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This study explores mechanism design for networks of interpersonal relationships.
Agents’ social (more or less altruistic or spiteful) preferences and private payoffs
are all subject to asymmetric information. Remarkably, the asymmetry of infor-
mation about agents’ social preferences can be operationalized to satisfy agents’
participation constraints. The main result is a constructive proof of the Coase the-
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The endogenously derived solution concept is interpreted as gamification: Resolve
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a platform to live out their propensities to cooperate or compete.

JEL Classification: C72; C78; D62; D82

Keywords: Mechanism design; social preferences; gamification; joyful games;

Coase theorem

∗TUM School of Management, Technical University of Munich, Arcisstr. 21, 80333 Munich, Germany.
Fax: +49-89-289-25701. Phone: +49-89-289-25707. Email: thomas.daske@tum.de.
For their helpful comments and critical remarks, I want to thank Christian Feilcke, Aart Gerrit-
sen, Christoph Gschnaidtner, Julian Hackinger, Kai Konrad, Christoph March, Salmai Qari, Matthias
Regier, Felix Reuss, Marco Sahm, Klaus Schmidt, Johannes Schneider, Roland Strausz, and Robert von
Weizsäcker. I am also grateful for inspiring comments by participants of the European Winter Meeting
of the Econometric Society in Milan, the World Congress of the Game Theory Society in Maastricht,
the Annual Meeting of the Association for Public Economic Theory in Strasbourg, the Annual Congress
of the International Institute of Public Finance in Glasgow, the European Meeting of the Econometric
Society in Manchester, the Annual Congress of the German Economic Association in Leipzig, the virtual
Econometric Society World Congress, and seminars at the Universities of Augsburg, Berlin, and Leipzig.
Financial support by the Max Planck Society is gratefully acknowledged.
First version available under: http://hdl.handle.net/10419/193148.

1

mailto:thomas.daske@tum.de
http://hdl.handle.net/10419/193148


“[T]he Coase theorem is much more than simplistic overoptimism or circular reasoning.

Organized markets in standardized commodities are not the only institutions for economists

to analyze. People can be ingenious in seeking to improve their lot, and even when markets

fail some hope remains for cooperation and efficiency. . . . [E]conomists should not forget

that people can be creative and can bypass unsatisfactory institutions.” Farrell (1987)

1 Introduction

How can people resolve their conflicts of interest in an efficient and mutually acceptable

way? The Coase theorem (Coase, 1960), as synthesized by Medema (2020) from six

decades of academic debate, asserts:

Efficiency claim: “If agents are rational and the costs of transacting are zero, resources

will be allocated efficiently independent of how rights over those resources are initially dis-

tributed.” Invariance claim: “Moreover, if utility functions are uniformly affine and the

registration of subjective values is not wealth-constrained, this allocation is independent of

the initial rights structure.”1 In particular, “[a] world of zero transaction costs . . . is char-

acterized by fully specified property rights, transferable utility, and costless information.”

It is commonplace in contemporary economics that the Coase theorem cannot be estab-

lished under asymmetric information and strategic interaction.2 In its typical mechanism-

design interpretation, the ‘theorem’ or, say, ‘Coasean implementation’ reads as follows:

Efficiency claim: In quasi-linear environments with transferable utility and endowment-

unconstrained agents, any allocation problem can be resolved with an ex-post budget-

balanced mechanism that is Bayesian incentive-compatible, interim individually rational,

and ex-post Pareto-efficient.3

Invariance claim: This mechanism is invariant to changes in the status quo.

Based on asymmetric information about agents’ preferences for consumption, already the

efficiency claim has been falsified for numerous allocation problems.4 And even if one is

1See Bergstrom (2017) for details on “uniform affinity,” which appears here merely as quasi-linearity.
2Even under complete information, strategic interaction inevitably violates the theorem in its claim

to universality; see, e.g., Dixit and Olson (2000), Jackson and Wilkie (2005), and Ellingsen and Paltseva
(2016). For a general discussion, see Bertrand (2019).

3Ex-post budget balance plays a crucial role: It guarantees the autonomy of the group of agents, since
the mechanism need not be subsidized from the outside, and it is a facet of zero transaction costs, since
the mechanism does not run a deficit. (Another facet of zero transaction costs are the informational
requirements for Bayesian implementation, which are implicitly assumed to be satisfied.)

4Counterexamples have been provided by, e.g., Myerson and Satterthwaite (1983) for bilateral trade,
Williams (1999) for multilateral trade, Mailath and Postlewaite (1990) for the provision of public goods,
and, in particular, Segal and Whinston (2016) in a rather general bargaining framework. For an early
discussion of the Coase theorem in the light of incomplete information, see Farrell (1987).
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satisfied with second-best solutions, there has not been a shred of status-quo invariance.5

The present study seeks to add some color to this dismal picture.

What do the counterexamples put forward against ‘Coasean implementation’ have in

common? Certainly, two things. First, mechanisms that are both incentive-compatible

and efficient are, in most cases, feasible;6 but those mechanisms unfold distributive effects

that violate the participation constraints of some agents. Loosely speaking, the mecha-

nisms designed to resolve the problem of interpersonal externalities inevitably create new

externalities to which those who anticipate to be harmed would not consent.

And second, asymmetric information has always been associated with allocation, but

(almost) never with distribution: Agents have always been assumed to be privately in-

formed about how they perceive the externalities that others might impose on them (this

is the allocation part), but how they perceive the externalities that they themselves im-

pose on those same others (that’s the distribution part) has mostly been assumed common

knowledge, typically coming along as agents’ selfishness, because ‘they wouldn’t mind.’7

This study explores mechanism design for other-regarding agents: In any interpersonal

relationship, every one person is to some extent uncertain about every other person’s

propensity to internalize the externalities that their actions might impose on others.

That is, there is asymmetric information about the extent to which agents internalize

the distributive effects of a mechanism. I show that this kind of information asymmetry

does not necessarily have adverse effects but, instead, can be operationalized to satisfy

agents’ participation constraints and, thereby, simplify the mechanism-design problem

substantially. Specifically, in an otherwise standard model, I explore mechanism design

for social networks of agents whose more or less altruistic or spiteful preferences as well

as preferences for consumption are all subject to asymmetric information.

The main result, Theorem 1, is a constructive proof of the mechanism-design version

of the Coase theorem, in its efficiency claim and, to large extent, even in its invariance

5See, e.g., McKelvey and Page (2002) and Segal and Whinston (2016).
6For the majority of allocation problems that have been invoked against the Coase theorem, a feasi-

ble mechanism is the renowned AGV-mechanism by Arrow (1979) and d’Aspremont and Gérard-Varet
(1979). An exception has been provided by Jehiel and Moldovanu (2001) who show that allocation prob-
lems with multi -dimensional allocative and informational externalities do “generically” not even allow
for efficiency plus incentive compatibility. I will refer to their study in more detail below.

7Exceptions are the studies of Bierbrauer and Netzer (2016), Bartling and Netzer (2016), and Bier-
brauer et al. (2017). These studies, however, restrict attention to mechanisms that are social-preference
robust ; thereby, they neglect right from the outset the implementation possibilities stemming from this
kind of information asymmetry. I will refer to Bierbrauer and Netzer (2016) in more detail below.
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claim, for social networks of at least three agents. Hence, except for dyads, the standard

counterexamples put forward against Coasean implementation are not robust with respect

to asymmetric information about agents’ interpersonal concerns.

One is inclined to think that extending the scope of asymmetric information must,

generally, further confine the set of ‘feasible’ mechanisms. While this is clearly so for

incentive-compatibility constraints, Theorem 1 shows in particular that this assumption

is untenable when it comes to participation constraints. Notice that the requirement of

budget balance changes character in the presence of social preferences; while monetary

transfers can be ex-post budget-balanced, the corresponding utility transfers cannot.

The reasoning behind the possibility result is essentially the following. First, an ex-

post materially efficient mechanism (which maximizes the sum of agents’ private payoffs

while being ex-post budget-balanced) is also ex-post Pareto-efficient if agents are ‘mod-

erately’ altruistic or spiteful; second, such mechanism can be social-preference robust in

that it operates exclusively on agents’ preferences for consumption while leaving (the

asymmetry of information about) agents’ social preferences as a strategic degree of free-

dom for further interaction; and third, this strategic degree of freedom can be utilized by

complementing the mechanism with an additional, ex-post budget-balanced game that

attracts agents’ participation in the mechanism at large. More specifically, I show that

‘Coasean implementation’ is feasible with a direct mechanism consisting of two parts, the

terms of trade and a gamification scheme.

The terms of trade operate exclusively on agents’ preferences for consumption and

are dedicated to the resolution of the actual allocation problem. They specify an ex-post

materially efficient social alternative and ex-post budget-balanced transfers that apply

the principle of the dyadical AGV-mechanism (due to Arrow, 1979, and d’Aspremont

and Gérard-Varet, 1979) to each and every single dyad: Each agent i makes to every

other j a gross monetary concession amounting to what j expects to contribute to i’s

material well-being when announcing his payoff type. I show that the terms of trade

are Bayesian incentive-compatible, ex-post Pareto-efficient whenever agents are moder-

ately altruistic or spiteful, and social-preference robust in that they leave agents’ social

preferences strategically inoperative.

The gamification scheme is an additional transfer scheme, not at all affecting the

choice of social alternatives, serving a single purpose: to attract agents’ participation in
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the terms of trade. A gamification scheme specifies ex-post budget-balanced transfers

that operate exclusively on agents’ social preferences, are strategy-proof, and implement

a sufficiently strong, and strict, interim-expected Pareto improvement upon a status quo of

zero-transfers. Strikingly, this is possible for social networks of at least three agents. (By

contrast, no ex-post budget-balanced transfer scheme Pareto-dominates another if agents

are moderately altruistic or spiteful.) Under the assumption that agents’ endowments are

sufficiently large, this interim-expected Pareto improvement can be amplified to satisfy

any given collection of interim participation constraints, by scaling all the components of

the gamification scheme with the same sufficiently large factor.

In other words, I show how mutual participation in a game that merely redistributes

money between them yields agents an interim-expected Pareto improvement upon a sta-

tus quo in which such game is not played. The intuition behind this possibility is the

following: Under the assumption that all social types participate, relatively selfish types

can be attracted with the interim expectation to earn money; that money can be collected

from relatively pro- (anti-) social types by compensating those mentally with the interim-

expected positive (negative) externalities that their actions in the game would impose on

their opponents. These interim expectations about the distributive consequences of the

game can be rendered ex-ante budget-balanced for networks of arbitrary size and even

ex-post budget-balanced for at least three agents.

Gamification schemes can be implemented with various ex-post payoff-equivalent

game forms that provide agents with either team- or relative-performance incentives, or

hybrids of those. Under all those game forms, each agent imposes more or less pronounced

positive (negative) effort externalities on every other agent, depending on whether he is

more or less altruistic (spiteful) towards that same agent. Utility-wise, then, gamification

results in games that, on every single bilateral level, are closely related to hawk-dove.

