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Université Paris-Sud
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Abstract

This paper is concerned with the estimation and inference of nonparametric and semiparamet-
ric additive models in the presence of discrete variables and dependent observations. Among the
different estimation procedures, the method introduced by Linton and Nielsen, based in marginal
integration, has became quite popular because both its computational simplicity and the fact
that it allows an asymptotic distribution theory. Here, an asymptotic treatment of the marginal
integration estimator under different mixtures of continuous-discrete variables is offered, and fur-
thermore, in the semiparametric partially additive setting, an estimator for the parametric part
that is consistent and asymptotically efficient is proposed. The estimator is based in minimizing
the L2 distance between the additive nonparametric component and its correspondent linear di-
rection. Finally, we present an application to show the feasibility of all methods introduced in
the paper. 1
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1 Introduction

This paper addresses an old problem considered here from a rather different-new perspective. The
problem of how to treat discrete variables in nonparametric regression problems is already well known
in the statistical literature (see among others Hall, 1981; Bierens, 1983; Grund and Hall, 1993; and
Ahmad and Cerrito, 1994). When the regressors are discrete no smoothing is required to obtain
root-n consistent estimators. Furthermore, if any amount of smoothing is applied, then, the discrete
components do not suffer from the curse of dimensionality.

In the econometrics literature, the same problem has been traditionally approached by retreating it as
a semiparametric problem. That is, the continuous variables are introduced either in a multivariate
or in an additive one-dimensional nonparametric regression setting whereas discrete regressors appear
in the form of linear parametric functions. These are the so called partially linear models. In this
setting, Delgado and Mora (1995) show that root-n consistency of the parametric part is achieved
under much weaker conditions than in the continuous case (see Robinson, 1988).

In many cases (see Horowitz, 1998) the partially linear structure does not appear to be a reasonable
restriction. Racine and Li (2000) analyze the case when discrete and continuous variables are mixed
within a multivariate nonparametric regression function. They provide the statistical properties of
the estimator and a method to choose the different bandwidths. However, the use of multivariate
nonparametric regression models presents an important problem: When many explanatory variables
are available, the rate at which nonparametric smoothers converge to their true values is very slow,
and the the introduction of additive restrictions is recommended (Stone, 1985). In Fan, Härdle and
Mammen (1998) the impact of discrete regressors in the estimation of additive models is analyzed.
They also consider as a particular case a semiparametric additive partially linear model, and provide
root-n consistent estimators of the parameters of interest. Their method is based on local linear re-
gression smoothers, an they allow for components that can be either discrete or continuous. However,
their estimation procedure presents some drawbacks. First, they only give the statistical properties
of the nonparametric additive components that depend on absolutely continuous regressors, second
the resulting estimator for the nonparametric component is created by splitting the sample in sev-
eral cells. The number of cells depends on the number of categories of the discrete variables, and
therefore, if the number of cells is high each may not have enough observations to estimate. Finally,
the whole analysis is performed under the assumption of independent and identically distributed
observations. This assumption, typically rules out regression models that contain lagged endogenous
variables as regressors.

This paper addresses the problem of introducing both discrete and continuous explanatory variables
into an additive nonparametric (semiparametric) regression setting that accounts for dependent
data. In order to estimate the additive components marginal integration techniques (Newey, 1994;
Tjostheim and Auestad, 1994 and Linton and Nielsen, 1995) are used. Here, the pilot multivariate
nonparametric regression estimator is computed by using kernel methods. Discrete covariates enter
in the product kernel although no smoothing is applied to them. We show that estimators of the
additive components with discrete covariates exhibit root-n rates and in the mixed case, that is,
estimators of the additive components that depend both on continuous and discrete covariates, the
rate of convergence is the same as in the continuous case.

Further if we assume that the additive components depending on discrete regressors fall within the
class of linear parametric functions, a two step method to estimate the parametric part is proposed.
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The estimator is based in minimizing the L2 distance between the additive nonparametric compo-
nent and its correspondent linear direction. It is root-n consistent and achieves the semiparametric
efficiency bound. An important feature of our work is to consider a strongly dependent model that
allows for applications in time series situations.

The remainder of the paper is organized as follows. The statistical model and the estimator are
introduced in Section 2. Its asymptotic behavior is also treated in this section. In Section 3 we
present a two step root-n consistent semiparametric estimator of the partially additive linear model.
In Section 4 we present an application to the estimation of a wage equation for the Spanish Economy.
Finally, in the Appendix we prove the main results of the paper.

2 Additive Nonparametric Regression

Along this section we consider an additive nonparametric regression model where a subset of ex-
planatory variables is discrete and the remaining are continuous. More precisely, let Xc = (X1, X3)
be a vector of continuous random variables valued in R

p1+p2 and Xd = (X2, X4) be a vector of
discrete random variables valued in R

q1+q2 . That is, that there exists D ∈ R
q1+q2 such that

P
(
Xd ∈ D)

= 1,(1)

∀xc ∈ D, P
(
Xd = xc

)
> 0.(2)

Let Xi = (X1i, X2i, X3i, X4i). We consider a nonparametric regression model given by

Yi = m(Xi) + εi = ω + m1(X1i) + m2(X2i) + m34(X3i, X4i) + εi,(3)

where {(Xi, Yi)}n
i=1 are observations form a stationary α-mixing process, E (ε |Xi ) = 0 and m1(·),

m2(·) and m34(·, ·) are of unknown form. For identification purposes E [m1(X1i)] = E [m2(X2i)] =
E [m34(X3i, X4i)] = 0. Recall that the α-mixing coefficient relative to the process {(Xi, Yi)}i≥1 is
defined, for any s ∈ N, by

α(s) = sup
{|P (A ∩ B) − P (A)P (B)| , A ∈ Fr

1 , B ∈ F∞
r+s

}
where Fr

1 and F∞
r+s are σ-fields generated respectively by {(X1, Y1) , · · · , (Xr, Yr)} and {(Xr+s, Yr+s) , · · ·}.

A process is strongly mixing if
lim

s→∞α(s) = 0.

See Rosenblatt (1956) for more details. Note that this model nests a broad variety of different
specifications. If we set m1 = m2 = 0 then we consider the same model as in Racine and Li (2000).
On the other side, if m2 = 0 then we have the model analyzed in Fan, Härdle and Mammen (1998).
Of course in both cases all results were obtained for the independent case.

