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Abstract

Modeling and forecasting dynamic (or time-varying) covariance matrices has many

important applications in finance, such as Markowitz portfolio selection. A popular tool

to this end are multivariate GARCH models. Historically, such models did not perform

well in large dimensions due to the so-called curse of dimensionality. The recent DCC-NL

model of Engle et al. (2019) is able to overcome this curse via nonlinear shrinkage estimation

of the unconditional correlation matrix. In this paper, we show how performance can be

increased further by using open/high/low/close (OHLC) price data instead of simply using

daily returns. A key innovation, for the improved modeling of not only dynamic variances

but also of dynamic covariances, is the concept of a regularized return, obtained from a

volatility proxy in conjunction with a smoothed sign (function) of the observed return.

KEY WORDS: Dynamic conditional correlations; intraday data; Markowitz

portfolio selection; multivariate GARCH; nonlinear shrinkage.
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1 Introduction

Modeling and forecasting dynamic (or time-varying) covariance matrices of a vector of asset

returns has many important applications in finance, such as Markowitz portfolio selection.

A popular tool to this end are multivariate GARCH models. Historically, such models did

not perform well in large dimensions due to the so-called curse of dimensionality. The recent

DCC-NL model of Engle et al. (2019) is able to overcome this curse via nonlinear shrinkage (NL)

estimation of the unconditional correlation matrix.

Just as the original dynamic conditional correlations (DCC) model of Engle (2002), also

the DCC-NL model is (primarily) based on daily returns, for the modeling of both univariate

dynamic variances and the dynamic (pseudo-)correlation matrix; those quantities are then

combined for the modeling of the dynamic covariance matrix. It has been known for quite some

time that the use of intraday return data can lead to improved modeling of univariate dynamic

variances. Even if one ‘only’ uses the four pieces of information given by open/high/low/close

(OHLC) prices, the improvements can be noticeable; for example, see Garman and Klass (1980)

and Molnár (2016). Further improvements can be obtained using 5- or 10-minute returns; for

example, see Hansen et al. (2012). The intuition is that using an improved volatility proxy, such

as the high-low range (even though very simple) or realized volatility (at the other end of the

sophistication spectrum) as an innovation in a GARCH(1,1) model works better than using the

simple-minded volatility proxy of the squared daily return, which is the original way of doing it.

Therefore, it is natural to use such an approach in the first step (out of three) of a DCC(-NL)

model: the modeling of univariate dynamic variances; and, indeed, doing so yields better forecasts

of dynamic covariance matrices, as we find empirically. But why stop there? The second step of

a DCC(-NL) model consists of modeling the dynamic (pseudo-)correlation matrix where the

innovation is the outer product of the vector of daily (devolatized) returns. So a further idea

is to find a better innovation, in this second step as well, that is based on volatility proxies

instead of returns. The counterpart of a volatility proxy itself is the squared return. Hence, it

is natural to take the square root of the volatility proxy, together with sign of the return, as

the counterpart of the return itself. This already works well, but a certain ‘smoothed’ sign of

the return, together with the square root of the volatility proxy works even better, which is

motivated by both theoretical reasoning and empirical findings. We call this construct regularized

return and it constitutes a key innovation of our DCC(-NL) models based on intraday data.

Importantly, our models remain computationally feasible also for large dimensions ofN ≥ 1000

assets. In contrast, the HEAVY-DCC model, which is also based on intraday data, can be

applied only to small investment universes; for example, see the empirical analyses with N ≤ 10

of Xu (2019) and Noureldin et al. (2012).

The remainder of the paper is organized as follows. Section 2 briefly reviews DCC(-NL)

models. Section 3 details our new models based on intraday data. Section 4 gives a brief
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description of existing variance estimators we deem the most useful for our purpose. Section 5

describes the empirical methodology and presents the results of an out-of-sample backtest exercise

based on real-life stock return data. Section 6 concludes. An appendix contains all figures and

tables.

2 Large Dynamic Covariance Matrices

2.1 Notation

In what follows, the subscript i indexes the assets and covers the range of integers from 1 to N ,

where N denotes the dimension of the investment universe; the subscript t indexes the dates

and covers the range of integers from 1 to T , where T denotes the sample size. The notation

Cor(·) represents the correlation matrix of a random vector, the notation Cov(·) represents the

covariance matrix of a random vector, and the notation Diag(·) represents the function that sets

to zero all the off-diagonal elements of a matrix. Furthermore, we use the following notations:

• oi,t: observed opening price (“open”) for asset i at date t, stacked into ot ..= (o1,t, . . . , oN,t)
′

• hi,t: observed highest price (“high”) transacted for asset i at date t, stacked into

ht ..= (h1,t, . . . , hN,t)
′

• li,t: observed lowest price (“low”) transacted for asset i at date t, stacked into lt ..=

(l1,t, . . . , lN,t)
′

• ci,t: observed closing price (“close”) for asset i at date t, stacked into ct ..= (c1,t, . . . , cN,t)
′

• ri,t: observed return for asset i at date t, stacked into rt ..= (r1,t, . . . , rN,t)
′

• r̃i,t: regularized return for asset i at date t, stacked into r̃t ..= (r̃1,t, . . . , r̃N,t)
′

• xi,t: underlying time-series for covariance matrix estimation; thus xi,t ∈ {ri,t, r̃i,t}
• d2

i,t
..= Var(xi,t|Ft−1): conditional variance of the ith asset at t

• si,t ..= xi,t/di,t: devolatilized series, stacked into st ..= (s1,t, ..., sN,t)
′

• Dt: the N -dimensional diagonal matrix whose ith diagonal element is di,t

• Rt ..= Cor(xt|Ft−1) = Cov(st|Ft−1): conditional correlation matrix at date t

• Σt
..= Cov(xt|Ft−1): conditional covariance matrix at date t; thus Diag(Σt) = D2

t

• C ..= E(Rt) = Cor(xt) = Cov(st): unconditional correlation matrix

Here, the symbol ..= is a definition sign where the left-hand side is defined to be equal to

the right-hand side, whereas the symbol =.. (to be used below) is a definition sign where the

right-hand side is defined to be equal to the left-hand side.

Remark 2.1 (Terminology). Note that in this paper, the terms “dynamic” and “conditional”

are interchangeable. As an example a dynamic covariance matrix means the same thing as a

conditional covariance matrix, such as the covariance matrix Σt defined above; analogously for a
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correlation matrix and, necessarily then, also for any entries of such matrices, such as a variance,

a covariance, or a correlation.

2.2 Averaged Forecasting of Dynamic Covariance Matrices

In our empirical analysis, as is common in the literature, we use (intra-)daily data to forecast

dynamic covariance matrices but then hold the portfolio for an entire ‘month’ (that is, for a

period of 21 subsequent trading days) before updating it again. This creates a certain ‘mismatch’

for dynamic models that assume that the (conditional) covariance matrix changes at the forecast

frequency, that is, at the daily level: Why use a covariance matrix forecasted only for the next

day to construct a portfolio that will then be held for an entire month?

To address this mismatch, we use an ‘averaged-forecasting’ approach for all dynamic

models; this approach was first suggested by De Nard et al. (2020). At portfolio construction

date k, forecast the covariance matrix for all days of the upcoming month, that is, for

t = k, k + 1, . . . , k + 20; then average those 21 forecasts and use this ‘averaged forecasts’

to construct the portfolio at date k.