These implications can be interpreted as agents deriving ‘joy’ from playing (i.e., par-

ticipating in) games that involve positive or negative effort externalities. While each

agent benefits from gamification ex interim, some agents might regret ex post to have

participated at all, depending on the composition of social types at play. Put simply,

as it is typical for parlor games, everybody wants to play, but there will be winners and

losers both in terms of ex-post payoffs and ex-post utilities. Notice that joy from playing

emerges endogenously.
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The variety of game forms that can be used to attract agents’ participation in an oth-

erwise unattractive mechanism justifies the term gamification: The abundance of char-

acterizations of “gamification,” to be found in the vast non-economical literature on the

topic, all surround the idea of applying “game design principles in non-gaming contexts”

(Robson et al., 2015). Economically speaking, the vague idea is to complement contracts

with additional incentives so as to increase efficiency and attract agents’ participation.

With its implicit appeal to the autonomy of the contracting parties, the very concept is,

in my understanding, closely related to the Coase theorem. However, or perhaps even

because of its relation to the Coase theorem, this literature is aware of lacking a clean

theoretical foundation.8 This lack of theory is associated with microeconomic theory

lacking a clean foundation of how agents derive joy from playing games.9 The present

study proposes an incentive-theoretical foundation of both, how agents derive joy from

paying games and gamification as such.

With a broader notion of monetary transfers, appealing to transferable utility, some

figurative examples can be given: Think of a community organizing a fundraiser in sup-

port of their elementary school. The hard-core allocation problem underlying this event

is obviously one of public-good provision, and the mechanism to resolve it, if only second-

best, is actually quite simple, realistically speaking: ‘Once you’re in, you have to give,’

as a matter of social norm. Events of this sort are often complemented with some soft-

core incentive device, like awarding the best-dressed guest. The major purpose of such

add-on contest is not to make guests dress well, but rather to suppress free-riding-at-the-

doorstep by compensating participants for their monetary ‘losses’ (the lost returns from

free-riding) with the ‘joy’ they derive from playing games. Awarding the best-dressed

guest provides participants with a platform to live out their propensities to compete,

and it is this attraction that helps pull them over the doorstep.10 Another example is

the ‘peace-keeping process’ complemented with international sporting events such as the

Olympic games, from which ‘defective’ countries are threatened to be excluded.11

8See, e.g., the surveys of Seaborn and Fels (2015) and Koivisto and Hamari (2019).
9To the best of my knowledge, there is but one study that puts gamification into a game-theoretical

perspective: Hamari, Huotari, and Tolvanen (2015) address several questions that arise with this concept,
however, without taking a comprehensive incentive-theoretical view.

10A similar point is frequently made in conceptual research on how to organize fundraisers; see, e.g.,
Webber (2004) and Peloza and Hassay (2007).

11For instance, as many as 66 countries boycotted the Moscow Olympics in 1980 in response to the
Soviet Union’s invasion of Afghanistan. South Africa was banned between 1964 and 1988 to amplify
political pressure on the Apartheid regime.
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The paper proceeds as follows. Section 2 outlines the model framework. I introduce

social networks of altruistic (or spiteful) agents in the manner of Bourlès, Bramoullé,

and Perez-Richet (2017);12 here, however, agents’ interpersonal concerns are their private

information. Agents face an allocation problem with asymmetric information about their

private payoffs from different social alternatives.

In Section 3, I introduce gamification mechanisms formally. Those consist of the

payoff-type dependent terms of trade (which are Bayesian incentive-compatible, ex-post

materially efficient, ex-post Pareto-efficient if agents are moderately altruistic or spiteful,

and social-preference robust) and a social-type dependent gamification scheme (which,

by definition, is strategy-proof, ex-post budget-balanced, and Pareto-improves ex in-

terim upon a status quo of zero-transfers). If gamification schemes exist, they can be

be designed to satisfy any given interim participation constraints; however, as I show,

gamification is not feasible for dyads.

The remainder of the paper is dedicated to showing that gamification schemes do

exist for social networks of more than two agents, and how they can be constructed.

I start out, in Section 4, by considering gamification schemes that are not ex-post but ex-

ante budget-balanced. This simplification allows me to construct gamification schemes

successively and make the economic intuition behind them transparent. Ex-ante budget

balance can be interpreted as the participation constraint of a rent-seeking mediator who

is not affected herself by the choice of social alternatives and who subsidizes or sanctions

agents based on their actions in the corresponding game. I show that ex-ante budget-

balanced gamification is feasible for networks of arbitrary size, including dyads.

In Section 5, I reimpose ex-post budget balance. The ex-ante budget-balanced gam-

ification scheme derived in Section 4 can be adapted such that the role of the mediator

can be taken on by some network member, who herself is now affected by the choice of

social alternatives. Gamification is thus feasible with at least three agents. Based on this

insight, I establish ‘Coasean implementation’ for social networks of at least three agents.

Sections 4 and 5 also show how gamification schemes can be implemented with either

team- or relative-performance incentives, and even hybrids of those. Section 6 concludes.

12For evidence on altruism, see Andreoni and Miller (2002), Charness and Rabin (2002), and Bruhin,
Fehr, and Schunk (2019). For evidence on spite, see Saijo and Nakamura (1995), Fehr, Hoff, and Kshetra-
made (2008), and Prediger, Vollan, and Herrmann (2014).
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2 The Model

2.1 Allocations, Utility, and Information

There is a group I = {1, . . . , n} of n ≥ 2 agents and there is a finite set K of social

alternatives. From alternative k ∈ K and a transfer ti ∈ R, agent i gains a private payoff

Πi(k, ti | θi) = πi(k | θi) + ti, with πi : K × Θi → R. Agent i’s payoff type θi belongs

to a finite set Θi, with |Θi| ≥ 2. The collection of agents’ payoff types is denoted by

θ = (θi, θ−i), where θ−i = (θj)j 6=i.

Agents exhibit interpersonal preferences in the form of altruism or spite: From the

allocation of private payoffs, agent i derives ex-post utility

ui(k, (tj)j∈I , θ−i | θi, δi) =
∑
j∈I

δij Πj(k, tj | θj),

where the value δij that i assigns to j’s payoff, j 6= i, belongs to a closed (proper) interval

∆ij = [δmin
ij , δmax

ij ] ⊂
( −1
n−1

, 1
)
, while δii = 1. Notice that ( −1

n−1
, 1) is the maximum range

of interpersonal altruism, or spite, for which agents care about overall material efficiency

while still being selfish to the extent that every one of them prefers a dollar to be his own

rather than having that same dollar distributed among the others, regardless how. The

model allows in particular for all agents being selfish; i.e., δij = 0 for all i and all j 6= i.

I refer to δij as i’s degree of altruism towards j, to the collection δi = (δij)j 6=i as i’s

social type, and to the pair (θi, δi) as i’s type.13 I denote the collection of social types

by δ = (δi, δ−i), with δ−i = (δj)j 6=i, and Cartesian products of type sets by Θ =
∏

i Θi,

∆i =
∏

j 6=i ∆ij, and ∆ =
∏

i ∆i.

The agents’ types specify a structure that can be represented by a complete double-

directed graph in which nodes, one for each agent, are weighted by payoff types while

edges are weighted by the degrees of altruism between agents. I refer to this structure as

the agents’ social network. Figure 1 gives an illustration.

Each agent is privately informed about his payoff type and social type, which realize

independently according to strictly positive densities. The various degrees of altruism

13See Bergstrom (1999) and the discussion in Bourlès, Bramoullé, and Perez-Richet (2017) for how
agents’ social types can be derived if their degrees of altruism are not directly attributed to other agents’
private payoffs but, instead, to their utilities.
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θ1 θ2

θ3θ4

δ12

δ13δ14

δ21

δ23
δ24

δ31
δ32

δ34

δ41 δ42

δ43

Figure 1: A social network of n = 4 agents with payoff types (θi)i and more or less altru-
istic or spiteful interpersonal preferences (δij)i,j 6=i, all of which are private information.

determining i’s social type may correlate. At the interpersonal level, agents’ types are

independent.

Despite the asymmetry of information, it can still be common knowledge who is

‘friends’ and who is ‘foes.’ For instance, if δmax
k` , δmax

`k < 0 < δmin
ij , δmin

ji , then, in compari-

son, i and j are friends, whereas k and ` are foes. Similarly, it can be common knowledge

that i likes j more than k, which is the case if δmax
ik < δmin

ij . The key assumption is

that in any bilateral relationship there remains, to some extent, uncertainty about who

(dis-)likes whom how much. Notice that the variance of every δij, while strictly positive,

is allowed to be arbitrarily small. In this respect, reciprocal interpersonal preferences can

be captured by letting ∆ij = ∆ji and δmin
ij ≈ δmax

ij .

2.2 Material Efficiency and Pareto Efficiency

I assume (and relax this assumption only in Section 4) that agents do not have access

to an outside source of money, such that transfers must satisfy
∑

i∈I ti ≤ 0. The agents’

problem is to choose a social alternative k and transfers (ti)i∈I such that the resulting

allocation is ex-post Pareto-efficient.

The following Lemma gives rise to focusing on allocations that are ex-post materially

efficient : k?(θ) ∈ arg maxk∈K
∑

i∈I πi(k | θi) while transfers (ti)i∈I are ex-post budget-

balanced:
∑

i∈I ti = 0.
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Lemma 1 An allocation is ex-post Pareto-efficient only if transfers are budget-balanced.

If |δij| < 1
2n−3

for all i and all j 6= i, then an ex-post materially efficient allocation, consist-

ing of a social alternative k?(θ) ∈ arg maxk∈K
∑

i∈I πi(k | θi) and ex-post budget-balanced

transfers, is also ex-post Pareto-efficient; in particular, no ex-post Pareto-efficient trans-

fer scheme Pareto-dominates another.

Proof. See Appendix A.

The intuition behind Lemma 1 is the following: If agents switch from a social alternative

that is materially efficient to one that is not, or from one budget-balanced transfer scheme

to another, then at least one agent must incur a material loss. Consider the agent whose

material loss is largest. If this agent i is sufficiently selfish, |δij| < 1
2n−3

for all j 6= i, then

he will also incur a loss utility-wise.

Notice that the Pareto frontier can be indefinite for combinations of social types

satisfying |δij| ≥ 1
2n−3

, in which case a subgroup of agents might be willing to transfer

arbitrary amounts of money to their joint favorite agent.14

2.3 Revelation Mechanisms

A direct revelation mechanism involves the agents in a strategic game of incomplete

information in which they are asked to report their types truthfully; based on their

reports, a social alternative will be chosen and transfers will be made.15

Specifically, a mechanism is given by a pair 〈k, T 〉 consisting of an allocation function

k : Θ×∆→ K and a transfer scheme T = (ti)i∈I : Θ×∆→ Rn. Denote by Ui(θ̂i, δ̂i | θi, δi)

agent i’s interim-expected utility from reporting (θ̂i, δ̂i) if his true type is (θi, δi) while

all the other agents report their types truthfully: Ui(θ̂i, δ̂i | θi, δi) =
∑

j∈I δij
[
π̄ij(θ̂i, δ̂i) +

t̄ij(θ̂i, δ̂i)
]
, where π̄ij(θi, δi) = Eθ−i,δ−i

[
πj(k(θ, δ) | θj)

]
and t̄ij(θi, δi) = Eθ−i,δ−i

[
tj(θ, δ)

]
.