Our interest is to estimate the unknown quantities, that is m1(·), m2(·) and m34(·, ·) in the regres-
sion model. So far, purely additive models have been estimated using the backfitting algorithm
and the so called marginal integration techniques. The first method was proposed in Hastie and
Tibshirani (1990) and the second was simultaneously developed in Newey (1994); Tjostheim and
Auestad (1994) and Linton and Nielsen (1995). From the computational point of view both ap-
proaches appear equally feasible. The backfitting has been mostly implemented using splines. Stone,
Hansen, Kooperberg and Truong (1997) develop estimation theory using polynomial spline methods
and Wahba (1992) uses smoothing splines. Also local polynomial regression has been used as in
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Opsomer and Ruppert (1994). For the marginal integration techniques, series estimators (Andrews
and Whang, 1990; and Newey, 1995), local constant polynomials (Linton and Nielsen, 1995) and
local linear polynomials (Fan, Härdle and Mammen, 1998) have been applied. From the theoretical
point of view, although the behavior of the marginal integration estimators is known better, how-
ever, important developments have been made in the theory of backfitting (see Mammen, Linton and
Nielsen, 1999; Opsomer and Ruppert, 1997; and Opsomer, 2000). In the context of dependent data,
to our knowledge, no results are available for the backfitting estimator whereas marginal estimators
have been studied in deep by Sperlich, Tjostheim and Yang (2000) and Camlong-Viot, Sarda and
Vieu (2000). On these grounds, we opt to estimate the different unknown components by marginal
integration techniques.

At this stage it is worth being fixed some notations. In the following, all the integrals related with
continuous variables will be taken with respect to Lebesgue measure while all the integrals related
with discrete variables will be taken with respect to the counting measure (the counting measure
will be denoted by µ). In the following we will also make use of some functions

q(x) = q(x1, x2, x3, x4) = q1(x1)q2(x2)q34(x3, x4),

where q1, q2 and q34 are known density functions respectively defined on R
p1 , R

q1 and R
p2+q2 .

Moreover, for any � = 1, · · · , 4 we will denote by f� the marginal density of X� (giving the fact that
these marginal densities are either taken with respect to the Lebesgue measure for continuous X� or
with respect to µ for discrete ones). Similarly, for any � = 1, · · · , 4 and for any s > 0 we will denote
by f�,s the joint density of (X�,j , X�,j+s). Finally, we will denote by

f(x1, x2, x3, x4) = fc(x1, x3|x2, x4)fD(x2, x4),

where fc is the conditional density (with respect to the Lebesgue measure) of (X1, X3) given (X2, X4)
and where fD is the density (with respect to the counting measure) of (X2, X4).

This estimation method consists in integrating the regression function m(·) with respect to a suitable
density function. By doing this we obtain∫

Rq1+p2+q2

m(x)q2(x2)q34(x3, x4)µ(dx2)dx3µ(dx4)(4)

= ω + m1(x1) +
∫

Rq1

m2(x2)q2(x2)µ(dx2) +
∫

Rp2+q2

m34(x3, x4)q34(x3, x4)dx3µ(dx4).

On the other hand, integrating m(·) with respect to a density function q(x1, x2, x3, x4) = q1(x1)q2(x2)
×q34(x3, x4) defined on R

p1+q1+p2+q2 we obtain∫
Rp1+q1+p2+q2

m(x)q1(x1)q2(x2)q34(x3, x4)dx1µ(dx2)dx3µ(dx4)(5)

= ω +
∫

Rp1

m1(x1)q1(x1)dx1 +
∫

Rq1

m2(x2)q2(x2)µ(dx2) +
∫

Rp2+q2

m34(x3, x4)q34(x3, x4)dx3µ(dx4).

Then subtracting equation (5) from (4) we obtain an expression for the additive component m1(x1),
up to an additive constant,

η1(x1) = m1(x1) −
∫

Rp1

m1(x1)q1(x1)dx1

=
∫

Rq1+p2+q2

m(x)q2(x2)q34(x3, x4)dx3µ(dx4)

−
∫

Rp1+q1+p2+q2

m(x)q1(x1)q2(x2)q34(x3, x4)dx1µ(dx2)dx3µ(dx4).
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An estimator for η1(x1), η̂1(x1), is obtained by replacing in the equation above the unknown quan-
tities by some estimator

η̂1(x1) =
∫

Rq1+p2+q2

m̂n(x)q2(x2)q34(x3, x4)dx3µ(dx4)(6)

−
∫

Rp1+q1+p2+q2

m̂n(x)q1(x1)q2(x2)q34(x3, x4)dx1µ(dx2)dx3µ(dx4).

An estimator for m(x) is

m̂n(x) =
1
n

n∑
i=1

Yi
1

h
p1
1

K
(

x1−X1i
h1

)
I(x2 = X2i) 1

h
p2
3

L
(

x3−X3i
h3

)
I(x4 = X4i)

f (X1i, X2i, X3i, X4i)
.

This is the so-called ”internal” estimator of Jones, Davies and Park (1994). I(A) stands for the
indicator function that takes value one if A is true, and zero otherwise. In smoothing problems,
the indicator function has been proposed in another contexts by Delgado and Mora (1995) and Fan,
Härdle and Mammen (1998) to account for discrete variables. Further Racine and Li (2000) propose
a kernel function that depends on a smoothing parameter. Delgado and Mora (1995) did not consider
the case of a mixture of continuous and discrete variables, Fan, Härdle and Mammen (1998) take the
indicator function over a broader set of values of Xd on its support, and finally Racine and Li (2000)
face the additional problem of estimating a control parameter with no theoretical gains in doing so.

Following the marginal integration method, the component

η2(x2) = m2(x2) −
∫

Rq1

m2(x2)q2(x2)µ(dx2),

is estimated by

η̂2(x2) =
∫

Rp1+p2+q2

m̂n(x)q1(x1)q34(x3, x4)dx1dx3µ(dx4)

−
∫

Rp1+p2+q1+q2

m̂n(x)q1(x1)q2(x2)q34(x3, x4)dx1µ(dx2)dx3µ(dx4),

and the component

η34(x34) = m34(x34) −
∫

Rp2+q2

m34(x3, x4)q34(x3, x4)dx3µ(dx4)

is estimated by

η̂34(x3, x4) =
∫

Rp1+q1

m̂n(x)q1(x1)q2(x2)dx1µ(dx2)

−
∫

Rp1+p2+q1+q2

m̂n(x)q1(x1)q2(x2)q34(x3, x4)dx1µ(dx2)dx3µ(dx4).