To model conditional variances, we use a GARCH(1,1) process:

d2
i,t = ωi + δ1,ix

2
i,t−1 + δ2,id

2
i,t−1 , (2.1)

where (ωi, δ1,i, δ2,i) are the variable-specific GARCH(1,1) parameters. We assume that the

evolution of the conditional correlation matrix over time is governed as in the DCC-NL model of

Engle et al. (2019):

Qt = (1− δ1 − δ2)C + δ1st−1s
′
t−1 + δ2Qt−1 , (2.2)

where (δ1, δ2) are the DCC-NL parameters analogous to (δ1,i, δ2,i). The matrix Qt can be

interpreted as a conditional pseudo-correlation matrix, or a conditional covariance matrix of

devolatized residuals. It cannot be used directly because its diagonal elements, although close to

one, are not exactly equal to one. From this representation, we obtain the conditional correlation

matrix and the conditional covariance matrix as

Rt ..= Diag(Qt)
−1/2 Qt Diag(Qt)

−1/2 (2.3)

Σt
..= DtRtDt , (2.4)

and the data-generating process is driven by the multivariate normal law

xt|Ft−1 ∼ N (0,Σt) . (2.5)

Hence, to determine the average of the L forecasts of the conditional covariance matrices

Σk+l = Dk+lRk+lDk+l, for l = 0, 1, . . . , L− 1, we suggest a three-step approach where Dk+l and

Rk+l can be forecasted separately.
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2.2.1 Step One: Forecasting Conditional Univariate Volatilities

According to Baillie and Bollerslev (1992), the multi-step ahead forecasts of the i = 1, . . . , N

GARCH(1,1) volatilities can be written as

E[d2
i,k+l|Fk−1] =

l−1∑
j=0

ωi(δ1,i + δ2,i)
j + (δ1,i + δ2,i)

lE[d2
i,k|Fk−1] , (2.6)

where E[d2
i,k|Fk−1] = ωi + δ1,ix

2
i,k−1 + δ2,id

2
i,k−1. Therefore, we compute the forecasts of the

N -dimensional diagonal matrix Dk+l as

E[Dk+l|Fk−1] = Diag
(√

E[d2
1,k+l|Fk−1], . . . ,

√
E[d2

N,k+l|Fk−1]
)
. (2.7)

2.2.2 Step Two: Forecasting Conditional Correlation Matrices

For the multivariate case we consider the approach of Engle and Sheppard (2001) where the

multi-step ahead forecasts of the conditional correlation matrices are computed as

E[Rk+l|Fk−1] =
l−1∑
j=0

(1− δ1 − δ2)C(δ1 + δ2)j + (δ1 + δ2)lE[Rk|Fk−1] , (2.8)

using the approximation E[Rk|Fk−1] ≈ E[Qk|Fk−1]. In practice, the diagonal elements of the

matrix C tend to deviate from one slightly, in spite of the fact that devolatized returns are used

as inputs. Therefore, every column and every row has to be divided by the square root of the

corresponding diagonal entry, so as to produce a proper correlation matrix.

2.2.3 Step Three: Averaging Forecasted Conditional Covariance Matrices

By using the notation Σ̂k+l
..= E[Σk+l|Fk−1], R̂k+l

..= E[Rk+l|Fk−1] and D̂k+l
..= E[Dk+l|Fk−1]

we finally calculate Σ̂k+l
..= D̂k+lR̂k+lD̂k+l, for l = 0, 1, . . . , L−1. Therefore, to get the estimated

covariance matrix on portfolio construction day k we average over the L forecasts:

Σ̂k
..=

1

L

L−1∑
l=0

Σ̂k+l . (2.9)

2.3 Estimation of Parameters

Note that in practice, the GARCH parameters in step one and the DCC(-NL) parameters in

step two need to be estimated first. In doing so, we mainly follow the suggestions of Engle et al.

(2019, Section 3).

In step one, the GARCH parameters of Equaton (2.1) are estimated using (pseudo) maximum

likelihood assuming normality. This results in estimators (ŵi, δ̂1,i, δ̂2,i) that are used for

devolatizing returns and are also used for forecasting conditional variances via Equation (2.6).

In step two, the correlation-targeting matrix C of Equation (2.2) is estimated in one of

two ways. For DCC, we use the sample covariance matrix of the devolatized returns {st}; for
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DCC-NL we use nonlinear shrinkage applied to the {st}, with post-processing to enforce a proper

correlation matrix; to speed up the computations, we use the analytical nonlinear shrinkage

method of Ledoit and Wolf (2020).1 Having an estimator Ĉ, in one of these two ways, we then

estimate the DCC parameters (δ1, δ2) of Equation (2.2) using the (pseudo) composite likelihood

method of Pakel et al. (2020) assuming normality.2 In this way, (ŵi, δ̂1,i, δ̂2,i, δ̂1, δ̂2) are used for

forecasting conditional correlation matrices via Equation (2.8).

Combining forecasts of conditional variances with forecasts of conditional correlation matrices

yields forecasts of conditional covariance matrices in the usual fashionn.

3 Models Based on OHLC Data

One might ask why not use monthly data instead of daily data for the estimation of the various

models given that the investment horizon is one month? The justification is that at the monthly

frequency we do not have enough data to estimate a multivariate GARCH model. Another

justification is that using daily data for the estimation tends to lead to better results even if

the investment period is one month; for examples compare Tables 1 and 10 of Ledoit and Wolf

(2017).3 Therefore, we propose to use even higher frequencies (that is, intraday data) to obtain

(a) a less noisy volatility proxy and (b) a regularized return time series that can be used to

estimate DCC(-NL) models.

In GARCH-type models, squared (possibly demeaned) returns are commonly used as

innovations in models for conditional variances. Rewriting the GARCH(1,1) model in terms of

observed variables (returns) shows that the GARCH(1,1) model in fact expresses volatility (to

be interpreted as current conditional variance in this context) as a weighted moving average

of past squared returns. Or, looking at it from a slightly different angle: If the squared return

is taken to be as a proxy for the volatility of the corresponding day, the GARCH(1,1) model

in fact expresses volatility as a weighted moving average of past volatilities.

This intuition has several interesting implications. Most importantly, replacing the squared

returns by less noisy volatility proxies should lead to improved GARCH models, in terms of

both in-sample fit and out-of-sample forecasting performance.

1In contrast, Engle et al. (2019, Section 3) used the numerical method of Ledoit and Wolf (2015).
2As Engle et al. (2019, Section 3) do, we using neighboring pairs of assets to build up a (pseudo) composite

likelihood.
3Note that the two out-of-sample investment periods are not the same. Nevertheless, for dimension N = 1000,

using daily data for the estimation reduces the out-of-sample standard deviation of the estimated global mininum

variance portfolio by 49% when upgrading from the equal-weighted portfolio (1/N) to nonlinear shrinkage; on the

other hand, the corresponding improvement is only 36% when using monthly data for the estimation instead.
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3.1 Volatility Proxy

Following the basic premise of Molnár (2016), we aim to replace the squared returns r2
i,t−1 of

Equation (2.1) with a less noisy volatility proxy v̂i,t−1:

d2
i,t = ωi + δ1,iv̂i,t−1 + δ2,id

2
i,t−1 . (3.1)

The goal is to use intraday information to hopefully generate a less noisy volatility proxy

(compared to simply using the squared daily return), to be used for devolatizing returns (only).

Note that the returns that get thus devolatized are still the observed daily returns. Hence, we

only modify the first step of DCC(-NL) models, modeling conditional variances. We call the

resulting models ID-DCC(-NL), where ID stands for volatility proxy based on IntraDay data.