For convenience, define Ui(θi, δi) = Ui(θi, δi | θi, δi).

Then 〈k, T 〉 is Bayesian incentive-compatible if, for all i ∈ I and all (θi, δi) ∈ Θi×∆i,

Ui(θi, δi) = max(θ̂i,δ̂i)∈Θi×∆i
Ui(θ̂i, δ̂i | θi, δi). In this case, k is Bayesian implementable.16

14An example is the network of three agents with δ13 = δ23 > 1/3, δ12 = δ21 = −1/3, and δ31 = δ32 = 0,
in which agents 1 and 2 are willing to jointly transfer arbitrary individual amounts of t > 0 to agent 3.

15By the revelation principle, which applies to the present setup (Myerson, 1979), there is no loss of
generality in considering only direct mechanisms.

16Bayesian implementation has been criticized for assuming that the ex-ante distribution of agents’
types is common knowledge. As an alternative, Bergemann and Morris (2005) have proposed ex-post im-
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Formally, the mechanism-design problem is one of one-dimensional allocative and

informational externalities.17

2.4 Interim Participation Constraints

The application of a mechanism requires all agents’ approval at the interim stage. Agents’

interim-expected utilities from participating in that mechanism must therefore exceed

their interim-expected utilities from the consequences of this mechanism not finding unan-

imous approval. If property rights, determining a status-quo social alternative, and lia-

bility rules, determining interpersonal transfers if bargaining fails, are well-defined, then

agents can form rational expectations about those consequences: Depending on the state

of the world, (θ, δ), a status-quo social alternative would be implemented and (e.g., as a

result of subsequent bargaining), interpersonal transfers would be made.

Following Segal and Whinston (2016), a property-rights and liability-rules regime

can be captured by a direct revelation mechanism 〈k◦, T ◦〉, with k◦ : Θ × ∆ → K

and T ◦ = (t◦i )i∈I : Θ × ∆ → Rn, that is Bayesian incentive-compatible. Then the

mechanism 〈k, T 〉 finds unanimous approval at the interim stage among all types and

agents if Ui(θi, δi) > U◦i (θi, δi) =
∑

j∈I δij
[
π̄◦ij(θi, δi) + t̄◦ij(θi, δi)

]
on Θi ×∆i for all i ∈ I,

where π̄◦ij(θi, δi) = Eθ−i,δ−i
[
πj(k

◦(θ, δ) | θj)
]

and t̄◦ij(θi, δi) = Eθ−i,δ−i
[
t◦j(θ, δ)

]
. In this case,

〈k, T 〉 is interim individually rational.

3 Gamification Mechanisms

The idea of ‘gamification,’ as conceived in this paper, is to attract agents’ participation in

an otherwise not individually rational mechanism by complementing this mechanism with

plementation for model economies with interdependent utilities (in which dominant-strategy implemen-
tation is not feasible; Williams and Radner, 1988), requiring that truthful revelation of types constitutes
a Nash equilibrium under the respective mechanism. However, as shown by Jehiel et al. (2006), ex-post
implementation is ‘generically’ not feasible in the presence of informational externalities.

17Jehiel and Moldovanu (2001) show that, in allocation problems of allocative and informational exter-
nalities, efficient incentive-compatible mechanisms are ‘generically’ feasible if and only if agents’ privately
known payoff externalities are one-dimensional. The here conceived model differs from theirs in two as-
pects: First, while agents impose one-dimensional payoff-related externalities on each other, the extent
to which an agent perceives those externalities is now his private information, determined by his interper-
sonal preferences; and second, those perceptions now extend to other agents’ transfers, as ‘social’ agents
internalize the distributive effects of a mechanism. While the impossibility result of Jehiel and Moldovanu
(2001) on multi -dimensional informational externalities reinforces the asymmetric-information argument
against ‘Coasean implementation,’ the ‘gamification’ approach presented here might still be relevant to
attracting agents’ participation in second-best solutions.
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a ‘joyful’ game: Only if agents participate in the basic mechanism they are allowed to play

the ‘joyful’ game. In what follows, I give this notion an incentive-theoretical foundation.

I require in particular that ‘joy from playing games’ must emerge endogenously within

the model framework of Section 2. I show then that ‘gamification works’ in that it renders

‘Coasean implementation’ possible.

Consider the dyadical AGV-mechanism (due to Arrow, 1979, and d’Aspremont and

Gérard-Varet, 1979): For n = 2 agents, this mechanism is specified by an ex-post ma-

terially efficient allocation function k?(θ) ∈ arg maxk∈K π1(k | θ1) + π2(k | θ2) and ex-post

budget-balanced transfers t?i (θ̂) = Eθ−i
[
π−i(k

?(θ̂i, θ−i) | θ−i)
]
− Eθi

[
πi(k

?(θi, θ̂−i) | θi)
]
.

Under this mechanism, each agent i ∈ {1, 2} makes a gross monetary concession to

agent −i amounting to what −i believes to contribute to i’s material well-being when

reporting some payoff type θ̂−i, namely Eθi
[
πi(k

?(θi, θ̂−i) | θi)
]
.

Bierbrauer and Netzer (2016) have shown that, in quasi-linear environments with two

other-regarding agents, the AGV-mechanism is not only Bayesian incentive-compatible

but also social-preference robust in that it leaves agents’ other-regarding concerns strate-

gically irrelevant; that is, agents are incentivized to behave as if they were selfish.18 The

reason is that the material externality that i expects to impose on −i when reporting θ̂i

is rendered strategically irrelevant to i: If −i reports his payoff type truthfully, then

Eθ−i
[
π−i(k

?(θ̂i, θ−i) | θ−i) + t?−i(θ̂i, θ−i)
]

= Eθ
[
πi(k

?(θ) | θi)
]
. Thereby, also i’s degree of

altruism is rendered strategically irrelevant.

While some authors deem social-preference robustness a desirable feature (because

common-knowledge assumptions about social-type distributions can thus be avoided),

the standard caveat prevails: For most allocation problems, social-preference robust

mechanisms are not interim individually rational. Therefore, the present study takes

the exact opposite view, by asking: Can the asymmetry of information about agents’

social preferences be operationalized, by complementing an efficient social-preference ro-

bust mechanism with a social-type dependent transfer scheme, so as to satisfy agents’

interim participation constraints (while keeping common-knowledge assumptions about

social-type distributions as weak as possible)?

The idea is, first, to generalize the robustness result of Bierbrauer and Netzer (2016) to

social networks of arbitrary size. This will be achieved by applying the mutual-concessions

18Bierbrauer and Netzer (2016) coin this property the ‘insurance property,’ as it insures agents against
the other-regarding concerns of other agents.
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principle of the dyadical AGV to each and every single dyad: For ex-post materially

efficient social alternatives k?(θ), every agent i pays every other j the money equivalent

of what j believes to contribute to i’s material well-being when reporting θ̂j; that is, i

transfers Eθ−j
[
πi(k

?(θ̂j, θ−j) | θi)
]

to j and receives Eθ−i
[
πj(k

?(θ̂i, θ−i) | θj)
]

from j.

I refer to the resulting mechanism as the terms of trade, for it prescribes how agents

should trade in the tangible externalities they expect to impose on each other when

choosing one social alternative or another. Notice that the terms of trade are ex-post

budget-balanced and operate exclusively on agents’ reported payoff types.

I show that the terms of trade implement ex-post materially efficient allocations

(which, by Lemma 1, are ‘often’ ex-post Pareto-efficient) and are social-preference ro-

bust. Thereby, they preserve agents’ social preferences as a strategic degree of freedom.

Second, this strategic degree of freedom can be utilized by complementing the terms

of trade with an ex-post budget balanced transfer scheme, independent of social alter-

natives k, that yields agents a sufficiently strong interim-expected Pareto improvement

upon a status quo of zero-transfers. (That this is actually possible is what this paper is

all about. Recall from Lemma 1 that an ex-post Pareto improvement through ex-post

budget-balanced transfers is never feasible if agents are moderately altruistic or spiteful.)

Under this requirement, agents’ interim-expected utilities from unanimous participation

will outweigh their interim reservation utilities. I refer to such transfer schemes as gami-

fication schemes.

The term ‘gamification’ is appropriate because an interim-expected Pareto improve-

ment upon a status quo of zero-transfers can be interpreted as agents deriving ‘joy’ from

playing the game induced by such transfer scheme. Notice that ‘joy’ is required to emerge

endogenously.

A gamification mechanism, thus, complements the terms of trade with a gamification

scheme. Only if agents participate in the terms of trade, they are allowed to play the

‘joyful’ game induced by the gamification scheme. Formally:19

19With respect to private payoffs, gamification mechanisms belong to the class of expected-
externality mechanisms, defined by materially efficient allocations k? and transfers ti(θ̂) =∑
j 6=i Eθ−i

[πj(k
?(θ̂i, θ−i) | θj)] + hi(θ̂−i), for arbitrary functions hi : Θ−i → R. Notice that the AGV,

defined through hi(θ̂−i) = −1
n−1

∑
j 6=i
∑
` 6=j Eθ−j [π`(k

?(θ̂j , θ−j) | θ`)], coincides with the terms of trade if
and only if n = 2. While the AGV subsidizes or sanctions the average externalities that an agent imposes
on the rest of the group, gamification mechanisms treat interpersonal externalities on the bilateral level.
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Definition 1 (Gamification Mechanisms) A gamification mechanism 〈k?, T ?〉 con-

sists of the ex-post materially efficient allocation function k? : Θ → K, with k?(θ) ∈

arg maxk∈K
∑

i∈I πi(k | θi), and an ex-post budget-balanced transfer scheme T ? = (t?i )i∈I :

Θ×∆→ Rn defined by

t?i (θ̂, δ̂) =
∑
j 6=i

[
Eθ−i

[
πj(k

?(θ̂i, θ−i) | θj)
]
− Eθ−j

[
πi(k

?(θ̂j, θ−j) | θi)
]]

︸ ︷︷ ︸
the terms of trade

+ s?i (δ̂)︸ ︷︷ ︸
gamification

,

where the gamification scheme s? = (s?i )i∈I : ∆→ Rn satisfies the following conditions:

(i) s? is strategy-proof: For all i ∈ I, all δ ∈ ∆, and all δ̂i ∈ ∆i,

∑
j∈I

δijs
?
j(δ) ≥

∑
j∈I

δijs
?
j(δ̂i, δ−i).

(ii) s? is ex-post budget-balanced: For all δ ∈ ∆,

∑
j∈I

s?j(δ) = 0.

(iii) From unanimous participation in s?, each agent derives strictly positive interim-

expected utility: For all i ∈ I and all δi ∈ ∆i,

∑
j∈I

δij Eδ−i
[
s?j(δ)

]
> 0.

The next two Propositions are the basis for establishing ‘Coasean implementation’ through

‘gamification’ (Theorem 1 in Section 5.1).

Proposition 1 Gamification mechanisms are Bayesian incentive-compatible and ex-post

materially efficient. If |δij| < 1
2n−3

for all i and all j 6= i, then gamification mechanisms

are also ex-post Pareto-efficient.

