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REGRESSION QUANTILES WITH ERRORS-IN-VARIABLES
D.A. IOANNIDES AND E. MATZNER-LOBER

ABSTRACT. In a lot of situations, variables are measured with errors. While this problem
has been previously studied in the context of kernel regression, no work has been done
in quantile regression. To estimate this function we use deconvoluting kernel estimators.
The asymptotic behaviour of these estimators depends on the smoothness of the noise

distribution.

1. INTRODUCTION

Let (X1,Y7), -, (X, Y,), be a random sample from the joint distribution of X and Y,
where X is valued in R? and is valued in R. For a fixed 0 < p < 1, let ¢(z) denote the p-th
quantile of the Cumulative Conditional Distribution Function (CCDF) of Y given X. We

postulate by this way the existence of the following model
(1.1) Y; = (](Xz) + g

where ¢(.) is the unknown function which we want to estimate and &; are the errors sat-
isfying F. x(u|X = ) = Fyx(u + q(x)|X = z), where F,x(.].) (resp. Fy|x(.|.)) is the
cumulative conditional distribution of € given X (resp. of Y given X).

In nonparametric estimation of the function ¢(.), most investigation were done on the es-
timation of the conditional mean of Y given a value x of the predictor X.

Estimation of conditional quantiles has gained attention in the last years because their
useful application in various fields such as econometrics and finance. Since the pioneer
work of Hogg (1975), much work have been done on quantiles regression and Koenker &
Bassett (1978) provided motivations from econometrics. However, in a lot of situations
and in particular in econometrics, variables of interest are either measured with an error

or are not observed directly but through a proxy. So instead of measuring (X;, Y;) we have
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the following observations (X¢,Y;) where
(12) Xze = Xz + ;-

1 is a random noise variable with a known distribution. Literature on measurement errors
models is extensive and Fuller (1987) is one of the most interesting book on this topic.

The goal of this article is to estimate nonparametric regression quantiles when the explana-
tory variables are measured with errors both theoritecally and also practically. To achieve
our goal, we will obtain asymptotic results for an estimator of conditional distribution
of Y knowing X = z from the observations of (X£,Y;). These results are novel and are

interesting by their own.

The plan of the article is a follows. In section 2, we introduce deconvoluting kernels
estimators of conditional cumulative distribution functions (CCDF) of YV given X = .
Section 3 is devoted to the case where the error distribution is an ordinary smooth distri-
bution (the characteristic function of the error decays algebrically to zero). All technical
proofs are given in the Appendix. For expositional purposes, we consider only the special
case where X is a scalar.

The case where the error variable has a super smooth distribution (the chartacteristic
function of the error variable decays exponentially to zero) can be treated similarly, but

the convergence rate is expected to be of logarithmic order.

2. NOTATIONS

2.1. Nonparametric conditional quantile estimate. In the last 30 years, several au-
thors studied the asymptotic properties of nonparametric estimation of conditional quantile
(see Cai (2002), for a recent survey). Thoses estimators were either computed directly by
minimising the “check” function or indirectly through the CCDF. We focus our attention
on indirect estimators of conditional quantile.

Roussas (1969) was the first one to consider the kernel estimators of conditional quantiles.
He considered a real valued random variable X, -+, X4 being the first random variable

from a strictly stationary Markov process and proposed the following kernel estimator for

the CCDF
n _ Y. y _ Y.
ZK("T X)/ K(L X’“)dz
1 &= h, oo h,
_z_l
hn " IL‘—X' .
K (2
E

Gnu(ylz) =
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He proved the uniform consistency and asymptotic normality of G, (y|x) and the consis-
tency of the associated conditional quantiles
Let (X,Y) be a pair of random variables valued in IR? x IR with unknown distribution.