Even though the first step is vitally important to obtain a reliable conditional covariance

matrix estimator via DCC-type models, it is not the end of the story. Especially in large

dimensions, there are many more conditional covariances/correlations ((N2 −N)/2) to estimate

than conditional variances (N). Consequently, we also consider using intraday data not only to

improve upon the diagonal of a covariance matrix estimator but also in its off-diagonal. It stands

to reason that intraday data reveal additional information that enables us to generate also a less

noisy correlation proxy, and not only a less noisy volatility proxy. To this end, we introduce the

new concept of a regularized return.

3.2 Regularized Returns

In this section, we propose to go beyond ID-DCC(-NL) models and to use the intraday information

also for the estimation of (conditional) covariances in the second step of DCC(-NL) models. As

mentioned before, in models for conditional variances, it is beneficial to use a ‘better’ innovation

in GARCH-type models than the squared daily return: this is just the point of using an improved

volatility proxy. So why not generalize this approach to the estimation of conditional covariances

respectively correlations? We are working within the framework of DCC(-NL) models where the

innovation in the estimation of the conditional (pseudo-)correlaton matrix is the outer product

of a certain vector, namely the vector of devolatized daily returns. The natural idea is then to

regularize returns quantities derived from improved volatility proxies (before devolatizing). If

the improved volatility proxy is used instead of the squared return, then what should be used

instead of the return itself? As a return can be both positive and negative, the first thought

would be to use the signed root of the volatility proxy:

r̃näıve
i,t−1

..= sign(ri,t−1)
√
v̂i,t−1 . (3.2)

However, it turns out that the following refinement works even better in practice:

r̃i,t−1
..= stanh(ri,t−1, κ)

√
v̂i,t−1 , (3.3)
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where stanh(·, ·) denotes the ‘scaled’ hyperbolic tangent function:

stanh(r, κ) ..=
eκr − 1

eκr + 1
, (3.4)

which is graphically displayed in Figure 1.

The scaling factor κ denotes the steepness of the hyperbolic tangent function. The larger κ,

the faster the function converges to ±1 as r moves from 0 to ±∞. Note that for κ = 2, one

obtains the ‘standard’ hyperbolic tangent function

stanh(r, 2) =
e2r − 1

e2r + 1
=
er − e−r

er + e−r
=

sinh(r)

cosh(r)
=.. tanh(r) , (3.5)

and for κ→∞, one obtains the ordinary sign function in the limit:

stanh(r,∞) ..= lim
κ→∞

stanh(r, κ) =


1 , for r > 0

0 , for r = 0

−1 , for r < 0

 =.. sign(r) . (3.6)

The reason why we use the more general scaled hyperbolic tangent function in our final

definition (3.3) instead of the (ordinary) sign function is that the sign function is intuitively not

‘quite right’ when the observed return ri,t−1 is close to zero. For example, assume the observed

return is only 1 bp, then the sign function would set the regularized return equal to the root of

the volatility proxy which is undesirable, as, by construction, the volatility proxy, and thus also

its root, is bounded away from zero in practice; for an illustration, see Figure 2. Therefore, for

observed returns close to zero, the difference between the observed return and the root of the

volatility proxy can be large in some scenarios. Consequently, we propose to shrink the root of

the volatility proxy towards zero for such cases, where the shrinkage intensity is governed by the

steepness of the scaled hyperbolic tangent function: the smaller κ, the more pronounced is the

truncation; again, see Figure 1.

In practice, the question is: what is a suitable scaling factor κ? We argue, and empirically

find, that the value of κ should be relatively high, as the observed returns and the signed roots

of the volatility proxies are highly correlated (a typical number being 90%) and one should only

apply shrinkage if the observed return is very close to zero.As a consequence, the sign function is

expected to be suboptimal but actually not far from optimal. At the purely theoretical level, we

would want ‘noticeable’ shrinkage to occur only when the absolute value of the observed return

is less than the typical magnitude of the bid-ask bounce, which we can take to be approximately

5 bps. As shown in Figure 1, setting the parameter κ equal to 100 achieves this objective.

Furthermore, empirical analyses in Section 5 indicate that this parameter choice also works ‘best’

in practice.

Remark 3.1 (Returns in percent vs. raw returns). The discussion above applies to returns in

percent. If raw returns are used instead, the value of κ needs to be multiplied by 100 to achieve

the same amount of shrinkage; see Equation (3.4) and Figure 1. For example, the choice κ = 100

for returns in percent corresponds to the choice κ = 10, 000 for raw returns.
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A representative example of the proposed regularized returns (time series) is given in Figure 3.

One can see that due to the scaled hyperbolic tangent function and the mean-reverting property

of conditional variances (in a stationary world), the regularized returns fluctuate around their

representative positive and negative return level. Hence, regularized returns place more weight

on the sign of the observed return relative to the magnitude of the observed return when they

are used (in place of observed returns) in the estimation of the DCC dynamics in the second

step. Arguably, this is a desirable feature, as the magnitude of daily stock returns is generally

regarded as unpredictable, and overly ‘noisy’, whereas their sign is regarded as predictable to

some extent; for example, see Welch and Goyal (2008); Henriksson and Merton (1981), Pesaran

and Timmermann (1995), and Christoffersen and Diebold (2006).

Note that for internal consistency, when we use regularized returns in the second step to model

conditional (pseudo-)correlation matrices, we also use (squared) regularized returns in the first

step to model conditional variances:

d2
i,t = ωi + δ1,ir̃

2
i,t−1 + δ2,id

2
i,t−1 . (3.7)

We call the resulting models IDR-DCC(-NL), where R stands for “regularized returns”.

Appendix B provides a detailed description of these models.

Remark 3.2 (Intraday data vs. high-frequency data). Based on what we have promoted so far,

it might be tempting to go even further and use high-frequency data such as 5-minute returns,

or even tick-by-tick data instead of ‘only’ intraday data in the form of OHLC prices. However,

this would give rise to a number of difficulties. First, high-frequency data is not easily available

to everybody, and when it is, it tends to be expensive, especially if one wants a large universe

and a long time series. Second, even if such data is there, it requires expert cleaning to be put

in usable form, which is tedious and time-consuming; for example, see Barndorff-Nielsen et al.

(2009). Third, using high-frequency data stretches computing resources because the data takes a

lot of space, and running multiple simulations or backtest exercises would be very slow. For all

these reasons, we stick to intraday data in the form OHLC prices in this paper. Nevertheless, if

someone wants to go down the high-frequency route, our methodology, including regularized

returns, can be adapted easily.

4 Volatility Proxies/Estimators of Conditional Variance

In this section, we review the existing volatility proxies (or conditional-variance estimators) that

we deem the most useful for our purpose. Note that returns are not demeaned, as is common

practice in the literature when working with daily returns.4

4In essence, the expected (unconditional) return is generally indistinguishable from zero at the daily level.
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4.1 Close/Close

From these data, we deduce a synthetic previous-day closing price:

c̃i,t−2
..=

ci,t−1

1 + ri,t−1
. (4.1)

Most of the time, c̃i,t−2 is equal to ci,t−2, except when there is an overnight dividend, stock split,

or other corporate action, in which case c̃i,t−2 is suitably rescaled to be economically compatible

for use in a formula alongside ci,t−1 and any other price recorded on day t.

The first, and most obvious, estimator of the conditional variance on day t− 1 is

r2
i,t−1 =

(
ci,t−1

c̃i,t−2
− 1

)2

. (4.2)

r2
i,t−1 is the usual ‘ingredient’ in the standard ARCH/GARCH models of Engle (1982) and

Bollerslev (1986).

As will soon become apparent, most of the relevant literature works with continuously

compounded rather than simple returns; therefore, for compatibility reasons, we define

v̂CC
i,t−1

..=
[

log (1 + ri,t−1)
]2
, (4.3)

where log(·) denotes the natural logarithm.

