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Summary. We introduce a selection model-based multilevel imputation approach to be used
within the fully conditional specification framework for multiple imputation. Concretely, we apply
a censored bivariate probit model to describe binary variables assumed to be missing not at
random. The first equation of the model defines the regression model for the missing data
mechanism. The second equation specifies the regression model of the variable to be imputed.
The non-random selection of the binary data is mapped by correlations between the error terms
of the two regression models. Hierarchical data structures are modelled by random intercepts
in both equations. To fit the novel imputation model we use maximum likelihood and adaptive
Gauss–Hermite quadrature. A comprehensive simulation study shows the overall performance
of the approach.We test its usefulness for empirical research by applying it to a common problem
in social scientific research: the emergence of educational aspirations. Our software is designed
to be used in the R package mice.

Keywords: Fully conditional specification; Missingness not at random; Multilevel data; Multiple
imputation; Selection model

1. Introduction

In the social sciences, large-scale surveys with complex data structures have become the norm
rather than the exception. Applied statisticians are well aware that, for valid statistical inference,
they need to account for the peculiarities arising from complex survey data; see, for example,
Gelman et al. (1998), Kish and Frankel (1974) and Rubin (1987). Nonetheless, despite urgent
appeals for methodologies that are capable of meeting this need, an effective set of survey
statistical methods is still lacking. For some time, multiple imputation (MI) (Rubin, 1987) has
been the state of the art for handling missing data in surveys. Yet, to the authors’ knowledge,
no appropriate method exists to handle binary multilevel data under the missingness not at
random (MNAR) assumption in the context of MI. Standard applications of MI techniques
are usually based on the assumption that the data are missing at random (Rubin, 1976). In many
situations, however, it seems entirely realistic to assume that the missing values depend on the
incomplete variable Y itself even after conditioning on all the other available data and thus follow
an MNAR mechanism. It is well known that this occurs, for example, in variables that are related
to income. In this case, usual MI models and implementations may not be sufficient and may
result in biased estimates. This paper aims to fill this gap by introducing a selection model-based
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MI model to be used within the fully conditional specification (FCS) framework for MI. The
FCS–MI approach makes it possible to deal with missing values in variables of several distinct
types (Raghunathan et al., 2001; Van Buuren et al., 2006). Our method is an imputation model
for binary multilevel data that are assumed to be missing not at random. It is designed to be used
in the R package mice (Van Buuren and Groothuis-Oudshoorn, 2011). Thus, it is flexible and
versatile. A variety of methods exists for addressing multilevel data that are missing at random,
e.g. weighting (Asparouhov, 2006; Asparouhov and Muthen, 2006; Pfeffermann et al., 1998),
MI (Audigier et al., 2017; Enders et al., 2017; Lüdtke et al., 2017) and likelihood-based methods
such as the full information maximum likelihood approach (Larsen, 2011; Wothke, 2000).

Under MNAR the probability of missing data is a function of the unobserved values them-
selves. As a consequence, each MNAR problem requires specification of the joint distribution
f.Y , R/ of the complete data Y and the missing data indicator R. Depending on the factorization
of this distribution, two kinds of MNAR models result (Little, 2008). Factorizing f.Y , R/ as
f.Y/f.R|Y/ gives selection models, and decomposing it as f.R/f.Y |R/ yields pattern–mixture
models. Thus, selection models specify the joint distribution by weighting the marginal dis-
tribution of the outcome variable f.Y/ by a selection probability f.R|Y/, that accounts for
non-random non-response and must be modelled explicitly (Rubin, 1974).

In contrast, pattern–mixture models define the full data likelihood as a mixture of distinct
response patterns. Thus, different distributions for Y are assumed for units with observed and
missing values (Little, 1993; Rubin, 1977). Both model types rely on unverifiable assumptions
that cannot be validated by the observed data. In selection models the full data response dis-
tribution f.Y/ and the conditional distribution of the missing data mechanism f.R|Y/ must be
specified by underlying parametric assumptions and, in pattern–mixture models, the outcome
distribution of the missing values f.Ymis/ must be determined by additional external information
(Glynn et al., 1986).

It is not possible to test empirically whether the missing data are missing not at random or
missing at random since the information that is required to be able to distinguish between these
two mechanisms is not available in the data. Furthermore, we must be aware that all types
of alternative MNAR models also rely on untestable assumptions. Therefore, it is reasonable
to estimate a variety of missing data models with different assumptions, rather than to rely
exclusively on one type of model. This non-testability of the assumptions about the missing
data mechanism makes sensitivity analysis indispensable for possibly missing not at random
data (Molenberghs and Fitzmaurice, 2008). Only in this way can the effect of the assumptions
and thus the robustness of statistical inference be assessed. In the context of MI, sensitivity
analyses aim to contrast analysis results from missing at random imputed data with those from
alternative MNAR models to evaluate whether they lead to different inferences and conclusions.
In the existing literature, most methods that apply FCS under MNAR use sensitivity parameters
to address distributional differences between the missing and observed units (Hedeker et al.,
2007; Resseguier et al., 2011; Tompsett et al., 2018; Van Buuren et al., 1999). Such parameters
cannot be estimated from observed data. Instead, plausible value ranges must be provided by
experts in the respective research field. In the social sciences, it is usually difficult to define such
value ranges because of the widespread lack of objective and generally valid comparative figures.
We therefore present an MNAR imputation model that does not include sensitivity parameters
but is completely identified by its distributional assumptions.

The idea of using a selection model (Rubin, 1974) in the context of FCS–MI is not new.
Galimard et al. (2016) used a two-stage selection model for imputing continuous missing not
at random data. Very recently, Galimard et al. (2015, 2018) presented a variant of their model
that applies to binary missing not at random data. Their basic idea is to use a bivariate probit
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model to specify the response probability and the binary outcome of a single-level model jointly.
We extend their approach by adding random intercepts to the selection and outcome model to
account for potential multilevel structures in the data. We use a maximum likelihood approach
and adaptive Gauss–Hermite quadrature (AGHQ) procedure to fit our imputation model. The
derivation of the formulae that is used will be described in detail below.

