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On Large Deviations in Testing
Ornstein-Uhlenbeck Type Models with Delay

P.V. Gapeev and U. Küchler∗

We obtain an explicit form of fine large deviation theorems for the log-likelihood ratio
in testing models with observed Ornstein-Uhlenbeck processes and get explicit rates of
decrease for error probabilities of Neyman-Pearson, Bayes, and minimax tests. We also
give expressions for the rates of decrease of error probabilities of Neyman-Pearson tests
in models with observed processes solving affine stochastic delay differential equations.

1 Introduction

The asymptotic properties of the likelihood ratio play an important role in statistical testing
problems. Large deviation results for the log-likelihood ratio processes are applied for the
investigation of tests in binary statistical experiments. Chernoff [4] proved large deviation
theorems for sums of i.i.d. observations. Birgé [3] applied these results to the investigation of
the rate of decrease for error probabilities of Neyman-Pearson tests. Generalizations of the large
deviation results to the case of semimartingale models and their applications are collected in
the monograph [13]. Linkov [14] proved large deviation theorems for extended random variables
and applied them to the investigation of general statistical experiments. The explicit form of
fine large deviation results in models with fractional Brownian motion was obtained in [15]. In
the present paper we obtain an explicit form of fine large deviation theorems of Chernoff type
for the likelihood ratio in testing models with Ornstein-Uhlenbeck processes.

In recent years several statistical problems for models with delay were studied. Dietz [5]
considered an Ornstein-Uhlenbeck type model with exponential memory and proved the lo-
cal asymptotically mixed normality (in an extended sense) of the suitably normalized model.
Gushchin and Küchler [6] - [8] studied local asymptotic properties of the likelihood function
in (two-parameter) models with a special case of linear stochastic delay differential equation.
Putschke [17] continued this investigation for the case of multi-dimensional parameter model
with affine delay equations. Küchler and Kutoyants [11] studied the asymptotic behavior of
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maximum likelihood and Bayesian estimators of delay in a simple linear Orstein-Uhlenbeck type
model. Küchler and Vasil’ev [12] investigated almost sure consistency and asymptotic normal-
ity of sequential estimators in a multiparameter model with linear delay equation. Gushchin
and Küchler [9] derived conditions under which a model with affine stochastic delay differential
equation satisfies the local asymptotic normality property and where the maximum likelihood
and Bayesian estimators of a parameter are asymptotically normal and efficient. In this pa-
per we consider the problem of testing hypotheses and study the asymptotic behavior of error
probabilities for Neyman-Pearson tests in Ornstein-Uhlenbeck type models with delay.

The paper is organized as follows. In Section 2 we cite fine large deviation results for the
likelihood ratio process and their applications to the investigation of the rates of decrease for
error probabilities of Neyman-Pearson, Bayes, and minimax tests (cf. [13] - [15]). In Section 3
by means of explicit expressions for the Hellinger integrals we obtain an explicit form of fine
large deviation results in the model of testing hypotheses about the parameter of an observed
Ornstein-Uhlenbeck process and apply them to the investigation of the rate of decrease for error
probabilities of the tests mentioned above. In Section 4 we get the rates of decrease of error
probabilities of Neyman-Pearson tests in models with processes solving affine stochastic delay
differential equations and give some illustrating examples.

2 Large deviation theorems and their applications

Suppose that on some filtered probability space (Ω,F , (Ft)t≥0, P0, P1) there exists a continu-
ously updated process X = (Xt)t≥0 generating the filtration (Ft)t≥0 , i.e. Ft = σ{Xs | 0 ≤ s ≤
t} for all t ≥ 0. Let H0 and H1 be two statistical hypotheses under which the distribution
of the observed process X = (Xt)t≥0 is given by the measures P0 and P1 , respectively, and
we will consider the problem of testing the hypothesis H0 against its alternative H1 . In this
section we cite some known notions and results (see e.g. [13] - [15]).