Taking logarithms at the daily frequency makes very little difference in numerical terms.

However, we aim to reduce the noise of the proxy v̂CC
i,t by incorporating new intraday data, such

as open, high, and low, while preserving the dynamic features of the ARCH/GARCH framework.

Such improvements have traditionally been couched in terms of continuously compounded returns

due to mathematical grounding in the random-walk model favored by the Black and Scholes

(1973) option-pricing formula.

4.2 Introducing the Open

One of the first contributions of Garman and Klass (1980) is to realize that decomposing the

close-to-close log-return log(ri,t−1) into

log (1 + ri,t−1) = log

(
oi,t−1

c̃i,t−2

)
+ log

(
ci,t−1

oi,t−1

)
(4.4)

opens the door to a family of improved estimators. An issue is scaling: both overnight and open-

market variances are on a different scale than daily, so they need to be adjusted appropriately. To

this end, Garman and Klass (1980, Section III) introduce the factor f ∈ (0, 1), which represents

the proportion of variance realized when the market is closed. From this analysis, they derive an

improved estimator:

v̂OC
i,t−1

..=
1

2f

[
log

(
oi,t−1

c̃i,t−2

)]2

+
1

2(1− f)

[
log

(
ci,t−1

oi,t−1

)]2

. (4.5)

Yang and Zhang (2000, p. 485), based on an empirical study of US equity data at the daily

frequency, recommend setting f = 0.25.
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4.3 High-Low Range

Parkinson (1980) proposes an estimator for the conditional variance during market hours on day

t− 1 based on the range, determined by high and low:

v̂HL
i,t−1

..=
1

4 log 2

[
log

(
hi,t−1

li,t−1

)]2

, (4.6)

where the normalizing coefficient 4 log 2 is derived from random-walk mathematics. In reality,

however, overnight jumps matter. To this end, Garman and Klass (1980, Section IV) propose to

amend the range-based estimator as follows:

v̂OHLC
i,t−1

..=
a3

f

[
log

(
oi,t−1

c̃i,t−2

)]2

+
1− a3

1− f
1

4 log 2

[
log

(
hi,t−1

li,t−1

)]2

, (4.7)

and claim that for the optimal choice of parameter a3 = 0.17, v̂OHLC
i,t−1 is around 6.2 times more

efficient than the näıve close-to-close estimator v̂CC
i,t−1.

4.4 Additional Refinements

Most of the analytical work in Garman and Klass (1980) is then devoted to (potentially) further

improving upon the estimator v̂OHLC
i,t−1 . Whereas some mild efficiency gains are attained on paper,

they are heavily dependent upon the assumption that log-prices follow a Brownian motion with

constant volatility, which is unlikely to hold in practice. Their final recommendation, which they

denote by σ̂2
5 and which is often referred to as “the” Garman-Klass estimator5, overloads on

the Parkinson (1980) estimator and compensates for it by negatively loading on the more näıve

open-to-close estimator. Garman and Klass (1980, p. 71) motivate this somewhat surprising

proposal as follows:

High and low prices during the trading interval require continuous monitoring to

establish their values. The opening and closing prices, on the other hand, are merely

“snapshots” of the process. Intuition would then tell us that high/low prices contain

more information regarding volatility than do open/close prices.

However, analyzing real-life data, which may not conform to Garman and Klass’s theoretical

assumptions, Molnár (2016, p. 4979) finds no improvement relative to the range-based estimator.

For this reason we stick to the simpler, and arguably more robust, estimator v̂OHLC
i,t−1 . This choice,

however, still allows us to retain a comparative advantage over Molnár (2016): unlike he, we

incorporate overnight jumps that account for a quarter of total variance.

5For example, see Equation (9) of Molnár (2016).
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5 Empirical Analysis

5.1 Data and General Portfolio-Construction Rules

We download daily stock return data from the Center for Research in Security Prices (CRSP)

starting on 01/01/1994 and ending on 12/31/2018. We restrict attention to stocks from the

NYSE, AMEX, and NASDAQ stock exchanges. We also download daily OHLC price data

(in dollars per share).

For simplicity, and in line with literature, we adopt the common convention that

21 consecutive trading days constitute one (trading)‘month’. The out-of-sample period ranges

from 12/18/1998 through 12/31/2018, resulting in a total of 240 months (or 5,040 days). All

portfolios are updated monthly.6 We denote the investment dates by k = 1, . . . , 240. At any

investment date k, a covariance matrix is estimated based on the most recent 1260 daily returns,

which roughly corresponds to using five years of past data.

We consider the following portfolio sizes N ∈ {100, 500, 1000}. For a given combination

(k,N), the investment universe is obtained as follows. We find the set of stocks that have an

almost complete return history over the most recent T = 1260 days as well as a complete return

‘future’ over the next 21 days.7

Additionally, we require every stock in the universe to have all the data listed in Section 2.1

available at least 90% of the time and either high/low or open available at least 95% of the time.

We then look for possible pairs of highly correlated stocks, that is, pairs of stocks that have

returns with a sample correlation exceeding 0.95 over the past 1260 days. In such pairs, if they

should exist, we remove the stock with the lower market capitalization of the two on investment

date k.8 Of the remaining set of stocks, we then pick the largest N stocks (as measured by

their market capitalization on investment date k) as our investment universe. In this way, the

investment universe changes relatively slowly from one investment date to the next.

There is a great advantage in having a well-defined rule that does not involve drawing stocks

at random, as such a scheme would have to be replicated many times and averaged over to give

stable results. As far as rules go, the one we have chosen seems the most reasonable because it

avoIDR so-called “penny stocks” whose behavior is often erratic; also, high-market-cap stocks

tend to have the lowest bid-ask spreads and the highest depth in the order book, which allows

large investment funds to invest in them without breaching standard safety guidelines.

6Monthly updating is common practice to avoid an unreasonable amount of turnover and thus transaction

costs. During a month, from one day to the next, we hold number of shares fixed rather than portfolio weights; in

this way, there are no transactions at all during a month.
7The first restriction allows for up to 2.5% of missing returns over the most recent 1260 days, and replaces

missing values by zero. The latter, ‘forward-looking’ restriction is not a feasible one in real life but is commonly

applied in the related finance literature on the out-of-sample evaluation of portfolios.
8The reason is that we do not want to include highly similar stocks. In the early years, there are no such pairs;

in the most recent years, there are never more than three such pairs.
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In the best-case scenario where all the price data are available for a given stock on day t− 1,

we use v̂OHLC
i,t−1 as the volatility proxy v̂i,t−1. If high/low are available but open is missing, we use

v̂HL
i,t−1. If high/low are missing but open is available, we use v̂OC

i,t−1. If both high/low and open

are missing, we go back to the traditional setting and use v̂CC
i,t−1.

5.2 Competing Models

The following models are included in our empirical analysis:

• DCC: the multivariate GARCH model of Engle (2002).

• ID-DCC: a model based on DCC with intraday-based volatility proxy in the first step;

see formula (3.1).

• IDR-DCC: as ID-DCC but, additionally, with regularized returns as underlying time

series for estimating DCC dynamics in the second step; see formula (3.3) and Appendix B.

• DCC-NL: the multivariate GARCH model of Engle et al. (2019) where the unconditional

correlation matrix C is estimated via nonlinear shrinkage.

• ID-DCC-NL: a model based on DCC-NL with intraday-based volatility proxy in the first

step; see formula (3.1).