In what follows we give some results about the asymptotic behavior of the estimators η̂1, η̂2 and η̂34.
We give first some definitions and assumptions

(H.1) m1(x1) is k-times continuously differentiable with respect to all its arguments in the support
X1 of X1. Furthermore, m34(x3, x4) is k-times continuously differentiable with respect to
X3 ∈ X3 where X3 is the support of X3.

(H.2a) α(s) = O (s−α), with a > 2β
β−2 . For � = 1, · · · , 4 and s ≥ 1 we have

∀x, y, |f�,s (x, y) − f�(x)fs(y)| ≤ M < ∞.
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(H.2b) α(s) = O (s−α), with a > 2β
β−2

(
2k
pi

+ 2
)

for i = 1, 3. For � = 1, · · · , 4 and s ≥ 1 we have

∀x, y, |f�,s (x, y) − f�(x)fs(y)| ≤ M < ∞.

(H.3) q1(x1) is bounded and k+1-times continuously differentiable in the support X1 of X1. q2(x2)
is bounded with respect to all its arguments in the support X2 of X2. Furthermore, q34(x3, x4)
is bounded and k+1-times continuously differentiable with respect to X3 in X3.

(H.4) The kernel functions K(·) and L(·) are compactly supported, bounded, continuous and they
integrate to one. Furthermore,

∀ (i1, · · · , ip1) ∈ R
∗p1 , (∀j, ij < k) ⇒ ∫

Rp1 ui1
1 · · ·uip1

p1 K (u1, · · · , up1) du1 · · · dup1 = 0

∀ (i1, · · · , ip1) ∈ R
∗p1 , ∀j,

∫
Rp1 uk

j K (u1, · · · , up1) du1 · · · dup1 ∈ R
∗

and

∀ (i1, · · · , ip2) ∈ R
∗p2 , (∀j, ij < k) ⇒ ∫

Rp2 ui1
1 · · ·uip2

p2 L (u1, · · · , up1) du1 · · · dup2 = 0

∀ (i1, · · · , ip2) ∈ R
∗p2 , ∀j,

∫
Rp2 uk

j L (u1, · · · , up2) du1 · · · dup2 ∈ R
∗

(H.5) The bandwidth satisfy h1 = c1n
− 1

2k+p1 and h3 = c1n
− 1

2k+p3 .

(H.6) The functions f(·) and f�, for � = 1, 2, 3, 4 are such that

∃ b, B such that 0 < b ≤ f(x) ≤ B < ∞ and 0 < b ≤ f�(x�) ≤ B < ∞.

Let x−� = (x1, · · · , x�−1, x�+1, · · · , x4). Then the conditional density f(x−�|x�) exists and it is
bounded away from zero on the support of f(·).

(H.7) The conditional variance σ2
0(x) = Var(Y |X = x) is continuous.

(H.8) ∀i, j, E
[
|YiYj |β/2

∣∣∣ X
]
≤ M < ∞, β > 2.

Assumptions (H.1), (H.4), (H.5) and (H.6) are standard in nonparametric regression techniques.
In fact (H.4) assumes higher order kernels (see Vieu, 1991). Note that as expected the number of
derivatives allowed in (H.1) matches the order of the kernels in (H.4). This is needed to control
the bias in the multivariate estimator. The bandwidth rates in (H.5) are chosen according the
previous conditions on kernels and densities. (H.6) introduces a strong assumption: The densities
must be compactly supported. This is done without loss of generality. In fact we could allow for
unbounded support using trimming techniques (Robinson, 1988), but this would complicate the
analysis unnecessarily. (H.2a) and (H.2b) are mixing conditions. Note that we have considered
separately the discrete and the continuous covariates case. In this condition it is assumed that
mixing coefficients decay at a algebraic rate. This is the weakest condition it can be imposed for the
rate of decay of the mixing coefficients (see Bosq, 1998).

Now with the previous assumptions in hand we provide two results that characterize the asymptotic
properties of the different components. The proofs are relegated to the Appendix. We start by the
estimators of the component that depend respectively on continuous explanatory variables, η̂1(x1),
and a mixture of continuous and discrete regressors, η̂34(x3, x4).
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Theorem 1 i) Consider assumptions (H.1), (H.2b), (H.3), (H.4), (H.5), (H.6), (H.7) and (H.8)
hold, then as n → ∞, we have√

nhp1
1 (η̂1(x1) − η1(x1)) →d N (

b(x1), υ2(x1)
)

(7)

b(x1) =
1
k!

p1∑
j=1

∫
uk

j K(u)du

[
(−1)k ∂km1

∂xk
1j

(x1) +
∫

m1(z1)
∂kq1

∂zk
1j

(z1)dz1

]
,

υ2(x1) =
∫

K2(u)du

∫ ∫ ∫ [
σ2

0(x1, x2, x3, x4) + m2(x1, x2, x3, x4)
]

× [q2(x2)q34(x3, x4)]
2

f(x1, x2, x3, x4)
µ(dx2)dx3µ(dx4).

ii) Furthermore, as n grows up to infinity, we have√
nhp2

3 (η̂34(x3, x4) − η34(x3, x4)) →d N (
b(x3, x4), υ2(x3, x4)

)
(8)

with

b(x3, x4) =
1
k!

p2∑
j=1

∫
uk

j L(u)du

[
(−1)k ∂km34

∂xk
3j

(x3, x4) +
∫

m34(z3, z4)
∂kq34

∂zk
3j

(z3, z4)dz3µ(dz4)

]
,

and

υ2(x3, x4) = f4(x4)
∫

L2(u)du

∫ ∫ [
σ2

0(x1, x2, x3, x4) + m2(x1, x2, x3, x4)
]

× [q1(x1)q2(x2)]
2

f(x1, x2, x3, x4)
dx1µ(dx2).