2.1. Suppose that the measures P0 and P1 are locally equivalent on the filtration (Ft)t≥0

and introduce the log-likelihood ratio process Λ = (Λt)t≥0 defined as the logarithm of Radon-
Nikodym derivative:

Λt = log
d(P1|Ft)

d(P0|Ft)
(2.1)

and the process H(ε) = (Ht(ε))t≥0 which is the Hellinger integral of restrictions P1|Ft and
P0|Ft of order ε ∈ 〈−∞,∞〉 given by:

Ht(ε) := Ht(ε; P1, P0) = E0[exp(εΛt)] (2.2)

for all t ≥ 0 (see e.g. [10; Chapter IV, Section 1]). Note that the relation Ht(ε; P0, P1) =
Ht(1− ε; P1, P0) holds for all t ≥ 0 and ε ∈ 〈−∞,∞〉 .

We will say that the Hellinger integral (2.2) satisfies the regularity condition if for some
function ψt , t ≥ 0, such that ψt →∞ as t →∞ , the (possibly infinite) limit:

lim
t→∞

ψ−1
t log Ht(ε) = κ(ε) (2.3)

exists for all ε ∈ 〈−∞,∞〉 , and κ(ε) is a strictly convex and differentiable function on 〈ε−, ε+〉
with:

γ− := lim
ε↓ε−

κ′(ε) < γ+ := lim
ε↑ε+

κ′(ε) (2.4)
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and
ε− := inf{ε |κ(ε) < ∞} < ε+ := sup{ε |κ(ε) < ∞}. (2.5)

It is easily seen that ε− ≤ 0 and ε+ ≥ 1. If ε− < 0 then the derivative γ0 := κ′(0) is
well-defined, and if ε+ > 1 then the derivative γ1 := κ′(1) is well-defined too.

Let us introduce I(γ) which is the Legendre-Fenchel transform of the function κ(ε) defined
by:

I(γ) := sup
ε

(εγ − κ(ε)) (2.6)

(see e.g. [18]), and the quantities:

Γ0 := γ0 · χ(ε− < 0) + γ− · χ(ε− = 0) (2.7)

Γ1 := γ1 · χ(ε+ > 1) + γ+ · χ(ε+ = 1) (2.8)

where χ(·) denotes the indicator function.

The following assertion is a fine large deviation theorem of Chernoff type for the log-
likelihood ratio process Λ = (Λt)t≥0 .

Proposition 2.1. Let the regularity condition (2.3) be satisfied. Then the following con-
clusions hold:

(i) if Γ0 < γ+ then for all γ ∈ 〈Γ0, γ+〉 we have:

lim
t→∞

ψ−1
t log P0[ψ

−1
t Λt > γ] = lim

t→∞
ψ−1

t log P0[ψ
−1
t Λt ≥ γ] = −I(γ) ∈ 〈−∞, 0〉; (2.9)

(ii) if ε− < 0 and γ− < γ0 then for all γ ∈ 〈γ−, γ0〉 we have:

lim
t→∞

ψ−1
t log P0[ψ

−1
t Λt < γ] = lim

t→∞
ψ−1

t log P0[ψ
−1
t Λt ≤ γ] = −I(γ) ∈ 〈−∞, 0〉; (2.10)

(iii) if γ− < Γ1 then for all γ ∈ 〈γ−, Γ1〉 we have:

lim
t→∞

ψ−1
t log P1[ψ

−1
t Λt < γ] = lim

t→∞
ψ−1

t log P1[ψ
−1
t Λt ≤ γ] = γ − I(γ) ∈ 〈−∞, 0〉; (2.11)

(iv) if ε+ > 1 and γ1 < γ+ then for all γ ∈ 〈γ1, γ+〉 we have:

lim
t→∞

ψ−1
t log P1[ψ

−1
t Λt > γ] = lim

t→∞
ψ−1

t log P1[ψ
−1
t Λt ≥ γ] = γ − I(γ) ∈ 〈−∞, 0〉. (2.12)

This assertion is proved by means of large deviation theorems for extended random variables
(see [14]).

