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Abstract

Nonparametric methods for estimating the implied volatility surface or the implied

volatility smile are very popular, since they do not impose a specific functional form

on the estimate. Traditionally, these methods are two-step estimators. The first step

requires to extract implied volatility data from observed option prices, in the second

step the actual fitting algorithm is applied. These two-step estimators may be se-

riously biased when option prices are observed with measurement errors. Moreover,

after the nonlinear transformation of the option prices the error distribution will be

complicated and less tractable. In this study, we propose a one-step estimator for the

implied volatility surface based on a least squares kernel smoother of the Black-Scholes

formula. Consistency and the asymptotic distribution of the estimate are provided.

We demonstrate the estimator using German DAX index option data to recover the

smile and the implied volatility surface.

Keywords: implied volatility surface, smile, Black-Scholes formula, least squares kernel smoothing
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1 Introduction

Functional flexibility is the key challenge for model building and model selection in quanti-

tative finance: often it is difficult, or sometimes impossible to justify on theoretical grounds

a specific parametric form of the economic relationship under investigation. Furthermore, in

a dynamic context, the economic structure may be liable to sizable changes and considerable

fluctuation. Thus, estimation techniques that do not impose any a priori restrictions on the

estimate, such as non- and semiparametric methods, are increasingly popular in financial

practice.

Recently in finance, the implied volatility surface (IVS) has attracted much attention. Since

it is derived from option prices observed at a certain point in time via the Black-Scholes (BS)

formula, it is a widely accepted state variable that reflects current market expectations and

market sentiments in a forward looking and instantaneous manner. Traders continuously

monitor and update the IVS they ‘trade on’. Pricing and risk management tools are fed

with the IVS currently prevailing in the market. In the case of the IVS, however, model

flexibility is a necessity rather than an option: from the BS theory, the IVS should be a

flat and constant function across strike prices K and the term structure τ of the option’s

time to maturity. Yet, as a matter of fact, one observes rich functional patterns fluctuating

through time, see Figure (1) for illustration. This dependence, captured by the function

σ̂t : (K, τ) → σ̂t(K, τ), is called IVS.

Parametric attempts to model the IVS along the strike profile, i.e. the ‘smile’, usually em-

ploy quadratic specifications, Shimko (1993), Ané and Geman (1999), and Tompkins (1999)

among others. However, it seems that these approaches are not capable of capturing the

salient features of IVS patterns, and hence estimates may be biased. In a comprehensive

study, Dumas et al. (1998) document this for a variety of parametric choices of local volatility

models. In an attempt to allow for more flexibility, Hafner and Wallmeier (2001) fit quadratic

splines to the smile function. Aı̈t-Sahalia and Lo (1998); Rosenberg (2000); Aı̈t-Sahalia et al.

(2001b); Cont and da Fonseca (2002); Fengler et al. (2003a) employ a Nadaraya-Watson esti-

mator of the IVS function, and higher order local polynomial smoothing of the IVS is used in

Rookley (1997). Aı̈t-Sahalia et al. (2001a) discuss model selection between fully parametric,

semi- and nonparametric IVS specifications and argue in favor of the latter approaches. In
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IVS on Jan. 02, 2001
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Figure 1: IVS as observed on Jan. 02, 2001, calculated separately for each observed option

price from the DAX Index options and discounted DAX Future prices. Lower front axis

is moneyness κt = K/(Fte
−rτ ) and lower right axis time to maturity measured in years

corresponding to 17, 45, 73, and 164 days to expiry.

combining techniques from functional data analysis and backfitting of generalized additive

models, Fengler et al. (2003b) propose a modeling approach of the IVS that fits only in the

local neighborhood of the observed design points of the IVS. An estimate of the IVS of the

particular day is then given by a sum of smooth basis functions, whose weights may change

over time. The decisive advantage of this estimator is in the fact that it is tailored to the

degenerated, i.e. discrete, ‘string’ data structure, which can be seen in Figure (1).

All these approaches share in common that they are two-step estimators by nature: in a first

step, implied volatilities are derived by equating the BS formula with observed market prices

and solving for the diffusion coefficient, Manaster and Koehler (1982); in the second step

the actual fitting algorithm is applied. These two-step estimators may be seriously biased,

when option prices or other input parameters can only be observed with errors. Moreover,

the nonlinear transformation of option prices makes the error distribution less tractable.