our result in (7) is a generalization of the one obtained in Theorem 1 from Fan, Härdle and Mammen
(1998) to dependent observations. Furthermore, the result in (8) remarks that in the case of mix-
ture between continuous and discrete variables, the asymptotic variance of the marginal integration
estimator suffers only from the dimensionality of the continuous variables. That is, the dimension
of the discrete variables does not affect the rate of convergence of the estimator. Finally, we provide
also an interesting result for the marginal integration estimator with all discrete covariables, η̂2(x2).
The statistical properties of this estimator are given in the next result

Theorem 2 Consider assumptions (H.1), (H.2a), (H.3), (H.4), (H.5), (H.6), (H.7) and (H.8) hold,
then √

nh (η̂2(x2) − η2(x2)) →d N (
0, υ2(x2)

)
υ2(x2) = (f2(x2) − q2(x2))

2
∫ ∫ ∫ [

σ2
0(z1, z2, z3, z4) + m2(z1, z2, z3, z4)

]
× [q1(z1)q34(z3, z4)]

2

f(z1, z2, z3, z4)
dz1dz3µ(dz4) − η2

2(x2),

as n tends to infinity.

Note that although the multivariate nonparametric estimator contains some smoothing, the bias
of η̂2(x2) is exactly equal to zero. This is because the marginal integration estimator of η2(x2) is
obtained by integrating out all directions that contain some smoothness.
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3 A Semiparametric Estimator of a Partially Linear Model

As already indicated in the Introduction, the presence of discrete explanatory in nonparametric
regression problems can be approached by rewriting the model as a semiparametric one. This semi-
parametric model combines a linear parametric part (with discrete covariates) plus a nonparametric
term that contains the continuous variables. The partially linear model has long tradition in the
econometrics literature and it was fully analyzed in an i.i.d. context in Robinson (1988) among oth-
ers. Furthermore, if an additional restriction of additivity in the nonparametric part is added, then
we obtain the so called additive partially linear model. Examples of this model have been considered
in Opsomer (1999) and Li (2000). Although, as explained in Section 2, many econometric problems
of interest do not admit the partially additive linear decomposition in this Section we adopt it and
we obtain a root-n consistent semiparametric estimator of the parametric part. This estimator can
be compared with other previous in the literature.

If in the econometric model introduced in Section 2 we impose the additional restrictions m2(x2) =∑q1

l=1 m2l(x2l) and, without loss of generality, m2l(x2l) = θl + γlx2l, then (3) has the following
expression

Yi = ω +
q1∑

l=1

θl + m1 (X1i) +
q1∑

l=1

γlX2li + m34(X3i, X4i) + εi.(9)

Note that in this context, the identification restriction E [m2(x2)] = 0 implies that θl = −γlE(X2l),
for l = 1, · · · , q1. If we rewrite (9) under the previous restriction we obtain

Yi = ω + m1 (X1i) +
q1∑

l=1

γl (X2li − E (X2l)) + m34(X3i, X4i) + εi.(10)

In this model, it is of interest to estimate the components γ1, γ2, · · · , γq1 at root-n rate. Furthermore,
in order to make inference it is interesting to obtain its asymptotic distribution. One problem
is that the previous identification restriction introduces in the estimating equation quantities that
are unknown for the researcher as the expected values E (X2l),· · ·,E (X2q1). One way to solve this
problem is to introduce the following assumption

(H.9) q2(x2) = 1 in the support of X2.

Note that other identification strategies are possible. For example, in Fan, Härdle and Mammen
(1998), p. 952, for the sake of identification they make θ =

∑
ω +

∑q1

l=1 θl and they overestimate
the quantities m1(·) and m34(·, ·) by an amount of θ.

Let {x2lj}J
j=1 be the set of all possible values that X2l can take such that f2l(x2lj) = P (X2l = x2lj) >

0 for j = 1, · · · , J . Then, the easiest way to define an estimator seems to us to choose the value of
γl that minimizes the L2 distance between the model estimated nonparametrically, η̂2l(x2l), and its
corresponding linear direction, γl

(
x2l − X̄2l

)
, i. e.

γ̂l = argmin
J∑

j=1

(
γl(x2lj − X̄2l) − η̂2l(x2l)

)2
,

where X̄2l = 1
J

∑J
j=1 x2lj . This idea was already explored in another context by Cristobal, Faraldo

and Gonzalez-Manteiga (1987). Compared to others our estimator presents some advantages. First,
its asymptotic properties are obtained under much weaker conditons. Mainly, lagged endogenous
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variables may appear as regressors. Second, the estimator is unique, and it does not depend on cells
or predetermined sets of values that can take the discrete variable. The following result is shown in
the Appendix

Theorem 3 Consider assumptions (H.1), (H.2b), (H.3),(H.4), (H.5), (H.6), (H.7), (H.8) and (H.9)
hold, then √

n (γ̂l − γl) →d N (
0, υ2

l

)
with

υ2
l =

1
J2

J∑
j=1

{
f2l(x2lj)

(
x2lj − X̄2l

)2
∫ ∫ ∫ [

σ2
0(z1, x2lj , z3, z4) + m2(z1, x2lj , z3, z4)

]
× [q1(z1)q34(z3, z4)]

2

f(z1, x2lj , z3, z4)
dz1dz3µ(dz4)

}
− η2

2(x2),

4 An application: Estimation of a wage equation in a labor supply

model

Our aim here is to estimate a wage equation of the Spanish labor market. In order to do this,
note that in any microeconometric study of the labor market, two facts are readily apparent: many
individuals do not work, and wages are not available to nonworking people. This introduces a serious
bias in the estimation of many behavioral equations since only a nonrandomly chosen subsample is
available to estimate the parameters of interest. This is pointed out in Gronau (1974) and Heckman
(1974). In their papers a sample selection model is introduced, consisting of two equations: a wage
equation, explaining the potential log-wage rate of every individual, including non-workers, and a
selection equation indicating whether or not someone is employed and therefore the wage is observed.
Taking into account the above restrictions, we propose the following sample selection model, also
referred in Amemiya (1985) as the Type II Tobit model,

Si = I

(
k1∑
l=1

βlZ1il + U1i > 0

)
i = 1, · · · , n(11)

