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Abstract

We assess the role of measurement error in minimumwage evaluations when the treatment
variable – the bite – is inferred from a survey wage distribution. We conduct Monte Carlo ex-
periments on both simulated and empirical distributions ofmeasurement error derived from
a record linkage of survey wages and administrative data. On the individual-level treatment
e�ects are downwardbiasedbymore than30percent. Aggregationof the treatment informa-
tion at the household, firm or region level does not fully alleviate the bias. In fact, themagni-
tude and direction of the bias depend on the size of the aggregation units and the allocation
of treated individuals to such units. In cases of a strongly segregated allocation, measure-
ment error can cause upward biased treatment e�ects. Besides aggregation, we discuss two
possible remedies: the use of a continuous treatment variable and dropping observations
close to the minimumwage threshold.

Zusammenfassung

Wir analysieren den Einfluss von Messfehlern in Mindestlohnevaluationen, wenn die Treat-
mentvariable, alsoder "Bite", auseinerbefragungsbasiertenLohnverteilungstammt. InMonte-
Carlo-Simulationen überprüfen wir die Verzerrtheit der Schätzer sowohl mit simulierten als
auch empirischen Verteilungen von Messfehlern. Die empirischen Messfehler stammen aus
einem Link von Befragungsdaten und administrativen Daten. Auf der individuellen Beobach-
tungsebenewerdendie Treatmente�ekte über 30Prozent unterschätzt. Eine Aggregationder
Treatmentinformation auf der Ebene von Haushalten, Firmen oder Regionen löst das Pro-
blem nicht vollständig. In Fällen einer sehr stark segregierten Verteilung von betro�enen Be-
schä�igten auf nur wenige Firmen oder Regionen kann es sogar zu einer Überschätzung des
wahren E�ekts kommen. Wir diskutieren zwei Lösungsansätze: Die Verwendung einer kon-
tinuierlichen Treatmentvariable und das Löschen von Observationen, die in der Lohnvertei-
lung nahe der Mindestlohnschwelle liegen.

JEL

C21, C43, J38
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1. Introduction

The collectionof incomedata in surveys is prone tohumanerror. Respondentsmaynot recall
transitory components of their income, confoundmonths, or come up with overly crude ap-
proximations, all in good faith. Due to the sensitivity of the information, respondents might
also report an incorrect value deliberately.

In empirical evaluation studies of nationwide minimum wages, assignment to a treatment
group is determined by the position in the observed wage distribution. Measurement error
in the wage variablemight cause biased estimation of treatment e�ects due tomisclassifica-
tion of persons into treatment and control groups. One recent example is the introduction
of a nationwide minimumwage in Germany: for the evaluation of its causal e�ects, scholars
typically apply a di�erence-in-di�erences identification strategy.1 Consequently, they have
to assign individuals to treatment and control groups. Individuals are assigned to the former
if the wage is below the newminimumwage threshold before the law came into force and to
the latter if the wage already exceeds the forthcoming minimumwage.

In the presence of misclassification into treatment and control groups due to classical mea-
surement error in wages, regression attenuation shrinks the estimated treatment e�ect to-
wards zero. Scholars typically claim to estimate a lower bound of the true e�ect without
elaborating the actual size of the bias. However, the size of this bias is relevant, in particu-
lar when it concerns evaluations of disruptive policy changes such as minimum wages. In
this study, we find that the bias can be quite substantial when we apply both simulated and
empirical distributions of measurement error in survey-based wage data in a di�erence-in-
di�erences minimumwage evaluation.

Scholars typically hope to cancel out the measurement error by aggregating data in policy
evaluations (Bound/Brown/Mathiowetz, 2001).2 However, we are not aware of any study that
analysespotential estimationbiases ofmeasurement errorwhenaggregating treatment vari-
ables to higher-level units. In fact, our results do not confirm the common belief that aggre-
gation fully alleviates attenuation bias. We also observe scenarios in which the bias changes
sign, leading to an overestimation of the actual treatment e�ect.

To analyze the bias induced by measurement error, we present a simulation study that ad-
dresses measurement error in an artificially generated setting of a minimumwage introduc-

1 The results in this paper, however, are not restricted to di�erence-in-di�erences estimation. All results can
be generalized to OLS-based treatment e�ect estimations.
2 Aggregating data is typically not done solely to alleviate attenuation bias. In di�erence-in-di�erences eval-
uations of uniformminimumwages, aggregated data can help to eliminate spillovers, i.e., to address violations
of the SUTVA. However, we are focusing on the consequences of measurement error, ruling out any spillover
e�ects by design.
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tion. This is first and foremost a simulation study that also uses empiricalmeasurement error
distributions in later sections. In comparison toanempirical applicationusingsimulateddata
has some merits. First, it allows to precisely quantify the size of the bias relative to a gener-
ated e�ect size. Second, it yields a range of results, whereas a single application would only
yield a single point estimate with large standard errors, which would have little informative
value. Finally, it is not feasible to analyse measurement error in an application, simply be-
cause there is no data that is free of anymeasurement error in hourly wages. Even in German
administrative data, the collection of gross monthly wages follows a definition that is di�er-
ent from theminimumwage legislation, and evenmore important, the reporting of working
hours to the German Statutory Accident Insurance allows for estimated values and does not
distinguish between contractual and actual hours, both creating a meaningful error in the
respective distribution of hourly wages.

In the simulations, we start by assuming a normally distributed wage distribution and clas-
sical measurement error. We show that the treatment e�ect is biased downwards if we esti-
mate the e�ect of a minimumwage on a generated dependent variable. Moreover, changing
the error structure to include a nonclassical term hardly changes the results. We then im-
plement a series of Monte Carlo experiments to study the bias a�er aggregating the data to
higher-level units (e.g. households, establishments or regions). We use a synthetic alloca-
tion of individuals to such units, accounting for varying degrees of segregation of minimum
wage workers across units and varying unit sizes. In the absence of measurement error in
wages, the resulting grouped data regression yields unbiased estimates of the actual treat-
ment e�ect (Angrist/Pischke, 2008; Prais/Aitchison, 1954). However, in the presence of fuzzy
wage data, the bias depends on the size of the aggregation units and the level of segrega-
tion. Again, including a nonclassical error term has little impact on the bias compared with a
classical term.

Besides the aggregation of data to higher-level units, which entails a loss of e�iciency due to
the loss of observations, wepropose anddiscuss two alternative remedies. First, whenbuild-
ing the regression model, scholars might incorporate a continuous treatment variable indi-
cating treatment intensity instead of a binary treatment assignment. On the individual level,
the results hardly improve,while for aggregateddatawithmoderate individual-level contam-
ination, we recommend an approach using a continuous treatment variable. Second, and
somewhat more radical, we discuss deleting individuals close to the minimumwage thresh-
old before its introduction, as those observations are themost prone tomisclassification. We
find that this strategy is only recommendable if we assume that the dummy variable catches
the actual relationship betweenminimumwage and a dependent variable. When instead the
relationship would necessitate a continuous treatment variable, dropping observation does
not function as a remedy but yields a positive bias.

In the last part of this paper, we exploit the record linkage of survey wage data with German
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administrative data – including both wages and working hours – to quantify the distribution
of measurement error in wages from the di�erence in survey-based wage information and
administrative wage data. Even if the administrative datamay entail measurement error, the
di�erence of both data sources allows us to quantify the distribution of measurement error
from a comparison of two independent data sources. This approach also allows us to better
assess recent evaluation studies of the literature based on our new insights concerning po-
tential biases. Even if the empirical execution is clean by conventional empirical standards,
the results could be biased due to the fuzziness in existing wage data.