Indeed, it has been conjectured that the presence of measurement errors can be of substantial

impact, see Roll (1984), Harvey and Whaley (1991), and particularly Hentschel (2002) for
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an extensive study on errors in implied volatility estimation and their possible magnitude.

Potential error sources are the bid-ask bounce, nonsynchronous pricing, infrequent trading

of index stocks, and finite quote precision.

Here, we propose a one-step procedure based on a least squares kernel estimator that directly

takes option prices, say calls C̃t, and other variables observed at time t as input parameters:

σ̂(κt, τ) = arg min
σ

n∑
i=1

{
C̃ti − StiC

BS(·, σ)
}2

W (κti)K1

(
κt − κti

h1,n

)
K2

(
τ − τi

h2,n

)
,

where CBS(·, σ) denotes the BS price for calls, κt = K/St is moneyness, i.e. the rescaled

strike dimension ‘strike by asset price’. K1(·) and K2(·) are kernel functions. W (·) denotes

a uniformly continuous and bounded weight function, which allows for differential weights

of observed option prices. These weights may be useful in the following respect: it is usually

argued that in-the-money options contain a liquidity premium and should be incorporated

to a lesser extent into the implied volatility estimate, or even excluded, Aı̈t-Sahalia and Lo

(1998); Skiadopoulos et al. (1999). This goal may be achieved in using the weight function

W (κ).

Our estimator can be interpreted as a localized version of estimation approaches in the early

implied volatility literature, Latané and Rendelman (1976); Chiras and Manaster (1978);

Schmalensee and Trippi (1978); Beckers (1981); Whaley (1982). These studies are little

concerned in obtaining a fit of the IVS as such, but rather in recovering one single, good

predictor of future stock price variability: e.g. Whaley (1982) minimizes an equally weighted

sum of squared pricing errors. This line of literature, however, fails to explore the asymptotic

properties of their estimators.

We provide asymptotic results, and computation of confidence intervals around the estimates

is straight forward. Inspecting confidence intervals of the fitted smile is notoriously neglected

in the implied volatility literature, even when traditional two-step estimators are used. In

the computation of our confidence bands the nonlinear inversion of option prices to derive

implied volatility is explicitly taken into account. Thus they are more accurate than those

obtained from two-step estimators. Confidence bands are critically important to traders,

since they help them to discern for a given IVS estimate, whether new observations constitute

a significant change of the IVS. Furthermore, trading models may be constructed in a way
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such that the generation of trading signals is based on the confidence of the current IVS

estimate.

The paper is structured as follows: in Section (2) the estimator in given in detail, consistency

and the asymptotic distribution theory is established. Section (3) presents IVS estimates on

German DAX index data, Section (4) concludes. Proofs are given in an appendix.

2 Least Squares Kernel Smoothing of the IVS

European style calls and puts are contingent claims on an asset St (for simplicity, paying no

dividends, here), which yield as pay-off max(ST −K, 0) and max(K−ST , 0), respectively, at

a given expiry day T . K is called strike price. In the traditional BS model it is assumed that

the asset price process St follows a geometric Brownian motion with a constant diffusion

coefficient σ. Under no arbitrage, the BS option pricing formula for calls is given by (Black

and Scholes, 1973):

CBS
t (St, K, τ, r, σ) = StΦ(d1)−Ke−rτΦ(d2), (1)

d1 =
ln(St/K) + (r + 1

2
σ2)τ

σ
√

τ
,

d2 = d1 − σ
√

τ ,

where Φ(·) denotes the cumulative distribution function of a standard normal random vari-

able, r denotes the risk-free interest rate, St the price of underlying at time t, τ = T − t time

to maturity and K the exercise price. Put prices are derived from the put-call parity

Ct − Pt = St − e−rτK . (2)

Empirically, the actual volatility σ of the underlying price process is the only parameter

that cannot be observed directly. Hence one studies the volatility that is implied in option

prices observed on markets, given the BS model were a true description of market conditions:

implied volatility σ̂ is defined as that σ which equates observed market prices C̃t with the

theoretical BS option price, i.e.

σ̂ : CBS
t (St, K, τ, r, σ̂)− C̃t = 0 . (3)
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BS formula is monotone in the volatility parameter σ, which ensures uniqueness of a solution

σ̂ > 0. The purpose will be to estimate IVS given by σ̂t : (K, τ) → σ̂t(K, τ).

