-measurable, p-integrable on A and Ax € Ax,
@) [ f@y)duev(z,y) = ){fx(év) du(z) = ny(y) dv(y)-

XxY
(i4i) Let Vf € (X xY,R), (Ax x Ay, B) -measurable,

J Ifldp@v <ooor [[|fldvdu < oo or [[|fldudv < oo .
XXY Xy Yx

Then it holds:
1) [ Ifldpev=[[|fldvdu= [[|fldpdv < oo,
XXY XY YX

(2) f is p ® v-integrable.

Proof:
See [3], pp-173.

5.2 Weakly compact sets on C'(X)
Theorem 5.2 (Arzela-Ascoli)
Let (X, d) be a metric space and S C C(X,R).

Let (i) S be bounded,
(7t) S be a set of uniformly continuous functions, that is
Ve>0 36>0 VfeS,z1,20 € X: d(z1,22) <d = |f(z) = f(y)| <e.
Then it holds:
S is weakly compact.
If S is in addition to (i) and (ii) closed, then it holds:

S is compact.

Proof:
See [7], pp-68-70.

LEMMA 5.3
Let S CC(X,R), S bounded,

Vf€S, x1,25 € X: |f(22) = f(21)| < Ly w2 =z [

yr=inf{v | f€S}>0,L:=sup{Ls | fE€S} < o0.
Then it holds:

S is weakly compact.

Proof:
Let € € (0,00). Choose § = (€£3i5)

2=
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Then for any f € S and z3,2; € X with |21 — 22| < 4 it holds:
|f(@2) — f(@1)| < Ly|we — 21| <Lpé" <Lpd? <eni<e.
Hence, S is uniformly continuous.
As S is bounded by assumption, by the theorem of Arzela-Ascoli S is precompact. O

5.3 Spectral theory of linear operators

The spectral theory of linear operators is the generalization of the theory of eigenvalues of linear, finite
dimensional operators. We recall some definitions and results.
Let (X,|-|x ) be a Banach space.

DEFINITION 5.4

Let L € (D(L), X) be a linear operator with D(L) C X.

(1) Then X € C is called resolvent of L if and only if (\] — K)~! exists and is bounded, that is if
(1) M — L is injective
(i) Im(AI-L)=X
(4id) (M — L)™' is bounded

(2) The set p(L) = {A € C | A resolvent of L } is called resolvent set of L.

(3) The set o(L) = C\ p(L) is called spectrum of L.

The spectrum of infinite linear operators can be more complicated as for finite dimensional linear operators
and can be divided into different types classifying how the above conditions (i) — (éi¢) are not satisfied.

DEFINITION 5.5
Let L € (D(L), X) be a linear operator with D(L) C X.
(1) The set op(L) ={A € C | 3z € X\ {0} : (A — L)z = 0} is called point spectrum of L and
its elements eigenvalues of L.
(2) Let A € g,(L).
Any z € X \ {0} with (\] — L)z = 0 is called an eigenvector of L.
Let N C X be the kernel (or nullspace) of (AI — L).
Then N is called eigenspace of A and dim(N) geometric multiplicity of .
Let N C X be the smallest closed, linear subspace including kcL)le N(A — L)*.

Then N is called generalized eigenspace of L and dim(N) algebraic multiplicity of \.

(3) The set o.(L) = {X € C | (M — L) injective, Im(AI — L) C X,Im(A —L) = X} is called
continuous spectrum of L.

(4) The set 0,(L) = {A € C | (A[ — L) injective, Im(A] — L) C X} is called residual spectrum of
L.

The spectrum has some associated characteristic values.

DEFINITION 5.6
Let L € (D(L),X) be a bounded linear operator with D(L) C X.
Then r(L) :=supq{ |A\| | A € 6(L) } is called the spectral radius of L.

Let L € (D(L),X) be a closed linear operator with D(L) C X.
s(L) :==sup{ Re(\) | A € (L) } is called the spectral bound of L.

5.4 Semigroups

Semigroups are related to abstract differential equations. We recall some definitions and results.
Let (X,|-|x ) be a Banach space.