2.2. The result cited above gives the opportunity to investigate the rate of decrease of error
probabilities for some statistical tests. In the rest of the section we refer some results about
the asymptotic behavior of error probabilities for Neyman-Pearson, Bayes, and minimax tests.
The proofs of these results can be found in [14] (see also references in [15]).

Let δt(αt) be a Neyman-Pearson test of the level αt ∈ 〈0, 1〉 for testing hypotheses H0 and
H1 under the observations Xs , 0 ≤ s ≤ t (see e.g. [13; Chapter II, Section 2.1]). The following
assertion describes the rate of decrease for error probabilities of the first and second kind αt

and β(αt) for the test δt(αt) under the regularity condition (2.3).
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Proposition 2.2. Let (2.3) be satisfied with Γ0 < Γ1 . Then the following conclusions hold:
(i) for all a ∈ 〈I(Γ0), I(Γ1)〉 we have:

lim
t→∞

ψ−1
t log αt = −a if and only if lim

t→∞
ψ−1

t log β(αt) = −b(a) (2.13)

where
b(a) := a− γ(a) ∈ 〈I(Γ1)− Γ1, I(Γ0)− Γ0〉 (2.14)

and γ(a) is a unique solution of the equation I(γ) = a with respect to γ ∈ 〈Γ0, Γ1〉;
(ii) for all a ∈ [0, I(Γ0)] we have:

lim
t→∞

ψ−1
t log αt = −a implies lim sup

t→∞
ψ−1

t log β(αt) ≤ Γ0 − I(Γ0) (2.15)

and for all a ∈ [I(Γ1),∞] we have:

lim
t→∞

ψ−1
t log αt = −a implies lim inf

t→∞
ψ−1

t log β(αt) ≥ Γ1 − I(Γ1); (2.16)

(iii) for all b ∈ [0, I(Γ1)− Γ1] we have:

lim
t→∞

ψ−1
t log β(αt) = −b implies lim sup

t→∞
ψ−1

t log αt ≤ −I(Γ1) (2.17)

and for all b ∈ [I(Γ0)− Γ0,∞] we have:

lim
t→∞

ψ−1
t log β(αt) = −b implies lim inf

t→∞
ψ−1

t log αt ≥ −I(Γ0). (2.18)

These results under more resrtictive conditions were proved in [13]. The only if part in
(2.13) for the sequence of observed i.i.d. random variables was proved by Birgé [3].

Let δπ
t be a Bayes test for testing hypotheses H0 and H1 under the observations Xs ,

0 ≤ s ≤ t , where π and 1 − π , π ∈ [0, 1], are the a priori probabilities of the hypotheses H0

and H1 , respectively (see e.g. [13; Chapter II, Section 2.1]). The following assertion describes
the rate of decrease for error probabilities of the first and second kind αt(δ

π
t ) and β(δπ

t ), and
the risk e(δπ

t ) for the test δπ
t under the regularity condition (2.3).

Proposition 2.3. Let (2.3) be satisfied with Γ0 < 0 < Γ1 . (We suppose that π does not
depend on t.) Then the following relations hold:

lim
t→∞

ψ−1
t log α(δπ

t ) = lim
t→∞

ψ−1
t log β(δπ

t ) = lim
t→∞

ψ−1
t log e(δπ

t ) = −I(0). (2.19)

This assertion was proved by Chernoff [4] for the case of i.i.d. random variables. Under
some other conditions the last equality in (2.19) was proved by Vajda [19].

Let δ∗t be a minimax test for testing hypotheses H0 and H1 under the observations Xs ,
0 ≤ s ≤ t (see e.g. [2; Chapter III, Section 4]). The following assertion describes the rate of
decrease for error probabilities of the first and second kind αt(δ

∗
t ) and β(δ∗t ), and the risk e(δ∗t )

for the test δ∗t under the regularity condition (2.3).