On the trading floors, only options near at-the-money, ATM, i.e. K ≈ St are traded at high

liquidity. Since this region changes as the asset price fluctuates, it is convention to work on

a moneyness metric, i.e. one scales strike prices by the current asset price (or future prices).

Denote moneyness by κt = K/St. Then ATM is around κt ≈ 1. A call option is called

out-of-the-money, OTM, (in-of-the-money, ITM) if κ > 1 (κ < 1) with the reverse applying

to puts.

Rewriting (1) in terms of moneyness yields

CBS
t (St, K, τ, r, σ) = StC(κt, τ, r, σ)

where C(κt, τ, r, σ) = Φ(d1) − K
St

e−rτΦ(d2) and d1 =
− ln κt+(r+ 1

2
σ2)τ

σ
√

τ
, d2 = d1 − σ

√
τ (as

before).

Our least squares kernel estimator is defined by

σ̂(κt, τ) = arg min
σ

n∑
i=1

{
C̃ti − StiC(κti , τi, ri, σ)

}2

W (κti)K1

(
κt − κti

h1,n

)
K2

(
τ − τi

h2,n

)
, (4)

where K1(·) and K2(·) are kernel functions and W (·) is a weight function. i = 1, . . . , n is a

numbering of observed option prices.

We make the following assumptions:

(A1) EC̃4
t < ∞, ES4

t < ∞ and EK4 < ∞, where E denotes the expectation operator.

(A2) W (·) is a uniformly continuous and bounded weight function.

(A3) K1(·) and K2(·) are bounded probability density kernel functions with bounded sup-

port.

(A4) Interest rate r is a fixed constant.

Assumption (A1), can be considered as a general characterization of the framework in which

computing the implied volatility is ‘sensible’. Clearly, it holds in the BS model, but also
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for the classes of diffusion and affine jump-diffusion models studied in finance, see e.g Duffie

et al. (2000). This is important, because practitioners like to use implied volatility in more

general circumstances than the BS model provides. One may conjecture that EK4 < ∞ is

not needed because K is fixed in each option. However, when options are sampled randomly,

it is useful to allow for this generalization. Note also that EC̃4
t < ∞ is actually an implication

of ES4
t < ∞ and EK4 < ∞, as long as we consider plain vanilla European options only.

Since put options have a bounded payoff, there is no need for an additional assumption.

Assumption (A2) is very common, and some important weight function satisfy it. In Sec-

tion (3) we will discuss possible choices of W (·). (A3) is a condition met by a lot of kernels

used in nonparametric regression, such as the quartic or Epanechnikov kernel functions. (A4)

is an assumption often used in the option pricing literature including the BS model. It is gen-

erally justified by the empirical observation that asset pricing variability largely outweighs

changes in the interest rate. Nevertheless, the impact from changing interest rates can be

substantial for options with a very long time to maturity. We also remark that including a

fixed dividend yield into the model would be a straight forward extension of our estimator.

Given assumptions (A1) to (A4) we obtain consistency:

Theorem 1. Let σ(κt, τ) be the solution of E[{C̃t1 − St1C(κt, τ, r1, σ)}W (κt)] = 0. If con-

ditions (A1), (A2), (A3) and (A4) are satisfied, we have

σ̂(κt, τ)
p−→ σ(κt, τ)

as nh1,nh2,n →∞.

The proof is contained in the appendix. For our next result, we introduce the notations

Ai(κti , τi, ri, σ)
def
= C̃ti − StiC(κti , τi, ri, σ) ,

B(κt, τ, r, σ)
def
=

∂C(κt, τ, r, σ)

∂σ
= S−1

t

∂CBS(·)
∂σ

=
√

τφ(d1) , (5)

D(κt, τ, r, σ)
def
=

∂2C(κt, τ, r, σ)

∂2σ
= S−1

t

∂2CBS(·)
∂σ2

=
√

τφ(d1)d1d2σ
−1 , (6)

where φ(u) = 1√
2π

e−u2/2. In financial language, B, the sensitivity of the option price with

respect to implied volatility changes is called the option ‘vega’. It is an important quantity

for portfolio managers wishing to hedge their volatility risk. The second derivative D is also
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referred to as option ‘volga’. From the put-call parity in (2) it is seen that vega and volga

are identical for calls and puts.