With regard to the generalizability of the results, it needs to be stressed that all recent in-
troductions of a nationwide minimum wage in developed (and some developing) countries
are similar compared with the German minimum wage introduction, which we study in this
paper. Most importantly, the coverage of a minimum wage among the working population,
as well as the level of a minimumwage (as a percentage of the median wages) are informed
by similar political considerations across countries. Policy makers want aim for a minimum
wage to be high enough to allow for low-wage workers to make a decent living, but low
enough as to not a�ect middle class and minimize the overall impact on employment. In
1999, the new British National Minimum Wage was 34 percent of the median wage and cov-
ered some8.3 percent of employees (Metcalf, 1999). One year later, Ireland introduced amin-
imumwage at 59 percent of themedianwage that a�ected about 21 percent of theworkforce
(Nolan/O’Neill/Williams, 2002). In 2008, Croatia’s general minimum wage was set at 42 per-
cent of the average wage, covering 9.2 percent of Croatian employees (Nestić/Babić/Blaže-
vić Burić, 2018). Treatment evaluations using survey data from these countries would likely
su�er from structurally similar biases, sine about 13 percent of employees where directly af-
fected by the 2015 minimum wage introduction in Germany, which is 48 percent of the me-
dian wage (German MinimumWage Commission, 2016).3

3 The OECD keeps track of minimum wages (and ratios) of its members starting in 2000:
https://stats.oecd.org/Index.aspx?DataSetCode=MIN2AVE.
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2. Classical measurement error in
survey wages and treatment assignment

In a hypothetical evaluation study, we are interested in estimating the relationship between
an outcome variable y and an independent treatment variable t. In the case of minimum
wage evaluations, t is a treatment indicator, i.e., any personwith awage below theminimum
wage receives the treatment. However, in survey data, there o�en is no direct measure of t.
Instead, we observe a survey measure of gross hourly wages (wi) for each individual i before
the treatment event occurs. For studies using observable survey data, wi is the sum of the
actual gross hourly earnings (xi) and an error term (mi),

wi = xi +mi. (2.1)

In the case of classical measurement error,mi is characterized by zero meanE(m) = 0 and
nonzero variance E(m2) = σ2

m, i.e., the measurement error term has a mean of zero and
is assumed to be independently and identically distributed. Classical measurement error is
easier to handle than other types of error, as there is no correlation between the error term
and the independent variable of actual wages xi. However, classical measurement error is
only a special case of a more general survey measure of wages:

wi = xi︸︷︷︸
actual wage

+mi︸ ︷︷ ︸
classical measurement error

+c︸︷︷︸
nonzero constant

+ρ(xi − µx)︸ ︷︷ ︸
nonclassical term

. (2.2)

In this broad description of additive measurement error, the observed survey measure of
gross monthly wages (wi) is the sum of actual gross monthly earnings xi, the iid error term
mi, possibly a constant nonzero average measurement error c and an additional term ac-
counting for dependence between the error term and actual earnings (ρ(xi−µx)). The latter
can account for mean reversion, i.e., above average earners understating survey wages and
below average earners overestimating survey wages. This e�ect would result in a negative
correlation ρ, i.e., xi − µx andwi are negatively correlated conditional on xi.

Consider the assumptions for xi andmi in the motivating example in the next section while
excluding the presence of nonclassical measurement error components. In the first simu-
lation, both variables are independently, identically and normally distributed random vari-
ables with FX ∼ N(µx, σ2

x) and FM ∼ N(0, σ2
m). These characteristics implies that the

IAB-Discussion Paper 11|2020 10



measurement error in the survey wage variable is classical, i.e., measurement errormi and
monthly wage wi are uncorrelated. Considering the properties of iid random variables, the
observed wage is also iid normally distributed with FW ∼ N(µx, σ2

x + σ2
m). Thus, in an ad-

ditive model with classical measurement error, the observed wage distribution exhibits the
samemean and an increased variance.

In anevaluation study, the treatment statusof aperson timightbedeterminedbya threshold
such as an individual’s wage being below the minimumwage before its introduction. In this
setting, the measurement error in the wage variable blurs the assignment of individuals to
treatment and control groups. The case distinction

ti =
{

0 if xi ≥ wmin

1 if xi < wmin
(2.3)

determines the treatment status of each individual at a point in time ahead of the treatment
event. However, xi cannot be observed, and the contamination of wi due to measurement
error invariably translates to contamination of the treatment indicator ti. Minimum wages
are a special case in this setting because only a small fraction of the working population is
typically a�ected by its introduction (i.e., we assume thatwmin < µx).

Figure 1.: Stylized wage distribution with measurement error.
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As illustrated in Figure 1, the measurement error-induced decompression of the wage distri-
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bution causes the observed number of persons below wmin to be higher than that without
measurement error. While persons might be falsely attributed to the treatment and control
groups in both directions, more individuals are expected to be false positives. This result fol-
lows from the cumulative density functions of the observed and actual wages. The expected
actual fraction of treated workers (πx) corresponds to the value for wmin of the cumulative
distribution function for the actual earnings distribution:

πx := Fx(wmin) =
∫ wmin

0

1
σx
√

2π
e−(x−µx)2/2σ2

dx. (2.4)

The measurement error-induced classification bias is then defined as

biasπ := FW (wmin)− FX(wmin). (2.5)

The variance of the treatment variable V ar(t), which is a relevant statistic in OLS-based re-
gression analyses, is a function of the fraction of individualswho receive the treatment. Since
t is a binary variable, the variance isV ar(t) = πx(1−πx). As positive bias is expected as long
as wmin is smaller than µx, the contaminated variance of the treatment variable leads to in-
creased variance (Figure 2). Under these conditions, as demonstrated in the next subsection,
the measurement error in individual earnings causes the treatment e�ect β̂m to be biased
downwards.

Figure 2.: The variance of the treatment variable is a function of the fraction of the population re-
ceiving treatment.
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3. Consequences of treatment
misclassification in person-level
di�erence-in-di�erences estimation

Let us assume scholars are interested in estimating the e�ect of a uniform minimum wage
introduction, such as the 2014-2015 German minimum wage introduction, from individual
survey data. In this case, one might be interested in the e�ect of the treatment (t = 1) on an
unspecified outcome variable y and might apply a di�erence-in-di�erences model with two
waves of panel data4 (before and a�er treatment, indexed by subscript t):

yit = α + ti ∗ β + postt ∗ γ + postt ∗ ti ∗ δ + εit, (3.1)

where yit is the outcome variable such as pay satisfaction, wages or employment. α is a con-
stant, β captures the time-constant group e�ect of the treated individuals, γ captures a com-
mon time e�ect, and the treatment e�ect interaction of the treatment group and treatment
time δ captures the treatment e�ect on the treated individuals.

An advantage of the simple two-wave di�erence-in-di�erences model is its simplification by
taking first di�erences in equation 3.1:

∆yi = γ + ti ∗ δ + ∆εi. (3.2)

The di�erence-in-di�erences specification in terms of first di�erences explains the change in
the outcome between two survey waves ∆yi. The constant and time-constant group e�ect
of specification 3.1 are canceled out by the first di�erence, as these are time-constant terms.
The time e�ect (γ) then becomes the new constant, and the treatment e�ect δ is the coef-
ficient of the treatment dummy. In the absence of measurement error, equation 3.2 can be
estimated via OLS to obtain a consistent estimate of the true treatment e�ect.

For the sake of simplicity,∆εi is set to follow a standard normal distribution, and the e�ects

4 Since the treatment indicator is typically defined at a specific point in time before the minimum wage re-
form, it is not influenced by the number of data waves for which the dependent variable is tracked. Hence, the
simulation results remain unchanged andwe can proceedwith the simple case of only one wave of data before
and one wave a�er the treatment.
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sizes are fixed at γ = 0 and δ = 1, i.e., the introduction of a minimum wage causes the
dependent variable (e.g., pay satisfaction) to increase by 1 if t = 1. Thereby, we assume
that the true treatment e�ect is homogeneous anduncorrelatedwith themeasurement error
m.

When we introduce measurement error, ti is misclassified. In fact, the number of individuals
classified as treated increases as the variance of the error term (σ2

m) increases. An increasing
fraction of individuals assigned to the treatment group implies an increasing variance of the
treatment indicator (see Figure 2), which is the denominator of the OLS estimator:

β̂ = Cov(∆yi, ti)
V ar(ti)

>
Cov(∆yi, tME

i )
V ar(tME

i ) = β̂ME . (3.3)

Compared with that of the baseline, in which ti is assigned without measurement error, in
the presence of measurement error, the variance V ar(tME

i ) increases while the covariance
Cov(∆yi, tME

i ) decreases. Hence, the overall e�ect of measurement error on the treatment
e�ect is a bias towards zero.