DEFINITION 5.7
Let T = {T(t) }+cjo,00) e a family of bounded linear operators on X.
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(1) If () T(0)=1d,
(79) for all t,s € [0,00): T ()T (s)=T(s)T(t),
then T is called a semigroup of operators.
(2) If in addition to (1).(¢) and (1).(4¢) it holds
(#41) for all z € X: 1}3&1|T(h)m—m|x =0,

then T is called a strongly continuous semigroup of operators.

With a strongly continuous semigroup one can associate an abstract differential equation

d
7 (Tt)z)=A(T@t)x), x € D(A), (5.1)
where we define:

DEFINITION 5.8

Let A: D(A) — X be an operator, with

(i) DA):={zeX| Ellgirol +H(T(h)yr—=z)e X},
(1) Ve € D(A): Ax:= 1’5101 +(T(h)z —=).
Then A is called infinitesimal generator of 7" and D is called domain of A.

Strongly continuous semigroups have the following properties:

LEMMA 5.9

(1) D(A) is dense in X,

(7i) A is closed,

(i5) e € R,M € [1,00): |T(t)| < Met .

Proof:
See [2], pp.453-454. O

The property 5.9.(iii) is an important property as it states that there exists an exponential growth bound
for the norm of T'(t) and ¢ — oo. It is natural to ask for the smallest one and to use it as a characteristics
of T'(t).

DEFINITION 5.10
Let co =inf{c€R | IM € [l,00): |T(t)|x < Mect}.
Then ¢y is called the growth bound of T'.

Reversely it holds:

Theorem 5.11 (Hille-Yosida)

Let A € (D(A), X) be a linear operator.

Then the following two statements are equivalent:

(1) A is an infinitesimal generator of a strongly continuous semigroup T' = {T(t)};c[0,00) With
T(t) < Met

(2) (i) A is closed, D(A) is dense in X,
(i) (¢, 00) C p(A),
(iii) VA > ¢,k € N\ {0}: [(M — A)~F| < %

Proof:
See [2], p.455. O

From finite dimensional operators it is known, that there is a relation between the growth of {T'(t) };c[0,00)
and the eigenvalues of the generator A of T'. The relation is described in the so-called spectral mapping
theorem stating that o(T'(t)) = €4 where o(T'(t)) are the eigenvalues of T'(t) and o(A) are the
eigenvalues of the infinitesimal generator A of T. For strongly continuous semigroups there are several
relations known.
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LEMMA 5.12

(1) o(P(L)) = P(c(L)), P polynomial,
(i3) a,(T(H)\ {0} = e,

(ii3) m(T(t)) = et

(iv) s(A) < co.

Proof:
See [2]. (i): p-470, (ii): p.471, (iii): p.470, (iv): p.470. O

The relation 5.12.(iii) interpretes the growth bound in terms of the linear operators T'(¢).

The relation 5.12.(iv) provides a characterization of the asymptotic behaviour of T in terms of its infi-
nitesimal generator: the spectrum of A provides a lower bound for the growth bound of the generated
semigroup. This criterion is in general unsharp. An example for s(A) < ¢ can be found in [2], p.470.
However, in special cases the characterization of the asymptotic behaviour of T in terms of its infinitesimal
generator is possible. One of the special cases is the following.

DEFINITION 5.13
Let T = { T'(t) }+c[0,00) be a strongly continuous semigroup.
T is called eventually compact if and only if It € [0,00) Vit € [tg,00): T'(t) is compact.

For eventually compact strongly continuous semigroups the following is known.

Theorem 5.14

Let T = {T(t) }+c[o,00) be a strongly continuous, eventually compact semigroup,
A be the infinitesimal generator of T

Then it holds:

(1) o(A) =op(4),

(73) s(A) = co.

Proof:

See [2], p.97. O

EXAMPLE 5.15
Consider affine DDE.
Then T' = { T(t) }1¢[0,00) defined by T'(t)¢ := z¢, t € [0, 00) is eventually compact ([5], p.194.

5.5 Proofs of selected theorems and lemmas

Proof: (lemma 2.4)

(?) and (44¢) are already proven. So (i¢) remains to be shown.

First we represent the difference quotient as a sum. It holds:
H(E[X(t-h)?-X()?)