We establish

Theorem 2. Under conditions (A1), (A2), (A3), and (A4) if

E{B2(κt, τ, r, σ)S2
t W (κt)} 6= E{A(κt, τ, r, σ)D(κt, τ, r, σ)StW (κt)}, we have√

nh1nh2n{σ̂(κt, τ)− σ(κt, τ)} L−→ N (0, γ−2ν2),

where

γ2 def
=

[
E{−B2(κt, τ, r, σ)S2

t W (κt) + A(κt, τ, r, σ)D(κt, τ, r, σ)StW (κt)}
]2

f(κt, τ)

ν2 def
= E{A2(κt, τ, r, σ)B2(κt, τ, r, σ)S2

t W
2(κt)}

∫
K2

1(u)K2
2(v) dudv ,

and f(κt, τ) is the joint probability density function of κt and τ respectively.

The proof is again given in the appendix. Finally, the results carry over to put options:

Corollar 1. By the put-call-parity and the bounded pay-off of put options, Theorem (1)

and (2), hold also for put options, with A replaced correspondingly.

The asymptotic distribution intricately depends on first and second order derivatives, and

the particular weight function. Nevertheless an approximation is simple, since first and

second order derivatives have the analytical expressions given in (5) and (6).

3 Applications

3.1 Weighting Functions, Kernels, and Minimization Scheme

In the vain of obtaining a good forecast of asset price variability, the early literature on

implied volatility discusses weighting the observations intensively. Schmalensee and Trippi

(1978) and Whaley (1982) argue in favor of unweighted averages, i.e. they use scalar estimate

σ̂∗ = arg min
σ

n∑
i=1

{(C̃i − C(σ)}2 , (7)

9



as a predictor of the future stock variability. Beckers (1981) minimizes

σ̂∗ = arg min
σ

N∑
i=1

wi{C̃i − C(σ)}2/

N∑
i

wi , (8)

where wi
def
= ∂Ci/∂σ, the option vega. Similarly, Latané and Rendelman (1976) use the

squared vega as weights:

σ̂∗ =

√√√√ N∑
i=1

w2
i σ̂

2/
N∑
i

wi , (9)

Finally, Chiras and Manaster (1978) propose to employ the elasticity with respect to volatil-

ity:

σ̂∗ =
N∑

i=1

ηiσ̂/
N∑
i

ηi , (10)

where ηi
def
= ∂Ci

∂σ
σ
Ci

.

For calls and puts, vega is Gaussian shaped function in the underlying centered (roughly)

ATM, Equation (5). Elasticity is a decreasing (increasing) function in the underlying for calls

(puts). Common concern of the weighting procedures is to give low weight to ITM options,

and highest weight to ATM or OTM options: ITM options are more expensive than ATM and

OTM options because their intrinsic value, i.e. their payoff function evaluated at the current

underlying prices, is already positive. Thus, they provide lower leverage for speculation,

and produce higher costs in portfolio hedging. Due to their lower trading volume, they

are suspected to sell at a liquidity premium which may ensue biased estimates of implied

volatility. Consequently, some authors delete or downweigh ITM options, Aı̈t-Sahalia and

Lo (1998); Skiadopoulos et al. (1999).

Our estimator is general enough to allow for uniformly continuous and bounded weighting

functions W (κ) depending on moneyness. Technically, it is possible to use weights depending

also on other variables including σ as done in (8) to (10). For several reasons, however, we like

to refrain from using more involved weight functions: first, when ITM options are deleted or

downweighted in the more recent literature, this choice is entirely determined by moneyness,

not by vega. From this point of view, to have the weighting scheme depend on σ is rather

implicit. Second, from a statistical point of view, weights depending on σ are likely to

blow up the asymptotic variances in from of derivatives of W . This complicates estimation
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and computation of confidence bands without adding to the problem of recovering a good

estimate of the implied volatility surface. Finally, if one likes weights looking like the option

vega or elasticity with respect to volatility, one may very easily construct weights W (κ) that

look very similar. For instance, an estimator in the type of Latané and Rendelman (1976)

would put W shaped as a Gaussian density.

For the purpose of IVS estimation in our particular application, we like to give less weight

to ITM options. This can be achieved by using as weighting functions

W (κ) =
1

π
arctan

{
α(1− κ)

}
+ 0.5 ,

for calls, and for puts

W (κ) =
1

π
arctan

{
α(κ− 1)

}
+ 0.5 ,

where π = 3.141... is the circle constant. α controls the speed, with which ITM options

receive lower weight. ATM options are equally weighted. Outside κ ≈ 1, only OTM options

enter the minimization at significant weight. In our application we choose α = 9. Other

values are perfectly possible, and this choice is motivated to have a gentle transition between

OTM call and OTM put options. The ultimate choice of α will depend on the specific

application at hand.