Proof. Efficiency : Gamification mechanisms are ex-post materially efficient by construc-

tion; hence, by Lemma 1 (with a proof in Appendix A), they are also ex-post Pareto-

efficient if |δij| < 1
2n−3

for all i and all j 6= i.
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Incentive compatibility : Suppose the agents other than i reveal their types truthfully.

Then the transfers that i interim-expects for himself and every other j are given by:

t̄ii(θ̂i, δ̂i) =
∑
6̀=i

Eθ−i
[
π`(k

?(θ̂i, θ−i) | θ`)
]
− (n− 1)Eθ

[
πi(k

?(θ) | θi)
]

+ Eδ−i
[
s?i (δ̂i, δ−i)

]
,

t̄ij(θ̂i, δ̂i)
j 6=i
=

∑
` 6=j

Eθ−i,θ−j
[
π`(k

?(θ) | θ`)
]
−
∑
`6=i,j

Eθ−i,θ−`
[
πj(k

?(θ) | θj)
]

−Eθ−i
[
πj(k

?(θ̂i, θ−i) | θj)
]

+ Eδ−i
[
s?j(δ̂i, δ−i)

]
=

∑
`∈I

Eθ
[
π`(k

?(θ) | θ`)
]
− (n− 1)Eθ

[
πj(k

?(θ) | θj)
]

−Eθ−i
[
πj(k

?(θ̂i, θ−i) | θj)
]

+ Eδ−i
[
s?j(δ̂i, δ−i)

]
.

Agent i’s interim-expected utility from reporting (θ̂i, δ̂i) thus satisfies

Ui(θ̂i, δ̂i | θi, δi) =
∑
j∈I

δij

[
Eθ−i

[
πj(k

?(θ̂i, θ−i) | θj)
]

+ t̄ij(θ̂i, δ̂i)
]

(1)

= Eθ−i

[∑
`∈I

π`(k
?(θ̂i, θ−i) | θ`)

]
+

(∑
j 6=i

δij

)
Eθ

[∑
`∈I

π`(k
?(θ) | θ`)

]

− (n− 1)Eθ

[∑
j∈I

δijπj(k
?(θ) | θj)

]
+
∑
j∈I

δij Eδ−i
[
s?j(δ̂i, δ−i)

]
.

By equation (1), the incentives to reveal payoff types and social types are additively

separated. As gamification schemes s? are strategy-proof by Definition 1(i), gamifi-

cation mechanisms are (dominant-strategy) incentive-compatible with respect to social

types. On the other hand, if truthful revelation of his payoff type θi was inferior for

some agent i, then there would exist θ̂i and θ−i such that
∑

`∈I π`(k
?(θ̂i, θ−i) | θ`) >∑

`∈I π`(k
?(θi, θ−i) | θ`), implying that

∑
`∈I π`(k | θ`) >

∑
`∈I π`(k

?(θ) | θ`) for some so-

cial alternative k, in contradiction to the definition of k?. Hence, gamification mechanisms

are Bayesian incentive-compatible.

By equation (1), the terms of trade are social-preference robust: Agents’ social preferences

are rendered strategically irrelevant when it comes to implementing the materially efficient

allocation function k?. Consequently, the asymmetry of information about agents’ social

preferences can (for the moment: hypothetically) be operationalized to satisfy agents’

interim participation constraints. The idea is simply to amplify the interim-expected
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Pareto improvement induced by s? through Definition 1(iii) by scaling all the s?i with the

same sufficiently large factor:

Proposition 2 If gamification schemes exist and agents’ endowments are sufficiently

large, then there exist gamification mechanisms that satisfy any given interim participa-

tion constraints.

Proof. Suppose a gamification scheme s? = (s?i )i∈I exists. Conditions (i) to (iii) of

Definition 1 are invariant under scaling all the components s?i with the same α? > 0, while

the assumption of sufficiently large individual endowments guarantees that each agent i

is able to make the respective payments for any given α?. Now consider the gamification

mechanism 〈k?, T ?〉 with modified gamification scheme (α? · s?i )i∈I . By equation (1), and

since 〈k?, T ?〉 is Bayesian incentive-compatible, agent i’s interim-expected utility from

unanimous participation in 〈k?, T ?〉 is given by

Ui(θi, δi) = Eθ−i

[∑
`∈I

π`(k
?(θ) | θ`)

]
+

(∑
j 6=i

δij

)
Eθ

[∑
`∈I

π`(k
?(θ) | θ`)

]
(2)

− (n− 1)Eθ

[∑
j∈I

δijπj(k
?(θ) | θj)

]
+ α? ·

∑
j∈I

δij Eδ−i
[
s?j(δ)

]
.

Notice that Ui(θi, δi) is independent of the status-quo property-rights and liability-rules

regime 〈k◦, T ◦〉, as defined in Section 2.4. By Definition 1(iii),
∑

j∈I δij Eδ−i
[
s?j(δ)

]
> 0.

Hence, if α? is chosen sufficiently large, then Ui(θi, δi) > U◦i (θi, δi) for any given interim

reservation utility U◦i (θi, δi), for all i ∈ I and all (θi, δi) ∈ Θi ×∆i.

Whether gamification schemes exist, and how to construct them if they do, is not a

trivial question. The intuitive suspicion is that conditions (ii) and (iii) of Definition 1 are

mutually exclusive, which is (only) true for dyads:

Proposition 3 Gamification schemes do not exist if n = 2.

Proof. Suppose the opposite is true. Then an interim-expected Pareto improvement

upon a status quo of zero-transfers requires that 0 < Eδ−i
[
s?i (δ)

]
+ δi Eδ−i

[
s?−i(δ)

]
for

both i ∈ {1, 2} and all δi ∈ (−1, 1), while s?−i(δ) = −s?i (δ), due to ex-post budget

balance. Hence, 0 < (1 − δi)Eδ−i
[
s?i (δ)

]
, implying that 0 < Eδ−i

[
s?i (δ)

]
for all i, δi. But

then, 0 < Eδ
[
s?i (δ)

]
for both i, in contradiction to ex-post budget balance.
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The next two Sections construct gamification schemes for social networks of n ≥ 3 agents.

The conclusive existence result is Proposition 8 in Section 5.1.

4 Ex-Ante Budget Balance: Gamification with the

Help of an Outside Mediator

I construct gamification schemes successively. For this purpose, I first consider gamifica-

tion schemes that are not ex-post but ex-ante budget-balanced:20
∑

i∈I Eδ
[
s?i (δ)

]
= 0 for

all δ ∈ ∆. (I reimpose ex-post budget balance in Section 5 below.)

An ex-ante budget-balanced gamification scheme can be interpreted as follows. A

mediator M is an agent outside the social network about whom the following is common

knowledge: No network member cares about her; she is a pure-payoff maximizer, implying

that she does not care about network members either; she is not affected by the choice

of social alternatives k; she knows the distribution of agents’ types; she can offer agents

to play a game the outcomes of which merely redistribute money between agents and

herself; she can commit to the ex-post outcomes of that game; and she is willing to offer

the game if and only if she expects a non-negative payoff from it.

When interpreting the gamification scheme s? as subsidies or sanctions by that me-

diator M , then M ’s ex-post payoff is given by sM(δ) = −
∑

i∈I s
?
i (δ), such that M ’s

participation constraint is just satisfied if
∑

i∈I Eδ
[
s?i (δ)

]
= 0.

This Section proceeds as follows. I start out with an example of an ex-ante budget-

balanced gamification scheme in a simple two-agents environment. Section 4.2 then

derives ex-ante budget-balanced gamification schemes for arbitrary dyads. These schemes

are adapted to arbitrary social networks in Section 4.3. Finally, Section 4.4 justifies the

term ‘gamification’ by showing how ex-ante budget-balanced gamification schemes can

be implemented with a multitude of qualitatively different game forms.

4.1 An Example

Consider two agents i ∈ {1, 2} whose social types are i.i.d., taking values δi = 0 or δi = 1/2

with probability of 1/2 each. A mediator M offers agents to play a strategic game the

20For first steps in this direction see my unpublished paper Daske (2016).
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monetary outcomes of which are determined by the transfer scheme (si)i=1,2 depicted on

the left-hand side of Figure 2 (a prisoners’ dilemma, from a pure-payoff perspective); M ’s

payoff is given by sM = −s1 − s2.21

Maximizing utility ui = si + δis−i, a selfish type (δi = 0) has the dominant strategy

to behave ‘hawkish’ in that he opts for playing H, whereas an altruist (δi = 1/2) has

the dominant strategy to behave ‘dovish’ in that he opts for playing D. The game

offered by M is thus strategy-proof and separates hawks from doves behaviorally.22 The

respective utility levels are depicted on the right-hand side of Figure 2: Dominant-strategy

utility levels, considered jointly for both social types, are those of hawk-dove, in the strict

game-theoretical sense.

Consider next a status quo of zero-transfers, and assume that offering and playing the

game requires unanimous approval among the three parties. Given that types are i.i.d.

and equally likely, (si)i is ex-ante budget-balanced, because the eight payoffs specified by

(si)i sum up to zero. M ’s ex-ante expected payoff is thus zero, and her participation

constraint is satisfied.

If the other agent, whether hawk or dove, is willing to participate, a hawk interim-

expects the payoff (5x− 3x)/2 = x > 0 and is thus willing to participate.

The decisive role is played by the dovish type. If the other agent, whether hawk

or dove, is willing to participate, a dove’s interim-expected monetary loss amounts to

(3x− 5x)/2 = −x. This loss serves to attract the hawkish type. For her monetary loss, a

dove is mentally compensated by the positive monetary externality that her appearance

would have on both a hawk (who would obtain 5x) or another dove (who would obtain 3x).

Her interim-expected externality amounts to (5x+ 3x)/2 = 4x and yields her an interim-

21This example is obtained from the gamification scheme (s?i )i of equation (7) below when letting
si = 8x · s?i , where s?i (δ) = 2δ−i − δ2i − 3/8 under the distributional assumptions made right here.

22The transfer scheme can be interpreted as resulting from relative- or team-performance incentives.
For instance, M can offer an all-pay auction in which investments (or efforts) ei ∈ {0, 1} result in payoffs

si(ei, e−i) = −F − Cei +


P, ei > e−i

P/2, ei = e−i

0, ei < e−i

where F = 5x is a participation fee, C = 6x are investment costs, and P = 16x is the winner’s
prize. Here, the hawkish strategy H is to invest, whereas the dovish strategy D is to abstain. Payoff-
equivalently, M can offer a (local) public-good game in which investments ei ∈ {0, 1} result in payoffs
si(ei, e−i) = −F − Cei +B(ei + e−i), at participation fee F = 3x, investment costs C = 10x, and team
bonus per unit of effort B = 8x. In this case, strategy H is to free-ride, whereas D is to invest.
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Figure 2: On the left: The transfer scheme (si)i=1,2 underlying the strategic game that a
mediator offers two agents to play, where x > 0. At the upper right: An altruist, with
ui = si + s−i/2, acts ‘dovish’ by playing his dominant strategy D. At the lower right: A
selfish type, with ui = si, acts ‘hawkish’ by playing his dominant strategy H. If types are
i.i.d. and equally likely, then transfers are ex-ante budget-balanced, and a comparison of
the dominant-strategy related utility levels from meeting either hawk or dove reveals that
mutual participation yields agents an interim-expected Pareto improvement.

expected mental compensation of δD · 4x = 2x, which clearly outweighs her interim-

expected monetary loss.