Most multilevel MNAR approaches originate from biostatistics and deal with continuous
multilevel data; for comprehensive overviews, see, for example, Little (2008), Molenberghs and
Fitzmaurice (2008) and Molenberghs et al. (2008). The lack of related applications in the social
sciences, where variables are mostly ordinal and binary, is striking. We make a first step towards
rectifying this situation by applying our novel approach to a common research problem in the
social (educational) sciences. Before doing so, we examine the overall performance of our new
approach by conducting a comprehensive simulation study. By means of standard errors, relative
bias and coverage rates, we compare the performance of our novel MI–FCS MNAR imputation
model with other common imputation strategies that cope either with binary multilevel data or
with binary missing not at random data, but never with both simultaneously. Furthermore, we
test the robustness of our approach under misspecified missing data models. We then apply our
novel method to analyse the effect of personal attributions and social background factors on
the educational aspirations of ninth-grade students in Germany.

It is also advisable to compare the performance of our method with that of alternative MNAR
models such as pattern–mixture models. However, in the context of FCS–MI, no such method
currently exists. The development of such a method is beyond the scope of this paper and thus
is left for future work.

The remainder of this paper is structured as follows. First, we describe the new imputation
method and the underlying model. This is followed by the simulation study and the presentation
of its results. Thereafter, we apply the approach to empirical data from the German National
Educational Panel Study (NEPS). We conclude with a short summary of the results, a discussion
of some critical issues and tasks for future work.

2. Method

The basic idea of FCS–MI is to specify separate imputation models for each incomplete variable
and to impute the missing data variable by variable, i.e. for a binary variable with missing values
a model describing this variable appropriately is required. If data are additionally missing not
at random, then the mechanism that caused the missing values must also be modelled. For this,
like Galimard et al. (2015, 2016, 2018) we use a selection-model-based approach. Combined
with the binary variable Y to be imputed, this yields a two-equation system: one equation for the
selection process and one equation describing Y . We use a bivariate probit model with sample
selection (Greene, 2012; Wooldridge, 2002), i.e. a censored bivariate probit model, to specify
this two-equation system. Multilevel structures in the data are accounted for by expanding the
bivariate probit model by a random-intercept term. This expanded bivariate model serves as
an imputation model to impute missing values of Y within the iterative FCS–MI scheme. In
what follows, we describe this model in detail and present an efficient way to estimate it. We
then present the imputation algorithm that will be used to obtain plausible replacements for the
missing values of Y . Here, R describes the missing data indicator of Y that takes the value 1 if
Y is observed and 0 otherwise. Observations of Y and R are denoted by y and r.

2.1. Imputation model: censored bivariate probit model with random intercept
Assume that the data at hand contain j =1, : : : , J clusters consisting of i=1, : : : , nj individuals



550 A. Hammon and S. Zinn

respectively. By using the standard probit specification based on a latent variable formulation,
the model can be specified as follows:

rÅ
ji =βRxR,ji +αR,j + εR,ji,

yÅ
ji =βY xY ,ji +αY ,j + εY ,ji

.2:1/

with

rji =1.rÅ
ji > 0/,

yji =
⎧⎨
⎩

1 if .yÅ
ji > 0 & rji =1/,

0 if .yÅ
ji < 0 & rji =1/,

not applicable if rji =0:

The first equation accounts for the non-random selection process, i.e. for the missing data
mechanism in our case. The second equation models the focal variable Y and defines the outcome
equation. The asterisk denotes the latent variables rÅ

ji and yÅ
ji, whose observed equivalents are

rji and yji. The covariates of the two regression equations are xR and xY , and βR and βY are
the related coefficients. αR,j and αY ,j are the random intercepts for describing cluster effects,
and εR,ji and εY ,ji are the error terms. The function 1 denotes the indicator function and ‘not
applicable’ denotes a missing value. To assure model identifiability, xY must be a subset of xR

and xe
R =xR \xY to be highly correlated with r and hardly connected to y (Rendtel, 1992). The

set xe
R is called the exclusion restriction. The selection and the outcome equation are linked

through correlated error terms and random intercepts:(
εR
εY

)
∼N

{(
0
0

)
,
(

1 ρ
ρ 1

)}
,(

αR

αY

)
∼N

{(
0
0

)
,
(

σ2
R τσRσY

τσRσY σ2
Y

)}
:

.2:2/

Here ρ describes the correlation of the bivariate distribution of RÅ and YÅ, and therefore models
the relationship between the selection and outcome equation. Clearly, this two-equation system
specifies only the dependence of the missing-data mechanism on the outcome variable appro-
priately if the normality assumptions hold. To capture potential dependences of the missing
data mechanism on the cluster structure of the data, the random intercepts αR and αY are also
allowed to depend on each other. τ denotes the correlation of the bivariate normal distribution
of αR and αY , and Σ their variance–covariance matrix. In this paper, only a two-level hierarchy
is considered, but the extension to further levels is straightforward.

The log-likelihood function of the two-equation model (2.1) can be expressed as (see, for
example, Greene (2012))

ln.L/=
J∑

j=1
ln
(∫ ∞

−∞

∫ ∞

−∞

nj∏
i=1

[rjiyjiΦ2.βRxR,ji +αR,j,βY xY ,ji +αY ,j,ρ/

+ rji.1−yji/Φ2{βRxR,ji +αR,j, − .βY xY ,ji +αY ,j/, −ρ}

+ .1− rji/Φ{−.βRxR,ji +αR,j/}]φ2.αR,j,αY ,j|0,Σ/

)
dαR,jdαY ,j:

.2:3/

Here, Φ2.·/ denotes the cumulative distribution function of the bivariate standard normal dis-
tribution and Φ.·/ is the cumulative distribution function of the univariate standard normal.
The function φ2.·|0,Σ/ is the probability density function of a bivariate normal distribution
with mean 0 and variance–covariance matrix Σ. The two random intercepts αR and αY are
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treated as nuisance parameters and are integrated out. This works in the same way as for the
univariate panel model with one random intercept (see, for example, Butler and Moffitt (1982)).
The double integral of the log-likelihood function (2.3) has no closed form solution. One way
to solve the integral nevertheless is to approximate the area under the integrand. This can be
done by using either simulation (e.g. Cappellari and Jenkins (2003), Greene (2004) and Train
(2009)) or quadrature techniques (e.g. Delattre and Moussa (2015) and Mulkay (2015)). In this
paper, we use Gauss–Hermite quadrature (GHQ) to solve the double integral. The reason is that
simulation is expected to take much more computational time for the two dimensions that we
have than quadrature, which is of tremendous disadvantage in the context of MI when data are
imputed several times and usually also for several variables. Simulation only becomes beneficial
with higher dimensions since the required number of iterations for approximating the integrals
does not depend on the number of dimensions. GHQ approximates an integral of a specific form
by a weighted sum of the integrand evaluated at predetermined abscissas of the variable that is
integrated out (see Abramowitz and Stegun (1964) and Davis and Rabinowitz (1967)). These
predetermined abscissas are called quadrature points. For example, in the one-dimensional case
the integral of the form