• IDR-DCC-NL: as ID-DCC-NL but, additionally, with regularized returns as underlying

time series for estimating DCC dynamics in the second step; see formula (3.3) and

Appendix B.

Note that in the acronyms of the new models proposed, “ID” stands for “volatility proxy based

on IntraDay data” and “R” stands for “regularized returns”.

5.3 Global Minimum Variance Portfolio

We consider the problem of estimating the global minimum variance (GMV) portfolio in the

absence of short-sales constraints. The problem is formulated as

min
w
w′Σtw (5.1)

subject to w′1 = 1 , (5.2)

where 1 denotes a vector of ones of dimension N × 1. It has the analytical solution

w =
Σ−1
t 1

1′Σ−1
t 1

. (5.3)

The natural strategy in practice is to replace the unknown Σt by an estimator Σ̂t in

formula (5.3), yielding a feasible portfolio

ŵ ..=
Σ̂−1
t 1

1′Σ̂−1
t 1

. (5.4)
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Estimating the GMV portfolio is a ‘clean’ problem in terms of evaluating the quality of a

covariance matrix estimator, as it abstracts from having to estimate the vector of expected returns

at the same time. In addition, researchers have established that estimated GMV portfolios have

desirable out-of-sample properties not only in terms of risk but also in terms of reward-to-risk,

that is, in terms of the information ratio; for example, see Haugen and Baker (1991), Jagannathan

and Ma (2003), and Nielsen and Aylursubramanian (2008). As a result, such portfolios have

become an addition to the large array of products sold by the mutual-fund industry.

In addition to Markowitz portfolios based on formula (5.4), we also include as a simple-minded

benchmark the equal-weighted portfolio promoted by DeMiguel et al. (2009), among others, as it

has been claimed to be difficult to outperform. We denote the equal-weighted portfolio by 1/N .

We report the following three out-of-sample performance measures for each scenario. (All of

them are annualized and in percent for ease of interpretation.)

• AV: We compute the average of the 5,040 out-of-sample returns and then multiply by 252

to annualize.

• SD: We compute the standard deviation of the 5,040 out-of-sample returns and then

multiply by
√

252 to annualize.

• IR: We compute the (annualized) information ratio as the ratio AV/SD.

Our stance is that in the context of the GMV portfolio, the most important performance

measure is the out-of-sample standard deviation, SD. The true (but unfeasible) GMV portfolio is

given by (5.3). It is designed to minimize the variance (and thus the standard deviation) rather

than to maximize the expected return or the information ratio. Therefore, any portfolio that

implements the GMV portfolio should be primarily evaluated by how successfully it achieves

this goal. A high out-of-sample average return, AV, and a high out-of-sample information ratio,

IR, are naturally also desirable, but should be considered of secondary importance from the

point of view of evaluating the quality of a covariance matrix estimator.

We also consider the question of whether one estimation model delivers a lower out-of-sample

standard deviation than another estimation model. As we compare 7 models, there are 21

pairwise comparisons. To avoid a (large) multiple testing problem and as a major goal of

this paper is to show that using higher-frequency (intraday) data improves the estimation of

large-dimensional covariances matrices, we restrict attention to two comparisons: (i) DCC with

IDR-DCC and (ii) DCC-NL with IDR-DCC-NL. For a given universe size, a two-sided p-value

for the null hypothesis of equal standard deviations is obtained by the prewhitened HACPW

method described in Ledoit and Wolf (2011, Section 3.1).9

The results are presented in Table 1 as well as in Figure 4 and can be summarized as follows;

unless stated otherwise, the findings are with respect to SD as performance measure.

9As the out-of-sample size is very large at 5,040, there is no need to use the computationally more involved

bootstrap method described in Ledoit and Wolf (2011, Section 3.2), which is preferred for small sample sizes.
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• All models consistently outperform 1/N by a wide margin.

• Each DCC-NL model consistently outperforms its DCC version.

• Each intraday model, IDR-DCC(-NL) and ID-DCC(-NL), consistently outperforms its

traditional base model, DCC(-NL). Additionally, IDR-DCC(-NL) consistently outperforms

its ID-DCC(-NL) version.

• Moreover, the outperformance of IDR-DCC-NL over DCC-NL, respectively IDR-DCC over

DCC, is always statistically significant and also economically meaningful.

• There is a consistent ranking across all portfolio sizes N (from best to worst):

IDR-DCC-NL, ID-DCC-NL, IDR-DCC, ID-DCC, DCC-NL, DCC, 1/N .10

To sum up, models using intraday data such as IDR-DCC(-NL) and ID-DCC(-NL) consistently

outperform the traditional DCC(-NL) models using daily data only. Furthermore IDR models,

which use regularized returns in the second step, outperform their ID counterparts.

Remark 5.1 (Subperiod analysis). Table 1 presents ‘single’ results over the entire out-of-sample

period 12/18/1998–12/31/2018. It might be natural to ask whether the relative performance of

the various models is stable during that period or whether it changes during certain subperiods,

such as periods of ‘boom’ vs. periods of ‘bust’. To address this question via a robustness

check, we carry out a rolling-window analysis based on shorter out-of-sample periods: one

month (21 days), one year (252 days), and five years (1260 days). The results are displayed in

Figure 5, where any given number represents the out-of-sample standard deviation (SD) over

the corresponding subperiod ending on that day; the universe size is N = 1000 always. It can

be seen that the relative performance is remarkably stable over time and that, in particular,

IDR-DCC-NL generally performs best during all subperiods.

Remark 5.2 (Choice of κ). In Tables 3 and 4, we examine how robust IDR-DCC(-NL) models

are in terms of κ and that the choice κ = 100, which was previously motivated by theoretical

reasons, actually works well in practice. In terms of the performance measure SD, the choice

κ = 100 indeed works generally best (and always best for large universe sizes N > 100). In terms

of the performance measure IR, the choice κ = 100 works generally best as well. Furthermore,

in terms of both measures, performance is not very robust to the choice of κ and it seems more

harmful to pick a too small value compared to picking a too large value. Overall, there is strong

empirical support for the choice κ = 100.

Remark 5.3 (Further comparisons). Another way to improve upon the DCC-NL model, while

sticking to daily observed returns, is to combine it with an approximate factor model. In

10With the single exception of N = 1000 where DCC-NL outperforms ID-DCC. Thus, for ‘medium’-sized

investment universes, N = 100, 500, even the proposed DCC models using intraday data outperform the traditional

DCC-NL model. However, for larger dimensions, N = 1000, the benefit of nonlinear shrinkage is too important to

neglect; see Figure 4.
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particular, De Nard et al. (2020) suggest the AFM1-DCC-NL model which is based on an

approximate single-factor model, where the single factor is the market factor (that is, the first

factor of any Fama-French factor model). Based on results not reported in detail here, we

found that the performance of this model (in terms of SD) is generally somewhere between the

performances of DCC-NL and ID-DCC, and always below the performance of IDR-DCC-NL.

There are more complicated multivariate volatility models based on intradaily data.

For example, one can use all 5- or 10-minute returns during the day to compute realized

covariance matrices and then use a sophisticated methodology, involving factor structure and

regularization, to make corresponding forecasts. Using such an approach, Brito et al. (2018)

obtain a reduction of 22.1 percentage points in SD (from 10.65 to a typical number of 8.3)

compared to DCC-NL for a (constant) universe of N = 430 stocks; see their Table 5. Note

that with our (much) simpler IDR-DCC-NL model, we get almost the same reduction in SD

for a (time-varying) universe of N = 500 stocks, namely a reduction of 17.4 percentage points

(from 9.01 to 7.44).11 But unlike the IDR-DCC-NL method, it is doubtful whether the method

of Brito et al. (2018) is computationally feasible for universe sizes of N ≥ 1000, even leaving

aside concerns about data availability (because, for a given stock, they need all 5-minute returns

during a day whereas we, at most, need only the four values OHLC).