We test this conjecture in the first Monte Carlo experiment. Figure 3 depicts the median esti-
mated treatment e�ects, the variance of the treatment variable and the covariance between
the treatment andoutcomevariable for iid normally distributedwagesFx ∼ N(15, 5) and er-
ror termswith increasing standard deviation σ2

m. WithFm ∼ N(0, 2.5), the expected fraction
ofworkers subject to the treatment is 19.3percent, up from 9.7percent in the baseline (corre-
sponding to a treatment assignment bias of 9.6 percentage points), increasing the respective
variance of the treatment variable t from roughly 0.09 to 0.16.

Figure 3 demonstrates that the treatment e�ect decreases (solid line) as the variance of the
measurement error σm increases, mostly due to the increasing variance V ar(tME

i ) depicted
by the dark dashed line and the decreasing covariance Cov(∆yi, ti) depicted by the light
dashed line. This bias holds in various robustness checks of the simulation using a log nor-
mal wage distribution, an empirical wage distribution from administrative data (see section
7), di�erent sample sizes, anddi�erent baseline values for γ and δ. Hence,we conclude that a
fuzzy treatment assignment due tomeasurement error in wages – fromwhich the threshold-
dependent treatment status is inferred – leads to a bias towards zero.

Adding a nonclassical error term on the individual level

We repeat the simulation presented in Figure 3 and introduce an additional error term to the
measurement of the individual survey wage data. The additional error term is a nonclassical
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Figure 3.: Estimated treatment e�ect from individual data with increasing measurement error.

0
.0

5
.1

.1
5

.2
.2

5
Va

r o
f t

re
at

m
en

t; 
C

ov
 o

f t
re

at
m

en
t a

nd
 y

-.5
0

.5
1

1.
5

2
2.

5
Es

t. 
tre

at
m

en
t e

ffe
ct

0 5 10 15
SD of measurement error

Est. treatment effect Var. of treatment
Cov. of treatment and y

individual data; 1000 replications; 10000 observations; classical ME

Note: Estimated treatment e�ect from individual data with increasing variance of the classical measurement
error on the x-axis. Right axis: The variance of the contaminated treatment e�ect increases with increasing σm
(standard deviation of the error term); the covariance between the treatment andunspecified outcome variable
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Fm ∼ N(0, σ2

m) decreases with increasing σm.
Source: own calculations and illustrations.

term (see Eq. 2.2) that accounts for possible correlation between gross wages and the error
terms. While a negative correlation would have mean-reverting e�ect, a positive correlation
would increase the totalmeasurement error. Weusedi�erent correlations ρ rangingbetween
-0.3 and +0.3 and repeat the Monte Carlo experiment with an additional classical error term
that is distributed Fm ∼ N(0, σ2

m), where σ2
m ranges between zero and five.

Figure 4 depictsmedian estimated treatment e�ects a�er 1000 repetitions of the simulation,
where the level of ρ is on the x-axis. Considering a correlation of ρ as high as±0.2 would be
extremely unusual, it is safe to say that the properties of the classical error terms are amuch
greater threat to the reliable estimation of treatment e�ects than a nonclassical term. We
find that a nonclassical error structure would somewhat increase the bias of the estimation,
if ρ is profoundly negative and σm is large. However, the overall estimation bias is driven
by the standard deviation σm of the classical error distribution, with ρ serving to only slightly
increase or decrease the bias. In summary, in an individual-level treatment e�ect estimation,
a nonclassical error structure poses a considerably smaller threat to unbiasedness than does
the variance of the error term distribution.

IAB-Discussion Paper 11|2020 15



Figure 4.: Variance and covariance of the estimation variables.
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4. Assessing the e�ect of data
aggregation to higher-level units

In this section, we analyze whether the treatment e�ect dilution bias is alleviated through
data aggregation to higher-level units. In applied research, such higher-level units could be
households, establishments, or regions. When using aggregated data (or grouped data), one
might hope that the measurement error is canceled out by averaging over the within-group
measurement error. We first discuss that data aggregation requires a definition of the unit
sizes and a rule for allocating individual observations to units, and we estimate how the bias
evolves with di�erent unit sizes and levels of segregation in the allocation rule (Section 4.1).
In a second step, we use realistic unit size distributions and allocation rules to simulate the
treatment e�ect for realistic cases of data aggregation. In Section 4.2 we scrutinize these
results using joint distributions of unit sizes and segregation from empirical data.

4.1. Conceptual treatment e�ect bias of aggregation

The aggregation of data to higher-level units is highly prevalent in the literature and is based
on the identificationgoal of limiting thepotential for spilloverswithin theseunits (Card, 1992;
Caliendo et al., 2018). In the absence of such spillovers, i.e., without correlation within units,
aggregated regression yields an unbiased estimate for the disaggregated model of interest.
Hence, population-weighted estimation of equation 4.1 yields unbiased estimates of γ and
δ, as do equations 3.1 and 3.2.

∆yu = γ + tu ∗ δ + εu, (4.1)

where u is the unit subscript that determines the level of aggregation. ∆yu is the average
change in y among observations in unit u, and tu is the fraction (average) of treated individ-
uals in unit u.

However, it is not a priori clear how individuals are allocated to higher-level units; hence, we
use di�erent rules of allocation with varying extents of sorting of low-wage individuals into
low-wageunits. In reality, workers arenot randomly allocated tohouseholds, establishments
and regions. In fact, the literature documents an increasing segregation of low-wageworkers
to low-wage plants for Germany over the past two decades (Card/Heining/Kline, 2013).
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For di�erent degrees of segregation, we test how sorting a�ects potential biases in the mea-
surement error in aggregated treatment e�ect estimations. Assuming no segregation, for in-
stance, implies that workers are randomly allocated to units (e.g. firms), i.e., on average, the
units themselves are similarly a�ected by a treatment such as the minimum wage introduc-
tion, as di�erences between units are random. This characteristic implies that the fraction of
a�ected employees tu across units is roughly the same. However, if we assume complete seg-
regation, some firms employ solely workers who are a�ected by the treatment, while other
firms – which constitute the majority, since wmin is smaller than µx – do not employ any af-
fected workers. A�er aggregation at the establishment level the treatment variable is a func-
tion of both segregation andmeasurement error.

To measure segregation, we use the normalized Herfindahl-Hirschman Index (HHI):

HHI = 1
U

U∑
u=1

t2u
tu
, (4.2)

where U is the total number of u units of aggregation and tu is the fraction of treated individ-
uals in u. We prefer the HHI over an index of dissimilarity, as it is multiplicative and hence
linear in the variance and covariance, which is beneficial in terms of the components of the
OLS estimator.

Figure 5 illustrates the aggregated treatment variable densities before adding measurement
error to the wages for di�erent level of segregation, asmeasured by the normalized HHI. Fig-
ure 5 demonstrates that the levels of segregation largely determine the variance of the ag-
gregated treatment variable. In fully segregated markets, the aggregated treatment variable
takesonly thevalues tu = 1or tu = 0,maximizing thevarianceV ar(tu). By contrast,when in-
dividuals are randomly allocated across establishments, the treatment variable of establish-
ments is distributedaroundµt, resulting in a very lowvarianceV ar(tu). A�er adding classical
measurement error to the underlying individual wage data, the aggregated variances change
indi�erentways: the varianceof the aggregated treatment variable is likely todecrease in the
fully segregated scenario (as it was already at its maximum in the absence of measurement
error) but in the case of random allocation, the variance of the aggregated treatment vari-
able is unlikely to change substantially. Hence, the illustration of the aggregated unit-level
treatment variables indicate di�erent e�ects of measurement error for di�erent magnitudes
of segregation.