I =
∫ ∞

−∞
f.x/ exp.−x2/dx

can be approximated by

Ĩ =
P∑

p=1
ωpf.ap/,

where the quadrature points ap are set to be the nodes of the Hermite polynomial and ωp are the
corresponding weights with p=1, : : : , P . By design, the quadrature points are set symmetrically
around zero. The accuracy of the Gauss–Hermite approximation Ĩ depends on the chosen num-
ber P of quadrature points. Ideally, P is determined by investigating the convergence behaviour
of Ĩ when P is increased. However, Lesaffre and Spiessens (2001) showed that a number of
P =10 is often sufficient and differences by further increasing P are only minimal. The Gauss–
Hermite weights and nodes can be found in the tables of Abramowitz and Stegun (1964) or
can be computed by using an algorithm that was proposed by Golub and Welsch (1969). An
improved version of GHQ is AGHQ (Liu and Donald, 1994; Naylor and Smith, 1982). Here, in
contrast with traditional GHQ, the quadrature points are set symmetrically around the maxi-
mum value of the integrand. In other words, AGHQ shifts and scales the quadrature locations
to place them under the peak of the integrand, so that the function is evaluated where the area is
expected to be largest. Applying the AGHQ approach to log-likelihood equation (2.3) gives the
following approximation (the corresponding calculation steps yielding this formula are given in
the on-line supplementary material provided along with this paper):

ln.L/�
J∑

j=1
ln
(
|Ωj|1=2 ×2

P∑
p1=1

P∑
p2=1

ωp1ωp2

nj∏
i=1

[rjiyjiΦ2.βRxR,ji + ãjp1 ,βY xY ,ji + ãjp2 ,ρ/

+ rji.1−yji/Φ2{βRxR,ji + ãjp1 ,− .βY xY ,ji + ãjp2/,−ρ}

+ .1− rji/Φ{−.βRxR,ji + ãjp1/}]φ2.ãjp|0,Σ/ exp.a′
pap/

)
, .2:4/

where p1 =1, : : : , P and p2 =1, : : : , P are the quadrature points for the selection equation and for
the outcome equation respectively. In contrast with GHQ, AGHQ enables us to specify quadra-
ture points for each cluster separately. It can be expected that this improves the approximation
of the cluster-specific integrals

∫∞
−∞
∫∞
−∞[· · ·]φ2.· · ·/dαR,jdαY ,j (compare log-likelihood (2.3)).
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The related bivariate quadrature points ãjp = .ãjp1 ãjp2/′ with p= .p1, p2/′ are defined as

ãjp =μj +√
2Ω1=2

j a′
p,

where ap = .ap1 , ap2/′ and ωp = .ωp1ωp2/′ are the standard Gauss–Hermite nodes and weights.
Here, the matrix Ωj scales ap and the vector μj centres them. The function |Ωj| denotes the de-
terminant of Ωj. The square root of Ωj, Ω1=2

j , can be properly described by the lower triangular
matrix T of the Cholesky decomposition of Ωj =TT′.

There are different approaches to specify μj and Ωj. Liu and Donald (1994) recommended
centring the nodes with respect to the mode of the integrand and scaling them according to the
negative inverse Hessian matrix (curvature) at the mode. In the case considered, the mode is the
most likely value for the random effects given the observed data and the current estimates of all
the other model parameters. The integrand of the likelihood lj for cluster j, that is necessary to
calculate the cluster-specific mode and curvature, is

lj =
nj∏

i=1
[rjiyjiΦ2.βRxR,ji +αR,j,βY xY ,ji +αY ,j,ρ/+ rji.1−yji/Φ2{βRxR,ji +αR,j,

− .βY xY ,ji +αY ,j/, −ρ}+ .1− rji/Φ{−.βRxR,ji +αR,j/}]φ2.αR,j,αY ,j|0,Σ/:

Estimators μ̂j = .μ̂R,j, μ̂Y ,j/′ of the modes μj = .μR,j,μY ,j/′ of the two random intercepts for
cluster j can be computed, for example, by

μ̂j = arg max
.αR,j ,αY ,j/

ln.lj/:

The related curvature matrix at the modes, Ω̂j, is a proper estimator for Ωj. It is defined as

Ω̂j =

(
− @2lj

@α2
R,j

− @2lj

@αR,jαY ,j

− @2lj

@αR,jαY ,j
− @2lj

@α2
Y ,j

)−1

:

The estimator μ̂j must be found by some numerical optimization algorithm such as the Nelder–
Mead method, whereas Ω̂j can be calculated analytically or also solved numerically. In general,
AGHQ is clearly superior to ordinary GHQ since it dramatically reduces the number of neces-
sary quadrature points to approximate a given integral by sampling the nodes in the relevant
region of the function. Although additional time is needed to compute the mode and curvature
at each maximization iteration, many fewer quadrature points are required for the same ap-
proximation accuracy (Lesaffre and Spiessens, 2001). This applies especially when the mode of
the integrand is far from 0. We rely on the standard maximum likelihood approach to estimate
the parameters of the approximated log-likelihood function (2.4). For numerical optimization
we suggest using the Broyden–Fletcher–Goldfarb–Shanno method (e.g. Goldfarb (1970))—a
very powerful and efficient optimization algorithm for solving unconstrained non-linear opti-
mization problems that belongs to the group of quasi-Newton methods. These methods do not
require the computation of the Hessian matrix but approximate it in each iteration by using
the gradients. This fact makes them computationally very attractive (e.g. Nocedal and Wright
(2006)). To speed up the maximization process of parameter estimation, we calculated the ana-
lytic gradients of equation (2.4), which can be found in the on-line supplementary material, and
use them during optimization. Note that, during the optimization procedure, μ̂j and Ω̂j must
be computed for each individual cluster in each iteration step.
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2.2. Imputation algorithm: fully conditional specification
With the imputation model at hand and an adequate method to estimate it, missing values can
now be imputed. As already stated, in FCS–MI, the incomplete variables are imputed sequen-
tially in a univariate fashion. For this, plausible replacements are drawn variable by variable
from the related conditional densities. In our case, the bivariate probit model (2.1) determines
the conditional density of Y . Let θ= .βY ,βR, r, ξ2