Proposition 2.4. Suppose that (2.3) is satisfied with Γ0 < 0 < Γ1 . Then we have:

lim
t→∞

ψ−1
t log α(δ∗t ) = lim

t→∞
ψ−1

t log β(δ∗t ) = lim
t→∞

ψ−1
t log e(δ∗t ) = −I(0). (2.20)
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3 Fine results for Ornstein-Uhlenbeck models

In this section we consider a model where the observation process X = (Xt)t≥0 satisfies the
following stochastic differential equation:

dXt = −αXt dt + dWt (X0 = x) (3.1)

where W = (Wt)t≥0 is a standard Wiener process and α ≥ 0, x ∈ R are some given constants.
We will study the problem of testing the following simple hypotheses:

H0 : α = α0 against the alternative H1 : α = α1. (3.2)

3.1. Since equation (3.1) has a (pathwise) unique continuous solution under both hypotheses
(3.2), by means of Girsanov formula for diffusion-type processes (see e.g. [16; Theorem 7.19]),
we may conclude that measures P0 and P1 are locally equivalent on (Ft)t≥0 , and under the
hypothesis H0 the log-likelihood ratio process (2.1) admits the representation:

Λt = (α0 − α1)

∫ t

0

Xs dWs − (α0 − α1)
2

2

∫ t

0

X2
s ds. (3.3)

Applying Itô’s formula (see e.g. [10; Chapter I, Theorem 4.57]), from (3.1) it follows that under
H0 we have:

X2
t = x2 + 2

∫ t

0

Xs dXs + t = x2 − 2α0

∫ t

0

X2
s ds + 2

∫ t

0

Xs dWs + t (3.4)

and hence: ∫ t

0

Xs dWs =
1

2

(
X2

t − x2 + 2α0

∫ t

0

X2
s ds− t

)
. (3.5)

Thus, substituting the expression (3.5) into (3.3), we obtain that the Hellinger integral (2.2)
has the expression:

Ht(ε) = E0

[
exp

(
ε(α0 − α1)

2

(
X2

t − x2 + 2α0

∫ t

0

X2
s ds− t

)
− ε(α0 − α1)

2

2

∫ t

0

X2
s ds

)]

= exp

(
ε(α1 − α0)

2
(x2 + t)

)
E0

[
exp

(
ε(α0 − α1)

2
X2

t −
ε(α2

1 − α2
0)

2

∫ t

0

X2
s ds

)]
. (3.6)

In order to derive fine large deviation results from the previous section for the model (3.1) -
(3.2) we should find a function ψt , t ≥ 0, for which the regularity condition (2.3) is satisfied. For
this, we will investigate the asymptotic behavior of the Hellinger integral (3.6) under t →∞ .

3.2. First, let us suppose that in (3.1) - (3.2) we have α1 > α0 = 0. In this case the
Hellinger integral (3.6) takes the form:

Ht(ε) = exp
(εα1

2
(x2 + t)

)
E0

[
exp

(
−εα1

2
X2

t −
εα2

1

2

∫ t

0

X2
s ds

)]
. (3.7)
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Then assuming that ε > 0 and denoting ϕ := εα1/2 and ξ := ±√εα1 , by means of solving the
corresponding Feynman-Kac equation, we obtain that the logarithm of the Hellinger integral
(3.7) admits the representation:

log Ht(ε) =ϕ(x2 + t) (3.8)

− x2[ξ sinh(ξt) + 2ϕ cosh(ξt)]

2[cosh(ξt) + 2ϕξ−1 sinh(ξt)]
− 1

2
log[cosh(ξt) + 2ϕξ−1 sinh(ξt)]

(cf. the formula (1.9.3) in [1; Chapter II, Section 1]), and it is also shown that for ε < 0 and
sufficiently large t > 0 in (3.7) we have Ht(ε) = ∞ . Hence, substituting the expression (3.8)
into (2.3), taking ψt = α1t and letting t go to ∞ , we get:

κ(ε) = −
√

ε(1−√ε)

2
(3.9)

which is a strictly convex function 〈ε−, ε+〉 with:

ε− = inf{ε |κ(ε) < ∞} = 0, ε+ = sup{ε |κ(ε) < ∞} = ∞ (3.10)

and

κ′(ε) = − 1

4
√

ε
+

1

2
, γ− = −∞, γ+ =

1

2
, γ1 := κ′(1) =

1

4
. (3.11)