DeMiguel et al. (2009) claim that it is difficult to outperform 1/N in terms of the out-

of-sample Sharpe ratio with sophisticated portfolios (that is, with Markowitz portfolios that

estimate input parameters). It can be seen that all models consistently outperform 1/N in terms

of the out-of-sample information ratio, which translates into outperformance in terms of the

out-of-sample Sharpe ratio. For N = 100, IDR-DCC is best overall, whereas for N = 500, 1000,

IDR-DCC-NL is best overall.

Additionally, we report results on average turnover and leverage, defined as follows.

• TO: We compute average (monthly) turnover as 1
239

∑239
k=1 ||ŵk+1 − ŵhold

k ||1, where || · ||1
denotes the L1 norm and ŵhold

k denotes the vector of the ‘hold’ portfolio weights at the

end of month k.12

• GL: We compute average (monthly) gross leverage as 1
240

∑240
k=1 ||ŵk||1.

• PL: We compute average (monthly) proportion of leverage as 1
240×N

∑240
k=1

∑N
i=1 1{ŵi,k<0},

where 1{·} denotes the indicator function.

The results are presented in Table 2 and can be summarized as follows; unless stated otherwise,

the findings are with respect to the average monthly turnover as performance measure. Note

that we do not constrain for the amounts of leverage and turnover in our optimization.

11It makes sense to compare reduction in percentage points rather than nominal reduction, as the actual SD

numbers of Brito et al. (2018) are not one-to-one comparable to ours because of different universes and different

out-of-sample periods.
12The vector ŵhold

k is determined by the initial vector of portfolio weights, ŵk, together with the evolution of

the various prices of the N stocks in the portfolio during month k.
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• IDR-DCC-NL consistently and markedly outperforms all other models in terms of turnover

and gross leverage.

• IDR-DCC consistently outperforms all other models in terms of proportion of leverage,

although the differences are not large.

• Using regularized returns instead of observed returns in the estimation of the DCC(-NL)

models consistently reduces turnover and gross leverage, but has no noticeable effect on

percentage of leverage.

5.4 Markowitz Portfolio with Momentum Signal

We now turn attention to a ‘full’ Markowitz portfolio with a signal.

By now a large number of variables have been documented that can be used to construct a

signal in practice. For simplicity and reproducibility, we use the well-known momentum factor

(or simply momentum for short) of Jegadeesh and Titman (1993). For a given investment

period k and a given stock, the momentum is the geometric average of the previous 252 returns

on the stock but excluding the most recent 21 returns; in other words, one uses the geometric

average over the previous ‘year’ but excluding the previous ‘month’. Collecting the individual

momentums of all the N stocks contained in the portfolio universe yields the return-predictive

signal, denoted by m.

In the absence of short-sales constraints, the investment problem is formulated as

min
w
w′Σtw (5.5)

subject to w′mt = b , and (5.6)

w′1 = 1 , (5.7)

where b is a selected target expected return. The problem has the analytical solution

w = c1Σ−1
t 1 + c2Σ−1

t mt , (5.8)

where c1
..=

C − bB
AC −B2

and c2
..=

bA−B
AC −B2

, (5.9)

with A ..= 1
′Σ−1
t 1 , B ..= 1

′Σ−1
t b , and C ..= m′tΣ

−1
t mt . (5.10)

The natural strategy in practice is to replace the unknown Σt by an estimator Σ̂t in formulas

(5.8)–(5.10), yielding a feasible portfolio

ŵ ..= c1Σ̂−1
t 1 + c2Σ̂−1

t mt , (5.11)

where c1
..=

C − bB
AC −B2

and c2
..=

bA−B
AC −B2

, (5.12)

with A ..= 1
′Σ̂−1
t 1 , B ..= 1

′Σ̂−1
t b , and C ..= m′tΣ̂

−1
t mt . (5.13)

In addition to Markowitz portfolios based on formulas (5.11)–(5.13), we also include as a

simple-minded benchmark the equal-weighted portfolio among the top-quintile stocks (according
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to momentum). This portfolio is obtained by sorting the stocks, from lowest to highest, according

to their momentum and then putting equal weight on all the stocks in the top 20%, that is, in

the top quintile. We call this portfolio EW-TQ.

Our stance is that in the context of a ‘full’ Markowitz portfolio, the most important

performance measure is the out-of-sample information ratio, IR. In the ‘ideal’ investment

problem (5.8)–(5.10), minimizing the variance (for a fixed target expected return b) is equivalent

to maximizing the information ratio (for a fixed target expected return b). In practice, because

of estimation error in the signal, the various strategies do not necessarily have the same expected

return and, thus, focusing on the out-of-sample standard deviation is inappropriate.

We also consider the question whether IDR-DCC(-NL) delivers a higher out-of-sample

information ratio than DCC(-NL) at a level that is statistically significant with the same reason

as discussed in Section 5.3. For a given universe size, a two-sided p-value for the null hypothesis

of equal information ratios is obtained by the prewhitened HACPW method described in Ledoit

and Wolf (2008, Section 3.1).13

The results are presented in Table 5 and can be summarized as follows; unless stated

otherwise, the findings are with respect to IR as performance measure.

• All models consistently outperform EWTQ by a wide margin.

• Each DCC-NL model consistently outperforms its DCC counterpart.

• IDR-DCC-NL consistently outperforms all other models.

• Having said that, we do not find statistical significance (for the two comparisons considered).

• Moreover, in terms of SD as performance measure, we find statistical significance (for

the two comparisons considered) for N = 500, 1000, with IDR-DCC-NL again being the

best model. the outperformance of IDR-DCC-NL over DCC-NL, respectively IDR-DCC

over DCC, in terms of lower SD is always statistically significant and also economically

meaningful.

DeMiguel et al. (2009) claim that it is difficult to outperform 1/N in terms of the out-

of-sample Sharpe ratio with sophisticated portfolios (that is, with Markowitz portfolios that

estimate input parameters). Comparing with Table 1, it can be seen that all models based on the

(simple-minded) momentum signal consistently outperform 1/N in terms of the out-of-sample

information ratio, which translates into outperformance in terms of the out-of-sample Sharpe

ratio. Even though momentum is not a very powerful return-predictive signal, the differences

compared to 1/N can be enormous. For example, for N = 1000, the information ratio of 1/N is

only 0.54 whereas the information ratio of IDR-DCC-NL is 1.00, almost twice as large.

Engle and Colacito (2006) argue for the use of the out-of-sample standard deviation, SD, as

a performance measure also in the context of a full Markowitz portfolio. Also for this alternative

13As the out-of-sample size is very large at 5,040, there is no need to use the computationally more expensive

bootstrap method described in Ledoit and Wolf (2008, Section 3.2), which is preferred for small sample sizes.
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performance measure, the high-frequency estimators IDR-DCC(-NL) and ID-DCC(-NL) perform

the best.

Additionally, we report results on average turnover and leverage. The results are presented

in Table 6 and can be summarized as follows; unless stated otherwise, the findings are with

respect to the average monthly turnover as performance measure. Note that we do not constrain

for the amounts of leverage and turnover in our optimization.

• IDR-DCC-NL consistently and markedly outperforms all other models in terms of turnover

and gross leverage.

• IDR-DCC consistently outperforms all other models in terms of proportion of leverage,

although the differences are not large.