Y , ξ2
R, z/ be the unknown parameters of the

bivariate probit model, where r = tanh−1.ρ/, ξ2
Y = ln.σ2

Y /, ξ2
R = ln.σ2

R/ and z = tanh−1.τ / are
common transformations to preserve the range constraints of the parameters during maximiza-
tion. At each iteration the following five steps are conducted to impute the missing values of
Y . At each FCS–MI iteration step the approximated log-likelihood (2.4) must be maximized to
obtain updated estimates θ̂ for θ. Furthermore, to ensure a proper imputation procedure, pa-
rameter uncertainty must be considered (Rubin, 1987). This is achieved by drawing parameter
candidates θ̇ by using a normal approximation to the posterior distribution of θ̂ (e.g. Gelman
et al. (2013), chapter 4).

Step 1: estimate model parameters by maximum likelihood and AGHQ by using equation
(2.4), which yields

(a) θ̂= .β̂Y , β̂R, r̂, ξ̂
2
Y , ξ̂

2
R, ẑ/ and

(b) ψ̂, the variance–covariance matrix of θ̂.

Step 2: draw θ̇= .β̇Y , β̇R, ṙ, ξ̇2
Y , ξ̇2

R, ż/ from N.θ̂, ψ̂/, and retransform ρ̇= tanh.ṙ/, τ̇ = tanh.ż/,
and σ̇2

Y = exp.ξ̇2
Y / and σ̇2

R = exp.ξ̇2
R/.

Step 3: draw random-intercept candidates .α̇R,j, α̇Y ,j/′ for each cluster j from N.μ̂j, Ω̂j/.
Step 4: calculate for each unit with missing Y the probability ṗ that Y equals 1:

ṗ=P.Y =1|XY , XR, R=0/= Φ2{XY β̇Y + α̇Y , − .XRβ̇R + α̇R/, − ρ̇}
Φ{−.XRβ̇R + α̇R/} :

Step 5: draw for each missing value Ymis a replacement from a Bernoulli distribution with
success probability ṗ.

To generate M imputed data sets, these steps are repeated M times.
This imputation algorithm extends the work of Galimard et al. (2018). We have implemented

it in a way that the algorithm can be used within the mice()function of the R package
mice. (The corresponding source code is available from http://github.com/Angelina
Hammon/PaperBinaryMNARmultilevelData.) In FCS–MI, it is common practice that
each incomplete variable is also a potential predictor in the imputation models for all the other
variables. This applies to Y as well. Since by assumption the missing data indicators R of Y

and XY are correlated (determined by the selection equation), R must be included as predictor
in the imputation models of all of the other incomplete variables that are part of XY ; see also
Galimard et al. (2016). Otherwise biased imputations may arise.

3. Simulation study

To evaluate the performance of our novel imputation procedure, we conduct a set of distinct
Monte Carlo simulation studies, using different data-generating processes to represent possible
real world scenarios. For clarity, we concentrate on the univariate imputation model of Y , and we
assume that all the covariates considered are observed completely. However, as already stated,
an application of the algorithm to multivariate missing data is straightforward. The number of
replications is set to 1000.
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3.1. Data generation
In sum, we consider five simulation scenarios. The total sample size is set to n= 2500 and the
number of clusters equals m=50, leading to a cluster size of nj =50, j =1, : : : , m. These numbers
are in line with cluster and sample sizes that are commonly used in educational research, for
example, when describing students in schools. For simplicity, we assume that all clusters com-
prise the same number of units. However, the method can also be applied without any problems
in case of different cluster sizes. In any simulation scenario, we initially generate complete data
sets with one binary outcome variable yji, i=1, : : : , nj, and three different normally distributed
covariates x1,ji, x2,ji and x3,ji according to

x1,ji ∼N.0, 0:32/,

x2,ji ∼N.0, 0:82/,

x3,ji ∼N.0, 42/

and

yÅ
ji =0:25+x1,ji +0:5x2,ji +αY ,j + εY ,ji yji =1.yÅ

ji > 0/:

Here αY ,j and εY ,ji are drawn according to the model assumptions (2.2) with σ2
R = 0:5 and

σ2
Y = 0:9. This yields an intraclass correlation of about 0.3 for the selection indicator r and of

approximately 0:45 for the outcome variable y. Missing values are imposed on yji by specifying a
model for the response indicator rji, where rji equals 1 if yji is observed and is 0 otherwise. To as-
sess the performance of our imputation method under distinct (realistic) missing data situations,
we implement models for five different missing data mechanisms. We specify four models for
MNAR and one model for missingness at random (MAR). Depending on the mechanism that
is considered the parameters ρ and τ of equation (2.2) take varying values expressing different
relationships between the response indicator r and the outcome variable y. We include different
types of MNAR missing data, where we assume that the probability of observing yji increases
with the value of yÅ

ji. Under the first three MNAR scenarios (MNAR selection), missing data
are produced by using the following parameterization of the selection equation:

rÅ
ji =0:5+1:5x1,ji −0:25x2,ji +0:1x3,ji +αR,j + εR,ji rji =1.rÅ

ji > 0/: .3:1/

To take into account different magnitudes of correlation between yji and rji, we use three values
for ρ, namely ρ∈{0:3, 0:6, 0:9}, reflecting weak, medium and strong correlation. We set τ=0:5 to
allow for a medium correlation between the random intercepts of both equations. The variable x3
represents the exclusion criterion. To evaluate our method also in an MNAR situation, where
the missing data mechanism does not strictly follow the selection model specification of the
imputation procedure (MNAR non-selection), we consider another MNAR scenario, where
the missing data are imposed by

P.rji =1/=Φ.0:8+1:75yÅ
ji +1:5x1,ji −2:5x2,ji +αR,j/ rji ∼Ber{P.rji =1/}:

Here, Ber.· · ·/ denotes the Bernoulli distribution, and ρ and τ of equation (2.2) are set to 0. Since
it is not possible to test empirically whether the missing data mechanism at hand is MAR or
MNAR, sensitivity analyses incorporating alternative imputation models with additional exter-
nal assumptions are the only means of detecting a potential MNAR mechanism. The underlying
idea is that, in the case of MAR the inferences should not differ between the distinct MAR and
MNAR imputation methods. Thus, to conduct effective sensitivity analyses it is crucial that the
alternative imputation models can not only handle data missing not at random but also yield
valid inferences under MAR. Therefore, we additionally consider an MAR scenario where the
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missingness does not depend on yji to evaluate how our new method performs under MAR.
For this, we specify the latent response indicator rÅ

ji by using equation (3.1) with ρ=0 and τ =0.
All missing data scenarios that were examined yield approximately 35% missing values in y.
The complete code for data generation and analysis of our simulation study is available from
http://github.com/AngelinaHammon/PaperBinaryMNARmultilevelData.

3.2. Data analysis
To assess the adequacy of our new imputation method with AGHQ (referred to in what follows
as MNAR AGHQ), its performance will be compared with that of other relevant imputation
procedures including methods that assume MAR. We also tested the performance of our method
by using the GHQ approximation. However, the corresponding results are slightly worse than
under MNAR AGHQ. Thus, they are not reported. As MAR imputation methods, we use a
mixed effects logistic regression as imputation approach (MAR mixed) (Zinn, 2013) as well as a
technique that uses a two-stage estimation approach (MAR 2-stage) (Resche-Rigon and White,
2018). Besides these methods, which take into account the multilevel structure of the data, we
also evaluate the procedure of Galimard et al. (2018, 2015) that handles MNAR by using a
selection model approach but is only designed for single-level data (MNAR Galimard). As a
benchmark scenario, we present the results of a complete-case analysis (CCA), which in the
case at hand (only missing values in y) is also valid under MAR (Von Hippel, 2007). We used
M = 10 imputations for each scenario and imputation procedure. Since here we focus on only
univariate missing data, which are a special case of monotone missingness, there is no need to
iterate the mice algorithm.

Each completed data set is analysed by estimating a mixed effects probit regression on y with
covariates x1 and x2. For this, we use the glmer()function of the R package lme4 (Bates
et al., 2015). After estimation, all the estimates are pooled by using Rubin’s combining rules
(Rubin, 1987). We assess the performance of each imputation method by using the empirical
means of the parameter estimates, their relative bias and the empirical standard errors of the
estimates, as well as the root mean square of the estimated standard errors. Furthermore, we
derive and evaluate the coverage rates of the nominal 95% confidence intervals.

3.3. Results
For the various imputation strategies and simulation scenarios including the MNAR scenario
based on a selection model with medium correlation, i.e. for ρ= 0:6, Table 1 shows the results
for the regression parameter β1 of the first covariate x1. Table 2 gives the estimates for the slope
parameter β2 of variable x2. The results for the selection-model-based scenarios with low and
high correlation, i.e. ρ∈{0:3, 0:9}, are not reported here since they are similar in terms of relative
bias and coverage rates. However, they can be found in the on-line supplementary material to this
paper. If the true missing data mechanism is MAR, the CCA and the imputation model based on
a mixed logistic regression (MAR mixed), which are both designed for this type of missing data,
perform—as expected—very well in terms of bias. Surprisingly, the MAR 2-stage approach
performs rather badly under MAR with regard to both bias and coverage. Apparently, the two-
model strategy is not suitable for the kind of hierarchical data situation that is considered in our
simulation study. The results of Audigier et al. (2017) suggest that the method introduces bias
with cluster sizes below 100, which might be the reason for its poor performance in our simulation
study. Our novel approach MNAR AGHQ performs well under the MAR scenario, with an
average relative downward bias of 1.98% and a reasonable coverage rate of 96% for β1. The
bias is slightly higher than for the CCA or MAR mixed, but nevertheless these results confirm



556 A. Hammon and S. Zinn

Table 1. Simulation results for β1 D1 estimates (with τ D0.5 and ρD0.6 for MNAR selection) in
1000 simulation runs†

Method Mechanism emp.mean rel.bias (%) SEemp SEmod CR (%)

Before deletion MAR 1.0020 0.51 0.1032 0.0983 95.6
MNAR selection 1.0038 0.43 0.1030 0.1045 93.2
MNAR non-selection 1.0055 0.51 0.1033 0.1090 94.4

CCA MAR 1.0064 0.95 0.1339 0.1291 93.6
MNAR selection 0.6765 −32:31 0.1368 0.1282 38.0
MNAR non-selection 0.5465 −45:37 0.1418 0.1843 16.8

MAR mixed MAR 1.0023 0.54 0.1499 0.1332 96.4
MNAR selection 0.6524 −34:72 0.1545 0.1343 42.0
MNAR non-selection 0.5462 −45:40 0.1519 0.1815 18.0

MAR 2-stage MAR 0.8931 −10:42 0.1404 0.1232 92.0
MNAR selection 0.6146 −38:50 0.1438 0.1238 21.2
MNAR non-selection 0.4855 −51:46 0.1481 0.1622 8.8

MNAR AGHQ MAR 1.0166 −1:98 0.1840 0.1730 96.0
MNAR selection 0.9900 −0:94 0.1560 0.1476 95.2
MNAR non-selection 0.9914 −0:89 0.1396 0.1291 96.8

MNAR Galimard MAR 0.8342 −16:32 0.1815 0.1708 86.8
MNAR selection 0.8322 −16:73 0.1581 0.1466 85.2
MNAR non-selection 0.8772 −12:31 0.1435 0.1296 88.8

†emp.mean denotes the empirical mean of the estimates, rel.bias the relative bias, SEemp the observed
standard errors across all simulations, SEmod the root mean square of the estimated standard errors
and CR the nominal coverage rate. The Monte Carlo standard error of the coverage rate is 0.69%
and the maximum Monte Carlo standard error of the bias is 0.58%. The formulae to compute these
quantities have been taken from Morris et al. (2019).