Hence, ex interim, offering and participating in (si)i are mutually consistent decisions

among the three parties. In particular, mutual participation provides both social types

with a strict interim-expected utility gain. Consequently, agents have a willingness to pay

for their participation: M , not knowing agents’ types, can demand a uniform participa-

tion fee amounting to f < 2
3
x.23 In this case, M realizes herself a strict ex-ante expected

utility gain.24

Their interim-expected utility gains can be interpreted as agents deriving ‘joy’ from

playing the game, where the source of that joy are the interim-expected distributive

23Proof: A hawk, seeking money only, is willing to pay x at most, which is his interim-expected
payoff from participation. A dove is willing to pay and participate if and only if her own interim-
expected monetary loss, which amounts to (3x−5x)/2−f = −(x+f), is compensated for by the mental
compensation that she receives from her interim-expected monetary externality on the other agent, given
by δD · (4x− f) = 2x− f/2. Hence, f < 2x/3.

24This insight suggests that the same implications would hold if M was part of a social network of n = 3
agents: M would want to collect the fee whenever she valued her own material wealth more than that of
any other agent, and agents would be willing to pay if the fee was not too high and their (potential) spite
towards M was not too strong. This intuition will be the basis for constructing gamification schemes
that are ex-post budget-balanced, in Section 5 below.
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effects of the game. Ex post, however, some party must regret to have participated in,

or offered, the game: Collective joy from playing is an interim phenomenon.

With endowments being arbitrarily large, every increase in x allows for even further

interim-expected Pareto improvements.

4.2 Ex-Ante Budget-Balanced Gamification: Two Agents

With all else equal to the model setup of Section 2.1, assume here that there are only

two agents. A reasonable approach is to look for an ex-ante budget-balanced gamification

scheme s? = (s?1, s
?
2) with twice continuously partially differentiable functions s?i : ∆i → R.

Hence, s? must be strategy-proof, implying that

∂s?i (δ)

∂δi
+ δi

∂s?−i(δ)

∂δi
= 0 for both i and all δ,(3)

ex-ante budget-balanced,

Eδ
[
s?1(δ) + s?2(δ)

]
= 0,(4)

and yield agents an interim-expected Pareto improvement from unanimous participation,

Eδ−i
[
s?i (δ)

]
+ δi Eδ−i

[
s?−i(δ)

]
= gi(δi) for both i and all δi,(5)

for some function gi : ∆i → (0,∞) determining i’s interim-expected utility gain.

The idea is to derive s? from (gi)i=1,2 for appropriate functions (gi)i=1,2.25

Proposition 4 Let i ∈ {1, 2}. For positive, twice continuously differentiable functions

gi : ∆i → (0,∞) satisfying g′′i > 0 and

Eδi
[
g′i(δi)

]
= 0 = Eδi

[
gi(δi)− δig′i(δi)

]
,(6)

25The sufficient conditions of Proposition 4 below can be obtained from conditions (3) to (5) by
the following reasoning: By differentiating (3) with respect to δ−i one obtains that ∂2s?i /∂δ1∂δ2 = 0,
implying that s?i is additively separable: s?i (δ) = ai(δi) + bi(δ−i) for appropriate functions ai : ∆i → R
and bi : ∆−i → R. Hence, by condition (3) again, a′i(δi) + δib

′
−i(δi) = 0, such that partial integration

yields ai(δi) = −δib−i(δi) +
∫ δi
δmin
i

b−i(x)dx + C, for a constant C. Define gi(δi) =
∫ δi
δmin
i

b−i(x)dx + C.

Then, ai(δi) = gi(δi) − δig
′
i(δi) and bi(δ−i) = g′−i(δ−i). Condition (6) of Proposition 4 can then be

imposed in order to comply with conditions (4) and (5).
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define the transfer scheme s? = (s?1, s
?
2) by s?i (δ) = gi(δi) − δig′i(δi) + g′−i(δ−i). Then the

following holds:

(i) s? is an ex-ante budget-balanced gamification scheme.

(ii) From unanimous participation in s?, agent i derives an interim-expected utility gain

of gi(δi) > 0 while interim-expecting a transfer of Eδ−i
[
s?i (δ)

]
= gi(δi) − δig′i(δi) to

himself and a transfer of Eδ−i
[
s?−i(δ)

]
= g′i(δi) to agent −i.

Proof. Ad (i): Strategy-proofness : d[s?i (δ̂i, δ−i) + δis
?
−i(δ̂i, δ−i)]/dδ̂i = (δi − δ̂i)g

′′
i (δ̂i);

as g′′i > 0 by assumption, i has the strictly dominant strategy to report δ̂i = δi. Ex-

ante budget balance: Eδ
[
s?i (δ)

]
= 0 for both i, due to (6). Interim-expected utility : By

condition (6), Eδ−i
[
s?i (δ)

]
+ δi Eδ−i

[
s?−i(δ)

]
= [gi(δi) − δig′i(δi)] + δi [g

′
i(δi)] = gi(δi) > 0.

Ad (ii): Obvious from the arguments on (i).

Under the gamification scheme of Proposition 4, the transfer that an agent interim-expects

for himself is maximal, and positive, if that agent is a pure-payoff maximizer (δi = 0), since

dEδ−i
[
s?i (δ)

]
/dδi = −δig′′i (δi), while g′′i > 0. Money is thus redistributed to those agents

who ‘care least’ about others. On the other hand, the transfer that an agent interim-

expects for his opponent increases in his own social type, since dEδ−i
[
s?−i(δ)

]
/dδi =

g′′i (δi) > 0, and is zero ex ante, since Eδi
[
g′i(δi)

]
= 0. Hence, least (most) altruistic

types interim-expect to impose a negative (positive) externality on their opponent. This

interim-expected externality, weighted with an agent’s social type, mentally overcompen-

sates for interim-expected monetary losses : Eδ−i
[
s?i (δ)

]
+ δi Eδ−i

[
s?−i(δ)

]
= gi(δi) > 0.

From an ex-post perspective, mediator M prefers hawkish (less altruistic) over dovish

(more altruistic) players; by contrast, agents prefer dovish over hawkish opponents.26

In order to conform with Wilson’s (1987) call for avoiding stark common-knowledge

assumptions, the functions (gi)i=1,2 should be chosen such that common-knowledge as-

sumptions about agents’ social-type distributions are as weak as possible. In fact, it

suffices to assume common knowledge about the mean and variance of an agent’s social

type: The functions

gi(δi) = Varδi [δi] + (δi − Eδi [δi])
2

26Proof: On the one hand, ∂sM (δ)/∂δi = −∂[s(δ1, δ2) + s(δ2, δ1)]/∂δi = −(1− δi)g′′(δi) < 0 for all i
and δi; on the other hand, ∂[s(δi, δ−i) + δis(δ−i, δi)]/∂δ−i = (1− δiδ−i)g′′(δi) > 0 for all i and all δ.
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0
δi
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Figure 3: The utility gain gi(δi) = Eδ−i
[
s?i (δ)

]
+ δi Eδ−i

[
s?−i(δ)

]
> 0 that a social type δi

interim-expects under the gamification scheme (s?i )i=1,2 of equation (7), for two different
type distributions: δi ∈ [δmin

i , δmax
i ] = [−4/5, 4/5], Eδi [δi] = ∓2/5, and Varδi [δi] = 1/5,

such that Eδ−i
[
s?i (δ)

]
= 9/25−δ2

i , Eδ−i
[
s?−i(δ)

]
= 2δi±4/5, and gi(δi) = (δi±2/5)2 +1/5.

satisfy the conditions of Proposition 4.27 The corresponding gamification scheme, s?i (δ) =

gi(δi)− δig′i(δi) + g′−i(δ−i), is given by

s?i (δ) = Eδi [δ2
i ]− δ2

i + 2
(
δ−i − Eδ−i [δ−i]

)
.(7)

The interim-expected distributive effects of (s?i )i=1,2 are illustrated in Figure 3: Social

types satisfying |δi| >
√
Eδi [δ2

i ] incur interim-expected monetary losses, Eδ−i
[
s?i (δ)

]
< 0,

for which they are mentally overcompensated through sufficiently strong interim-expected

externalities, Eδ−i
[
s?−i(δ)

]
= 2δi − 2Eδi [δi]. These interim-expected monetary losses of

relatively ‘strong’ social types are the source for attracting relatively selfish agents with

interim-expected monetary gains: Eδ−i
[
s?i (δ)

]
> 0 for social types |δi| <

√
Eδi [δ2

i ].

27Proof: Obviously, g′′i > 0 and Eδi
[
g′i(δi)

]
= 0. On the other hand, as Varδi [δi] = Eδi [δ2i ]− Eδi [δi]2,

one has gi(δi)− δig′i(δi) = Eδi [δ2i ]− Eδi [δi]2 + δ2i − 2δiEδi [δi] + Eδi [δi]2 − 2δi (δi − Eδi [δi]) = Eδi [δ2i ]− δ2i ;
hence, Eδi

[
gi(δi)− δig′i(δi)

]
= 0.
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4.3 Ex-Ante Budget-Balanced Gamification: The General Case

As utility is linear in transfers, the sufficiency result of Proposition 4 suggests the following

approach to ex-ante budget-balanced gamification in networks of arbitrary size. Define

transfers s? = (s?i )i∈I : ∆→ Rn by

s?i (δ) = gi(δ
S
i )− δSi g′i(δSi ) +

∑
j 6=i

g′j(δ
S
j ),(8)

gi
(
δSi
)

= Varδi [δ
S
i ] +

(
δSi − Eδi [δSi ]

)2
,(9)

for appropriate functions δSi : ∆i → R mapping an agent’s (n − 1)-dimensional social

type to a one-dimensional signal (e.g., an effort level).

Under s?, as I show below, agent i has the strictly dominant strategy to report

δSi =
∑
j 6=i

δij ∈ (−1, n− 1),(10)

which I refer to as i’s degree of pro-sociality. When substituting for (10), then the

mechanism induced by (8) and (9) is a direct mechanism under which each agent i has

the weakly dominant strategy to reveal his social type δi truthfully.

For the mappings (δSi )i, the functions (gi)i of (9) satisfy the necessary conditions of

Proposition 4:

Lemma 2 Be Xi : ∆i → R a continuous non-constant random variable. Then Eδi [Xi]

and Varδi [Xi] exist, and gi : R → R defined by gi(Xi) = Varδi [Xi] + (Xi − Eδi [Xi])
2

satisfies gi(Xi) > 0, g′′i (Xi) > 0, and Eδi
[
g′i(Xi)

]
= 0 = Eδi

[
gi(Xi)−Xig

′
i(Xi)

]
.

Proof. Eδi [Xi] and Varδi [Xi] exist, since ∆i is compact and convex while Xi and the

density of δi are continuous. Obviously, gi(Xi) > 0, g′′i (Xi) > 0, and Eδi
[
g′i(Xi)

]
=

2Eδi
[
Xi − Eδi [Xi]

]
= 0. On the other hand, as Varδi [Xi] = Eδi [X2

i ] − Eδi [Xi]
2, one has

gi(Xi)−Xig
′
i(Xi) = Eδi [X2

i ]−Eδi [Xi]
2 +X2

i −2XiEδi [Xi]+Eδi [Xi]
2−2Xi (Xi − Eδi [Xi]) =

Eδi [X2
i ]−X2

i ; hence, Eδi
[
gi(Xi)−Xig

′
i(Xi)

]
= 0.