• Using regularized returns instead of observed returns in the estimation of the DCC(-NL)

models consistently reduces turnover and gross leverage, but has no noticeable effect on

percentage of leverage.

Remark 5.4 (Transaction costs). We do not provide tables with performance measures net of

transaction costs for two reasons. First, we do not impose constraints on turnover, leverage,

or transactions costs in any of our portfolio optimization. Of course, such constraints would

be used, to varying degrees, by real-life portfolio managers; but the main point of our paper is

to study the accuracy of various estimators of the covariance matrix, a problem that does not

depend on transaction costs. Second, there is always disagreement which transaction cost to use.

Many finance papers, at least in the past, have used a transaction cost of 50 bps. But in this

day and age, the average transaction cost is usually south of 5 bps for managers trading the

1000 most liquid US stocks.

At any rate, given the results presented in Tables 1–6, the reader can get a rough idea of

the various performance measures net of transaction costs, for any choice of transaction cost,

according to the rule of thumb that the return loss (per month) due to turnover is twice the

amount of turnover times the chosen transaction cost. For example, assuming a transaction cost

of 5 bps, a turnover of one would result in a return loss of 10 bps (per month) according to

this rule.

6 Conclusion

In this paper we have shown that using intraday data, in the form of open/high/low/close

(OHLC) prices, leads to improved forecasting of dynamic covariance matrices via multivariate

GARCH models, where our focus has been on the original DCC model of Engle (2002) and its

recent extension, the DCC-NL model of Engle et al. (2019).

The first step of a DCC(-NL) model consists of modeling dynamic univariate variances via a

GARCH(1,1) model, where daily squared returns are used as innovations. Hence, the first idea
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is to use a less noisy volatility proxy based on OHLC data, instead of squared returns, in this

step. We call the resulting multivariate GARCH models ID-DCC-(NL), where ID stands for

“volatility proxy based on IntraDay data”.

The second step of a DCC(-NL) model consists of modeling the dynamic (pseudo-)correlation

matrix where the innovation is the outer product of the vector of daily (devolatized) returns.

Hence, the second idea is to find a better innovation that is based on volatility proxies instead of

returns. The counterpart of a volatility proxy itself is the squared return. Thus, it is natural to

take the square root of the volatility proxy, together with sign of the return, as the counterpart

of the return itself. This already works well, but a certain ‘smoothed’ sign of return, together

with the square root of the volatility proxy works even better, and we call the resulting quantity

regularized return. Using these regularized returns in the second step, and of course also using

a volatility proxy based on intraday data in the first step, gives rise to multivariate GARCH

models that we call IDR-DCC(-NL) models, where R stands for “regularized returns”.

An important feature of our newly proposed models is that they remain computationally

feasible for universes of N ≥ 1000 assets, unlike many other multivariate GARCH-type models

based on intraday data.

Empirical backtest exercises using real-life stock data demonstrate that ID-DCC(-NL) models

already deliver an substantial improvement over DCC(-NL) models, but that IDR-DCC(-NL)

models deliver another improvement of roughly the same magnitude. In particular, the IDR-

DCC-NL model is the clear winner and its performance for large investment universes is rather

impressive; for example, the out-of-sample standard deviation of an estimated global-minimum-

variance (GMV) portfolio of N = 1000 stocks improves from 7.88% to 5.90% (on an annual basis)

when one upgrades from DCC-NL to IDR-DCC-NL. A further advantage of the IDR-DCC-NL

model is that it leads to both reduced turnover and reduced gross leverage compared to the

DCC-NL model.
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Figure 1: The scaled hyperbolic tangent function: some examples for various values of κ.
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Figure 2: Observed absolute returns and the square root of the volatility proxies (in percent)

for a representative stock (Exxon Mobil Corporation) and period (4/19/2000–4/26/2005) used

to model the conditional univariate variances for DCC(-NL) respectively ID-DCC(-NL); see

Equation (2.1) respectively Equation (3.1).
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Figure 3: Observed returns and regularized returns (in percent) for a representative stock (Exxon

Mobil Corporation) and period (4/19/2000–4/26/2005).
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Figure 4: Boxplots of the 5,040 daily out-of-sample returns (in percent) for various estimators

of the GMV portfolio; the period is 12/18/1998–12/31/2018. The relative benefit of using

intraday data (ID respectively IDR) and nonlinear shrinkage (NL) gets more pronounced for

larger dimensions.
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Figure 5: Rolling-window out-of-sample standard deviations (SD) for various models and

N = 1000. The lengths of the out-of-sample period are one month, one year, and five years,

respectively. Any given number represents the out-of-sample standard deviation (SD) over the

corresponding subperiod ending on that day.
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Period: 12/18/1998–12/31/2018

1/N DCC ID-DCC IDR-DCC DCC-NL ID-DCC-NL IDR-DCC-NL

N = 100

AV 7.54 5.57 6.63 7.66 5.52 6.43 7.29

SD 18.94 12.45 12.24 12.18∗∗ 12.33 12.14 12.07∗∗

IR 0.40 0.45 0.54 0.63 0.45 0.53 0.60

N = 500

AV 10.05 6.94 5.88 6.62 7.75 6.91 7.04

SD 19.50 9.67 8.81 7.94∗∗∗ 9.01 8.19 7.44∗∗∗

IR 0.52 0.72 0.67 0.83 0.86 0.84 0.95

N = 1000

AV 10.91 8.33 6.20 6.08 8.32 6.76 6.29

SD 20.26 10.05 8.76 7.72∗∗∗ 7.88 6.85 5.90∗∗∗

IR 0.54 0.83 0.71 0.79 1.06 0.99 1.07

Table 1: Annualized performance measures (in percent) for various estimators of the GMV

portfolio. AV stands for average; SD stands for standard deviation; and IR stands for information

ratio. All measures are based on 5,040 daily out-of-sample returns. In the rows labeled SD,

the lowest number appears in bold face. In the columns labeled IDR-DCC respectively IDR-

DCC-NL, significant outperformance over DCC respectively DCC-NL in terms of SD is denoted

by asterisks: *** denotes significance at the 0.01 level; ** denotes significance at the 0.05 level;

and * denotes significance at the 0.1 level.
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Period: 12/18/1998–12/31/2018

DCC ID-DCC IDR-DCC DCC-NL ID-DCC-NL IDR-DCC-NL

N = 100

TO 2.84 3.06 2.44 2.64 2.87 2.26

GL 3.20 3.19 2.54 3.00 3.00 2.37

PL 0.47 0.46 0.45 0.46 0.46 0.45

N = 500

TO 4.56 4.47 3.83 3.05 3.01 2.57

GL 4.99 4.41 3.83 3.46 3.12 2.62

PL 0.49 0.49 0.49 0.51 0.50 0.51

N = 1000

TO 7.72 7.20 6.20 2.71 2.87 2.56

GL 7.90 6.80 6.07 3.07 2.83 2.54

PL 0.50 0.49 0.49 0.51 0.51 0.51

Table 2: Average monthly turnover and leverage for various estimators of the GMV portfolio.