It is easily seen that the function I(γ) from (2.6) takes the expression:

I(γ) := sup
ε>0

(εγ − κ(ε)) =
1

8(1− 2γ)
(3.12)

and the quantities (2.7) - (2.8) are given by:

Γ0 = γ− = −∞, Γ1 = γ1 =
1

4
with I(Γ0) = 0, I(Γ1) =

1

4
. (3.13)

Since in (3.13) we have Γ0 < 0 < Γ1 , from Propositions 2.1 - 2.4 and formulas (3.9) - (3.13)
it follows that the following assertion holds.

Theorem 3.1. In the model (3.1) of testing hypotheses (3.2) with α1 > α0 = 0 the following
conclusions are satisfied with the functions ψt = α1t, t ≥ 0, and I(γ) from (3.12), and the
constants Γi , I(Γi), i = 0, 1, from (3.13):

(i) for all γ ∈ 〈−∞, 1/2〉 we have (2.9), for all γ ∈ 〈−∞, 1/4〉 we have (2.11), and for all
γ ∈ 〈1/4, 1/2〉 we have (2.12);

(ii) for all a ∈ 〈0, 1/4〉 we have (2.13) - (2.14) with b(a) = a− 1/2 + 1/(16a);
(iii) for a = 0 we have (2.15), for all a ∈ [1/4,∞] we have (2.16), for b = 0 we have

(2.17), and for b = ∞ we have (2.18);
(iv) in the Bayes test (when π does not depend on t) we have (2.19), and for the minimax

test (2.20) holds with I(0) = 1/8.

3.3. Let us now suppose that α1 > α0 > 0. In this case assuming that ε > −α0/[2(α2
1 −

α2
0)] and denoting ϕ := ε(α1 − α0)/2 and ξ := ±

√
2ε(α2

1 − α2
0)/α0 + 1 which implies that
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(ξ2 − 1)α0/4 = ε(α2
1 − α2

0)/2, by means of solving the corresponding Feynman-Kac equation,
we obtain that the logarithm of the Hellinger integral (3.6) admits the representation:

log Ht(ε) =ϕ(x2 + t) +
α0t

2
+

x2

4
− 1

2
log[(1 + 4ϕ)ξ−1 sinh(α0ξt) + cosh(α0ξt)] (3.14)

+
x2

4ξ−1 sinh(α0ξt)

(
1

(1 + 4ϕ)ξ−1 sinh(α0ξt) + cosh(α0ξt)
− cosh(α0ξt)

)

(cf. the formula (1.9.7) in [1; Chapter II, Section 7]), and it is also shown that for ε <
−α0/[2(α2

1−α2
0)] and sufficiently large t > 0 in (3.6) we have Ht(ε) = ∞ . Hence, substituting

the expression (3.14) into (2.3), taking ψt = (α1 − α0)t and letting t go to ∞ , we get:

κ(ε) =
ε

2
−

√
2εα0(α2

1 − α2
0) + α2

0

2(α1 − α0)
+

α0

2(α1 − α0)
(3.15)

which is a strictly convex function on 〈ε−, ε+〉 with:

ε− = inf{ε : κ(ε) < ∞} = − α0

2(α2
1 − α2

0)
, ε+ = sup{ε : κ(ε) < ∞} = ∞ (3.16)

and

κ′(ε) =
1

2
− α0(α0 + α1)

2
√

2εα0(α2
1 − α2

0) + α2
0

, γ− = −∞, γ+ =
1

2
, (3.17)

γ0 := κ′(0) =
1− α0 − α1

2
, γ1 := κ′(1) =

1

2
− α0(α0 + α1)

2
√

2α0(α2
1 − α2

0) + α2
0

. (3.18)

It is easily seen that the function I(γ) from (2.6) takes the expression:

I(γ) := sup
ε>ε−

(εγ − κ(ε)) =
α0(1− 2γ − α0 − α1)