Toassess the treatmente�ectbias,weagain conduct a seriesofMonteCarloexperiments. We
estimate the aggregated treatment e�ect model as specified in equation 4.1. The individual
data are as before; hence, the aggregated (baseline) grouped data regression without mea-
surement error yields unbiased estimates of γ = 0 and δ = 1 (Angrist/Pischke, 2008; Prais/
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Figure 5.: Densities of aggregated treatment variables with 50 workers per unit.
Random allocation (le� panel) and highly segregated allocation (right panel)).
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Note: Densities of aggregated treatment variables, where the level of aggregation is 50 workers per unit.
Since the original data included 10,000 workers, the aggregated data include 200 units. The aggregation
uses di�erent aggregation rules w.r.t. segregation. The level of segregation is calculated from the normalized
Herfindahl-Hirschman Index (HHI).
Source: own calculations and illustrations.

Aitchison, 1954). To illustrate howmeasurement error a�ects these estimates, we conduct a
simulation and inflict classical measurement errormti on the individual wage data, which is
distributed Fm ∼ N(0, 2.5). To demonstrate how di�erent aggregation rules a�ect the aver-
age treatment e�ect bias, Table 1 displays the di�erence between themedian estimates and
actual treatment e�ect (δ̂w=x+m − δ̂w=x) for di�erent levels of segregation measured by the
normalized HHI. We repeat the simulation for di�erent unit sizes, but for simplicity, we hold
the size of the units constant within each of these simulations.5

The results in Table 1 demonstrate a strong downward bias when the level of aggregation is
small, i.e., when the observed number of employees per firm or region is small. Moreover,
the bias tends to be negative when the level of segregation is low, i.e., when the allocation
of low-wage workers to higher-level units is random. Most remarkably, we observe strong
positive biases for highly segregated markets (indicated by high HHIs), especially when the
aggregation unit size is large.

These patterns of treatment e�ect biases can be explained by separate simulations of the
variance and the covariance, which both determine the treatment e�ect of the linear regres-
sion, as specified in equation 4.1, i.e., δ̂ = Cov(∆yu,tu)

V ar(tu) . Figure 13 displays separate estimates
of the variances (V ar(tu)) as solid lines and estimates of the covariances (Cov(∆yu, tu)) as
dashed lines for varying levels of segregation and for four di�erent unit sizes. The blue lines

5 Holding the sizeof theunits constantwithin each regressionavoids theneed to conductweighted regression
because each unit u is given the same weight.
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Table 1.: Simulation results for aggregated data for di�erent unit sizes and levels of segregation.
Employees per unit

5 10 50
Concentration (HHI) Bias p95-p5 Bias p95-p5 Bias p95-p5
random allocation, which -0.42 0.34 -0.44 0.44 -0.41 1.07
yields di�erent HHIs
0.2 n/a n/a -0.37 0.45 0.14 0.60
0.4 -0.23 0.31 -0.01 0.34 0.29 0.40
0.6 -0.07 0.26 0.12 0.28 0.34 0.32
0.8 0.03 0.23 0.19 0.24 0.37 0.29
0.95 0.08 0.21 0.23 0.25 0.37 0.25

Employees per unit
100 200 500

Concentration (HHI) Bias p95-p5 Bias p95-p5 Bias p95-p5
random allocation, which -0.39 1.50 -0.40 1.87 -0.34 3.23
yields di�erent HHIs
0.2 0.28 0.67 0.33 0.70 0.36 0.72
0.4 0.35 0.41 0.38 0.46 0.40 0.54
0.6 0.38 0.34 0.39 0.34 0.40 0.46
0.8 0.39 0.30 0.40 0.30 0.40 0.45
0.95 0.39 0.25 0.40 0.27 0.40 1.45

Notes: This table shows the bias of the median treatment estimates, i.e., the absolute di�erence between the
estimated treatment e�ect and the predefined treatment e�ect (= 1). The bias is displayed for di�erent levels
of segregation and for varying firm sizes. Segregation is measured by the HHI concentration index, which is the
normalizedHerfindahl-Hirschman Index. Smaller valuesofHHI translate to less segregation. p95-p5 is the range
between the 5th and 95th percentile of the estimated treatment e�ects.
[a] Random allocation yields an HHI=0.28 for 5 employees per unit, HHI=0.18 for 10 employees, HHI=0.12 for 50
employees, HHI=0.11 for 100 employees, HHI=0.1 for 200 employees, and HHI=0.1 for 500 employees.
[b] In very small units with as few as 5 employees, an allocation that yields an HHI=0.2 is infeasible.
Source: own calculations.

depict the respective baseline without measurement error, and the red lines include mea-
surement error, as in Table 1, i.e., Fm ∼ N(0, 2.5).

In the absence of measurement error in individual wages (blue lines), the estimates of the
variance and the covariance are equivalent for di�erent levels of segregation and across unit
sizes of aggregation, leading to an unbiased estimator of the true treatment e�ect, which is
uniform by design. Hence, segregation and levels of aggregation do not matter in an ideal
world without measurement error. In the presence of measurement error, the estimated co-
variances and variances di�er from those of an ideal world. The covariance is estimated to
be smaller than the unbiased variance, independently of the unit size of aggregation. The
estimated variance is even smaller than the covariance when the unit size is large, leading to
an upward bias in the treatment e�ect. However, the estimated variance is larger than the
covariance when the unit size is small, leading to a downward bias in the OLS estimate. The
relatively larger variance at small unit sizes is most likely due to a corner solution problem:
the variance can change only slowly in the presence of measurement error simply because
the aggregated treatment variable tu can be characterized by very few distinct fractions of
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Figure 6.: Estimated variances and covariances from Monte Carlo experiments for four di�erent
unit sizes of aggregation.

0
.0

2
.0

4
.0

6
.0

8
.1

E
st

im
at

ed
 v

ar
ia

nc
e 

an
d 

co
va

ria
nc

e

0 .2 .4 .6 .8 1
Segregation (HHI)

Var with ME: 2 employees Cov with ME: 2 employees
Var w/o ME: 2 employees Cov w/o ME: 2 employees

500 replications; classical ME
Variance and Covariance in aggregates of 2 employees per unit

0
.0

2
.0

4
.0

6
.0

8
.1

E
st

im
at

ed
 v

ar
ia

nc
e 

an
d 

co
va

ria
nc

e

0 .2 .4 .6 .8 1
Segregation (HHI)

Var with ME: 5 employees Cov with ME: 5 employees
Var w/o ME: 5 employees Cov w/o ME: 5 employees

500 replications; classical ME
Variance and Covariance in aggregates of 5 employees per unit

0
.0

2
.0

4
.0

6
.0

8
.1

E
st

im
at

ed
 v

ar
ia

nc
e 

an
d 

co
va

ria
nc

e

0 .2 .4 .6 .8 1
Segregation (HHI)

Var with ME: 10 employees Cov with ME: 10 employees
Var w/o ME: 10 employees Cov w/o ME: 10 employees

500 replications; classical ME
Variance and Covariance in aggregates of 10 employees per unit

0
.0

2
.0

4
.0

6
.0

8
.1

E
st

im
at

ed
 v

ar
ia

nc
e 

an
d 

co
va

ria
nc

e

0 .2 .4 .6 .8 1
Segregation (HHI)

Var with ME: 500 employees Cov with ME: 500 employees
Var w/o ME: 500 employees Cov w/o ME: 500 employees

500 replications; classical ME
Variance and Covariance in aggregates of 500 employees per unit

Note: Estimated variances and covariances from Monte Carlo experiments for four di�erent unit sizes of
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Source: own calculations and illustrations.

treated individuals when the aggregation units are small. By contrast, the variance V ar(tu)
responds more quickly to measurement error when unit sizes are large.

4.2. Aggregation to observed unit size distributions

Sincewe observe very heterogeneous biases in the aggregated regressionwhen there ismis-
classification in the underlying wage data, we want to elaborate how such measurement
error-induced biases would a�ect evaluation studies that use empirically relevant levels of
data aggregation. In our artificially constructed data, the size and the direction of the bias
heavilydependon thesizeof thehigher-level aggregationunitsand thesegregationof treated
workers across those units. To transfer the results to actual empirical circumstances, we first
infer realistic size distributions for households, establishments and regions from observable
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data. These unit size distributions allow us to draw conclusions about the treatment e�ect
bias in more realistic scenarios.