Wi = I (Si = 1) ×
(

ω +
k2∑
l=1

ml (Z2il) + U2i

)
i = 1, · · · , n(12)

Here, the parameters β1, · · · , βk1 , and the functions m1(Z21), · · · , mk2(Zk2) are unknown and need
to be estimated. (U1, U2) are random variables whose realizations are unobserved by the researcher.
The observed variables are W , S, Z1 and Z2. Z1 and Z2 might contain common variables. S denotes
a dummy variable indicating whether the individual has a paid job or not, and W is the wage
someone receives if he/she is employed. It is only observed iff S = 1. Equation (12) is the so called
market wage equation. The explanatory variables in this equation, Z2, are the standard ones in this
type of models (see Vella, 1998), i.e. four dummy variables associated with age, and three dummy
variables referring to education level. We also used the unemployment rate in the area of residence
since participation may depend on cyclical conditions of the economy.
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Equation (11) reflects the difference between the market and the reservation wage. It is a reduced
form participation equation. Therefore, among the explanatory variables in this equation, Z1, we
can find variables related to both market and individual characteristics: One dummy variable for the
gender differential effect, three dummy variables referring to education level. Education level is used
as an indicator of potential earnings of individuals. We decided also to include a dummy variable
that indicates marital status. This last variable approximates the reservation wage.

In order to estimate a wage equation for the Spanish labor market we have available data obtained
from the Encuesta de Población Activa (EPA), the Spanish quarterly Labor Force Survey. This
survey has taken place every quarter since 1975 and is collected by the National Bureau of Statistics
(INE). It covers approximately 60,000 households and contains information about 150,000 individuals
aged over 16. It provides information at different levels of disaggregation at both national and
regional level. From these surveys, in the second quarter of 1990 the National Bureau of Statistics
randomly selected a cross-section of 4,989 individuals (1,010 are unemployed looking for work) and
provided additional information about some variables that were considered relevant for labor market
participation analysis.

The variables included in this data set are defined in Table 1, where we also include some descriptive
statistics.

Variable Description Whole Sample Worker Sample

AGE16-19 dummy, 1 if age 16 to 19 0.1317
(0.3383)

0.1111
(0.3145)

AGE20-25 dummy, age 20 to 25 0.2653
(0.4417)

0.2565
(0.4371)

AGE26-35 dummy, age 26 to 35 0.2782
(0.4483)

0.2614
(0.4398)

AGE>45 dummy, older than 45 0.1386
(0.3457)

0.1437
(0.3511)

ELEMENTARY dummy elementary school 0.3550
(0.4773)

0.3399
(0.4740)

H.SCHOOL dummy, high school 0.1158
(0.3202)

0.1062
(0.3083)

UNIVERSITY dummy, university 0.0643
(0.2455)

0.0392
(0.1943)

U-RATE unemployment rate 0.1718
(0.0693)

0.1714
(0.0710)

NOT HEAD OF HOUSE dummy, 1 if person is 0.7039
(0.4567)

0.6160
(0.4867)

not head of household
SEXF dummy, 1 if female 0.6802

(0.4666)
0.6258
(0.4843)

SINGLE dummy, 1 if single 0.6891
(0.4631)

0.7255
(0.4466)

PARTICIPATING dummy, 1 if participating 0.6059
(0.4888)

...
(...)

SIZE 1010 612

Table 1: Comparative Statistics of explanatory variables, mean and standard deviation (in brackets).

Here, we estimate the wage equation using the two step method proposed in Heckman (1979). Since
we are only interested in estimating the wage equation we focus our attention in the specification
and estimation of such equation, and therefore, we skip all details about the estimation of the
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participation equation. More details about the estimation procedure and correspondent results can
be found in Fernandez and Rodriguez-Poo (2001). Taking into account all previous considerations
and following Heckman’s two step procedure the wage equation has the following expression

Wi = ω + m1(Z2i1) + m2(Z2i2) + m3(Z2i3) + θλ

(
k1∑
l=1

β̂lZ1il

)
+ ξi, for Si = 1,(13)

where

ξi = Wi − E [W |S = 1, Z1i, Z2i] − θ

{
λ

(
k1∑
l=1

β̂lZ1il

)
− λ

(
k1∑
l=1

βlZ1il

)}
,

θ is a nuisance parameter and λ = φ(·)/Φ(·) is the inverse of the Mill’s ratio. φ(·) and Φ(·) are
respectively the density and the distribution function. β̂1,· · ·,β̂k1 are probit maximum likelihood
estimators of the parameters of the selection equation (Amemiya, 1985). Since Z21 and Z22 are
discrete variables that stand for age (four values) and education (four values) and Z23 is a continuous
variable (unemployment rate) the marginal integration estimators of Section 2 are used, and the
results are presented in Figure 1

Figure 1: In the x-axis we represent respectively the education level (l.h.s.) and the age (r.h.s.). In the
y-axis are shown the estimated nonparametric functions (solid line), and their confidence bands with 5% of
significance level (dotted lines)

The estimated values have been computed using gaussian kernels and the bandwidth has been chosen
by over-smoothing. The reason is that as we have learned in Theorem 3, the bias of the estimators
is exactly equal to zero, and therefore, we can choose the bandwidth in such a way that minimizes
the variance. Now, following the method suggested in Section 3, we use the estimates that have been
obtained above to compute γ1 and γ2 in

Wi = ω + γ1Z2i1 + γ2Z2i2 + m3(Z2i3) + θλ

(
k1∑
l=1

β̂lZ1il

)
+ ξi, for Si = 1.(14)

Parameter estimates and their estimated standard errors are shown in Table 2 In order to obtain
the confidence bands in Figure 1 and the estimated standard deviations in Table 2, the unknown
quantities given in Theorems 2 and 3 are replaced by consistent estimators.

The results obtained are standard in this type of problems. Then, wages are directly related to
education level, and there exists the U-shape relationship between wages and age.
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Parameter Estimated value Estimated St. dev.

γ1 0.472 0.039
γ2 0.624 0.021

Table 2: Parameter estimates and estimated standard deviations calculated according to the method

proposed in Section 3

Appendix

Proof of Theorem 1.i.