2

4(α2
1 − α2

0)(1− 2γ)
(3.19)

and the quantities (2.7) - (2.8) are given by:

Γ0 = γ0 =
1− α0 − α1

2
, Γ1 = γ1 =

1

2
− α0(α0 + α1)

2
√

2α0(α2
1 − α2

0) + α2
0

(3.20)

with

I(Γ0) = 0, I(Γ1) =
(α0 −

√
2α0(α2

1 − α2
0) + α2

0)
2

4(α1 − α0)
√

2α0(α2
1 − α2

0) + α2
0

. (3.21)

Since in (3.20) we have Γ0 < Γ1 , from Propositions 2.1 - 2.4 and formulas (3.15) - (3.21) it
follows that the following assertion holds.

Theorem 3.2. In the model (3.1) of testing hypotheses (3.2) with α1 > α0 > 0 the following
conclusions are satisfied with the functions ψt = (α1 − α0)t, t ≥ 0, and I(γ) from (3.19), and
the constants γ− , γ+ , γi , Γi , I(Γi), i = 0, 1, from (3.17) - (3.18) and (3.20) - (3.21):

(i) for all γ ∈ 〈Γ0, γ+〉 we have (2.9), for all γ ∈ 〈γ−, γ0〉 we have (2.10), for all γ ∈ 〈γ−, Γ1〉
we have (2.11), and for all γ ∈ 〈γ1, γ+〉 we have (2.12);
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(ii) for all a ∈ 〈0, I(Γ1)〉 where I(Γ1) is given by (3.21) we have (2.13) - (2.14) with:

b(a) =
1− α0 − α1

2
− α0 + α1

α0

(
a(α1 − α0)−

√
aα0(α1 − α0) + a2(α1 − α0)2

)
; (3.22)

(iii) for a = 0 we have (2.15), for all a ∈ [I(Γ1),∞] we have (2.16), for b ∈ [0, I(Γ1)− Γ1]
we have (2.17), and for b = [I(Γ0)− Γ0,∞] we have (2.18);

(iv) if Γ0 < 0 < Γ1 then in the Bayes test (when π does not depend on t) we have (2.19),
and for the minimax test (2.20) holds with I(0) = α0(1− α0 − α1)

2/[4(α2
1 − α2

0)].

Remark 3.3. The cases α0 > α1 = 0 and α0 > α1 > 0 can be considered similarly as
above by virtue of the property Ht(ε; P0, P1) = Ht(1−ε; P1, P0) for all t ≥ 0 and ε ∈ 〈−∞,∞〉 .

4 Ornstein-Uhlenbeck type models with delay

In this section we consider a model where the observation process X = (Xt)t≥0 satisfies the
following stochastic differential equation:

dXt =

∫ 0

−r

Xt+s a(ds) dt + dWt (Xt = Zt for t ∈ [−r, 0]) (4.1)

where W = (Wt)t≥0 is a standard Wiener process independent of the initial process Z =
(Zt)t∈[−r,0] , and a(ds) is a finite signed measure on [−r, 0]. From the arguments in [9; Section 3]
it follows that for given W , Z and a(ds) there is a (pathwise) unique continuous process
X = (Xt)t≥−r satisfying (4.1). Let us denote by Ms the set of all signed measures such that a
stationary solution of (4.1) exists (for necessary and sufficient conditions for the existence of a
stationary solution of (4.1) see [7] and [9; Section 3]). We will study the problem of testing the
following simple hypotheses:

H0 : a(ds) ≡ a0(ds) against the alternative H1 : a(ds) ≡ a1(ds) (4.2)

where ai(ds) ∈Ms for i = 0, 1 and a0(ds) 6≡ a1(ds).