The kernel functions employed throughout are quartic kernels, i.e.

K(u) =
15

16
(1− u2)2I(|u| ≤ 1) ,

where I(A) denotes the indicator function of the event A. Other bounded kernels may be

used, such as the Epanechnikov kernel. In practice, choice of the kernel functions has little

impact on the estimates, Härdle (1990). Since the minimization is globally concave (compare

proof of Theorem (1)), and well posed as long as h1 and h2 do not become unreasonably

small, any minimization algorithm for globally concave objective functions can be employed.

We use the Golden section search, Press et al. (1993), which is implemented in XploRe,

www.i-xplore.de. The tolerance, i.e. the fractional precision of the minimum, is maintained

at 10−8.
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Observation Time to min max mean standard total number of

date expiry (days) deviation observations calls

Jan. 02, 2001 17 0.1711 0.3796 0.2450 0.0190 1219 561

45 0.2112 0.2839 0.2425 0.0169 267 134

73 0.1951 0.3190 0.2497 0.0199 391 209

164 0.1777 0.3169 0.2528 0.0229 178 76

Feb. 02, 2001 14 0.1199 0.4615 0.1730 0.0211 1560 813

42 0.1604 0.2858 0.1855 0.0188 715 329

77 0.1628 0.2208 0.1910 0.0172 128 45

133 0.1645 0.2457 0.1954 0.0221 119 63

Table 1: Implied volatility data as obtained by inverting the BS formula separately for each

observation in the sense of two-step estimators.

3.2 Data Description and Estimations

The data used contains tick statistics on the DAX future and DAX index options and is

provided by the German-Swiss Futures Exchange EUREX for January and February 2001.

Both future and option data are contract based data, i.e. each single contract is registered

together with its price, contract size, and time of settlement up to a hundredth second.

Interest rate data in daily frequency, i.e. 1, 3, 6, 12 months EURIBOR rates, is gathered

from Thomson Financial Datastream, and linearly interpolated to approximate the riskless

interest rate for the option specific time to maturity.

For our application, we use data from January 02 and February 02, 2001. In a first step, we

recover the DAX index values. To this end, we group to each option price observation Ct

or Pt the future price Ft of the nearest available future contract, which was traded within

a one minute interval around the observed option. The future price observation was taken

from the most heavily traded future contract on the particular day, which is the March 2001

contract. The no-arbitrage price of the underlying index in a frictionless market without

dividends is given by St = Fte
−rTF ,t(TF−t), where St and Ft denote the index and the future

price respectively, TF the future’s maturity date, and rT,t the interest rate with maturity

T − t.
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Figure 2: Nonparametrically estimated densities of observed moneyness κt = K/(Fte
−rτ ) for

Jan. 02, 2001, and options with 17 days to expiry. Solid line for all observations, thickly

dashed line for puts, and the more thinly dashed line for calls only. Quartic kernel used,

bandwidth chosen according to Silverman’s rule of thumb. Density plots for other expiry

dates including Feb. 02., 2001, available upon request.

In the case of an capital weighted performance index as is the DAX index, Deutsche Börse

(2002), dividends less corporate tax are reinvested into the index. Thus, dividends should

not play any role for option valuation. In practice, however, one still observes – especially

in late spring and early summer during the ‘dividend season’ of DAX index companies –

deviances between put and call implied volatility, when the discounted futures are used as the

underlying asset. For this case, a correction schemed is developed by Hafner and Wallmeier

(2001), also described in Fengler et al. (2003b). In our case, this problem is mitigated by the

fact that we use January and February data. Furthermore in using a weight function that

downweighs ITM options, which are most sensitive to this dividend wedge, this correction

can also be achieved by the weighting function W itself.