Having at hand a realization of the process (X;,Y;), Roussas estimator is

= - X;\ [V -Y;
YK, (S / K, () d-
1 im1 hxn — o0 hyn
(2.1) Fin(yle) = — :

hn - x—Xi
Sk ()

where K, (respectively K,) is a measurable function on IR? (respectively on IR) integrating

to one and the bandwidths are sequences tending to zero with n. From now on, we write
the bandwidths without the subscript n for simplification. One of the interest of estimator
Fi »(y|x) is that it gives a continuous estimator of CCDF. Thus, if the CCDF is continuous,
it is of interest to use an estimator sharing the same properties.

Collomb (1980) proposed an empirical estimator of CCDF
- r — X,
§ K, ‘) 1y,
- ( h, ) {vi<y}

(2.2) Fon(ylr) = = ;:I:Kl <x;xX1>

Since those precursors, a lot of authors studied the nonparametric estimation of conditional

quantiles using Fy ,,(y|z), Fo,(y|z) or modified version of them.

All those works were done on data having a standard structure but in a lot of situations
and in various fields such as economics, biological studies, applied physics, variables are not
directly observable and are measured with error. With such data, parametric estimation
of the function g are numerous. See for example the recent monograph Cheng & Van Ness
(1999). In such a context, most investigations in nonparametric estimation are devoted to
the estimation of the density of X from the observations of X*¢. Nonparametric estimation
of the mean regression function g were studied by Fan et al. (1991), see others references
in chapter 12 of Carroll et al. (1995). Recently, that topic has gained new interest see for
example the papers of Carroll et al. (1999), Berry et al. (2002).

2.2. Deconvoluting kernels. The deconvoluting kernel estimator was first considered by
Stefanski & Carroll (1990) and Fan (1991b). For self-completeness of the paper we recall
briefly their construction. Let X¢ = X + 7 and let X7, .-, X? denote a training sample
from the distribution of X¢. Denote by ®x(t) (resp. ®x(¢) and ®,(¢)) the characteristic
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function of X° (resp. X and n), We have ®x.(t) = ®x(t)®,(t). If we assume that the
error 77 has a non-vanishing characteristic function, then by Fourier inversion the density

of X is given by

1

(2.3) Frw) = o /_ " exp (—itu) ‘I(’Ij:(g) dt.

The problem is now to estimate ®y. () = [ _exp (—itu) fx-(u)du. First, using a classical

kernel estimator of fy.(.) with a kernel K and the bandwidth h,, we easily get an estimator

for ®xe(t). Replacing this estimator in (2.3), we get

) AXe — Xe
fux(w) = 5 [ e (i) e = = S w (U5

% =
where the deconvoluting kernel is given by
1 i Pic(t)
(2.4) W, (1) = —— / emint D) 4y
! @2m) Jr Py(5)

The deconvoluting kernel takes into account the error distribution by constructing the
correct neighbourhood around u where correct is in the sense of taking into account the
error.

Fan et al. (1991) proposed the folowing CCDF estimator

= r — X7
S (25 1o

(2.5) Fyp(ylz) = =

. qj?,n (IL‘, y)

= x— X/ ~ fax(@)
2w ()

but without theoretical or practical results. The modified version of Roussas estimator is

n _xe y . }/l
() Lo (57) =
= ha —o0 hy ~ Uia(r,y)

given by

1<

hy n — X  fax(@

y ZWn<xh ,) fax (2)
i=1 n

A natural estimator of the p-th conditional quantile, p € (0, 1), is defined for i = 1,2 by

(2.6) Fin(ylz) =

(2.7) Gin(2) = Inf iy Fin(ylz) = p}-
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3. ORDINARY SMOOTH CASE

The error is said ordinary smooth if its characteristic function @, (¢) satisfies
dolt| ™ < |@,(t)] < dult]™?, as |t| = oo,

where dy, di, and [ are positive constants. Examples of such distributions are Gamma and

symmetric Gamma distributions.

3.1. Assumptions.

The assumptions are summarised here for easy reference.

Assumption (A)

(i) The error 7 is independent of X, £ and Y.

(ii) The marginal density fx(.) is lower bounded by ¢ >0 on a compact subset C' of IR on
which the and its derivatives f)((l) (x) exist, are bounded for 0 <1 < 2.