= tE[X(t)+X(t-h

~—

(X (#) - X(t—h))]

= %E[(QX(t—h)—Fft foX(s+u da(u ft foXs+u db(u) dW (s) )
t—h—T t—h—T
E_f;_foX(s—}—u u) ds + f:fOX(s+u ) db(uw) dW (s) )]
= +( E[X(t—h)ft fOX(s+u)da()ds]
t—h—T
t 0 (5.2)
+2E[ X( ht)ifh_fX(s—Fu) db(u) dW (s) ]

u) ds

+
=
Ja
)
+
=

foX (s + u) da(u) ds ]

o+

28
y

+
[\
=

u) ds X (s + u) db(u) dW (s) ]

\‘%O

o~

“h—
X (s +u) db(u) dWs ft jQX (s + u) db(u) dW(s)]).
—h—T1

+
=

‘\%O‘HEO‘I%O
)
+
C
U
Q

o~
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Now we determlne the hmlts of each of the five summands in (5.2):

(i) +E[X(t f fX s + u)da(u) ds]
t—h —7

= +E[ ft foX(t — h)X (s + u)da(u) ds ]
t—h—T

F? %ft f]E[X(t—h)X(s+u)]da(u)ds
ubini t—h —T

hm +E[ X (¢ f JX (s + uw)da(u) ds]:jq]E[X(t)X(t+u)]da(u),
t h—T -7
(i1) +IE[ t—hft sz+u db(u) dW (s) ]
t—h—T7
= +E[ X (t — h) ff X (s +u)dW(s)db(u)]
Fubini th h
= +E[ fX(t—h) ft X (s +u) dW (s)db(u)]
-7 t—h

= %;]E[X(t—h)ft X (s +w) dW(s)] db(u)
-7 t—h

= L PE[X(—RE[ [ X(s+w)dW(s) | Fon]]dblw)
-7 t=h

%f E[ X (t — h) 0] db(w)

Ité—i;iegral

= 0
t 0
lim 4E[X (¢ - ht):fh_TfX(s +u) db(w) AW (s)] =
t 0 t 0
(@ii) | +E[ [ [X(s+wu)da(u)ds [ [X(s+u)da(u)ds] |
toh—7 tZh—r
t ot 0
< s [ [ | B[ [X(s+u)da(u er+u)da( )] | dsdr
Fubini t th t_th _(;- s
Hld i) JEl [X(s+u)da(u) [?]'/* E[| fX(S +u)da(u) [*]'/? ds dr,
otaer t—h tt—h O—T -7
11m| +E[ f fX s+u)da(u)ds [ [X(s+u)da(u)ds] |
toh—r e .
< 1’1?&,11 [ [E[| [X(s+u)da() 212 E[| [X (s +u)da(u) |*]/? dsdr,
ht—h —T -7
t 0 < 0, 40
)] LB[ [ [X(s+u)da(u)ds [ [X(s+u)db(w) aW(s)] |
t—h—T t—h—7
= | +E[ t f})Xs+u ftXr+v ) dW (r) db(v) da(u) ds] |
Fubini . to_hanT _?
JS [ [ [ E[X(s+uw) er+v YdW (r)] | d|b|(v) d|a|(u) :ds
ensen t—h—T—T
< %f fofolE[X(s+u 172 ( f]E[X (r +v)?]dr)'/? djb|(v) d|a|(u) ds,
Holder t—h—T—T t—h
1h1\rLr(}| +E[ [ [X(s+u)da(u) dsft qu(s-{-u)db(u) dw(s)] |
t—h—7 —h-7

e
< 1’:?01 %ft fo fOIE[X(s+u)2]1/2 (ft]E[X(r+U)2]dr)1/2 d|b|(v) d|a|(u) ds,
t—h—7—7 t—h
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(v) E[ ft fOX(s + u) db(u) dW (s) ft fOX(s + u) db(u) dW (s) ]
t—h—T t—h—T
0

t
= L[ E[ [X(s+u)db(u)®]d
It6—integral ht‘_fh [77‘_[ (S u) (u) ] S

0 0

%ft [ JE[X(s+u)X (s +v) ] db(u) db(v) ] ds

Fu;znz t—h—T —T

lim E[ f fX s+ u) db(u) dW (s) ft foX(s+u)db(u)dW(s)]
h—0 t—h—T t—h—T

= f fIE (s 4+ u) X (s +v) ] db(u) db(v) ] ds .