In Table (1) we give an overview of the data employed. We prefer to present summary statis-

tics in the form of implied volatility data obtained by inverting the BS formula separately

for each observation rather than the option price data itself. The corresponding option data

13



can be seen in the top panel of Figure (3). Since the data is transaction data containing

potential misprints, we also applied a filter in deleting all observations whose implied volatil-

ity is bigger than 0.7 and less than 0.1. For the distribution of the data across moneyness

compare Figure (2) which presents density plots of moneyness for calls, puts, and all the

observations observed on Jan.02 for 17 days to expiry. Put and call densities appear shifted

which is due to the aforementioned liquidity argument of ATM and OTM options. For sake

of space we do not present the very similar plots for the other expiry dates and Feb. 02,

2001. The settlement price of the March 2001 future was 6340 EUR at a volume of 30 088

contracts on Jan. 02, 2001, and 6669.5 EUR and 34 244 contracts on Feb. 02, 2001.

For our smile fits we pick the shortest time to expiry options of the Jan. 02 and Feb. 02,

2001, data. Plots are displayed in Figures 3 and 4. The top panel shows observed option

prices given on the moneyness scale, while the lower panel demonstrates the estimate. In

Figure 5, fits for the entire IVS are presented.

4 Conclusion

In this paper we present a new estimation approach to fit implied volatility smiles and

surfaces. Usually one inverts first the Black-Scholes formula to back out implied volatility

data and applies the fitting algorithm in a second step. This procedure may yield biased

estimates when option price data is observed with measurement error only. Here, we provide

a one-step estimator of the implied volatility surface. Our estimator is a least squares kernel

estimator which directly smoothes implied volatility in the option price space. Asymptotic

theory for the estimator is provided. We demonstrate the estimator using German DAX

index option data to recover the smile and the implied volatility surface.
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Figure 3: Upper panel: Observed option price data on Jan 02, 2001. From lower left to

upper right put prices, from upper left to lower right call prices. Lower panel: Least squares

kernel smoothed implied volatility smile for 17 days to expiry on Jan 02, 2001. Bandwidth

h1 = 0.025, quartic Kernels employed. Minimization achieved by Golden section search.

Dotted lines are the 95% confidence intervals for σ̂. Single dots are implied volatility data

obtained by inverting the BS formula separately for each observation in the sense of two-step

estimators. 15
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Figure 4: Upper panel: Observed option price data on Feb. 02, 2001. From lower left to

upper right put prices, from upper left to lower right call prices. Lower panel: Least squares

kernel smoothed implied volatility smile for 14 days to expiry on Jan 02, 2001. Bandwidth

h1 = 0.015, quartic Kernels employed. Minimization achieved by Golden section search.

Dotted lines are the 95% confidence intervals for σ̂. Single dots are implied volatility data

obtained by inverting the BS formula separately for each observation in the sense of two-step

estimators. 16
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Figure 5: Left panel: IVS fit for Jan. 02, 2001, with least squares kernel smoother. Band-

widths are h1 = 0.05 in moneyness direction and h2 = 0.10 in time to maturity direction.

Right panel: IVS fit for Feb. 02, 2001, with least squares kernel smoother. Bandwidths are

h1 = 0.03 and h2 = 0.07. In both panels, single dots denote implied volatility data obtained by

inverting the BS formula separately for each observation in the sense of two-step estimators.
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A Proofs

Proof of Theorem (1):

Let

L̂n(σ)
def
=

1

nh1,nh2,n

n∑
i=1

{C̃ti − StiC(κti , τi, ri, σ)}2W (κti)K1

(
κt − κti

h1,n

)
K2

(
τ − τi

h2,n

)
.

As a first step, let us prove

L̂n(σ)
p−→ L(σ)

def
= E

[
{C̃t − StC(κt, τ, r; σ)}2W (κt)

]
. (11)

It is observed that

L̂n(σ) =
1

nh1,nh2,n

n∑
i=1

{
{C̃ti − StiC(κti , τi, ri; σ)}2W (κti)K1

(
κt − κti

h1,n

)
K2

(
τ − τi

h2,n

)
−E

[
{C̃ti − StiC(κti , τi, ri; σ)}2W (κti)K1

(
κt − κti

h1,n

)
K2

(
τ − τi

h2,n

)]}
+

1

h1,nh2,n

E

[
{C̃t1 − St1C(κt1 , τ1, r1; σ)}2W (κt1)K1

(
κt − κt1

h1,n

)
K2

(
τ − τ1

h2,n

)]
def
= αn + βn (12)

Standard arguments can be used to prove

Eα2
n = O((nh1,nh2,n)−1) (13)

by conditions (A1) and (A2).