4.1. Using the arguments in [9; Section 3], we may conclude that equation (4.1) has a
unique continuous stationary solution under both hypotheses (4.2), the measures P0 and P1

are locally equivalent on (Ft)t≥−r where Ft = σ{Xs | s ∈ [−r, t]} for all t ≥ −r (here we
set Ft = σ{Zs | s ∈ [−r, t]} for all t ∈ [−r, 0]), and by means of Girsanov-type formula (5.1)
in [9] we get that under the hypothesis H0 the log-likelihood ratio process (2.1) admits the
representation:

Λt = log
d(P1|F0)

d(P0|F0)
+

∫ t

0

Ys dWs − 1

2

∫ t

0

Y 2
s ds (4.3)

where the process Y = (Yt)t≥0 is defined by:

Yt =

∫ 0

−r

Xt+s [a1(ds)− a0(ds)] (4.4)

so that the Hellinger integral (2.2) takes the form:

Ht(ε) = E0

[
exp

(
ε log

d(P1|F0)

d(P0|F0)
+ ε

∫ t

0

Ys dWs − ε

2

∫ t

0

Y 2
s ds

)]
. (4.5)
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We should note that in the most cases it is rather difficult to check if the regularity condition
(2.3) is satisfied. Using the arguments in [13; Theorems 3.1.4, 3.2.2], we now describe the
asymptotic behavior of error probabilities for Neyman-Pearson tests.

Theorem 4.1. In the model (4.1) of testing hypotheses (4.2) where ai(ds) ∈Ms , i = 0, 1,
for Neyman-Pearson tests and the function ψt , t ≥ 0, given by:

ψt = E0

[
1

2

∫ t

0

Y 2
s ds

]
(4.6)

we have:
lim
t→∞

ψ−1
t log αt = 0 implies lim sup

t→∞
ψ−1

t log β(αt) ≤ −1 (4.7)

and if the condition:

Ht(ε
′; P1, P0) < ∞ for some ε′ < 0 and all t ≥ 0 (4.8)

is satisfied, then:

lim
t→∞

ψ−1
t log(1− αt) = 0 implies lim inf

t→∞
ψ−1

t log β(αt) ≥ −1. (4.9)

Proof. Since in the assumptions above ai(ds) ∈Ms for i = 0, 1, by means of the arguments
in [9; Sections 3, 5], we may conclude that there exists a positive constant B∗ depending on
a0(ds) (see [9; (3.13)]) and a constant Cr > 0 from [9; (5.2)] depending only on r such that:

E0[Y
2
t ] ≥ CrB∗‖a1 − a0‖2

D (4.10)

for all t ≥ 0 (see the formula (5.7) in [9]), where ‖a1−a0‖D is the dual Lipschitz norm from [9;
(3.16)] being strictly positive when a0(ds) 6≡ a1(ds). Thus, changing the order of integration
and expectation in (4.6), from (4.10) we conclude that ψt →∞ under t →∞ .

Let us take 0 < ε < δ/2 < δ < 1 (when (4.8) holds, also ε′ ≤ δ < δ/2 < ε < 0) and
p = δ/ε , q = δ/(δ− ε) such that 1/p+ 1/q = 1. Then standard tricks with Hölder’s inequality
(see e.g. [13; Theorem 3.1.4]) imply that for the Hellinger integral (4.5) we have:

Ht(ε) = H0(δ)
ε/δ

(
E0

[
exp

(
− ε

(δ − ε)

δ(1− δ)

2

∫ t

0

Y 2
s ds

)])(δ−ε)/δ

(4.11)

and applying Jensen’s inequality to the right-hand side of (4.11), we get:

Ht(ε) = H0(δ)
ε/δ

(
E0

[
exp

(
−sgn(δ)

δ(1− δ)

2

∫ t

0

Y 2
s ds

)])ε/δ

. (4.12)

Observe that from Jensen’s and Lyapunov’s inequalities as well as by the monotonicity of
logarithm it follows that for given δ we have:

log E0

[
exp

(
−δ(1− δ)

2

∫ t

0

Y 2
s ds

)]
≤ −δ(1− δ)E0

[
1

2

∫ t

0

Y 2
s ds

]
. (4.13)
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Thus, letting t go to ∞ in (4.12), using the property ψt →∞ , t →∞ , and the fact that H0(ε)
in (4.5) is finite (since the restrictions P0|F0 and P1|F0 are equivalent), by means of (4.13) we
obtain:

lim sup
ε↓0

lim sup
t→∞

ε−1ψ−1
t log Ht(ε) (4.14)