Table 2. Simulation results for β2 D 0.5 estimates (with τ D 0.5 and ρD 0.6 for MNAR selection)
in 1000 simulation runs†

Method Mechanism emp.mean rel.bias (%) SEemp SEmod CR (%)

Before deletion MAR 0.5019 0.70 0.0397 0.0405 96.4
MNAR selection 0.4969 −0:72 0.0395 0.0378 96.0
MNAR non-selection 0.5017 0.19 0.0397 0.0390 96.4

CCA MAR 0.5031 0.93 0.0502 0.0519 93.6
MNAR selection 0.6050 20.87 0.0532 0.0517 47.2
MNAR non-selection 0.9706 93.84 0.0662 0.0625 0.0

MAR mixed MAR 0.5004 0.39 0.0524 0.0522 94.8
MNAR selection 0.6061 21.10 0.0552 0.0523 55.2
MNAR non-selection 0.9622 92.18 0.0744 0.0645 0.0

MAR 2-stage MAR 0.4146 −16:81 0.0518 0.0495 66.0
MNAR selection 0.5006 0.01 0.0558 0.0477 97.2
MNAR non-selection 0.8286 65.49 0.0750 0.0804 4.0

MNAR AGHQ MAR 0.4916 −1:29 0.0574 0.0610 91.2
MNAR selection 0.4882 2.47 0.0693 0.0653 92.8
MNAR non-selection 0.5183 3.52 0.1068 0.0992 95.2

MNAR Galimard MAR 0.4083 −18:09 0.0561 0.0558 59.6
MNAR selection 0.4141 −17:26 0.0607 0.0621 70.8
MNAR non-selection 0.4457 −10:99 0.1044 0.0942 90.0

†emp.mean denotes the empirical mean of the estimates, rel.bias the relative bias, SEemp the observed
standard errors across all simulations, SEmod the root mean square of the estimated standard errors
and CR the nominal coverage rate. The Monte Carlo standard error of the coverage rate is 0.69%
and the maximum Monte Carlo standard error of the bias is 0.34%. The formulae to compute these
quantities have been taken from Morris et al. (2019).



Multiple Imputation of Binary Data 557

that our novel approach also works for missing data that are in fact missing at random, which
is a crucial property for conducting adequate sensitivity analyses. In the considered MNAR
scenarios, the MNAR AGHQ method clearly outperforms all competing approaches. For β1, it
yields, under both MNAR conditions, a relative bias of lower than 1% and coverage rates near
the nominal coverage probability. The three MAR methods underestimate β1 up to 51.46% in
both MNAR scenarios. The approach of Galimard (MNAR Galimard) yields biased estimates
for β1 in all scenarios. This is caused by the fact that Galimard’s model does not induce any
multilevel structure into the imputed values.

In principle, the results for parameter β2 are similar to those of parameter β1. The MAR
mixed approach shows a high upward bias in all the considered MNAR scenarios along with
very low coverage rates. Interestingly, the MAR 2-stage technique leads to an unbiased estimate
for β2 and to a nominal coverage of 97.2% in the MNAR scenario based on the selection model
and even outperforms MNAR AGHQ, which shows a relative bias of 2.47% and a coverage
rate of 92.8%. In contrast, MAR 2-stage again yields a poor coverage rate and biased estimate
in the presence of MAR. All three MAR methods overestimate β2 up to 93.84% under MNAR.
For β2, our new approach MNAR AGHQ again shows reasonable performance in terms of bias
and coverage in all the scenarios considered. However, in the data situation where missing data
are created under a non-selection model, the estimate is slightly more biased than for the other
scenarios. In addition, the bias is also higher than for the estimate of β1 in the same missing data
situation. Nevertheless, the average relative bias of 3.52% still lies within an acceptable range,
in particular compared with the performance of the other methods investigated, which clearly
underperform relative to MNAR AGHQ. Under MAR, MNAR AGHQ shows a slightly lower
coverage rate for β2 than expected, but it still lies in a reasonable range. As for β1 the MNAR
Galimard model biases the estimates of β2 downwards and results in too low coverage rates.
Hence, even if the MNAR mechanism is modelled, the failure to consider the hierarchical data
structure during imputation leads to incorrect estimates of fixed effects parameters.