By Taylor’s expansion, we have

βn =
1

hn,1hn,2

E

∫
{C̃t1 − St1C(x, y, r1; σ)}2W (x)K1

(
κt − x

h1,n

)
K2

(
τ − y

h2,n

)
dx dy

= E

∫
{C̃t − StC(κt − hnu, τ − hnv, r; σ)}2W (κt − hnu)K1(u)K2(v) du dv

p−→ L(σ). (14)

(13) and (14) together prove (11).
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In a second step, we have, recalling the definition of σ(κt, τ)

∂L(σ)

∂σ

∣∣∣
σ=σ(κt,τ)

= −2EC̃tStW (κt)
∂

∂σ
C(κt, τ, r, σ)

∣∣∣
σ=σ(κt,τ)

+2ES2
t C(κt, τ, r, σ(κt, τ))W (κt)

∂

∂σ
C(κt, τ, r, σ)

∣∣∣
σ=σ(κt,τ)

= 0

and

∂2L(σ)

∂σ2

∣∣∣
σ=σ(κt,τ)

= −2EC̃tStW (κt)
∂2

∂σ2
C(κt, τ, r, σ)

∣∣∣
σ=σ(κt,τ)

+2ES2
t W (κt)

(
∂

∂σ
C(κt, τ, r, σ)

∣∣∣
σ=σ(κt,τ)

)2

+2ES2
t W (κt)C(κt, τ, r, σ(κ, τ))

∂2

∂σ2
C(κt, τ, r, σ)

∣∣∣
σ=σ(κ,τ)

= 2ES2
t W (κt)

(
∂

∂σ
C(κt, τ, r, σ)

∣∣∣
σ=σ(κt,τ)

)2

.

This together with (11) proves that L̂n(σ) converges in probability to a concave function

with a unique minimum at σ = σ(κt, τ). Thus σ̂n(κt, τ)
p−→ σ(κt, τ) is proved.

Proof of Theorem (2):

Recalling the definition of σ̂(κt, τ), it follows that σ̂(κt, τ) is the solution of the following

equation

Un(σ)
def
= (nh1nh2n)−1

n∑
i=1

StiAi(κti , τi, ri, σ)Bi(κti , τi, ri, σ)W (κti)K1

(
κt − κti

h1,n

)
K2

(
τ − τi

h2,n

)
= 0 .

By Taylor’s expansion, we get

0 = Un(σ̂(κt, τ)) = Un(σ(κt, τ)) + U ′
n(σ∗)(σ̂t(κt, τ)− σ(κt, τ), (15)

where σ∗ lies between σ and σ̂ and U ′
n(σ∗)

def
= ∂

∂σ
Un(σ)|σ=σ∗ . By (15), we have

σ̂(κt, τ)− σ(κt, τ) = − [U ′
n(σ∗)]

−1
Un(σ) . (16)
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By some algebra, we obtain

U ′
n(σ) =

1

nh1,nh2,n

n∑
i=1

{[( ∂

∂σ
Ai(κti , τi, ri, σ)

)
Bi(κti , τi, ri, σ)

+Ai(κti , τi, ri, σ)
( ∂

∂σ
Bi(κti , τi, ri, σ)

)]
StiW (κti)

×K1

(
κt − κti

hn

)
K2

(
τ − τi

h2n

)
−E
[( ∂

∂σ
Ai(κti , τi, ri, σ)

)
Bi(κti , τi, ri, σ) (17)

+Ai(κti , τi, ri, σ)
∂

∂σ
Bi(κti , τi, ri, σ)

]
StiW (κti)

×K1

(
κt − κti

h1,n

)
K2

(
τ − τi

h2,n

)]}
+

1

nh1nh2n

n∑
i=1

E
{[( ∂

∂σ
Ai(κti , τi, ri, σ)

)
Bi(κti , τi, ri, σ)

+Ai(κti , τi, ri, σ)
∂

∂σ
Bi(κti , τi, ri, σ)

]
StiW (κti)

×K1

(
κt − κti

hn

)
K2

(
τ − τi

h2n

)}
def
= 4n1 +4n2 (18)

Inspect first 4n1 in Equation (18): by some algebra, we get

E42
n1

≤ 1

n2h2
1,nh

2
2,n

n∑
i=1

E
{[

(
∂

∂σ
Ai(κti , τi, ri, σ))Bi(κti , τi, ri, σ)