The first scenario is aggregation at the household level, for which we can retrieve a realistic
size distribution from the German panel study LabourMarket and Social Security (PASS). The
second scenario is aggregation at the establishment level, for which we retrieve a realistic
firm size distribution from theGerman Establishment History Panel (BHP). The third scenario
is aggregation at the region level. For this last scenario, we assign the underlying individual
data to regions based on the region size in the BHP.6

Figure 7.: Estimated treatment e�ect bias for the scenarios summarized in Table 4.
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Source: own calculations and illustrations.

Given these unit size distributions, we assess the treatment e�ect bias of the measurement
error in the underlyingwage distribution from theMonte Carlo experiments. The simulations
are designed as in Table 1 to allow for di�erent levels of segregation of treated individuals
across units. The results are displayed in Figure 7. When considering the aggregated treat-
ment e�ects at the household level, the di�erence-in-di�erences estimation yields a down-
ward bias in the treatment e�ect irrespective of the level of segregation. However, with high
levels of segregation across households, this bias decreases slightly.7 Given households are

6 A detailed description of how we draw the unit size distributions from the observable data sources is pro-
vided in Appendix A.
7 Note that the HHI, a measure of segregation, does not take values below 0.89 even though the respective
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increasingly segregated due tomarital sorting (Pestel, 2017), the bias frommeasurement er-
ror is slightly reduced over time.

In the establishment-level analysis, the treatment e�ects are underestimated if individuals
are randomly allocated across establishments, but we observe overestimation if the labor
market is highly segregated across firms. In the region-level analysis, the treatment e�ect
bias is positive for all levels except unrealistically low levels of segregation. Since regions
are typically much less segregated than households or establishments, in practice, the bias
is possibly small. However, the treatment e�ect bias also shows large confidence bands in
cases of low segregation, demonstrating a higher degree of uncertainty when using large ag-
gregation units.

As in Section 3, we repeat the simulations presented in Figure 7 and introduce an additional
nonclassical error termto themeasurementof the individual surveywagedata, allowingus to
account for correlation between gross wages and the error term. To illustrate the additional
e�ect of introducing a nonclassical error term determined by correlation ρ, we repeat the
Monte Carlo experiment with a normally distributed error term with standard deviations of
the classical term in Fm ∼ N(0, σ2

m = 2.5) and add the nonclassical term ρ(xi − µx) for
various ρ before aggregating to household, firm, and region unit sizes. As before, the x-axis
shows possible values of segregation for observed unit size distributions (see Table 4).

Figure 8 depicts the median estimated treatment e�ects a�er 500 repetitions of the simula-
tion for di�erent values of ρ and varying levels of segregation among units. For high levels
of segregation within households, the simulation without the nonclassical error term shows
that the treatment e�ect bias a�er aggregation is similar to that for individual-level data. Ac-
cordingly, adding a nonclassical error term slightly increases (decreases) the median bias in
the simulation if ρ is negative (positive). However, as ρ is typically small, the overall bias is
driven by σm.

On the firm level, with much larger unit sizes, the e�ect of adding a nonclassical error term
to the survey wages has aminimal e�ect for medium levels of segregation. For very high and
very low levels of segregation, the bias decreases for unusually high values of ρ. Again, the
real issueswhenestimating treatment e�ectswith firm-level aggregationare segregationand
the distribution of error terms, rather than a nonclassical error structure.

At the regional level, the impact of correlation between surveywages and error terms is small
for small levels of segregation. In Table 4, using PASS data, we calculated a realistic value of
0.40 for segregation into regions of Germany. As before, a large negative ρ would slightly in-

allocation of individuals is designed to be random. This is because the potential for an egalitarian distribution
of treated workers across households is limited since households are small, on average, andmany households
have only one individual in the workforce.
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Figure 8.: Estimated treatment e�ect bias for various scenarios.
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Note: Estimated treatment e�ect bias for the scenarios summarized in Table 4 with nonclassical error term ρ

(Eq. 2.2).
Source: own calculations and illustrations.

crease thebias,whereasapositiveρwoulddecrease thebias. Overall, and inaccordancewith
individual-level surveydata, a�erdata aggregation, the e�ect of anonclassicalmeasurement
error in the underlying wage data remains small compared to the impact of segregation.
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5. Using a continuous treatment
variable instead of a dummy

Until this section, we implicitly assumed that an increase in wages due to a reform yields a
homogeneous increase (or decrease) of a dependent variable. For instance, every person af-
fectedbyanewly introducedminimumwageexperiences an increase in their pay satisfaction
by a fixed amount. This is an implicit assumption concerning the data generating process,
which results from including a treatment dummy instead of a continuous treatment indica-
tor in the regression model. In most recent applications, researchers have chosen similar
models (i.e. Bossler/Broszeit, 2017; Caliendo et al., 2019), thereby neglecting the possibility
that individualsmight be a�ected heterogeneously depending on the treatment intensity.

If the e�ect of a treatment is assumed to be dependent on the treatment intensity, we must
rewrite themodel to account for a continuous treatment variable. We choose a simplemodel
inwhichwe incorporate the fraction of thewage that can be explained by a treatment. In this
case, the treatment variable is given by

tcontinuousi =
{

0 if xi ≥ wmin
wmin−xi

wmin
if xi < wmin

The data generating process follows from the continuous treatment variable. In our model,
the change in the dependent variable is equal to the treatment intensity

∆yi = tcontinuousi + ∆εi.

Figure 9 shows the known treatment dummy specification (Dummy) and the alternative con-
tinuous treatment variable specification (Continuous) for individual wage data. The use of a
continuous indicator instead of a dummy for the individual-levelmodel appears to be advan-
tageous formoderately contaminateddata (SDof theerror terms less than2 for the simulated
wagedata). Formoreextensive contamination, it is preferable toassumeauniformtreatment
e�ect and resort to a dummy variable in the model specification (if feasible).

Figure 9 includes another specification, accounting for the possibility that the assumed data
generating process and the actual process are di�erent. In this second case, we assume a
uniform e�ect (Assumed dummy), while the e�ect in the data generating process actually
di�ers by intensity. We scale the results tomatch the treatment e�ect of one, aswewould not
be able to compare the results directly otherwise. Interestingly, the patterns of bias appear
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Figure 9.: The variance of the contaminated treatment e�ect increases with increasing σm.
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to be similar for all specifications.

Overall, on the individual level, the expected improvements are limited when using a con-
tinuous treatment variable. While the bias is slightly reduced for low to moderate contami-
nation, the dummy variable estimator is under real-world conditions more e�icient than the
continuous variable estimator.

In Figure 10, we show the results of a simulation in which we use a continuous treatment
variable with aggregated data. As before, we aggregate at the household, firm and region
levels with varying levels of segregation of minimum wage workers into higher-level units.
A�er aggregating, the size of the bias depends on the error term distribution only and not on
the level of segregation. Consequently, a positive bias induced by high segregation within
higher-level units is not within the realm of possibility in the specification with a continuous
treatment variable.

The specifications yield di�erent outcomes because the variances of the two treatment vari-
ables tu and tcontinuousu are a�ected di�erently. For a treatment dummy, the OLS estimator
a�er aggregation is given by β̂ = Cov(∆yi,t

ME
i )

V ar(tME
i ) , with tME

i being the fraction of treated in-
dividuals within unit i (e.g., the fraction of treated personnel in an establishment). Adding
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Figure 10.: Using a continuous treatment variable.
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Note: Estimated treatment e�ect bias for the scenarios summarized in Table 4 using the continuous treatment
variable instead of the dummy treatment.
Source: own calculations and illustrations.

measurement error to individuals in highly segregated units makes those units more homo-
geneous as the fraction of treated individuals decreases in firms with very high treatment
quotas and for firms with no or low treatment quotas, i.e., V ar(tME

i ) decreases, while β̂ in-
creases.