Proposition 5 The transfer scheme s? defined by (8) to (10) is an ex-ante budget-

balanced gamification scheme.
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Proof. Strategy proofness : Under s?, each i ∈ I reports a social type δ̂i, which is

strategically equivalent to reporting some signal δ̂Si ∈ R. His ex-post utility is given by

∑
j∈I

δijs
?
j(δ̂) = gi(δ̂

S
i )− δ̂Si g′i(δ̂Si ) +

∑
j 6=i

g′j(δ̂
S
j ) +

∑
j 6=i

δij

[
gj(δ̂

S
j )− δ̂Sj g′j(δ̂Sj )

]
+
∑
j 6=i

δij
∑
6̀=j,i

g′`(δ̂
S
` ) +

(∑
j 6=i

δij

)
g′i(δ̂

S
i ).

Hence, i maximizes gi(δ̂
S
i )+(δSi − δ̂Si )g′i(δ̂

S
i ) over the choice of δ̂Si . As gi is strictly convex, i

has the strictly dominant strategy to report his degree of pro-sociality: δ̂Si = δSi .

Ex-ante budget balance: By Lemma 2, Eδj
[
g′j(δ

S
j )
]

= 0 = Eδj
[
gj(δ

S
j ) − δSj g′j(δSj )

]
for

all j ∈ I. Hence, Eδ[s?i (δ)] = 0 and, thus,
∑

i∈I Eδ[s?i (δ)] = 0.

Interim-expected Pareto improvement : By Lemma 2 again, with δ̂Si = δSi in Bayesian

equilibrium, each i ∈ I derives positive interim-expected utility from unanimous par-

ticipation:
∑

j∈I δij Eδ−i [s?j(δ)] = gi(δ
S
i ) − δSi g

′
i(δ

S
i ) +

(∑
j 6=i δij

)
g′i(δ

S
i ) = gi(δ

S
i ) > 0.

As ex-ante budget-balanced gamification schemes provide agents with strict interim-

expected utility gains, the mediator can even demand a uniform participation fee:

Corollary 1 A rent-seeking mediator M /∈ I can offer the members of I to play a game

that is ex-post budget-balanced among I ∪ {M}, strategy-proof and interim individually

rational for all i ∈ I, and yields M a positive ex-ante expected profit.

Proof. For the ex-ante budget-balanced gamification scheme (s?i )i∈I of Proposition 5,

define the modified transfer scheme (s??j (δ))j∈I∪{M} by s??M(δ) = nF −
∑

i∈I s
??
i (δ) and

(s??i (δ))i∈I = (s?i (δ)− F )i∈I , at participation fee 0 < F <
∑

j∈I δij Eδ−i
[
s?j(δ)

]/∑
j∈I δij.

Then the result is immediate from the proof of Proposition 5, while M ex-ante expects a

profit of nF > 0.

In the context of Corollary 1, the implicit common-knowledge assumption of Proposition 5

regarding mean and variance of every δSi is sufficient but not necessary: As the gamifi-

cation scheme is strategy-proof while the resulting interim-expected Pareto improvement

is strict, it suffices to assume that agents and mediator have sufficiently good estimates

of those means and variances.
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4.4 Variants of Ex-Ante Budget-Balanced Gamification

Gamification in the manner of Proposition 5 can be implemented with qualitatively dif-

ferent, while ex-post payoff-equivalent, transfer schemes. The corresponding mechanisms

are indirect in that agents do not report their social types directly but take actions (e.g.,

make investments, or exert efforts) from which their social types can be concluded.

Those indirect gamification schemes can be obtained by reversing the logic of the

revelation principle: Suppose agent i has the strictly dominant strategy to report δ̂Si = δSi

so as to maximize utility ui(s
?(δ̂Si )) under the composite game form s? = s[x] ◦ x, for

functions x : R→ R and s[x] : R→ Rn with x being strictly monotone. Then i has also

the strictly dominant strategy to ‘invest’ x̂i = x(δSi ) so as to maximize ui(s[x](x̂i)) under

the game form s[x], with ex-post utility being left unchanged.

If x is increasing (decreasing), then ‘investments’ increase (decrease) in an agent’s

pro-sociality δSi =
∑

j 6=i δij, suggesting that agents impose positive (negative) investment

externalities on each other when playing the game induced by s[x]. Either scenario is fea-

sible, as a special case of Proposition 7 below, such that gamification can be implemented

with both team- or relative-performance incentives.

More generally, hybrids of team- and relative-performance incentives are feasible,

too. In order to obtain (some of) those, consider a network partition into two teams:

I = T 1 ∪ T 2 = Ti ∪ T−i, where Ti ∈ {T 1, T 2} denotes the team of agent i. Teams can be

singletons, as long as |T 1|+ |T 2| = n. Define transfers s? by

s?i (δ) = gi(δ
T
i )− δTi g′i(δTi ) +

∑
j∈Ti\{i}

g′j(δ
T
j )−

∑
j∈T−i

g′j(δ
T
j ),(11)

gi(δ
T
i ) = Varδi [δ

T
i ] +

(
δTi − Eδi [δTi ]

)2
,(12)

δTi =
∑

j∈Ti\{i}

δij −
∑
j∈T−i

δij ∈ (−n, n).(13)

Notice that s? reduces to the scheme of Proposition 5 if T 2 is chosen empty.

Under s?, as I show below, each agent i has the strictly dominant strategy to report

δ̂Ti = δTi , a term that can be interpreted as i’s relative pro-sociality towards his own team.

Proposition 6 The transfer scheme s? defined by (11) to (13) is an ex-ante budget-

balanced gamification scheme.
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Proof. Strategy proofness : In (s?j)j∈I , the transfer components strategically relevant

to i ∈ I are given by gi(δ̂
T
i ) − δ̂Ti g

′
i(δ̂
T
i ) for j = i, by g′i(δ̂

T
i ) for j ∈ Ti \ {i}, and

by −g′i(δ̂Ti ) for j ∈ T−i. Hence, for δTi =
∑

j∈Ti\{i} δij −
∑

j∈T−i δij, agent i maximizes

gi(δ̂
T
i )+(δTi −δ̂Ti )g′i(δ̂

T
i ) over the choice of δ̂Ti . As g′′i > 0, agent i has the strictly dominant

strategy to report δ̂Ti = δTi .

Ex-ante budget balance: By Lemma 2, Eδj
[
g′j(δ

T
j )
]

= 0 = Eδj
[
gj(δ

T
j ) − δTj g

′
j(δ
T
j )
]
.

Hence, Eδ[s?i (δ)] = 0 and, thus,
∑

i∈I Eδ[s?i (δ)] = 0.

Interim-expected Pareto improvement : By Lemma 2 again, each i ∈ I derives positive

interim-expected utility from unanimous participation:
∑

j∈I δij Eδ−i [s?j(δ)] = gi(δ
T
i ) −

δTi g
′
i(δ
T
i ) +

(∑
j∈Ti\{i} δij −

∑
j∈T−i δij

)
g′i(δ

T
i ) = gi(δ

T
i ) > 0.

The reversed logic of the revelation principle yields the following hybrids of team- and

relative-performance incentives. (The parameter µ in Proposition 7 is introduced to

facilitate the exposition in Section 5.2.)

Proposition 7 Let µ = n. The gamification scheme of Proposition 6 can be implemented

with a team competition under which individual investments xi ≥ 0 result in payoffs

ŝi((xj)j∈I) = ĉi − xi + 2µ
√
xi + 2

∑
j∈Ti\{i}

√
xj − 2

∑
j∈T−i

√
xj, with an appropriate

constant ĉi. In the resulting game, dominant strategy investments x̂i = (µ+δTi )2 increase

in δTi . Payoff-equivalently, agents can compete with the members of their ‘teams’ while

contributing to a public good on the network level: s̃i((xj)j∈I) = c̃i − xi + 2(µ− 1)
√
xi −

4
∑

j∈Ti\{i}
√
xj + 2

∑
j∈I
√
xj, with an appropriate constant c̃i. In this case, dominant-

strategy investments x̃i = (µ− δTi )2 decrease in δTi .28

Proof. Observe that

s?i (δ) = 2
∑

j∈Ti\{i}

(
δTj − Eδj [δTj ]

)
− 2

∑
j∈T−i

(
δTj − Eδj [δTj ]

)
+ Eδi [(δTi )2]− (δTi )2

= ĉi − (µ+ δTi )2 + 2µ(µ+ δTi ) + 2
∑

j∈Ti\{i}

(µ+ δTj )− 2
∑
j∈T−i

(µ+ δTj )

= ĉi − x̂i + 2µ
√
x̂i + 2

∑
j∈Ti\{i}

√
x̂j − 2

∑
j∈T−i

√
x̂j

= ŝi((x̂j)j)

28When choosing T 2 empty, then (ŝi)i and (s̃i)i, respectively, provide agents with pure team- and pure
relative-performance incentives. Notice that the alternative substitutions x̂j = µ+ δTj and x̃j = µ− δTj
result in payoff-equivalent game forms, composed of linear returns and quadratic costs of ‘effort.’
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when letting ĉi = 2µ(|T−i|−|Ti|+1)−µ2+Eδi [(δTi )2]−2
∑

j∈Ti\{i} Eδj [δ
T
j ]+2

∑
j∈T−i Eδj [δ

T
j ]

and x̂j = (µ+ δTj )2. Notice that dx̂j/dδ
T
j > 0, since δTj > −n = −µ. Likewise,

s?i (δ) = 2
∑

j∈Ti\{i}

(
δTj − Eδj [δTj ]

)
− 2

∑
j∈T−i

(
δTj − Eδj [δTj ]

)
+ Eδi [(δTi )2]− (δTi )2

= c̃i − (µ− δTi )2 + 2µ(µ− δTi )− 2
∑

j∈Ti\{i}

(µ− δTj ) + 2
∑
j∈T−i

(µ− δTj )

= c̃i − x̃i + 2(µ− 1)
√
x̃i − 4

∑
j∈Ti\{i}

√
x̃j + 2

∑
j∈I

√
x̃j

= s̃i((x̃j)j)

when letting c̃i = 2µ(|Ti|−|T−i|−1)−µ2+Eδi [(δTi )2]−2
∑

j∈Ti\{i} Eδj [δ
T
j ]+2

∑
j∈T−i Eδj [δ

T
j ]

and x̃j = (µ− δTj )2. Notice that dx̂j/dδ
T
j < 0, since δTj < n = µ.

The many variants presented above suggest that there is barely a limitation to the specific

forms that gamification can take. The key feature is that agents, through their efforts or

investments, impose positive or negative externalities on others, while the sign of those

externalities can be chosen irrespective of who (dis-)likes whom how much.