We first state some notations. Let

α1(x1) =
∫ ∫ ∫

m(x1, x2, x3, x4)q2(x2)q34(x3, x4)µ(dx2)dx3µ(dx4);

α̂1(x1) =
∫ ∫ ∫

m̂n(x1, x2, x3, x4)q2(x2)q34(x3, x4)µ(dx2)dx3µ(dx4);

Cn = µ +
∫ ∫ ∫

(m2(z2) + m34(z3, z4)) gn (z2, z3, z4) µ(dz2)dz3µ(dz4);

Ĉn =
∫ ∫ ∫ ∫

m̂n(x1, x2, x3, x4)q1(x1)q2(x2)q34(x3, x4)dx1µ(dx2)dx3µ(dx4);

C =
∫

m1(x1)q1(x1)dx1;

gn (z2, z3, z4) =
∫ ∫ ∫

I(x2 = z2)
1

hp3
3

L

(
x3 − z3

h3

)
I(x4 = z4)q2(x2)q34(x3, x4)µ(dx2)dx3µ(dx4).

Remark: By (H.3) we have gn(z2, z3, z4) = q2(z2)q34(z3, z4) + o(1).

We can also write

α̂1(x1) =
1
n

n∑
i=1

1
hp1

1

K

(
x1 − X1i

h1

)
Ỹni

f1(X1i)

with
Ỹni =

Yif1(X1i)
f (X1i, X2i, X3i, X4i)

gn (X2i, X3i, X4i) .

Then, we have written α̂1 as a nonparametric estimator of m̃n(·) = E
(
Ỹni|X1i = ·

)
, and we have

m̃n(x1) = m1(x1) + Cn,

η1(x1) = m1(x1) − C,

η̂1(x1) = α̂1(x1) − Ĉn.

The proof of the asymptotic normality of η̂1 − η1 is obtained by the proof of the three following
points: √

nhp1
1 (α̂1(x1) − m̃n(x1)) →d N (

b1(x1), υ2(x1)
)
,(15)

E
(
Ĉn − Cn − C

)
= hk

1b1 + o
(
hk

1

)
,(16)

Var
(
Ĉn

)
= o

(
1

nhp1
1

)
,(17)
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where

b1 =
(−1)k

k!

p1∑
j=1

∫
uk

j K(u)du

∫
m1(z1)

∂kq1

∂zk
1j

(z1)dz1,

and where b1(x1) = b(x1) − b1.

Proof of (15)

For the bias part, integrating by substitution and using a Taylor expansion of m1, we have

Eα̂1(x1) − m̃n(x1) = E

(
1

hp1
1

K

(
x1 − X1

h1

)
Ỹn1

f1(X1)

)
− m̃n(x1)

= hk
1

(−1)k

k!

p1∑
j=1

∫
uk

j K(u)du
∂km1

∂xk
1j

(x1) + o(hk
1).(18)

Now we have to compute the variance of α̂1(x1).

Var (α̂1(x1)) =
1

nh2p1
1

Var (∆i) +
2

(nh1)2p1

∑ ∑
1≤i<j≤n

Cov (∆i, ∆j) ,(19)

where

∆i = K

(
x1 − X1i

h1

)
Ỹni

f1(X1i)
− E

{
K

(
x1 − X1i

h1

)
Ỹni

f1(X1i)

}
.

Integrating by substitution and by (H.3) and (H.4), we have E∆i = O (hp1
1 ) and then

lim
n→∞nhp1

1

[
1

nh2p1
1

E∆2
i

]
= 0.(20)

Integrating by substitution and using (H.3), (H.4) and (H.5), we obtain that

E∆2
i = υ2(x1) + o

(
1

nhp1
1

)
,(21)

with

υ2(x1) =
∫

K2(u)du

∫ ∫ ∫ [
σ2

0(x1, x2, x3, x4) + m2(x1, x2, x3, x4)
]

× [q2(x2)q34(x3, x4)]
2

f(x1, x2, x3, x4)
µ(dx2)dx3µ(dx4).

Now we will look at the covariance terms. Integrating by substitution and using (H.3), (H.4) and
(H.5), we have

Cov (∆i, ∆j) = O
(
h2p1

1

)
.(22)

On the other hand, by (H.8), E
∣∣∣Ỹni

∣∣∣β ≤ M < ∞, and then E |�i|β ≤ M < ∞, that allows us to use
the covariance inequality for strongly mixing processes (see e.g. Bosq, 1998, Corollary 1.1, p. 21).
Then we have

|Cov (∆i, ∆j)| ≤ Mα
β−2

β (|i − j|) .
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Now we proceed as in Bosq (1996, p. 43) and we introduce a sequence un of integers that allows to
write ∑ ∑

1≤i<j≤n

Cov (∆i, ∆j) =
∑ ∑

|i−j|≤un

Cov (∆i, ∆j) +
∑ ∑

|i−j|>un

Cov (∆i, ∆j)

= O
(
h2p1

1 nun + n2α
β−2

β (un)
)

.

Choosing un = (hp1
1 log n)−1 gives with (H.2b)

lim
n→∞nhp1

1

⎡⎣ 1
nh2p1

1

∑ ∑
1≤i<j≤n

Cov (∆i, ∆j)

⎤⎦ = 0.(23)

Because of (H.2b) we can now apply a CLT for mixing random variables (see e. g. Rio, 2000,
Theorem 4.2., p. 64). So, the relations (18), (19), (20), (21), (22), and (23) lead directly to (15).

Proof of (16)

Computing E {m̂n(x1, x2, x3, x4} in a standard way, and since the regression function m is additive,
we arrive at

E
(
Ĉn − Cn

)
=

∫
m1(z1)

∫
1

hp1
1

K

(
x1 − z1

h1

)
q1(x1)dx1dz1.

A Taylor expansion of q1 leads directly to (16).

Proof of (17)

We have to compute

Var
(
Ĉn

)
=

1
n

Var (U1) +
2
n2

∑ ∑
1≤i<j≤n

Cov (Ui, Uj) ,

where
Ui =

Yi

f (X1i, X2i, X3i, X4i)
pn (X1i) gn (X2i, X3i, X4i)

and

pn (X1i) =
∫

1
hp1

1

K

(
x1 − X1i

h1

)
q1(x1)dx1.