For a continuous treatment variable, the OLS estimator a�er aggregation is defined similarly
as β̂ = Cov(∆yi,t

ME,continuous
i )

V ar(tME,continuous
i )

. For a continuous treatment variable, the indicator tME,continuous
i

is not a fractionbut rather theaverage treatment intensitywithinaunit i. In this case, changes
to V ar(tME,continuous

i ) induced by measurement error and its homogenization are mostly
negligible, no matter the level of segregation.

Overall and independently of segregation, for aggregated data with moderate individual-
level contamination, we recommend an approach using a continuous treatment variable, if
this assumption is justifiable with respect to the underlying data generating process. How-
ever, as with individual-level data, aggregating at the region level might not be viable due to
the loss of e�iciency.
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In Appendix B we briefly discuss aggregation to higher-level units with a treatment dummy
specification, when the data-generating process would necessitate a continuous treatment
variable specification (see Figure 14).
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6. Dropping observations around the
minimumwage threshold

In this section, we simulate the treatment e�ects using a very simple approach to address the
measurement error, which is to dropobservations around theminimumwage threshold. The
intuition of this approach is to drop the observations that are most likely misclassified due
to themeasurement error in wages (Caliendo et al., 2019). Deleting observations around the
thresholdmay therefore reduce bias butmay possibly decrease the e�iciency, as the number
of observations decreases.

In our simulation, we delete a window of EUR 0 to EUR 6 around the minimumwage thresh-
old and repeat the treatment assignment and treatment e�ect estimation. If ae6-window is
deleted, all individuals with an initial wage between EUR 5.50 and EUR 11.50 are dropped. As
the first step, we repeat the individual-level estimation and present the results in Figure 11.
Di�erent sizes of measurement error are depicted by di�erent lines, and the size of the Euro-
window of deleted observations is displayed on the x-axis. The three graphs illustrate the
three possibilities for defining the treatment variable alongwith the data generating process,
as in previous Section 5: treatment dummy, continuous treatment variable and assumed
dummy (i.e., we assume a dummy su�ices, while the e�ect actually depends on the inten-
sity).

In the case of the dummy treatment, the simulations show an unbiased treatment e�ect
in the absence of measurement error, which does not change when individuals around the
threshold are dropped. With increasing variance of the classical measurement error, the ini-
tial bias increases, as demonstrated by the treatment e�ect (at zero on the x-axis when no
observations are deleted). When we drop individuals around the minimum wage threshold,
the bias decreases as the number of dropped individuals increases. Dropping observations
does not help to reduce the bias if the measurement error is very pronounced.

In the second case of a continuous treatment variable and a continuous data generating pro-
cess, the bias increases with the size of themeasurement error. However, dropping observa-
tions around the threshold does not help to reduce this bias. The intuition of this result is as
follows: individuals further from the threshold still remain in the sample and have the same
size of measurement error in the treatment variable as before. Hence, the bias remains the
same size.

In the third case of an assumed dummy treatment, the bias increases as the variance of the
measurement error increases. When observations around the threshold are dropped, the
treatment e�ects scale up because the group that is defined as treated comprises an increas-
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Figure 11.: Dropping observations with individual level data.
Dummy treatment (top right, continuous treatment (top le�), and assumed dummy (bottom).
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Note: Estimated individual-level treatment e�ect when individuals whose wages are near the threshold are
dropped. The size of the Euro-window is indicated by the x-axis. Di�erent lines illustrate various sizes of
classical measurement error.
Source: own calculations and illustrations.

ing number of more intensely treated individuals who show a relatively stronger treatment
e�ect. Hence, the changing composition of the treatment group scales-up the coe�icient
rather than providing a solution for the misclassification.

Note that in all three cases, the variances of the estimates barely increase, as the loss of e�i-
ciency is only minor. However, dropping observations may be considered to be a somewhat
drastic solution in the first case, in which the data generating process and the treatment ef-
fect are assumed to be homogeneous across individuals as captured by the dummy variable.
This finding also translates to the treatment e�ect estimation with aggregated data. Hence,
we repeat the simulation for aggregated data for only this particular case using a dummy
variable specification.

Figure 12 shows the estimation results when individuals around the threshold are dropped
(as depicted by the di�erent lines), and the estimation is then performed using aggregated
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Figure 12.: Dropping observations with aggregated data.
Regional level (top le�), firm level (top right), and household level (bottom).
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Source: own calculations and illustrations.

data. Irrespective of the unit of aggregation, indicated by the three graphs, and the level of
segregation of individuals across aggregation units, the bias generally decreases when the
most contaminated observations are dropped.

Nevertheless,weurge researchers tobecarefulwhendroppingobservationsaround the thresh-
old. First, dropping observations is a solution onlywhen there is a level shi� at the threshold,
i.e.. a homogeneous treatment e�ect. Second, in practice, dropping observations increases
the potential of diverging trends in the di�erence-in-di�erences analysis because it yields a
comparison of more dissimilar treatment and control groups by excluding observations at
the point of intersection. Third, the individuals should be dropped when calculating the bite
but alsowhen running the estimation. In regressions applied to aggregateddata, in principle,
it is possible to calculate the bite from a sample that drops individuals around the threshold
while including these individuals in the estimation. Nevertheless, such an approach can re-
sult in additional biases since the bite variable does not match the groups of comparison
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included in the regression.
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7. Empirical distribution of wages and
error terms: Validating survey data using
administrative data

We continue our analysis by exploiting empirical distributions of wages and error terms from
observable data sources. We use survey data from the PASS data that have been linked with
German administrative data.8 These data enable us to compare actual gross hourly wages
(administrative data) with observed gross hourly wages (survey data), while the survey data
provide information on the household composition and region for all individuals.9 The di-
rect link between survey and administrative data allows us to infer a realistic wage distribu-
tion and a realistic distribution of the measurement error, which we define as the di�erence
between the two sources of data. Since the wage distribution and the distribution of mea-
surement errormay deviate from a normal distribution, this exercise serves as a check of the
results under real-world conditions.

In addition to the commonly known advantage that survey data can be matched with so-
cial security data to compare gross monthly wages, we observe the respective distribution
of (contractual) working hours from both sources, which enables us to eliminate possible
bias from incorrect collection of working hours in the survey data. The administrative data
source onmonthlywages is the social security data collected by the German Institute for Em-
ployment Research (IAB), a source that is commonly known as the integrated employment
biographies (IEB). The distribution of administrative contractual working hours stems from
the German Statutory Accident Insurance, which is mandatory for all dependent workers in
German firms and which we can link to the IEB data for the years 2010 to 2014.10

The PASS itself is a survey data set focused on the labor market, poverty and means-tested
income support in Germany. Established by the Institute for Employment Research in 2007,
this annual panel survey consists of amixed sampleof botha special samplewithhouseholds
that receive social benefits and a regular sample with households registered as residents of
Germany. Initially, a personal interview is conducted with the heads of all selected house-
holds. Then, allmembers of the household aged 15 year and older are interviewed. The sam-
pled low-income households, which include persons who might have a job in poorly paying
industries, make this survey data set particularly suitable for this simulation study.

Observations from PASS data have been record-linked with the IEB, which includes exhaus-

8 For a comprehensive description of the PASS survey, see Trappmann et al. (2013).
9 As the survey is missing information at the establishment level, this exercise had to be skipped.
10 In Germany, the Statutory Accident Insurance is part of the social security net. It is a mandatory insurance
scheme that provides compensation for accidents and illnesses su�ered by insured employees during their in-
sured working time.