+Ai(κti , τi, ri, σ)
∂

∂σ
Bi(κti , τi, ri, σ)

]
StiW (κti)

×K1

(
κt − κti

hn

)
K2

(
τ − τi

h2n

)}2

=
f 2(κt, τ)

∫
K2

1(u) du
∫

K2
2(v)dv

nh1,nh2,n

E
{[( ∂

∂σ
A1(κt, τ, r1, σ)B1(κt, τ, r1, σ)

+A1(κt, τ, r1, σ)
∂

∂σ
B1(κt, τ, r, σ)

)2 ]
S2

t W (κt)
}

+ O

(
1

nh1,nh2,n

)
−→ 0. (19)

as nh1,nh2,n →∞. f(κt, τ) denotes the joint probability density functions of κt and τ .
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To consider 4n2 in Equation (18), denote D(κt, τ, r, σ) = ∂
∂σ

B(κt, τ, r, σ), for simplicity.

Note that ∂
∂σ

A(κt, τ, r, σ) = −StB(κt, τ, r, σ). Thus, we have

4n2 =
1

h1nh2n

E
[ ∫ (

−B2(x, y, r, σ) + A(x, y, r, σ)D(x, y, r1, σ)
)
StW (κt)

×K1

(
κt − x

h1,n

)
K2

(
κt − x

h2,n

)
f(x, y) dx dy]

= E

∫
[−B2(κt − h1,nu, τ − h2,nv, r1, σ)St

+A(κt − h1nu, τ − h2,nv, r1, σ)D(κt − h1nu, τ − h2,nv, r1, σ)]StW (κt)

×f1(κt − h1,nu, τ − h2,nv)K1(u)K2(v) du dv

−→
{
− E[B2(κt, τ, r, σ)S2

t W (κt)] + E[A(κ, τ, r1, σ)D(κ, τ, r1, σ)StW (κt)]
}

f(κt, τ)

(20)

(18), (19), (20) and the fact U ′
n(σ∗)− U ′

n(σ) → 0 together prove

U ′
n(σ∗)

p−→
{

E[−B2(κt, τ, r, σ)S2
t W (κt)] + E[A(k, τ, r, σ)D(κ, τ, r, σ)StW (κt)]

}
f(κt, τ) .

(21)

Now, let

uni
def
=

1

h1,nh2,n

A(κti , τi, ri, σ)B(κti , τi, ri, σ)StiW (κti)K1

(
κ− κti

h1,n

)
K2

(
τ − τi

h2.n

)
.

For some δ > 0, we have

E|uni|2+δ =
1

h2+δ
1,n h2+δ

2,n

EA2+δ(κti , τi, ri, σ)B2+δ(κti , τi, ri, σ)S2+δ
ti

W 2+δ(κti)

×K2+δ
1

(
κt − κti

h1,n

)
K2+δ

2

(
τ − τi

h2,n

)
=

1

h1+δ
1,n h1+δ

2,n

E

∫
A2+δ(κt − hnu, τ − hnv, r, σ)B2+δ(κt − hnu, τ − hnu, r, σ)

×S2+δ
t W 2+δ(κt − hnu)K2+δ

1 (u)K2+δ
2 (v) du dv

=
f(κt, τ)

∫
K2+δ

1 (u) du
∫

K2+δ
2 (v) dv

h1+δ
1,n h2+δ

2,n

E
[
A2+δ(κt, τ, σ)B2+δ(κt, τ, σ)S2+δ

t W 2+δ(κt)
]

+O

(
1

h1+δ
1,n h1+δ

2,n

)
. (22)
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Similarly, we get

Eu2
ni =

f(κt, τ)
∫

K2
1(u) du

∫
K2

2(v) dv

h1,nh2,n

E{A2(κt, τ, r, σ)B2(κ, τ, r, σ)S2
t W

2(κt)}

+O

(
1

h1,nh2,n

)
. (23)

(22) and (23) together prove∑n
i=1 E|uni|2+δ

(
∑n

i=1 E|uni|2)
2+δ
2

= O((nh1,nh2,n)−
δ
2 ) = O(1)

as nh1,nh2,n → 0.

Applying the Liapounov central limit theorem, we get√
nh1,nh2,nUn(σ)

L−→ N (0, f(κt, τ) ν2), (24)

where ν2 is defined in Theorem (2).

By (21) and (24), Theorem (2) is proved.
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