By (H.3), (H.4), (H.5) and integrating by substitution, we can see that Var(U1) = O(1) and E |Ui|β ≤
M < ∞. Then, the covariance terms can be treated exactly as we did before for getting (23) by
Rio’s inequality and by condition (H.2b). This is enough to see that the relation (17) is proved.

Proof of Theorem 1.ii.

It remains now to prove the second part of Theorem 1, namely the equation (8). The proof follows
the same lines as for the estimation of the additive component m1, because m34 depends on some
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continuous random variable. So we will just give the main steps. Introduce the notations:

α34(x3, x4) =
∫ ∫

m (x1, x2, x3, x4) q1(x1)q2(x2)dx1µ(dx2);

α̂34(x3, x4) =
∫ ∫

m̂n (x1, x2, x3, x4) q1(x1)q2(x2)dx1µ(dx2);

Dn = µ +
∫ ∫

(m1(z1) + m2(z2)) gn (z1, z2) dz1µ(dz2);

D̂n =
∫ ∫ ∫ ∫

m̂n (x1, x2, x3, x4) q1(x1)q2(x2)q34(x3, x4)dx1µ(dx2)dx3µ(dx4);

D =
∫ ∫

m34(x3, x4)q34(x3, x4)dx3µ(dx4);

gn(z1, z2) =
∫ ∫

1
hp1

1

K

(
x1 − z1

h1

)
I(x2 = z2)q1(x1)q2(x2)dx1µ(dx2).

Remark: By (H.3), we have gn(z1, z2) = q1(z1)q2(z2) + o(1).

We can also write

α̂34(x3, x4) =
1
n

n∑
i=1

1
hp2

3

L

(
x3 − X3i

h3

)
I(x4 = z4)

Ỹni

f4(X4i)fc(X3i|X4i)

with
Ỹni =

Yif3(X3i)
fc(X1i, X3i|X2i, X4i)f2(X2i)

gn (X1i, X2i) .

Then, we have rewritten α̂34 as a nonparametric estimator of m̃n(·, ·) = E
(

Ỹni

∣∣∣ (X3i, X4i) = (·, ·)
)
,

and we have

m̃n(x3, x4) = m34(x3, x4) + Dn,

η34(x3, x4) = m34(x3, x4) − D,

η̂34(x3, x4) = α̂34(x3, x4) − D̂n.

The proof of the asymptotic normality of η̂34 − η34 will be obtained from the three following points
that can be proved exactly as results (15), (16) and (17):√

nhp2
3 (α̂34(x3, x4) − m̃n(x3, x4)) →d N (

b34(x3, x4), υ2(x3, x4)
)
,(24)

E
(
D̂n − Dn − D

)
= hk

3b3 + o
(
hk

3

)
,(25)

Var
(
D̂n

)
= o

(
1

nhp2
3

)
,(26)

with

b34(x3, x4) = hk
3

(−1)k

k!

p2∑
j=1

∫
uk

j L(u)du
∂km34

∂xk
3j

(x3, x4) + o(hk
3)

b3 =
1
k!

p2∑
j=1

∫
uk

j L(u)du

∫
m34(z3, z4)

∂kq34

∂xk
3j

(x3, x4)dz3µ(dz4).

Proof of Theorem 2

To prove the asymptotic normality of η2 − η̂2 we have to show the following relationships
√

n (η̂2(x2) − Eη̂2(x2)) →d N (
0, υ2(x2)

)
(27)

Eη̂2(x2) = η2(x2).(28)

15



Proof of (27)

We write

η̂2(x2) =
1
n

n∑
i=1

(
I(x2 = X2i) − q2(X2i)

f2(X2i)

)
Z̃ni ≡ 1

n

n∑
i=1

∆i

where

Z̃ni = Yi

∫ ∫ ∫
1

hp1
1

K

(
x1 − X1i

h1

)
1

hp2
3

L

(
x3 − X3i

h3

)
I(x4 = X4i)

× q1(x1)q34(x3, x4)
fc(X1i, X3i|X2i, X4i)f4(X4i)

dx1dx3µ(dx4).

Let us first compute the variance term

Var (α̂2(x2)) =
1
n2

n∑
i=1

Var (∆i) +
2
n2

∑ ∑
1≤i<j≤n

Cov (∆i, ∆j) ,(29)

Using (28) we directly have
E∆i = Eη̂2(x2) = η2(x2).(30)

Integrating by substitution and using (H.3), we obtain

E∆2
i = (f2(x2) − q2(x2))

2
∫ ∫ ∫ [

σ2
0(z1, x2, z3, z4) + m2(z1, x2, z3, z4)

]
× [q1(z1)q34(z3, z4)]

2

f(z1, x2, z3, z4)
dz1dz3µ(dz4) + o(1).(31)

Now, for the computation of the covariance terms, by using (H.8) we obtain that E
∣∣∣Z̃ni

∣∣∣β ≤ M < ∞
and then E |∆i|β ≤ M < ∞, that allows us to use the covariance inequality for strongly mixing
processes (see e.g. Bosq, 1998, Corollary 1.1, p. 21). Then we have

|Cov (∆i, ∆j)| ≤ Mα
β−2

β (|i − j|) .

By a simple computation, and using (H.2a), we obtain∣∣∣∣∣∣ 1
n2

∑ ∑
1≤i<j≤n

Cov (∆i, ∆j)

∣∣∣∣∣∣ ≤ Mn
1−α β−2

β .(32)

Finally, using a Central Limit Theorem for strongly mixing processes (Rio, 2000, Theorem 4.2., p.
64) with relations (29), (30), (31), (32) and with (H.2a) we get directly (27).

Proof of (28)

We first compute the expectation of m̂n(x1, x2, x3, x4):

E {m̂n(x1, x2, x3, x4)} = m (z1, x2, z3, x4)
1

hp1
1

K

(
x1 − z1

h1

)
1

hp2
3

L

(
x3 − z3

h3

)
dz1dz3,

and then, since the regression function is additive we easily obtain that

E {η̂2(x2)} = m2(x2) −
∫

m2(x2)q2(x2)µ(dx2) = η2(x2),

and (28) is proved.
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Proof of Theorem 3

Note that just to simplify notations we have removed the index l form X2l. That is, along the proof
we will use X2i instead of X2li and f2 instead of f2l. This is done just for notational convenience
and without loss of generality. Let us define

X̄2 =
1
J

J∑
j=1

x2j ,

and

σ2
X2

=
1
J

J∑
j=1

(
x2j − X̄2

)2
.