Oiti id
(iii) afx—g(]l“,y) ( {/) (x,y) exist, are bounded and integrable for 0 < i+ j < 2.
377’ y )

Assumption (E.OS)
(i) @,(t) #0 for all t € IR,
(ii) [t|°®,(t) — do, and [t|"T'®] (t) — dy for B > dy, dy # 0 and dy # 0 as |t| — oco.

Assumption (K.OS)
(i) The kernel K,(.), is an even bounded probability density function on IR with a finite

second moment denoted p9(K,) and its characteristic function satisfies
[ 1Ple ol < o
R
[ e e < o
R

/|t|2ﬂn|q>KI(t)|2dt < o
R

(ii) The kernel K,(.), is an even bounded probability density function on IR with a finite
second moment (ua(K,)).

The derivation of an approximation of bias and variance of the F; ,,(z, y) is classical and will
involve the terms of IEf, (x), EWY, ,(z,y), Var(f,(x)) and Cov(fn(z) —Ef,(x), ¥;n(z,y) —
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IEY; .(z,y)). Those two last terms are not error free. All those term are given in the next

lemma.

Lemma 3.1. If assumptions (A), (E.OS) and K.OS are satisfied, we have

(2) E(fux(2)) = fx(x) + f ()2 (K) + o(h3)

(i) Var(fax(z)) = 11%, f; 2 / 127, (1)[Pdt (1 + o(1))
) E(Y;,.(z,y)) = V(z,y) + pao( K. / F@0(z, 2)dz + o(h?)
+  0iapa(K / FOD (g ,z)dz + 0;10(h?)
(iv) Var(W (2, y)) = — / [t27] @ (t) 2 (1 + o(1))
LA h1+2ﬁ 27ch
) Cofux(e). W) = —rez W)y [ HE710(0) 2001 + o(1)

Using the Taylor expansion of the ratio of two random variables we get our first theorem

Theorem 3.2 (Asymptotic bias). If all assumptions are satisfied, we get

h? h,
B(Fin(ylz)) = ZH(w,y) + rwl@,y) +o(hy) +o(hy) + o(hyhy) + O <n%25> ,

2

h 1
Bl = e +olhd) + 0 (— ).

where

W () FL0) (4l
P ) ) and ) = POl )

E(x,y) = <F(2’0)(y|x)+2

Comments The estimator Fi ,(y|z) is smoother than F5 ,(y|x), and this difference appears
in the bias where a term w(x) is coming from the use of the kernel K. Comparing the bias,
we conclude that the additional term F(?)(y|x)uy(K,) is positive on the convex part of
the CCDF and negative on the concave part. However, nothing could be said on the bias
because bias depends also on partial derivative of the marginal density and the CCDF. This
additional term is zero if evaluated at the conditional median with a symmetric conditional
density.

Our second result concerns the variance of our estimator F;,(y|z), for i =1, 2.
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Theorem 3.3 (Asymptotic variance). If all assumptions are satisfied, we get

Var(F;,(y|z)) = nh11+25n F(y|x);i(_x)F(y|x))M0(K§) o <ﬁ> .

Having the asymptotic bias and variance, we get the asymptotic MSE

Theorem 3.4 (Asymptotic MSE). If all assumptions are satisfied, we get
MSE(Fiu(yle)) = (ha&(x,y) + hehyé(w, y)w(z,y) + hyw?(z,y))
1 Flyl)1—F(ylz)) . 4y g4, p272 1
YRSy NG mmg+o@+@+@@+mﬁm
1 F(ylr)(1 - F(y|z)
nha fx (@)

Now, the MSE for the associated quantiles is obtained easily and is given by the following

MSE(Fo(ylz)) = hy&*(z,y) +

1
po(K2) +o (hi + _nh1+2,3> ,

theorem

Theorem 3.5. If all the assumptions are satisfied and if f(q(x)|z) # 0, we have

hg 200 ol 1 p(1-p) 2\ 1 o(hd o 1
MSE(n(0) = gy 0o + iy () o)+ (—io )

+@@ﬂ%ﬂﬂﬁ@&@)+%¢@ﬂ@»
4f%(q(x)|z)

Comments : Finding the optimal bandwidth for ¢y, () is easy and in our context involves

MSE(qin(z)) = MSE(gon(z)

+ o(hy) + o(h2h).

the error distribution through the value of 5. It is much more complicated for ¢, (x)
because 2 bandwidths are involved. Hyndman et al. (1996) dealt with a similar problem
when estimating the MSE of the conditional distribution in the error free case.