—T —T

Plugging (i)-(v) into (5.2) yields then the limit to be shown. O
Proof: (lemma 2.6)

As in the previous lemma we use the integral representation of X (t) — X (¢t — h) for h > 0 resulting from
the SDDE to find a suitable representation of the difference quotient and take then the limit A | 0.

H(E[(X(t—h) - X(t)X(r)]

t

0
= B[ [XG+uwdawds+ [ [X(s+udb(u) dW(s)) X(r)]
[T t=h—7 )
o +( [ JE[X(s+u)X(r)]da(u) ds+fIE r) [ X(s+u)dW(s)]db(u))
ubini t_th,.ro t—h .
= %(tlfh_fE[X(s—}—u)X(r)]da( ds—!:fIE IE[ fX s+u)dW(s) | Fi_n]]db(u))
Ho- imregral %(tjh folE[X(s—l—u) X(r)] da(u) ds—!—fIE (r)0] db(u) )
t 0
= +( [ JE[X(s+u)X(r)]da(u)ds
t—h—7

1,}% E[(X(t —h) - X(#)X(r)] = flE[X(HU)X(T)]da(U)-

-7

Proof: (theorem 2.22)

39



(1) We investigate the differences of consecutive Picard-iterates. Vn € IN, V¢, s € [—7,00) define:

An+1K(tas) = Kﬂ+1(t73) - Kﬂ(tas) ’
Snt1(t) = sup{ | Apt1K(s1,82) | [t > 81 >8> -7} .
By (1) and the previous definition, for all n € IN and for all 0 > ¢ > s > —7 it holds:
An+1K(t, S) =0
and for all n € N, t € (0,00), s € [—7,1) it holds:
t 0
ApaK(t,t) = Apt1K(0,0) +2 [ [Appi K(r +u,r) da(u) dr
% 0 0
+ [ [ JAnp K(r +u,r 4 v) db(u) db(v) dr
0 —7—7
0
Api2K(t,s) = ApaK(s,s) f JA 1 K(r +u, s) da(u) dr .

(2) By the definition of the Picard iterates Yn € IN, s € [-7,00), t € [0V s,00) it holds:
A,+1K(0,0) =0,

|An+2K(t,t)| < 2 fd|a| f6n+1 d7’+ fdlbl f6n+1 dT’ < C a b T f5n+1 dT‘ 5

| AptaK(t,s)| < | App2K(OVs,s)|+]| f fAn_HK(r + u, s) da(u) dr |

Ovs— 'r
0Vs
< C(a,b,7) [ bpgi(r)dr +fd|a| f6n+1 Ydr < Cl(a,b,T f5n+1 ) dr
0 -7 0Vs
(3) Fix t € (0,00). By (2) for all 5,3 with t > 5 > 3§ > —7 it holds:

ovs

t
| An2K(5,8)] < C(a,b,7) f Spi1(r)dr < C(a,b,7) [dpy1(r) dr
0
(4) Using (2),(3) Vn € IN and V¢t € [0, 00) it holds.
¢
Ont2(t) = sup{|Ap12K(5,3)| | t>5>5> -7} < C(a,b,7) [Opy1(r)dr
0
(5) As in (3) of the proof of lemma 2.14, we introduce two index sets and a constant:
A, ={(t,u) eR?|t€[-T,T|,u € [-tA—-T,—t]} ,
B, :={(t,u,v) € R® |t € [-T,7],u,v € [t A—T,—1] } ,
S? = sup  {[k(t;s) [},

pe
t,s€[—7,0],tVs=0

Sti= sup {f [|k(r+u,s)|dal(u)dr}
sE[—TO] 0—71

S2 —f | [ k(r+u,r+v)|db|(u)db|(v) dr
0 —7 —7
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(6) Let t €[0,00). Then it holds:

t 0 t 0
|A Kt < 2|[ [Ko(r+u,r)da(u)dr|+]|[ [ [Ko(r+u,r+v)db(u)db(v)dr|
-7 0—7—

“%O

< 2 f0|Ko(7‘+u,T)| 14,((r,u)) dla|(u) dr
fo | Ko(r +u,r,...,7)| (1 =14_((r,u))) d|a|(u) dr
fo f0|Ko(1" +u,r +v)| 1g, ((r,u,v)) d|b|(u) d|b|(v) dr

o
J 1 Eo(r +u,r +0)| (1 = 15,((r,u,v))) d[b|(u) d[b|(v) dr
0
J

IA

251 +2 [dla|(u) S2t+ S2 + fd|b|

< Wbllg, o ropmy + ¢ Cla,b,7) SO
(7) For all s € [-7,00),t € (0V s,00) it holds:
t 0
|AK(t,s)| < | [ [Ko(r+u,s)da(u)dr|

ovVs—1
0

< f [ 1Kol +u5) | dlal(u) dr 1p_r.0)(s)