5 Ex-Post Budget Balance: Gamification in

Autonomous Networks

The previous Section shows that when ex-post budget balance is replaced with ex-ante

budget balance, then an ex-post materially efficient allocation function can always be

Bayesian implemented with a mechanism that is interim individually rational. I have

interpreted ex-ante budget balance as the participation constraint of an outside mediator

who subsidizes or sanctions network members based on the outcomes of a game that

serves as an add-on to the terms of trade. In this Section, I reimpose ex-post budget

balance by asking: Can the role of the mediator be taken on by network members? That

is, can social networks resolve their allocation problems efficiently and autonomously?

I show that ‘yes’ for social networks of at least three agents and establish ‘Coasean

implementation’ on these grounds.29

29With regard to the feasibility of ‘Coasean implementation’ in dyads, the results of this paper are
inconclusive, although Proposition 3 shows that at least the gamification approach must fail. However,
as I show in a working paper (see Daske, 2017, Theorem 1), under more restrictive assumptions, any
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5.1 A Coase Theorem

Consider any network of at least three agents, n ≥ 3, and denote by M ∈ I some network

member who is to take on the role of a mediator. Consequently, that mediator is now

herself affected by the choice of social alternatives k.

Proposition 5 and Corollary 1 suggest the following approach to gamification in au-

tonomous social networks: Offer the agents other than M a gamification scheme that

yields each of them a zero ex-ante transfer; then interim-expected utility to M , who

has no strategic role to play, is zero; as the agents other than M each obtain a strict

interim-expected utility gain from gamification, M can extract a monetary rent by de-

manding a uniform participation fee from each of them, and can thereby obtain herself

an interim-expected utility gain; if this fee is sufficiently small, the agents other than M

will be willing to pay, even if they are spiteful towards M .

Therefore, define ex-post budget-balanced transfers s? = (s?i )i∈I : ∆→ Rn by

s?M(δ) = −
∑
j 6=M

s?j(δ),(14)

s?j(δ) = −F + gj(δ
?
j )− δ?j g′j(δ?j ) +

∑
` 6=j,M

g′`(δ
?
` ), for j 6= M ,(15)

gj(δ
?
j ) = Varδj [δ

?
j ] + (δ?j − Eδj [δ?j ])2,(16)

for a uniform participation fee F > 0 and appropriate functions δ?j : ∆j → R.

Under s?, as I show below, each j 6= M has the strictly dominant strategy to report

δ?j =

∑
`6=j,M(δj` − δjM)

δjj − δjM
.(17)

This term gives j’s relative marginal utility from a redistribution of M ’s money either

to the others, who obtain equal shares, or to j himself; recall that δjj = 1. It can be

referred to as j’s relative spite towards M , because δ?j decreases in j’s degree of altruism

towards M and increases in j’s pro-sociality toward the others,
∑

`6=j,M δj`. Notice that s?

is independent of (δMj)j 6=M , such that M has no strategic role to play under s?.

Proposition 8 The transfer scheme s? defined by (14) to (17) is a gamification scheme

in the manner of Definition 1 if F > 0 is chosen sufficiently small.

Bayesian incentive-compatible, ex-post Pareto-efficient mechanism must be a gamification mechanism.
Jointly with Proposition 3, this result shows that Coasean implementation is impossible in dyads.
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Proof. Strategy proofness : Under s?, each agent j 6= M reports a social type δ̂j, which

is strategically equivalent to reporting some signal δ̂?j ∈ R. His ex-post utility is given by

∑
6̀=M

(δj` − δjM)s?`(δ̂) = (δjj − δjM)

[
gj(δ̂

?
j )− δ̂?j g′j(δ̂?j ) +

∑
` 6=j,M

g′`(δ̂
?
` )

]

+
∑
` 6=j,M

(δj` − δjM)

[
g`(δ̂

?
` )− δ̂?` g′`(δ̂?` ) +

∑
`′ 6=`,j,M

g′`′(δ̂
?
`′)

]

+

[ ∑
` 6=j,M

(δj` − δjM)

]
g′j(δ̂

?
j )− F

∑
`6=M

(δj` − δjM).

Hence, when substituting for δ?j =
∑

`6=j,M(δj` − δjM)/(δjj − δjM), agent j maximizes

gj(δ̂
?
j ) + (δ?j − δ̂?j )g′j(δ̂?j ) over the choice of δ̂?j . As g′′j > 0, each j 6= M has the strictly

dominant strategy to report δ̂?j = δ?j . As agent M is not involved strategically, she has

the weakly dominant strategy to report her true social type δM .

Ex-post budget balance: Obvious from equation (14).

Interim-expected Pareto improvement : When substituting for δ?j and Eδ`
[
g′`(δ

?
` )
]

=

0 = Eδ`
[
g`(δ

?
` )− δ?` g′`(δ?` )

]
, due to Lemma 2, then j’s interim-expected utility from s? is

∑
6̀=M

(δj` − δjM)Eδ−j [s?`(δ)] = (δjj − δjM)gj(δ
?
j )− F

∑
` 6=M

(δj` − δjM)

= (δjj − δjM)gj(δ
?
j )− F (δjj − δjM)− F

∑
` 6=j,M

(δj` − δjM)

= (δjj − δjM)
[
gj(δ

?
j )− F (1 + δ?j )

]
.

Recall that δjj = 1 > δjM and gj(δ
?
j ) ≥ Varδj [δ

?
j ] > 0. Notice that δ?j < n − 2, since

δjj − δjM > δj`− δjM for all ` 6= j,M . Hence, each agent j 6= M derives positive interim-

expected utility from unanimous participation if F ≤ minj 6=M Varδj [δ
?
j ]/(n − 1). Due to

Lemma 2 again, also M ’s interim-expected utility is positive if all agents participate:∑
i∈I δMi Eδ−M [s?i (δ)] =

∑
j 6=M(δMj − 1)Eδ[s?j(δ)] = F

∑
j 6=M(1− δMj) > 0.

By Proposition 8, gamification schemes in the manner of Definition 1 do exist if n ≥ 3.

The implicit common-knowledge assumption of Proposition 8 regarding mean and

variance of every δ?j is sufficient but not necessary: As the gamification scheme is strategy-

proof, while the resulting interim-expected Pareto improvement is strict, it suffices to

assume that agents have sufficiently good estimates of those means and variances.
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With Proposition 8 at hand, the main result of this paper can be established:

Theorem 1 (Gamification in Autonomous Networks: A Coase Theorem)

Efficiency: If endowments are sufficiently large, any social network of n ≥ 3 agents can

resolve any given allocation problem with an ex-post budget-balanced mechanism 〈k?, T ?〉

that is Bayesian incentive-compatible, interim individually rational, and ex-post mate-

rially efficient. If |δij| < 1
2n−3

for all i and all j 6= i, then 〈k?, T ?〉 is also ex-post

Pareto-efficient.

Invariance: This mechanism is invariant to changes in the status-quo social alternative k◦.

Proof. Consider the gamification mechanism 〈k?, T ?〉 consisting of the ex-post materially

efficient allocation function k? : Θ → K, k?(θ) ∈ arg maxk∈K
∑

i∈I πi(k | θi), and the

transfer scheme T ? = (t?i )i∈I : Θ×∆→ Rn given by

t?i (θ̂, δ̂) =
∑
j 6=i

[
Eθ−i

[
πj(k

?(θ̂i, θ−i) | θj)
]
− Eθ−j

[
πi(k

?(θ̂j, θ−j) | θi)
]]

︸ ︷︷ ︸
the terms of trade

+ α? · s?i (δ̂)︸ ︷︷ ︸
gamification

,

where (s?i )i∈I is defined by equations (14) to (17) while α? > 0.

Efficiency : By Propositions 1 and 8, this mechanism is Bayesian incentive-compatible.

It is ex-post budget-balanced and ex-post materially efficient by construction. By Lemma 1,

it is ex-post Pareto-efficient if |δij| < 1
2n−3

for all i and all j 6= i. By equation (2) in the

proof of Proposition 2, agent i’s interim-expected utility from unanimous participation

in 〈k?, T ?〉 is given by

Ui(θi, δi) = Eθ−i

[∑
`∈I

π`(k
?(θ) | θ`)

]
+

(∑
j 6=i

δij

)
Eθ

[∑
`∈I

π`(k
?(θ) | θ`)

]

− (n− 1)Eθ

[∑
j∈I

δijπj(k
?(θ) | θj)

]
+ α? ·

∑
j∈I

δij Eδ−i
[
s?j(δ)

]
,

where
∑

j∈I δij Eδ−i
[
s?j(δ)

]
> 0 due to Proposition 8. Hence, if α? is chosen sufficiently

large, agents’ interim participation constraints are satisfied for any given collection of

interim reservation utilities (U◦i (θi, δi))i∈I , as specified in Section 2.4. The assumption of

sufficiently large endowments guarantees that agents can afford the respective transfers

(t?i (θ, δ))i∈I whenever those are negative.
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Invariance: Except for α?, all components of 〈k?, T ?〉 are independent of k◦. Recall

that k◦ ∈ K, while K is bounded. Due to Proposition 8, every increase in α? allows for

a strict interim-expected Pareto improvement. For given individual endowments, a max-

imum α? can be chosen such that the resulting, possibly negative, transfers (α?s?i (δ))i∈I

are still affordable for all agents. Hence, if endowments are sufficiently large, this maxi-

mum α? is independent of K and, thus, independent of k◦ ∈ K.

The proof of Theorem 1 does not require any specific assumptions about agents’

interim participation constraints: Those can reflect any kind of consequences (that are

in line with the assumptions of Section 2.4) of the gamification mechanism not finding

unanimous approval. As soon as the distributive effects of the gamification scheme are

amplified sufficiently, through α?, unanimous approval is always an equilibrium outcome

if the gamification mechanism is voted upon.

Coase’s invariance claim is, to some extent, even established for status-quo liability

rules, as defined in Section 2.4: On the one hand, arbitrary variations in status-quo

liability rules would shift agents’ interim reservation utilities beyond any interim-expected

utilities from gamification, the latter of which are bounded by the maximum α? feasible

for given individual endowments. On the other hand, within those boundaries, any

moderate variation in status-quo liability rules leaves the gamification mechanism with

maximum α? unaffected.

From a purely theoretical perspective, Theorem 1 refutes the assumption that ex-

tending the scope of asymmetric information must, generally, further confine the set of

‘feasible’ mechanisms. When extending the scope of asymmetric information from agents’

allocative to their distributive preferences, a possibility result becomes tangible. Notice

also that the constraint of moderately altruistic or spiteful agents, |δij| < 1
2n−3

, does

not constrain the possibility result qualitatively: The sufficient (and necessary) condition

regarding the distribution of social types is that those have positive variance. Even for

arbitrarily large network size n, the possibility result is established if it is not common

knowledge that agents are selfish.
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5.2 Variants of Gamification in Autonomous Networks

In autonomous social networks, too, gamification schemes can be implemented with qual-

itatively different, while ex-post payoff-equivalent, game forms. These provide agents

with team- or relative-performance incentives, or hybrids of those. This variety of feasi-

ble game forms, too, justifies the term ‘gamification’ for the incentive-theoretical concept

under investigation.

The game forms of Proposition 7 are readily adapted to the gamification scheme of

Proposition 8 when replacing δTj with δ?j from equation (17) while letting µ = maxj 6=M |δ?j |.