4. Analysis of educational aspirations

We apply our novel imputation method to a frequently studied problem in educational research:
young people’s educational aspirations and the effect of their social background. Our analysis
focuses on ninth-grade students attending lower secondary school, Hauptschule, the lowest
track of secondary school in Germany. This group is particularly affected by social disadvantage
(Schneider, 2018; Wößmann, 2007) and thus is of special interest to educational researchers. This
is especially true for the relationship between parental education and the degree that students
aspire to obtain. We use wave 1 of the NEPS starting cohort ‘School and vocational training:
educational pathways of students in grade 9 and higher’ to study the aspirations of ninth graders
to graduate with a degree that is higher than the degree that is offered by the school that
they are currently visiting. For students attending Hauptschule, this is either an intermediate
secondary degree or a degree allowing for university admission. We study the effect of parental
education on a student’s aspirations by using the information on whether a student’s mother has a
university admission certificate (UAC) or not. As personal attributes that may influence students’
aspirations we consider their grades in mathematics and German and their competencies in
mathematics and reading, and their gender, as well as their migration background (measured
by generation status smaller than 3.5). Competency scores are estimated as weighted maximum
likelihood estimates (Warm, 1989). Detailed information on the measurement of competencies
in the NEPS is given in Duchhardt and Gerdes (2013), Gehrer et al. (2012) and Neumann et al.
(2013). Grades range from ‘1, very good’ to ‘6, insufficient’. We are aware of the problem of
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multicollinearity between grades and competency scores. Nonetheless, in Germany correlations
between both quantities are comparably low in lower secondary school (e.g. around −0:32
between grades in German and reading competencies in 2012 (Authors Education Report (2016),
page 94)). Thus, competencies are included in the outcome model to capture ability effects that
grades do not map. As possible composition effect, we consider the proportion of mothers with
a UAC in a school’s entire ninth-grade level. The participation in the NEPS survey is voluntary.
As a consequence, some schools in the sample have only a few ninth graders. We exclude schools
with fewer than 10 ninth graders from our sample to reduce distortion and estimation problems.
This results in a loss of 4% of the students. In sum, our data set comprises observations on 3291
ninth graders in 142 schools who were surveyed in 2011. The average number of ninth graders
in a school is 23.2 (with a minimum of 10 students and a maximum of 48 students). In total,
77.2% of the ninth graders surveyed aspire to obtain a higher degree than they can obtain
at Hauptschule. The grade level intraclass correlation ICC concerning higher aspirations of
students is 22.7% (with a standard deviation of less than 0.1). Hence, the multilevel structure
of our data is obvious. The on-line supplementary material shows all the model variables along
with their mean values, standard deviations and the proportion of missing values. The variables
on competencies and gender exhibit very few missing values (at maximum 4%), whereas the
variables on migration background, aspirations and grades show a few more missing values
(from 13% to 17%). However, we find a high percentage of missing values (more than 50%) for
maternal education. Using Little’s test (Little, 1988), we see that the missingness mechanism
that generated our data set is not missingness completely at random, i.e. it is either MAR or
MNAR. To cope with this issue, we use the FCS–MI approach, applying distinct imputation
methods depending on the nature of the variable to be imputed. It is clear that a regressor in
a multilevel model does not necessarily have to have a multilevel structure as well. Imputing
missing values of a regressor with a single level structure by using a multilevel imputation model
can lead to an unnecessarily high variance of the imputed values. Therefore, we first compute
ICC for all the variables, using their observed values to assess whether a multilevel imputation
routine is required. As a rule of thumb, we consider ICC-values that are higher than 20% as at
risk of having a multilevel structure, whereas regressors with lower ICC-values are assigned a
single-level imputation model. We find ICC-values larger than 20% for migration background
and higher aspirations. Thus, higher aspirations and migration background are imputed by
using multilevel imputation approaches, and all other variables are imputed by a single-level
approach. From non-response analyses with similar NEPS data, we know that people with
lower educational attainment are less likely to take part in the survey; see Zinn et al. (2018).
Furthermore, we suspect that students with lower educational aspirations more often refuse
to take part than their counterparts. Thus, we hypothesize that MNAR mechanisms generated
the data on maternal education and educational aspirations. We use Galimard’s imputation
method (Galimard et al., 2016) to impute the variable ‘mother has UAC’ and our novel method
to impute ‘higher aspirations’. As an exclusion criterion (in the selection models), we use the
information on whether students were ever surveyed individually at home, on line or by phone—
i.e. not at school—within nine waves (i.e. within 5 years). This appears to be an optimal choice
since we find high correlations between this survey mode variable and the indicators of whether
an aspiration value has been observed (around 95.8%) or of whether maternal education has
been observed (around 46.1%). In contrast, we find low correlations between the survey mode
variable and the observed aspiration values (0.03%) and the observed maternal education values
(16.7%). Thus, we do not expect that the complete aspiration variable or the complete maternal
education variable are substantially correlated with the survey mode variable. All other variables
are imputed by using an MAR approach. In detail, missing values for grades are imputed by
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Table 3. Effects on higher aspirations: analyses using different methods for handling missing values for
maternal education

Variable Results for CCA Results for MAR Results for MNAR

β̂ p-value β̂ p-value β̂ p-value

Grade in mathematics −0:112 0.203 −0:151 0.023 −0:151 0.018
Grade in German −0:590 < 0:001 −0:472 < 0:001 −0:472 < 0:001
Competency in mathematics, satisfactory

(reference category, poor)†
0.821 0.004 0.625 0.225 0.686 0.252

Competency in mathematics, good (reference
category, poor)†

1.347 < 0:001 1.160 0.033 1.231 0.046

Competency in reading, satisfactory (reference
category, poor)†

1.287 0.095 0.531 0.682 0.612 0.742

Competency in reading, good (reference
category, poor)†

1.832 0.019 1.084 0.384 1.147 0.523

Sex (reference category, male) 0.843 < 0:001 0.748 < 0:001 0.756 < 0:001
Migration background (reference category, no) 0.832 < 0:001 0.549 < 0:001 0.490 < 0:001
Mother has UAC (reference category, no) 0.330 0.234 0.467 0.118 0.576 0.059
Proportion mothers with UAC in grade 9‡ 2.756 0.003 3.885 0.011 3.927 0.013

Variance of random effect on grade level 0.474 0.948 0.949
N students (in schools) 1250 (138) 3291 (142) 3291 (142)

†Categories are created based on sample quantiles.
‡To compute this proportion only observed cases are used.

using predictive mean matching, and missing values for competence categories are imputed
by using a polytomous regression approach. Missing values for gender are imputed by using
a single-level logistic regression model, whereas missing values for migration background are
imputed by using a two-level logistic regression model. Table 3 shows the results of our analysis,
contrasted with the results of a CCA which is valid if missingness does not depend on observed
or missing outcomes values given all other observed data (e.g. White and Carlin (2010)), and an
MAR imputation approach for ‘higher aspirations’. As in the simulation study, the two-level
MAR imputation method is the method that was used in Zinn (2013). The number of imputed
data sets is 20 with 50 iterations per imputed data set.

Under all three missing data schemes, we find significant effects (i.e. with p<0:05) for higher
grades in German, higher mathematics competencies, gender, migration background and the
proportion of mothers with a UAC in the ninth grade. As expected, students with better grades in
German show higher aspirations than students with lower grades. We do not find any significant
effect of mathematics grades under a CCA. However, the effect of the mathematics grades
becomes significant under MAR or MNAR. Thus, there is evidence that grades in mathematics
are important for a student’s aspirations. Having a look at the effect of competencies on students’
aspirations, we see that the significance of German competencies shrinks to insignificance under
MAR and MNAR—whereas, under a CCA, significant effects are estimated. For mathematics
competencies, the picture is slightly different: even under MAR and MNAR, the significance
of the good competency effect remains. In other words, there seems to be a significant part
of remaining explanatory power in a student’s mathematics competency that is not already
captured by the mathematics grade (or vice versa). Apart from that, under all three missing data
schemes, we find that female students in lower secondary school have much higher educational
aspirations than males. Likewise, students with a migration background have much higher
educational aspirations than those without. The proportion of ninth graders’ mothers with a