IAB-Discussion Paper 11|2020 33



Figure 13.: Measurement error in German PASS survey data.
Scatter plot of survey and administrative wages (le� panel) and observed distribution of measurement error
(right panel).
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Note: Measurement error in German PASS survey data, assuming that the gross hourly wages from the
administrative data do not contain any measurement error (wadmin = x). The le� panel is a scatter plot of
log survey wages versus log administrative wages with a linear fit obtained via least squares regression. The
right panel shows a histogram of the log di�erence between the two measures and the kernel density for
comparison.
Source: own calculations and illustrations.

tive administrative information on past employment spells and the respective gross daily
wages. Theemployment spells aremandatory reports fromtheemployers for eachemployee
provided at least once a year. Spells are day-specific in the sense that they include exact hir-
ing dates and job termination dates, which allows us to link the individual’s job at the date
of the interviewwith the respective gross wage. The same logic applies to the administrative
working hours, which are reported in the course of mandatory employer reports to the Ger-
man Statutory Accident Insurance. These data on hours were mandatory in the years 2010
to 2014, and by means of the identical social insurance numbers, the job-specific informa-
tion on hours can bemerged with the employment spells of the IEB. Thus, we canmerge the
PASS survey information for the years 2011 to 2014, which is before the German minimum
wage was introduced in January of 2015. Hence, this time period is ideal to infer the indi-
vidual treatment status for a di�erence-in-di�erences evaluation study, as in the simulation
exercises. In total, we observe 11,461 exact matches of individual observations in the PASS
survey data and the administrative employment spells.

We define the measurement error in survey wages as the di�erence between wages in PASS
and administrative data, i.e.,mPASS = wPASS−wadmin, wherewe assume that the adminis-
trative wage is a goodmeasure of the true wage (wadmin = x). Both the graphical illustration
of the measurement error in Figure 13 and the additional descriptive assessments demon-
strate that the measurement error in the PASS survey is similar in magnitude to some recent
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validation studies of other survey data (Gauly et al., 2018).11 The variance in the measure-
ment error is minimally dependent on the actual value, supporting our initial analyses that
assume classical measurement error in survey wages (Sections 2-4). While the modus of the
distribution of the PASS measurement errors is approximately zero, the distribution has a
slightly negative skew.

7.1. Applying the empirical error distribution to individual
data

As before, in this simulation, we set the e�ect of a minimumwage treatment on an outcome
variable y (e.g., pay satisfaction) to be 1, and theminimumwage threshold is set to an hourly
wage of EUR 8.50. The distributions of hourly wages and the error terms are derived from
the PASS-ADMIN merge, and, as shown in Table 2, we gradually include more moments of
uncertainty in our estimations.

Table 2.: Individual level results: Median bias of treatment e�ect estimates with PASS measure-
ment error distributions a�er 1000 repetitions.

PASS survey data, N=11,461
εsurvey = εPASS
csurvey = cPASS
Median bias p95-p05

Treatment dummy
(1)ws = xadmin 0.001 0.089
(2)ws = xPASS = xadmin + cs + εs -0.366 0.095
(3)ws = xadmin + c̄s + ε∗

s -0.371 0.094
Continuous treatment variable
(4)ws = xadmin -0.001 0.240
(5)ws = xPASS = xadmin + cs + εs -0.339 0.267
(6)ws = xadmin + c̄s + ε∗

s -0.369 0.206
Assumed dummy
(7)ws = xadmin 0.001 0.332
(8)ws = xPASS = xadmin + cs + εs -0.199 0.351
(9)ws = xadmin + c̄s + ε∗

s -0.227 0.333

Notes: This table shows the median bias of the estimates from the actual treatment e�ect (= 1) under several
di�erent assumptions: in (1), (4) and (7) – for comparison – we report the median treatment e�ect bias and its
confidence interval for a model without measurement error (from administrative wages), in (2), (5) and (8) we
use the observed error terms from survey data (deterministic approach), and in (3), (6) and (9) we randomly (*)
assign errors terms in combination with a deterministic level shi�.
Source: own calculations.

In the first line of Table 2, for comparison, we show themedian treatment e�ect bias and per-
centiles for an individual-level model without measurement error. In line (2), we add deter-
ministic error terms derived from the PASS survey and the merged administrative measures

11 Separate scatter plots for log monthly wages and log working hours are presented in Figure 15 in the ap-
pendix.
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of gross wages and working hours. Under these conditions, the downward bias of the treat-
ment e�ect is expected to be roughly 37 percent and, thus, quite substantial. In line (3), we
randomly assign survey errors, include the deterministic level shi� and show bootstrapped
results. Overall, the median treatment e�ect is downward biased by more than 37 percent.
However, the bias of the median treatment e�ect (and its variance) do not change by a large
magnitude when we include more moments of uncertainty in our simulation. Regarding the
alternative specification with a continuous treatment instead of dummies in lines (4)-(6), as
expected, the estimates are less precise and the bias is slightly smaller.

In lines (7)-(9) we present the results of a treatment dummy specification, when the relation-
ship would actually necessitate a continuous treatment variable (assumed dummy). As pre-
dicted by the simulation, the overall downward bias is smaller than in both other specifi-
cations, but it is the least e�icient specification. However, under empirical circumstances,
falsely specifying a treatment dummy model does yield the least biased outcome, as this
specification appears to be the most robust to measurement error in survey wages.

7.2. Applying the empirical error distribution to aggregated
data

In this section, we again augment the Monte Carlo experiments using aggregated data. The
individuals in the PASS survey can be aggregated to households and labor market regions.
This step enables us to repeat the simulations under realistic aggregation conditions. How-
ever, it is not possible to aggregate individuals in thePASSat the establishment level since the
sampling of the PASS is not clustered at theworkplace level. Hence, for this particular level of
aggregation, we have to rely on the results based on assumed distributions of measurement
error, as in Section 4.

In Table 3, for comparison, we show thebias of themedian treatment e�ect and the p05−p95
percentile range of the results for a model with aggregation but without measurement error
in (1a) and (2a) for a specification with treatment dummies and in (3a) and (4a) for a specifi-
cation with a continuous treatment variable. The results corroborate the conjecture that dif-
ferent units of aggregation would not bias the estimated treatment e�ects in the absence of
measurement error (Angrist/Pischke, 2008). Aggregation does, however, a�ect the variance
of the estimator. Smaller unit sizes for households result in a more e�icient point estima-
tor for the treatment e�ect compared to the larger unit sizes of regions, i.e., the p95 − p05
intervals are smaller for models based on households.

In terms of the median estimates for households or regions a�er aggregation and including
measurement error for individuals, Table 3 shows the biases and p95-p05 intervals in lines
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(1b) and (2b), assuming that theerror termsarenot correlatedbetweenmembersof the same
household or region (see Table 2 for details of the Monte Carlo experiments at the individual
level). At−0.283, the treatment e�ect is expected tobe severely biased for aggregatedhouse-
holds. The direction and magnitude of the bias are completely in line with the simulation in
the last section (see Figure 7) and are the result of the small unit sizes of households and very
high levels of segregation.

Table 3.: Aggregation results: Median bias of estimated treatment e�ects with PASS measurement
error distributions and data aggregation a�er 1000 repetitions.

Aggregated PASS survey data, N=11,461
εsurvey = εPASS
csurvey = cPASS
Median bias p95-p05

Treatment dummy
(1a) Households w/o measurement error 0.001 0.104
(1b) Households w/ measurement error -0.283 0.111
(2a) Regions w/omeasurement error 0.009 0.381
(2b) Regions w/ measurement error -0.204 0.357
Continuous treatment variable
(3a) Households w/o measurement error 0.002 0.273
(3b) Households w/ measurement error -0.268 0.313
(4a) Regions w/omeasurement error -0.003 1.095
(4b) Regions w/ measurement error -0.064 1.108
Assumed dummy
(5a) Households w/o measurement error 0.059 0.384
(5b) Households w/ measurement error -0.083 0.394
(6a) Regions w/omeasurement error 0.018 1.386
(6b) Regions w/ measurement error -0.021 1.184

This table shows the median bias of the estimates from the actual treatment e�ect (= 1) a�er data aggregation
at the household level (1a and 1b) and region level (2a and 2b). For comparison, we show themedian treatment
e�ect and the p05-p95 percentile range for a model with aggregation but without measurement error in (1a)
and (2a). The error terms in the underlying individual data in (1b) and (2b) are derived from PASS survey data,
as in line (2) of Table 2. Bootstrap samples are used to generate variation in the simulation of treatment e�ects.
Source: own calculations.

