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1 Introduction16

Since the introduction of the bitcoin consensus protocol by Nakamoto (2009),17

blockchains have fascinated scholars from a variety of disciplines. The game-18

theoretic analysis of dynamic consensus protocols has, consequently, gained19

substantial momentum over the last decade. In an important recent contribu-20

tion, Biais et al. (2019) proposed modeling the construction of a blockchain21

as a stochastic game in continuous time with infinite horizon and possibly22

incomplete information. Their sophisticated framework allows a wealth of23

interesting conclusions. Here, we will try a related, but more elementary24

analysis.25

Specifically, in this paper, we model the construction of a blockchain26

as an extensive-form game with finite time horizon T . In each stage, the27

population of n miners (or mining pools) strives to append the respective28

next block to the existing blockchain. Thus, starting from the so-called29

genesis block, the blockchain develops in a stochastic manner. Choosing a30

parent block at libitum, miners may intentionally try to create forks. A31

conservative miner always appends any new block to the original chain,32

i.e., to the chain that contains the first child block, thereof the first child33

block, and so on. We also consider the class of mining strategies that follow34

the longest-chain rule, i.e., that append any new block to one of the longest35

chains in the blockchain. We confirm that conservative mining and, in fact,36

any combination of strategies consistent with the longest-chain rule, form37

Pareto effi cient Nash equilibria. However, we also show that, under the38

assumptions made below, these equilibria are not subgame perfect (Selten,39
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1965). This contrasts with findings of the recent literature that has found40

such strategies to be consistent even with the more restrictive concept of41

Markov perfect equilibrium.42

The rest of the paper is organized as follows. Section 2 recalls the formal43

definition of a blockchain. Section 3 introduces finite blockchain games. We44

establish the Nash equilibrium property of conservative mining and longest-45

chain mining in Section 4. Section 5 discusses the lack of subgame perfection.46

Section 6 concludes.47

2 Formal model of the blockchain48

Suppose there are n ≥ 2 miners, collected in a set N = {1, ..., n}. We will49

use the following model of a blockchain (cf. Biais et al., 2019).50

Definition 1. A blockchain B consists of51

(i) a sequence of blocks B = {b0, b1, ..., bT}, where T ≥ 0;52

(ii) a parent-child relation W on B;53

(iii) an assignment map ι : B\{b0} → N .54

Thus, a blockchain B consists of (T +1) blocks, where T is the time horizon.55

The block b0 is referred to as the genesis block. Any two blocks may be56

related to each other by a parent-child relationship. Finally, each block except57

the genesis block has a miner assigned to it. An example of a blockchain is58

shown in Figure 1. The numbers close to the circles are the respective miner59

assignments.60
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61

Figure 1. A blockchain62

We will impose the following two additional requirements:63

(a) each block except the genesis block b0 has precisely one parent, i.e., for64

any t′ > 0, there is precisely one t such that bt W bt′65

(b) the parent has a lower index than the child, i.e., bt W bt′ implies t < t′.66

Popular mining strategies are based on the notion of a chain. A chain of67

length K ≥ 1 in the blockchain B is a set C = {b(0), . . . , b(K)} such that68

b(k−1) W b(k) for k = 1, . . . , K. The original chain starts at b0 and, if there69

is more than one child to a given parent, continues with the child with the70

lowest index. E.g., in the example shown in Figure 1, the original chain is71

Corg = {b0, b1, b2, b4}. A longest chain is a chain in blockchain B for which72

K is maximal. Clearly, any longest chain starts at b0. If a longest chain is73

unique, it is referred to as the longest chain in B. In the example shown74

in Figure 1, there are two longest chains, viz. C1 = {b0, b1, b3, b6, b7} and75

C2 = {b0, b1, b2, b5, b8}.76

3



3 Finite blockchain games77

Suppose the n miners incrementally construct a blockchain B by interacting78

over T ≥ 1 stages. We denote the intermediate blockchains as B0,B1, . . . ,BT .79

At the start of the game, B0 consists only of the genesis block, so that80

B0 = {b0}, and both W0 and ι0 are empty. Next, at any intermediate stage81

t ∈ {1, 2, . . . , T}, Bt is constructed from the existing blockchain Bt−1 as82

follows. Each miner i ∈ N selects a block b̂t−1(i) ∈ Bt−1 from the existing83

set of blocksBt−1. Then, a fair random draw selects the winning miner i∗t ∈ N84

of stage t.1 The new block bt is assigned to i∗t . Moreover, it is appended as a85

child to the block b̂t−1(i∗t ) chosen by the winning miner. Figure 2 illustrates86

the incremental build-up process of the blockchain.87

88

Figure 2. Blockchain construction89

1The random draw may be understood as a reduced form of the equilibrium in a static
model of mining competition such as Dimitri (2017).
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Miners’payoffs are determined as follows. After stage T , one of the longest90

chains C in the blockchain BT is drawn with equal probability. Each miner91

i ∈ N receives one token for each block b ∈ C\{b0} assigned to him. Miners92

are risk-neutral and maximize the expected number of tokens they receive.93

The stochastic game introduced above will be referred to as a finite94

n-miner blockchain game. Note that, given the possibility of forking95

and orphan blocks, the game is not constant-sum, i.e., there are gains from96

coordination.97

4 Mining strategies98

As the action space of the miners is expanding over time, there is an abun-99

dance of pure strategies in the extensive form. Two popular mining strate-100

gies, however, are easy to describe. We say that miner i is conservative if101

she always chooses the last block of the original chain. Further, we say that102

miner i follows the longest-chain rule if she always chooses the last block103

of one of the longest chains. Note that the longest-chain rule is a class of104

strategies, rather than a single strategy.105

We start by studying Nash equilibrium (Nash, 1950). The following result106

says that conservative mining, and likewise following the longest-chain rule,107

constitute Nash equilibria in pure strategies.108

Proposition 1. Conservative mining constitutes a symmetric Nash equi-109

librium. Similarly, any profile of strategies consistent with the longest chain110