TO stands for average turnover; GL stands for average gross leverage; and PL stands for average

proportion of leverage. All measures are based on 240 monthly weight vectors. In each row, the

lowest (and thus best) number appears in bold face.
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Period: 12/18/1998–12/31/2018

IDR-DCC with

κ = 2 κ = 50 κ = 100 κ = 200 κ =∞

N = 100

AV 5.46 7.06 7.66 7.00 6.94

SD 12.59 12.18 12.18 12.24 12.17

IR 0.43 0.58 0.63 0.57 0.57

N = 500

AV 6.35 5.99 6.62 5.88 6.84

SD 9.45 8.13 7.94∗∗∗ 8.08 8.60

IR 0.67 0.74 0.83 0.73 0.79

N = 1000

AV 5.98 5.51 6.08 6.26 7.23

SD 8.80 7.88 7.72∗∗∗ 8.12 8.73

IR 0.68 0.70 0.79 0.77 0.82

Table 3: Annualized performance measures (in percent) for various IDR-DCC estimators of the

GMV portfolio. AV stands for average; SD stands for standard deviation; and IR stands for

information ratio. All measures are based on 5,040 daily out-of-sample returns. In the rows

labeled SD, the lowest number appears in bold face. In the column labeled κ = 100, significant

outperformance over κ =∞ in terms of SD is denoted by asterisks: *** denotes significance at

the 0.01 level; ** denotes significance at the 0.05 level; and * denotes significance at the 0.1 level.
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Period: 12/18/1998–12/31/2018

IDR-DCC-NL with

κ = 2 κ = 50 κ = 100 κ = 200 κ =∞

N = 100

AV 5.35 6.78 7.29 6.69 6.64

SD 12.47 12.07 12.07 12.13 12.07

IR 0.43 0.56 0.60 0.55 0.55

N = 500

AV 6.80 6.75 7.04 6.65 7.62

SD 9.03 7.69 7.44∗∗∗ 7.50 8.14

IR 0.75 0.88 0.95 0.89 0.94

N = 1000

AV 6.25 6.11 6.29 6.65 7.15

SD 7.72 6.13 5.90∗∗∗ 6.18 6.84

IR 0.81 1.00 1.07 1.08 1.04

Table 4: Annualized performance measures (in percent) for various IDR-DCC-NL estimators of

the GMV portfolio. AV stands for average; SD stands for standard deviation; and IR stands

for information ratio. All measures are based on 5,040 daily out-of-sample returns. In the rows

labeled SD, the lowest number appears in bold face. In the column labeled κ = 100, significant

outperformance over κ =∞ in terms of SD is denoted by asterisks: *** denotes significance at

the 0.01 level; ** denotes significance at the 0.05 level; and * denotes significance at the 0.1 level.
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Period: 12/18/1998–12/31/2018

EW-TQ DCC ID-DCC IDR-DCC DCC-NL ID-DCC-NL IDR-DCC-NL

N = 100

AV 9.75 9.41 10.23 10.76 9.63 10.38 10.69

SD 23.49 14.89 14.71 14.72 14.77 14.61 14.65

IR 0.42 0.63 0.70 0.73 0.65 0.71 0.73

N = 500

AV 11.82 7.77 6.28 7.03 8.80 7.56 7.80

SD 22.97 10.81 9.96 9.12∗∗∗ 10.13 9.29 8.58∗∗∗

IR 0.51 0.72 0.63 0.77 0.87 0.81 0.91

N = 1000

AV 12.02 8.36 6.34 6.03 8.51 6.74 6.54

SD 23.66 11.32 10.02 8.73∗∗∗ 8.64 7.52 6.54∗∗∗

IR 0.51 0.74 0.63 0.69 0.98 0.90 1.00

Table 5: Annualized performance measures (in percent) for various estimators of the Markowitz

portfolio with momentum signal. AV stands for average; SD stands for standard deviation; and

IR stands for information ratio. All measures are based on 5,040 daily out-of-sample returns. In

the rows labeled IR, the largest number appears in bold face. In the columns labeled IDR-DCC

respectively IDR-DCC-NL, significant outperformance over DCC respectively DCC-NL in terms

of SD and IR (separately) is denoted by asterisks: *** denotes significance at the 0.01 level;

** denotes significance at the 0.05 level; and * denotes significance at the 0.1 level.
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Period: 12/18/1998–12/31/2018

DCC ID-DCC IDR-DCC DCC-NL ID-DCC-NL IDR-DCC-NL

N = 100

TO 3.40 3.54 2.86 3.17 3.34 2.66

GL 3.90 3.87 3.14 3.67 3.65 2.95

PL 0.47 0.47 0.46 0.47 0.47 0.46

N = 500

TO 5.04 4.89 4.19 3.41 3.43 2.84

GL 5.68 5.04 4.35 3.99 3.59 3.02

PL 0.50 0.50 0.50 0.50 0.50 0.51

N = 1000

TO 8.99 8.33 6.95 3.05 3.24 2.83

GL 9.58 8.20 6.98 3.59 3.33 2.93

PL 0.50 0.50 0.50 0.51 0.51 0.51

Table 6: Average monthly turnover and leverage for various estimators of the Markowitz portfolio

with momentum signal. TO stands for average turnover; GL stands for average gross leverage;

and PL stands for average proportion of leverage. All measures are based on 240 monthly weight

vectors. In each row, the lowest (and thus best) number appears in bold face.
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B Detailed Description of IDR-DCC(-NL) Models

First, compute the regularized returns for a suitable scaling factor κ:14

r̃i,t−1
..= stanh(ri,t−1, κ)

√
v̂i,t−1 , (B.1)

where stanh(·, ·) is the ‘scaled’ hyperbolic tangent function defined in Equation (3.4) and v̂i,t−1

denotes a generic volatility proxy based on OHLC price data; see Section 4 for specific proposals.

Second, for modeling conditional covariances, use a GARCH(1,1) model with squared

regularized-returns, instead of squared returns, as innovations:

d2
i,t = ωi + δ1,ir̃

2
i,t−1 + δ2,id

2
i,t−1 , (B.2)

where (ωi, δ1,i, δ2,i) are the asset-specific GARCH(1,1) parameters. Now use the conditional

variances to devolatize the regularized returns: si,t ..= r̃i,t/di,t.

Third, for modeling the conditional (pseudo) correlation matrix use the DCC model with

correlation targeting:

Qt = (1− δ1 − δ2)C + δ1st−1s
′
t−1 + δ2Qt−1 , (B.3)

where (δ1, δ2) are the DCC parameters and C ..= Cor(r̃t) = Cov(st) denotes the unconditional

correlation matrix of the regularized returns. Note that Qt cannot be used directly because its

diagonal elements, although close to one, are not exactly equal to one. From this representation,

we obtain the conditional correlation matrix and the conditional covariance matrix as

Rt ..= Diag(Qt)
−1/2 Qt Diag(Qt)

−1/2 (B.4)

Σt
..= DtRtDt . (B.5)

Finally, if the portfolio is held for more than one day use the ‘averaged-forecasting’ approach

of De Nard et al. (2020). At portfolio construction date k, forecast the covariance matrix for all

L days of the portfolio holding period, that is, for t = k, k+1, . . . , k+(L−1); then average those

L forecasts and use this ‘averaged forecast’ to construct the portfolio at date k; see Section 2.2:

Σ̂k
..=

1

L

L−1∑
l=0

E[Dk+l|Fk−1]E[Rk+l|Fk−1]E[Dk+l|Fk−1] . (B.6)

In practice, the parameters in Equations (B.2)–(B.3) need to be estimated. To this end,

we follow the same prescriptions as in Section 2.3, just with regularized returns r̃t in place of

returns rt. In particular, if the correlation-targeting matrix C of Equation (B.2) is estimated

using the sample covariance matrix of the devolatized regularized-returns {st}, the IDR-DCC

model results; if instead C is estimated by applying nonlinear shrinkage to the {st}, with

post-processing to obtain a proper correlation matrix, the IDR-DCC-NL model results.

14We suggest the choice κ = 100 for returns in percent, which corresponds to the choice κ = 10, 000 for raw

returns.
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