The estimator γ̂l of γl is defined as follows:

γ̂l =

∑J
j=1 η̂2 (x2j)

(
x2j − X̄2

)∑J
j=1

(
x2j − X̄2

)2

The bias term is not difficult to compute. Because of Theorem 2, we have

∀x2j , E {η̂2(x2j)} = η2(x2j),

while, by assumption (H.9), the choice made for q2 allows to see that

η2(x2j) = γl

(
x2j − X̄2

)
.

Clearly, this implies that we have
Eγ̂l = γl.

So the only remaining question is to compute the variance term, Var (γ̂l). It can be written as

σ4
X2

Var (γ̂l) =
1
J2

J∑
j=1

J∑
j′=1

Cov
(
η̂2 (x2j)

(
x2j − X̄2

)
, η̂2

(
x2j′

) (
x2j′ − X̄2

))
.

Let, as in the proof of (27), introduce the quantity

∆i (x2j) =
(

I(x2j = X2i) − q2(X2i)
f2(X2i

)
Ỹni.

Then,

Cov
(
η̂2 (x2j)

(
x2j − X̄2

)
, η̂2

(
x2j′

) (
x2j′ − X̄2

))
= Cov

(
1
n

n∑
i=1

∆i (x2j)
(
x2j − X̄2

)
,
1
n

n∑
k=1

∆k

(
x2j′

) (
x2j′ − X̄2

))

=
1
n2

n∑
i=1

Cov
(
∆i (x2j)

(
x2j − X̄2

)
, ∆i

(
x2j′

) (
x2j′ − X̄2

))
(33)

+
1
n2

∑ ∑
i�=k

Cov
(
∆i (x2j)

(
x2j − X̄2

)
, ∆k

(
x2j′

) (
x2j′ − X̄2

))
.(34)
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Let us now look at the computation of (33). Note first that we have

1
J2

J∑
j=1

J∑
j′=1

1
n

Cov
(
∆i (x2j)

(
x2j − X̄2

)
, ∆i

(
x2j′

) (
x2j′ − X̄2

))
=

1
n

1
J2

J∑
j=1

J∑
j′=1

[
E∆i (x2j)

(
x2j − X̄2

)
∆i

(
x2j′

) (
x2j′ − X̄2

)
−E∆i (x2j)

(
x2j − X̄2

)
E∆i

(
x2j′

) (
x2j′ − X̄2

)]
Using the calculations of the proof of (27), we easily obtain

1
n

1
J2

J∑
j=1

J∑
j′=1

E∆i (x2j)
(
x2j − X̄2

)
E∆i

(
x2j′

) (
x2j′ − X̄2

)
=

1
n

1
J2

J∑
j=1

J∑
j′=1

m2(x2j) (x2j)
(
x2j − X̄2

)
m2

(
x2j′

) (
x2j′ − X̄2

)

=
1
n

γ2
l

⎡⎣ 1
J

J∑
j=1

m2(x2j)(x2j − X̄2)

⎤⎦2

=
1
n

γ2
l σ4

X2
.(35)

On the other hand we have

1
n

1
J2

J∑
j=1

J∑
j′=1

E∆i (x2j)
(
x2j − X̄2

)
∆i

(
x2j′

) (
x2j′ − X̄2

)

=
1
n

E

⎡⎣ 1
J2

J∑
j=1

J∑
j′=1

(
I(x2j = X2i) − q2(X2i)

f2(X2i

)
Ỹni

(
x2j − X̄2

)
×

(
I(x2j′ = X2i) − q2(X2i)

f2(X2i

)
Ỹni

(
x2j′ − X̄2

)]

=
1
n

E

⎡⎣ 1
J2

J∑
j=1

J∑
j′=1

Ỹ 2
ni

f2
2 (X2i)

(
x2j − X̄2

) (
x2j′ − X̄2

)
×{

I(x2j = X2i)I(x2j′ = X2i) − I(x2j = X2i)q2(X2i) − I(x2j′ = X2i)q2(X2i) + q2
2(X2i)

}]
=

1
n

E

⎡⎣ 1
J2

J∑
j=1

J∑
j′=1

Ỹ 2
ni

f2
2 (X2i)

(
x2j − X̄2

) (
x2j′ − X̄2

)
I(x2j = X2i)I(x2j′ = X2i)

⎤⎦
=

1
n

1
J2

J∑
j=1

E

[
Ỹ 2

ni

f2
2 (X2i)

(
x2j − X̄2

)2
I(x2j = X2i)

]
.

Integrating by substitution and using (H.3), (H.4) and (H.5) give

1
n

1
J2

J∑
j=1

E

[
Ỹ 2

ni

f2
2 (X2i)

(
x2j − X̄2

)2
I(x2j = X2i)

]

=
1
n

1
J2

J∑
j=1

{
f2(x2j)

(
x2j − X̄2

)2
∫ ∫ ∫ [

σ2
0 (z1, x2j , z3, z4) + m2 (z1, x2j , z3, z4)

]
× [q1(z1)q34(z3, z4)]

2

f(z1, x2j , z3, z4)
dz1dz3µ(dz4) + o(1)

}
.
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Finally,

lim
n→∞Var (γ̂l) =

1
J2

J∑
j=1

{
f2(x2j)

(
x2j − X̄2

)2
∫ ∫ ∫ [

σ2
0 (z1, x2j , z3, z4) + m2 (z1, x2j , z3, z4)

]
× [q1(z1)q34(z3, z4)]

2

f(z1, x2j , z3, z4)
dz1dz3µ(dz4)

}
− γ2

l .

It remains just to look at the computation of (34). Proceeding as in (32), we have

1
n2

∑∑
i�=k

Cov
(
∆i(x2j)(x2j − X̄2), ∆k(x2j′)(x2j′ − X̄2)

)
= o

(
1
n

)
.

We can write γ̂l as

γ̂l =
1
n

n∑
i=1

δi,

where
δi =

1
Jσ2

X2

∆i(x2j)(x2j − X̄2),

and then, applying the central limit theorem for strongly mixing processes (Rio, 2000, Theorem 4.2.,
p. 64), our result is proved.
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