rule constitutes a Nash equilibrium.111
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Proof. (Conservative mining) Suppose that all miners j ∈ N\{i} are con-112

servative. We have to show that miner i has no strict incentive to deviate113

from conservative mining. Assume first that i adheres to the candidate equi-114

librium strategy. Then, the blockchain develops into a single chain consisting115

of (T + 1) blocks, and miner i receives one token for each block he mined.116

Assume, instead, that miner i deviates and works, at some stage t, on a block117

that is not the last block of the original chain. Then, miner i creates a fork118

when he wins that stage, i.e., with positive probability. As a result, he does119

not necessarily receive one token for each block that he mined. Thus, miner120

i potentially lowers, but never raises her payoff. Therefore, a deviation from121

conservative mining can never lead to a strictly higher expected payoff for122

miner i. (Longest-chain mining) The proof is entirely analogous and, hence,123

omitted. �124

5 Lack of subgame perfection125

In this section, it will be shown using two examples that the considered Nash126

equilibria need not constitute a subgame-perfect equilibrium (Selten, 1965).127

We begin with the conservative mining equilibrium.128

Example 1. (Conservative mining) Consider a blockchain game with129

n = 2 miners and T = 3 stages. Figure 3 shows a possible state of the130

blockchain B2, i.e., at the end of stage 2.131
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132

Figure 3. Conservative mining is not subgame-perfect133

In this example, miner 1 deviated from the conservative mining strategy134

in stage 2, mining on b0 rather than b1. Thus, we are at a subgame that135

cannot be reached if all miners followed their candidate equilibrium strategy.136

Now, at the outset of stage T = 3, the last block of the original chain is b1.137

However, it is optimal here for miner 1 to work on b2 because this allows him,138

with probability 1/2, to realize a token for the block b2.139

Thus, conservative mining is not subgame-perfect. But neither is the longest-140

chain rule, as the next example shows.141

Example 2. (Longest-chain rule) Consider a blockchain game with n = 3142

miners and horizon T = 6. Figure 4 shows a state of the blockchain B5, i.e.,143

at the end of stage 5. The fork implies that we are, again, off the equilibrium144

path. In the final stage T = 6, miner i = 1 would work on b3, because this145

allows him to win three tokens with probability 1/2 (in case he wins the last146

stage). In contrast, working on b5 and thereby following the longest-chain147

rule would allow him to win one token with probability one (in case he wins148

the last stage), which is strictly less in expectation. Thus, in the considered149

subgame, miner 1 has a strict incentive to deviate from the longest-chain150

rule.151
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152

Figure 4. The longest-chain rule is not subgame-perfect.153

It should be clear that these examples are not exceptional, but represent154

a more general problem. In particular, it is not diffi cult to construct, in155

both cases, similar examples with an arbitrarily long (but not shorter) time156

horizon.157

Usually, the lack of subgame perfection is associated with the concept of a158

non-credible threat. This lack of credibility is particularly evident in the case159

of conservative mining. Indeed, there is intuitively little value in following160

the original chain once a fork has developed into a much longer chain. As161

our analysis has shown, the same lack of credibility is also present, but less162

evident, in the case of the longest-chain rule.163

6 Concluding remarks164

The framework introduced above may be understood as a finite-horizon ver-165

sion of the infinite-horizon model used by Biais et al. (2019). Our analysis166

of Examples 1 and 2 above contrasts with their observation that, in a game167

with infinite horizon, conservative mining constitutes a Markov perfect equi-168

librium in which players follow the longest-chain rule on the equilibrium path.169

As any Markov perfect equilibrium is, by definition, subgame-perfect, this is170

reminiscent of a similar discontinuity in the theory of repeated games. For171

8



instance, the collusive subgame-perfect equilibrium in the infinitely repeated172

prisoner’s dilemma game does not have a counterpart in the finitely repeated173

version of the model.174

However, our finite-horizon model differs also in terms of the assumption175

on payoffs. Specifically, Biais et al. (2019) assumed that a block’s value for a176

miner increases in the number of miners working on a chain that includes this177

block. Intuitively, even far off the equilibrium path, a miner with equilibrium178

beliefs in Biais at al. (2019) will never doubt that all other miners continue179

to work on the original chain. In contrast, we have assumed that a block’s180

value depends on whether it is contained in one of the longest chains at the181

end of the game. This clearly makes a difference for the analysis of profitable182

deviations when the original chain appears orphaned in view to the longest183

chain.184

It may be instructive to compare our findings with Eyal and Sirer’s (2018)185

decision-theoretic analysis of a rational miner interacting with a population186

of naïve miners. They pointed out that selfish mining, i.e., withholding one187

or several blocks, may dominate naïve mining because it allows the rational188

miner to bias the mining contest for later blocks in his favor. In our model,189

all miners are rational, and there is no possibility for mining in secrecy, so190

the models differ in two important dimensions. Intuitively, however, the191

lack of subgame perfection of popular mining strategies seems related to the192

observation that selfish mining strategies may be profitable.193

Finally, the analysis raises the question how subgame-perfect equilibria194

might look like in the class of finite blockchain games. As this question has195

no straightforward solution, however, it will be left for future work.196
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