560 A. Hammon and S. Zinn

UAC has a very strong effect on students’ aspirations as well: the larger the proportion, the
higher the effect. In sum, the size of this composition effect is very large. The reason for this
lies in the small variance in the proportion of mothers with a UAC proportion at the grade
level. It is less than 0.1. This small value is due to the target population under consideration,
and not to particularities of the data. In Germany, social segregation in the lowest level of
secondary education is enormously high. This is reflected in the data: in only one school is the
proportion of ninth graders’ mothers with a UAC higher than 50%, whereas, in 34.5% of the
schools, none of the students has a mother with a UAC. Considering the effect of maternal
education, we see that no significant influence can be detected under CCA and MAR. This
changes under MNAR, although the effect of maternal education is statistically significant
only at the 0.1-level. However, 58% of the cases with missing values concerning aspiration
also have missing values for maternal education. Therefore, the chances are high that we are
missing students with low aspirations and mothers without a UAC. Ignoring this issue may
induce confounding bias, resulting in an underestimation of the effect of maternal education.
In this respect, it is very likely that students who have a mother with a UAC have considerably
higher educational aspirations than students whose mothers do not hold such a degree. To
summarize, our analysis underscores the plausibility of the MNAR assumption concerning
the ‘maternal education’ data. Having a look at the random-effect variances estimated under
MAR and MNAR, the strong multilevel structure of the data becomes apparent. Neglecting
this data feature when imputing missing values yields (at least) biased and misleading variance
estimates. Exploring the missing data models that were estimated for maternal education and
students’ aspirations, we find a correlation (averaged across all imputations) ρ (between the error
terms of the selection equation and the outcome model) of 0.25 for mother’s education and of
0.06 for student’s aspirations. This substantiates our prior finding of an MNAR mechanism
having generated the ‘maternal education’ data (under the distributional assumptions of the
selection model applied). In contrast, ρ=0:06 indicates that an MAR mechanism generated the
aspiration data (and not an MNAR mechanism). Looking additionally at the generally small
differences between the estimates of the MAR and the MNAR models, this suspicion seems
to be confirmed. The correlation τ between the random effects of the selection equation and
the outcome model is on average 0.57. This high value suggests that participating in the study
and having higher aspirations depend in a similar fashion on the (latent) class context of a
student.

In situations where a single estimate is required (and not a set of estimates found within a
sensitivity analysis), the results from the distinct imputation models of the sensitivity analysis
can be combined by using Rubin’s combining rules. This yields a multiple-model imputation
approach that takes into account all sources of uncertainty with regard to the missing data
mechanism that is assumed (Rubin, 1987; Siddique et al., 2012, 2014). In our application,
imputations are generated from different posterior predictive distributions (since we are using
distinct (univariate) imputation models). This constitutes an additional source of uncertainty
that must be considered in the final inference. Siddique et al. (2012) described a modified version
of Rubin’s combining rules based on nested MI (Rubin, 2003; Shen, 2000) that can be used for
this.

5. Conclusion

In this paper, we introduced a novel and unique method for handling incomplete binary mul-
tilevel data that are assumed to be MNAR. Our univariate imputation method can easily be
incorporated into the FCS framework to deal with multivariate missingness. For example, it
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can be used in the R software package mice. (A related implementation is available from
http://github.com/AngelinaHammon/PaperBinaryMNARmultilevelData.) Our
simulation studies show that the novel approach outperforms competing techniques in terms
of bias and coverage when data are affected by distinct MNAR mechanisms, i.e. in contrast
with methods that are designed for MAR data, our method is capable of producing unbiased
and accurate estimates of the quantities of interest. Moreover, our novel imputation method
also yields valid estimates if the missing data were produced by an MAR mechanism. All in all,
the method seems well suited to conducting meaningful sensitivity analyses—the only means
of assessing the plausibility of an MNAR missing data mechanism or, more precisely, whether
it matters for inference. In addition, the simulation studies demonstrate that valid imputation
requires multilevel modelling if the data are clustered. In other words, when working with mul-
tilevel data that are supposed to be missing not at random, a proper imputation model like ours
is required. In our simulation study, we kept the number of clusters and cluster sizes constant.
A variation of both quantities can have an influence on the performance of our method. Thus,
one of our future tasks will be to find out whether and to what extent such an influence exists.
Furthermore, we included only random intercepts in our imputation model. The generalization
to models containing random slopes is less straightforward and there is not a completely satis-
factory imputation approach at the moment (Enders et al., 2016; Grund et al., 2016). However,
in most social science applications, it is sufficient to consider only random intercepts to reflect a
hierarchical structure in the data. We proved that our method is applicable to real data problems
as well. For this, we studied the effect of maternal education on the educational aspirations of
students in lower secondary education. However, we also noted that analysing large data sets
with many clusters and incomplete predictors means long computing times when using only
one processor. Thus, to run our approach, we highly recommend executing the MIs of mice in
parallel on multiple cores.

Our approach must be extended in several respects. Up to now, we have applied a normal
approximation for the parameter draws in our imputation algorithm. Using Bayesian estimation
would make it possible to overcome this restriction since the model parameters can be drawn
from the actual posterior distributions (which do not necessarily have to be normal). Further-
more, prior information on the correlation between the selection and the outcome model could
be integrated. A decisive extension of the approach is the possibility of handling not only binary
data but also, for example, ordinal variables and count data. The extension to ordinal data is
straightforward since an ordinal outcome can also be explained by an underlying latent contin-
uous variable. Therefore, an ordered probit model with sample selection (e.g. Greene (2012)) is
a natural choice for imputing ordinal MNAR data. To perform meaningful sensitivity analyses,
it is indispensable to compare alternative MNAR models with different assumptions regarding
their missing data mechanisms. Thus, as a complement to a selection-model-driven approach,
an imputation approach based on pattern–mixture modelling should be developed as well. For
this, we plan to use the proxy pattern–mixture approach of Andridge and Little (2009, 2011).
This method includes one sensitivity parameter to assess the robustness of the missing data
inference. The parameter ranges between 0 and ∞, where 0 indicates MAR and ∞ means that
missingness depends only on the incomplete variable. Since the sensitivity parameter is indepen-
dent of any expert assessment, the method is well suited to social science applications. Finally,
we point out the crucial role that is played by the exclusion criterion in the successful appli-
cation of our method. The identification of a suitable variable for this task may seem difficult
at first glance. Normally, however, when working with survey data, metainformation such as
the survey mode or access corridors exists, which is suspected to be strongly correlated with
the respondents’ willingness to provide information, but not with the outcome variable to be
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imputed. Nevertheless, it is advisable to carry out sensitivity analyses with regard to the exclusion
criterion as well.
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