The next theorem deals with the uniform strong consisrency for the estimators of CCDF.
Its proof is standard in the literature, see for example Roussas (1991) and the references

cited therein.

Theorem 3.6. If all the assumptions are satisfied, then

logn
sup Fuayie) — Flyla)] = O (22555} +002) + 002) + O(hut)  as
yeR nhy
logn
sup | Fo (yl) — F(ylz)] = 0(—%ﬁ)+m@>a@
yeR nhy

The strong consistency for the conditional quantiles is obtained by the previous theorem

taking into account the Taylor expansion of F;,(¢i|*) at point ¢(z).
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Theorem 3.7. If all the assumptions are satisfied and if the conditional quantile q,(z) of
order p € (0,1) is unique and f(q,(z)|x) # 0 then
logn
(o) = 00 =0 (2255} + 02 + O() + O(n,)  a.

Theorem 3.8. If all the assumptions are satisfied, and if the limits of nh3™ and nhyh,™?

are two positive constants then

\ nha? (Fin(ylz) — F(ylz) — B(Fia(ylz)) = N (0,0°(y|))
where

F(ylz)(1 = F(ylz))
fx(x)

o’ (ylz) = po(K7).

Proof:
A standard decomposition for Fy,(y/x) gives

Fua(ylz) — Fylz) = f)%() Uy ) — U2, y) + Fyla) (fux (@) — Fx(@)],

where ¥y ,(z,y) = W, (x;fle) 2. K <“g—;1> dz, and f,x(z) is the smooth estimator for

the density function f(x). Now, if we are working similar as in Lemma 3.1 all the conditions

of the Liapunov’s central limit theorem are satisfied for the terms involved in the quantity

U, ,,(z,y) and our result is obvious.

4. APPENDIX

Proof of lemma 3.1

i) The expectation of the deconvoluting kernel density estimator is the same as the ex-
pectation of the usual kernel density estimator. So under the assumption that K, (u) first
moment is zero and second moment is finite and under the assumption that the derivative
of fx(u) denoted by f)((l) (u) exists and are bounded for [ > 2, we have (see for example Fan
(1991a) or Masry (1991))

Ef.x(x) = fx(z)+ %if(Z)(x)MQ(Km) + o(h?).

ii) Under the assumption given in assumption K and E, we have (see lemma 3.1 in Fan
(1991a))

honW,(u) € Loo(R)  B2"W,(u) € Lo(IR).
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We can then obtain calculate the variance explicitly as done in Masry (1991) for example,

so we have
fim b Var(fx(e) = DG [ 0P

iii) Using Fubini theorem and assumptions (A), we obtain

o - (o () (52
_ (271r / U}R/ it it ‘I’g%)m(th)qﬁn(m)dtdt]d

vl r— Xy -0
= EX K d
[ () e (5)

where ¢,,(t,t') is the empirical characteristic function of (X¢ Y). The expectation of

Uy, (z,y) is obtain in the same way and we get (iv).

The derivations of the variance of U, ,(x,y) are similar, we derive it for ¥, (z, y).

r— X¢
Var(Vy,(z,y)) = WVM <W< A 1>1{Y1§y}>

1 — X 2 r— X¢
- W(]E {W"< he )1{’“‘”} - {W"< ha 1)”’”‘“])'

The leading term is the first one and we have

lim nh ™ Var(V, ,(z,y) = hm nh26”/|W Loy fe v (@ — hyu, v)dudv

= // \W W, (w) P fxce v (7, v) dudy

_ 27rd2/ Frey xvdv/|t||<I> 1)t

The proof of the covariance term is of the same spirit.
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