—r

+f fIKo(Hu s) [ 14, ((t,u)) dla|(u) dr 1(9,0c)(5)
+fif | Ko(r +u,8) | (1 = 1a,((t, ) dlal () dr 1(p,00)(5)
< Sh+ fd|a|
< Sl+tC(a b T) SO

(8) Due to (6)-(7) for all s € [-7,00), t € [0V s,00) it holds:
| AK(ts) | < Elk, ,(=ropr) (1+1C(a,b,7)) .

(9) By definition of Ky for all s € [-7,0], ¢t,€ [0V s,00) it holds:
| Ko(t,s) | < kg, ,(—ro2mr) -

(10) From (8) and (10) we can conclude via complete induction that for all T' € [0, 00):
Sn41(T) < ”k”lca,b([—r,o]Z,]R) ( %(C(a, b,7)T)" + m(C(a, b,T)T)")

z_:o(sn-i-l (T) < ”k“lCa,b([—T,O]Q,]R) (2 eCl@bn)T 1 ) <o .

With (9) it follows then that for all n € N, m € N\ {0}, T > 0 and (¢,5) € [-7,T)%\ [-7,0)*:

| Knt1(t,s) | < | Kolt,s) |+ E|AKk(t s) |
-1
< || ||)ca s ([=7,0]%,R) 9 Clab,r)T 7
n+m-+
K (68) = Knomabe) | <30 | AK(t,s) |
k=n+1
< el rop,my 2 (eC@bDT — E ' (Cladn 1)y

Hence {K,}nen is uniformly bounded and a Cauchy-sequence on [—7, T2 \ [ T, 0) But then the

pointwise limit K := lim K,, does exist on [—7,T]?.
n—00
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(11) Now we show, that K found in (11) satisfies (2.4). Let n be in IN'\ {0}. Then for all ¢ € (0, 00) it

holds:
t 0 t 00
| K(t,t) — K(0,0)— 2 [ [K(r+u,r)da(u)dr— [ [ [K(r+u,r+v)db(u)db(v) dr|
0—7 0—7—7
< | K(tt) = Knga(t, t) | + | K(0,0) — Kn(0,0) |
t 0
+ |2 f [K(r+u,r)—Ky(r+u,r)da(u)dr|
0—7
t 00
+ | [ [ JK(r+u,r+v)—Ky(r+u,r+v)db(u) db(v) dr |
0O—717—7
< K = Kngallego,rp2,m) + €, 0,7) |1K = Kallego,712,m) >
Furthermore, for any s > —7,t € (0V s,00) :
t 0
| K(t,s) —K(OVs,s)— [ [K(r+u,s)da(u)dr]
OVs—T1
t 0
< |K(t,s) — Knyi1(t,s) |+ | K(OVs)—K,(0Vs)|+ | [ [K(r+u,s)— Kn(r+u,s)da(u) dr |
oVs—1

< |IK - Kn-i-l”c([o,T]Z,]R) +C(a,b,7) || K — Kn”c([o,T]?,]R) .
As lim ||K — Kylle(o, 772,y = 0 by (10) the theorem is proved.
n—oo L

Proof: (theorem 2.26)
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(1) We want to partition the total difference into suitable summands. First we introduce some
necessary variables. Let t > s > 0, h = (hq, h2) € R? such that [|h]|> < 1|t — s].
Define M (a,b) = maz{a + b,a}, m(a,b) = min{a + b,a} for all a,b € R.
Now we derive partition the total difference. It holds:

K({t+hi,s+ hs) — K(t,9)
= E[(X(+h) - X(#) (X(s+ ha) = X(s)) | + E[(X (¢ + 1) — X(2)) X(5)]