It is also possible to extend Proposition 8 to a scenario in which several agents col-

lectively take on the role of the mediator, with equal shares in losses and benefits; gam-

ification is thus feasible if as few as two agents are strategically active. This possibility

implies that Theorem 1 can be established if only the interpersonal preferences within a

single dyad are subject to asymmetric information.

While the above variants all leave at least one agent, the ‘mediator,’ out of play, a final

variant shall illustrate how gamification in networks of at least four agents can involve

every network member strategically. Theoretically, the idea is to provide two teams of

agents with independent gamification schemes and let each of them take on the role of a

‘mediator’ for the respective other team. Gamification can then be implemented with a

team competition that involves each and every network member.

Let n ≥ 4, and consider a network partition into two teams: I = T 1 ∪ T 2, with

|T 1|, |T 2| ≥ 2. Denote by Ti ∈ {T 1, T 2} the team of agent i and by T−i the respective

other team. Define transfers s? = (s?i )i∈I : ∆→ Rn by

s?i (δ) = σi(δ)−
1

|Ti|
∑
j∈T−i

σj(δ),(18)

σi(δ) = gi(δ
?
i )− δ?i g′i(δ?i ) +

∑
j∈Ti\{i}

g′j(δ
?
j ),(19)

gi (δ
?
i ) = Varδi [δ

?
i ] + (δ?i − Eδi [δ?i ])

2 ,(20)

δ?i =

∑
j∈Ti\{i} δij −

|Ti|−1
|T−i|

∑
j∈T−i δij

δii − 1
|T−i|

∑
j∈T−i δij

.(21)

Under s?, as I show below, each agent i has the strictly dominant strategy to report

δ̂?i = δ?i . As δ?i increases in i’s altruism toward the members of his own team, and
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decreases in his average altruism towards the opposing team, δ?i can be interpreted as i’s

relative altruism towards his own team. Notice that |δ?i | < 2n/(1−maxj, 6̀=j δ
max
j` ).

Proposition 9 The transfer scheme s? defined by (18) to (21) is a gamification scheme

in the manner of Definition 1.

Proof. Strategy proofness : Under s?, each i ∈ I reports a social type δ̂i so as to maximize

ex-post utility ui(δ̂) =
∑

j∈I δijs
?
j(δ̂), which is strategically equivalent to reporting some

signal δ̂?i ∈ R. In s?j , for each j ∈ I, the components strategically relevant to i are given by

gi(δ̂
?
i )−δ̂?i g′i(δ̂?i ) if j = i, by g′i(δ̂

?
i ) if j ∈ Ti\{i}, and by− 1

|T−i| [gi(δ̂
?
i )−δ̂?i g′i(δ̂?i )]−

|Ti|−1
|T−i| g

′
i(δ̂

?
i )

if j ∈ T−i. For a term C independent of δ̂?i , agent i’s ex-post utility is thus given by ui(δ̂) =

C+
(
δii− 1

|T−i|
∑

j∈T−i δij
)[
gi(δ̂

?
i )−δ̂?i g′i(δ̂?i )

]
+
(∑

j∈Ti\{i} δij−
|Ti|−1
|T−i|

∑
j∈T−i δij

)
g′i(δ̂

?
i ), where

δii = 1 > 1
|T−i|

∑
j∈T−i δij. Hence, when substituting for δ?i from (21), agent i maximizes

gi(δ̂
?
i ) + (δ?i − δ̂?i )g′i(δ̂?i ) over the choice of δ̂?i . As g′′i > 0, agent i has the strictly dominant

strategy to report δ̂?i = δ?i .

Ex-post budget balance: Take the perspective of any specific agent i and observe that∑
j∈I s

?
j(δ) =

∑
j∈Ti s

?
j(δ) +

∑
j∈T−i s

?
j(δ) =

∑
j∈Ti σj(δ) −

∑
j∈T−i σj(δ) +

∑
j∈T−i σj(δ) −∑

j∈Ti σj(δ) = 0.

Interim-expected Pareto improvement : By Lemma 2, Eδj
[
gj(δ

?
j ) − δ?j g

′
j(δ

?
j )
]

= 0 =

Eδj
[
g′j(δ

?
j )
]

for all j ∈ I. Hence, each i ∈ I derives positive interim-expected utility from

unanimous participation:
∑

j∈I δij Eδ−i [s?j(δ)] =
(
1− 1

|T−i|
∑

j∈T−i δij
)
gi(δ

?
i ) > 0.

By the reversed logic of the revelation principle (see Section 4.4), s? can be implemented

with a team competition under which the relative (in-)efficiency of one team’s perfor-

mance is rewarded (sanctioned) at the expense (to the benefit) of the other team:

Proposition 10 Let µ = 2n/(1 − maxj, 6̀=j δ
max
j` ). The gamification scheme of Propo-

sition 9 can be implemented with a competition between teams T 1 and T 2 under which

investments xi ≥ 0 result in payoffs s̃i((xj)j∈I) = σ̃i((xj)j∈Ti)− 1
|Ti|
∑

j∈T−i σ̃j((xj)j∈T−i),

where σ̃i((xj)j∈Ti) = c̃i − xi + 2µ
√
xi + 2

∑
j∈Ti\{i}

√
xj, with an appropriate constant c̃i.

In this game, dominant-strategy investments x̃i = (µ+ δ?i )
2 increase in δ?i .
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Proof. Observe that

σi(δ) = Eδi [(δ?i )2]− (δ?i )
2 + 2

∑
j∈Ti\{i}

(
δ?j − Eδj [δ?j ]

)
= c̃i − (µ+ δ?i )

2 + 2µ(µ+ δ?i ) + 2
∑

j∈Ti\{i}

(µ+ δ?j )

= σ̃i((x̃j)j∈Ti)

when letting c̃i = 2µ(1 − |Ti|) − µ2 + Eδi [(δ?i )2] − 2
∑

j∈Ti\{i} Eδj [δ
?
j ] and x̃j = (µ + δ?j )

2.

Notice that dx̃j/dδ
?
j > 0, since δ?j > −µ = −2n/(1−maxj, 6̀=j δ

max
j` ).

6 Concluding Remarks

It is considered commonplace in contemporary economics that the Coase theorem cannot

hold under incomplete information and strategic interaction. The present study puts

this perception into perspective. I have explored mechanism design for groups of agents

whose allocative and distributive preferences are all subject to asymmetric information.

I have shown that the Coase theorem can be established, in its typical mechanism-design

interpretation, for groups of at least three agents.

The theorem can be established not despite but precisely because agents’ distributive

preferences are their private information. When extending the scope of asymmetric in-

formation from agents’ allocative preferences to their distributive preferences, then the

latter can be operationalized to satisfy agents’ participation constraints. From a theo-

retical perspective, then, the finding refutes the assumption that extending the scope of

asymmetric information must, generally, further confine the set of ‘feasible’ mechanisms.

I have argued that this result is more than a mathematical curiosity. In order to illus-

trate its economic relevance, I have interpreted the solution concept as gamification. In

a nutshell: Attract agents’ participation in an otherwise not individually rational mech-

anism by complementing this mechanism with a ‘joyful’ game, where ‘joy from playing’

emerges endogenously from the asymmetry of information about agents’ interpersonal

concerns.

As Medema (2020) argues convincingly, the Coase theorem can serve as a useful

benchmark in economic theory. The same is true for the possibility result presented here.

As I have argued, the very principle of gamification can be recognized in the manifold
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approaches that real-world groups of people take in trying to resolve their conflicts of

interest,—be it in the form of complementing fundraisers with auctions, raffles, or con-

tests, or be it in the form of complementing the ‘peace-keeping process’ with Olympic

games. In so far, this study provides an economical rationale to Farrell’s (1987) convic-

tion that “people can be creative and can bypass unsatisfactory institutions.” Real-world

gamification, of course, might result in merely second-best allocations (e.g., due to en-

dowment constraints), or might come at transaction costs that are simply too high; but

from a benchmark perspective, people have good reason to try.

From another angle, I have derived answers to the following questions which are also

fundamental to the vast non-economical literature on gamification: What’s the economic

role of people playing joyful, interactive games? And what’s the origin of such joy? To

me, it is a charming side-kick of this incentive-theoretical study to take game theory

back to where it started: with von Neumann’s (1928) seminal paper “Zur Theorie der

Gesellschaftsspiele,” or in words to that effect, ‘toward a theory of parlor games.’

A Appendix

Proof of Lemma 1

Having required weak budget balance, Pareto efficiency implies strict budget balance:

Suppose
∑

i∈I ti = −ε for some ε > 0. Then a Pareto improvement can be achieved

through transfers (ti + ε/n)i∈I , since
∑

j∈I δij > 0 by assumption.

In the following, let |δij| < 1
2n−3

for all i and all j 6= i. Suppose that, for given

transfers (ti)i∈I , there exists a social alternative k◦(θ) that Pareto-dominates k?(θ) ∈

arg maxk∈K
∑

i∈I πi(k | θi). Then there must exist agents i who make strict material

losses when switching from k? to k◦: πi(k
◦ | θi) − πi(k? | θi) = −εi < 0. Be i? one of the

agents for whom this material loss is largest. Then i? is not worse off under k◦ than

under k? if and only if he is mentally compensated through the distributive effects on all

the others:
∑

j 6=i? δi?j
[
πj(k

◦ | θj)− πj(k? | θj)
]
≥ εi? .

First suppose δi?j ≤ 0 for all j 6= i?. Then i? obtains the maximum mental com-

pensation feasible if each j 6= i? also realizes the maximum material loss of −εi? when
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switching from k? to k◦; that is, if πj(k
◦ | θj) − πj(k

? | θj) = −εi? < 0. But even then,∑
j 6=i? δi?j

[
πj(k

◦ | θj)− πj(k? | θj)
]

=
∑

j 6=i? δi?j(−εi?) < εi? , since 0 ≥ δi?j >
−1

2n−3
≥ −1

n−1
.

Now suppose maxj 6=i? δi?j > 0, and let j? ∈ arg maxj 6=i? δi?j be the favorite agent of i?.

Then i? obtains the maximum mental compensation feasible if j? realizes a maximum

material gain when switching from k? to k◦, under the constraint that
∑

j∈I πj(k
◦ | θj) <∑

j∈I πj(k
? | θj). This is the case if each j 6= i?, j? also realizes the maximum material loss

of −εi? while aggregate losses, amounting to (n−1)εi? , serve as a subsidy to agent j?; that

is, if πj(k
◦ | θj)− πj(k? | θj) = −εi? < 0 for all j 6= i?, j? while πj?(k

◦ | θj?)− πj?(k? | θj?) =

(n − 1) εi? . But even then,
∑

j 6=i? δi?j
[
πj(k

◦ | θj) − πj(k
? | θj)

]
=
∑

j 6=i?,j? δi?j(−εi?) +

δi?j?(n− 1) εi? <
n−2
2n−3

εi? + n−1
2n−3

εi? = εi? , since |δi?j| < 1
2n−3

for all j 6= i?.

Hence, agent i? is worse off under k◦ than under k?, implying that k? is Pareto-efficient.

The reasoning is exactly the same when showing that, for any fixed social alternative k,

no ex-post budget-balanced transfer scheme Pareto-dominates another. �
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