≤ lim sup
δ↓0

lim sup
t→∞

δ−1ψ−1
t log E0

[
exp

(
−δ(1− δ)

2

∫ t

0

Y 2
s ds

)]
≤ −1

and (when (4.8) holds) also:

lim inf
ε↑0

lim inf
t→∞

ε−1ψ−1
t log Ht(ε) (4.15)

≥ lim inf
δ↑0

lim inf
t→∞

δ−1ψ−1
t log E0

[
exp

(
−δ(1− δ)

2

∫ t

0

Y 2
s ds

)]
≥ −1.

Therefore, by virtue of [13; Theorems 2.3.1, 2.3.3], we may conclude that (4.7) and (when (4.8)
holds, also (4.9)) are satisfied.

Corollary 4.2. From the arguments above it is easily seen that if condition (4.8) is satisfied,
then we have the following more exact result:

lim
t→∞

ψ−1
t log αt = lim

t→∞
ψ−1

t log(1− αt) = 0 implies lim
t→∞

ψ−1
t log β(αt) = −1. (4.16)

4.2. In the rest of the section we give some examples of models of the type (4.1) - (4.2) in
which condition (4.8) holds.

Example 4.3. Suppose that in (4.1) - (4.2) Zt = 0 for t ∈ [−r, 0] and ai(ds) ≡ −αiδ{0}
where αi ≥ 0 for i = 0, 1, α1 > α0 > 0, and δ{0} denotes the Dirac measure in the point
0. Then from the results of Section 3 it follows that condition (4.8) is satisfied e.g. with
ε′ = −α0/[4(α2

1 − α2
0)], so that we have the exact result (4.16).

Example 4.4. Suppose that in (4.1) - (4.2) Zt = 0 for t ∈ [−r, 0], a0(ds) ≡ −α0δ{0} and
a1(ds) ≡ −α1δ{−r} with α1 > α0 > 0, i.e. we consider a problem of testing hypothesis ’there is
no delay’ against the alternative ’there is a delay’. Some statistical problems for this type of
models were considered in [6] and [11]. Let us introduce the process M = (Mt)t≥0 given by:

Mt =

∫ t

0

(α0Xs − α1Xs−r) dWs with 〈M〉t =

∫ t

0

(α0Xs − α1Xs−r)
2 ds. (4.17)

Then it follows that the Hellinger integral (4.5) takes the form:

Ht(ε) = E0 [exp (εMt − ε〈M〉t/2)] (4.18)

(with H0(ε) = 1 since Z ≡ 0), and when the following conditions hold:

E0

[
exp

(
2ε2〈M〉t

)]
< ∞ and E0 [exp (ε(2ε− 1)〈M〉t)] < ∞ (4.19)

by means of Cauchy-Schwarz inequality, for (4.18) we have:

Ht(ε) ≤
{
E0

[
exp

(
2εMt − (2ε)2〈M〉t/2

)]}1/2 {E0 [exp (ε(2ε− 1)〈M〉t)]}1/2 . (4.20)
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From the formula (1.9.3) in [1; Chapter II, Section 7] it is easily seen that:

E0

[
exp

(
α0

8

∫ t

0

X2
s ds

)]
< ∞ (4.21)

and since under hypothesis H0 we have:

∫ t

0

(α0Xs − α1Xs−r)
2 ds ≤ 2α2

0

∫ t

0

X2
s ds + 2α2

1

∫ t

0

X2
s−r ds ≤ 2(α2

0 + α2
1)

∫ t

0

X2
s ds (4.22)

we may conclude that conditions 4ε2(α2
0+α2

1) ≤ α0/8 and 2ε(2ε−1)(α2
0+α2

1) ≤ α0/8 guarantee
that (4.19) - (4.20) holds and (4.18) is finite. Thus, condition (4.8) is satisfied e.g. with
ε′ = −α0/[128(α2

0 + α2
1)], so that we have the exact result (4.16).
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