+E[ X (t) (X (s + h2) — X(5)) ]
M(t,h1) 0 M(s,h2) 0
= (=1 (r)td0er(h2) (B[ [ [X(r+wv)da(w)dr [  [X(r+v)da(v)dr]
m(t,h1)—T m(s,ha)—T
M(t,h1) 0 M(s,h2) 0
+E[ [  [X(r+v)daw)dr [ [X(r+wv)dbv)dW(r)]
717\14(8?51);1 m(s’h;};sThz) 0
+E[ [ [X(@r+4v)da(w)dW(r) [ [X(r+v)da(v)dr]
o o M) o
+E[ [ [X(r+v)db(v)dW(r) [ [X(r+v)dbv)dW(r)]
m(t’hl)_T M(t,hl) 0 m(s’hg)_T M(t,h1) 0
+ (=1%o (r) (B[ [ [X(r+v)da()drX(s)]+E[ [ [X(r+v)dbw)dW(r)X(s)]
m(t’hlz(rs,m) 0 m(t,h13‘;(;h2) 0
+ (=1)%0.=(h2) (E[ X(t) [ [X(r+v)da(w)dr]+E[X(#) [ [X(r+v)dbv)dW(r)])

m(s,h2) =T m(s,ha) =T

(2) We deal now with one particular summand of (1) and can show that it is of order o(||h||2)-
It holds:

M(t,h1) 0 M(s,hg) 0
|E[ [ [X(r+v)da(w)dr [ [X(r+v)da(v)dr]]
m(tvhl)i‘r m(37h2)77—

M(t,hl) M(S,hQ) 00
= J | [ JE[X(r1 4+ v1) X (r2 + v2) ]| da(vr) drq da(vs) drs |

Fubinit m(4,h1) m(s,ho)—7—T
M(t,h1) M(s,hz) 00
5 S |h1 . h2| ﬁ f |hl—2‘ f f f | E[X(’I‘l + Ul)X(Tz + U2) ] | da(vl) d’l“l da(?}z) dT’z
ensen m(t,h1) m(s,he)—7TT

As lim |’|l|};|'|’2‘ < lim ||A||2 = 0, the above term converges to 0 for A — 0.
h—0 2 h—0

(3) Asin (2) we deal with particular summands of (1) and show that they vanish. Due to the choice of
h, [m(t, h1), M (¢, h1)] N [m(s, ha), M (s, he)] = B. But then, using the properties of the Ito-integral,
it holds:

M(t,h1) 0 M(S,hz) 0

El [ [X(@r+v)da(w)dW(r) [ [X(r+v)da(v)dr]=0,
m(t7h1)_T m(s,hz)—"'
M(t,h1) 0 M(S,hz) 0

El [ [X(r+v)db(v)dW(r) [ [X(r+wv)dbv)dW(r)]=0,
m(t7h1)_T m(sahQ)_T
M(t,h1) 0

E[l [ [X(r+4wv)db(v)dW(r)X(s)]=0.
m(t7h1)7‘r

(4) Now we deal with a particular summand from (1) and filter out its h-linear fraction.
It holds:

M(t7h1) 0 0
i | (%o B [ X 0) dafo) dr X)) = by JB[X (04 0)X(s)]dao)|
N M(t,h1) 0 M(t,h1) ©
= ity | (G000 g (B [ JXC+ o) da)dr X)) = [ JBIXG+0)X(s)]da(w) dr)|
ml 1 M0 | |
= Jifz g ([ JEIX(+0)X(5)] = B[ X (¢t +0)X(5) ] da(v) dr) |

m(t,h1)—T
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1

t
< b (L f

0
ol f (r+v,s) — K(t+v,s)| dla|(v) dr)

0
<L s (JIKG 4,8~ K(t+0,9)] dlal(v) }.
r€[m(t,h1),M(t,h1)]—7

It holds 0 < J”’;l_lllL < 1. As K is continuous on [0, 00)?, it is uniformly continuous on compact sets
and the above term tends to 0 for h — 0.

As in (4) we deal with a particular summand from (1) and filter out its h-linear fraction.
It holds:

M(s,h2) 0 0
||;1||2 | (—1)%0.20)(h2) B[ X (&) (fh )_fX(r +v) da(v) dr] — hz_f]E[X(t)X(s +v) ] da(v) |
™ ’ M(s,h2) 0 M(s,h2) 0
= ity | (=1)%ee0r () 2 (B[ X (2) (fh )7fX(T +v) da(v) dr] - (fh )7f]E[X(t)X(S +v) ] da(v) dr) |
hal L M(s,h2) 0 ’ ’
= Tl | et € (fh )7f E[X ()X (r +v) ] - B[ X)X (s +v) | da(v) dr) |
™ L M(S:h2) 0
< i (w0 JIK(#G 7 +0) = K(t, s +v)| dlal(v) dr)

m(s,ha)—T

0
< i sup { [IK(t,r +v) — K(t, s+ v)| d|a|(v) }.
re[m(s,h2),M(s,h2)]—7

It holds 0 < d;‘ﬁ‘ < 1. As K is continuous on [0,00)?, it is uniformly continuous on compact sets
and the above term tends to 0 for h — 0.
Defining first for all £,3 € [to, 00), heRy:

T 34+h 0

G(t;8,h) = E[X®@H) [ [X(F+0)db(0)dW ()],

§ —T

we continue to evaluate the terms from (1).
Due to lemma (2.25) it holds:

M(t,h1) 0 M(s;h2) 0
[ [X(r+v)daw)dr [ [X(r+wv)db(v)dW(r)]]

m(t,h1)—T m(s,ha)—T

M(t,h1) 0 M(s,h2) 0

= ”,1” | [ [EX@F+a) [ [X(+wv)db(v)dW(r)]da(a)drF|

Fubini m(t,h)—T m(s,ha)—T

M(t,hl) 0 o
< ||;1||2 (f : J1G(F +u;m(s, ha), |he|,v) | da|(a) dr
m t,h1 T
‘h. | 1 M(tahl) 0 0
< b LTIl s ()
m(t,h1)—T—T re[r+a—s—|ha|,7+u]
0
sup {| JK(r +u,r +v)db(u) | } d|a|(a) d|b|(v) dF
re[m(s,ha),M(s,h2)] —7
0
< sl sup {feo(r)] } da(@)
R re[f+a—s—|hza|,7+a]
00
sup {1 [ JE@+u,r+v)d]b|(u) dd|(v) | }

r€[m(s,h2),M(s,h2)] —7—7

As 0 < lim abihal < g3y 5||k[l2 = 0 and the suprema are bounded, the above term converges to
710 h—o0 ” ll2 h—o0

Furthermore, it holds:
M(s,h2) 0 0 0
i | EIX®) [ [X(r+v)db(v) dW(r)] = he zo(t — 5) ) | JK(s+u,s+v) db(u) db(v) |

m(s,h2) —T
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A tAM(s,h2) 0 0
fal ol mo(t—r) [ [K(r+u,r+v)db(u) db(v) dr

m(s7h2) -T =T
M(S,hg) 00
- f o(t—s) [ JK(s+u,s+v)db(u)db(v) dr|
m(35h2) —-T=T
A L M(s,hz2) 0 0
_ 2| 1 _ K(
choice of t,5,n TAllz Thal | m(sfh) o(t—r 7Tf7Tf (r + u,r + v) db(u) db(v) dr
M(s,h2) 00
— [ m(t—s) [ [K(s+u,s+v)db(u)dbv)dr|
m(s,ha) —T—T
00
< ﬁflll ( |zo(t — 5)] sup  {| [ [K(r+u,r+v)—K(s+u,s+v)db(u)dbv) |}
2 re[m(s,ha,M(s,h2)l-7—7
00
+ sup {|zo(t —7) —z0(t —9) |} sup {| | [K(+u,r+v)db(u)dbv)|} ).
Te[m(sth)vM(sth)] T [m(s h2) M(s hg)]—'r T
The last inequality holds as xg, K are continuous.
As Ili;fll [0,1] and as z, K are continuous, the above term converges to 0 for h — 0.

(7)  Collecting the O(||h||2)-terms from (4), (5), (6), we get:
0

’lllin T | K&+ ha, s+ ha) — K(t,5) — I JK(t+ u,s) da(u)

0 00
—he ( [K(t, s+ v) da(v) + zo(t — ) f JK(s+u,s+wv)db(u)db(v))| = 0.
This proves the differentiability of K on K7 _ (7).

As K is continuous on K7 (0), symmetric on K% A (—7), it has continuous derivatives on K3 (7).
O
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