The results for regional aggregation in line (2b) are possiblymore informative. The treatment
e�ect is estimated to be one-fi�h less than its actual value in this setting, which is an im-
provement over the individual-level estimation (also compare Table 2). Note that from the
simulation, as shown in Table 1, we observed that for higher levels of segregation, the esti-
mated treatment e�ect is biased upwards. However, segregation of minimumwage workers
across regions is low in reality; hence, we expect a downward bias and an inflated estimator
variance.

When using a continuous treatment variable instead of a dummy, the bias of the estimated
treatment e�ect a�er aggregating at the household level is similar, whereas the e�iciency
of the estimator is greatly reduced (3b). For aggregation at the region level (4b), the bias is
comparatively small. Due to the loss of precision a�er aggregating to large unit sizes, this
approachmight not be feasible for some research agendas.
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For the sake of completeness, lines (5) and (6) present the results for aggregating a specifi-
cation with a dummy treatment variable, while the actual relationship follows a continuous
variable. As with individual-level data, aggregating data does improve the estimates of the
treatment e�ect, while precision of the estimates is lower at the household level andpossibly
unfeasible at the regional level. Interestingly, without measurement error this specification
leads to a small upward bias at the household level (5a).

7.3. Implications for existing evaluations of the recent
minimumwage introduction in Germany

A large number of evaluation studies recently emerged a�er the introduction of a nationwide
minimumwage inGermany. In this literature, di�erent levels of data aggregation are applied.
Most prominently, weobserve evaluations of employment e�ects that exploit variation at the
establishment level (Bossler, 2017; Bossler/Gerner, 2019) and the region level (Ahlfeldt/Roth/
Seidel, 2018; Caliendo et al., 2018; Garlo�, 2019; Schmitz, 2019). However, we also observe
various studies that use data on the individual level or aggregated data on the household
level.

Individual-level data are analyzed in Bossler (2017) to estimate the e�ects on pay satisfaction
and the work engagement of treated workers. While the e�ect on satisfaction is substantial,
the e�ect onwork engagement (which is interpreted as a proxy for individualmotivation and
productivity) is small and nonsignificant. Another study that applies individual variation is
Caliendo et al. (2019), who analyze individual hours of work. The results indicate a signifi-
cant reduction in working hours in the first year a�er the minimum wage introduction. Fi-
nally, Hafner (2019) analyzes the e�ects on the individual (self-assessed) health of a�ected
individuals, and the results suggest a remarkably large positive e�ect.

While only the last study explicitly relies on data from the PASS survey, the first two apply the
Linked Personnel Panel (LPP) and the Socio-economic Panel (SOEP), respectively. Assuming
that all these data sources are collected from similar individual interviews and hence contain
similar distributions of measurement error, we can conclude that these estimates are under-
estimated, with a bias between 25 and 45 percent. Hence, the negative e�ect on working
hours and the positive e�ects on health and pay satisfaction might be larger than suggested
in the respective studies.

We are aware of only one study that analyzes the e�ect of the minimum wage at the house-
hold level by analyzing the e�ect on poverty based on PASS data (Bruckmeier/Becker, 2018).
While the authors detect hardly any e�ects of the minimum wage, this lack of significance
could be due to measurement error, as our results suggest an underestimation by approxi-
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mately 28 percent.

Again, assumingerrordistributionsasobserved in thePASSdata, our results suggesta smaller
downward bias (approximately 20 percent) for all the studies that apply regional variation
(Ahlfeldt/Roth/Seidel, 2018; Caliendo et al., 2018; Garlo�, 2019; Schmitz, 2019). When we as-
sume a continuous treatment variable, as in Bonin et al. (2019), the bias is even smaller if the
assumption holds. However, our simulations also suggest that the bias has a large variation
when using aggregated data at the region level, which could explain the di�erences inmean-
ingful negative e�ects observed in Caliendo et al. (2018) and Schmitz (2019) and e�ects that
are virtually zero, as in Ahlfeldt/Roth/Seidel (2018) or Garlo� (2019).

For the results at the establishment level, we do not observe an error distribution from the
PASS data. Nevertheless, we can draw some cautious conclusions from the simulations that
assume a classical error distribution applied to an observed establishment size distribution.
Given the observed level of segregation in Germany, which is approximately 0.6 in the es-
tablishment data applied in Bossler (2017); Bossler/Gerner (2019), themedian bias is slightly
negative. However,with increasingly segregated labormarkets (seeCard/Heining/Kline, 2013),
we can expect an increasing likelihood of overestimating the treatment e�ects of the mini-
mumwage at the firm level in the future.
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8. Summary and conclusion

In this simulation study, we assess the role of measurement error in a situation where the
treatment variable is inferred froma surveywagedistribution that is contaminatedwithmea-
surement error. Econometric theory predicts attenuation bias towards zero in the presence
of measurement error in the independent variable. This regression dilution transfers to our
Monte Carlo experiment, in which the treatment variable for an evaluation of a minimum
wage introduction is inferred from a wage threshold. This treatment assignment is fuzzy
when individual wages contain measurement error. The respective treatment e�ects from a
simple two-period di�erence-in-di�erences specification are then downward biased; more-
over, the size of the negative bias increases with increasing variance of the measurement
error. The inclusion of nonclassical error characterized by mean reversion in the survey re-
sponses has little impact compared to the classical error term, in particular, the variance of
the error term.

The second issue of this study concerns the aggregation of potentially misreported data. Re-
searchers typically aggregate individual-level data to higher-level units, such as households,
firms, or regions, to alleviate the bias. Applying such data aggregation in another series of
Monte Carlo experiments, we find that the magnitude and direction of the bias depend on
the size of the aggregation unit and the allocation of treated individuals to such units. In
cases of strongly segregated allocation, measurement error may even cause an upward bias
in the estimated treatment e�ect. However, using empirical distributions of wages, working
hours and error terms – derived from a record linkage of survey and administrative data –
we find that the treatment e�ect is biased towards zero in the presence of classical measure-
ment error under empirical conditions. However, the results also show that aggregation of
the treatment information from PASS survey data to the household or region level does not
fully alleviate the bias.

In addition to aggregation of data to higher-level units, we propose two alternative methods
to reduce the bias. First, when building the regression model, scholars might incorporate a
continuous treatment variable instead of a treatment dummy (Bonin et al., 2019). A continu-
ous treatment variable implies that the e�ect of the treatment depends on its intensity, while
a treatment dummy captures only a level shi�. On the individual level, the results barely im-
prove. For aggregated data with moderate contamination, we recommend using a continu-
ous treatment variable, as the results are more robust to measurement error. Second, as a
more drasticmeasure, we propose deleting observations close to theminimumwage thresh-
old before its introduction, as those observations are a�ected the most by misclassification.
However, this strategy is only recommended for a model with a dummy treatment variable
(for both individual-level and aggregateddata). If we falsely assume that the dummyvariable
captures the relationship betweenminimumwage and ahomogeneously shi�ing dependent
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variable, while the relationship would necessitate a continuous model specification, drop-
ping observations does yield a positive bias.

For scholars anddecisionmakers, the consequencesof this studyarepossibly substantial. In-
creases andchanges topolicies (suchas theminimumwage) areo�en justifiedbyprevious ex
post evaluations that concentrate on estimates of the e�ects of such an intervention. If pol-
icy evaluations potentially yield unreliable results, the decision-making process might lead
to false conclusions. In the case of minimum wage introductions, or subsequent increases,
the e�ects of such policies are distorted downwards, if not trivialized.
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A. Observed unit size distributions

In this appendix, we describe the construction of realistic unit size distributions for observ-
able data, as applied in Section 4.2. Table 4 summarizes the three scenarios of our simula-
tions, including the data source from which we infer the unit sizes and the observed level of
segregation.

Table 4.: Three scenarios of aggregation in applied research.
Aggregation Aggregation Source of the Level of segregation
scenarios level size distribution (Measured by the HHI)
(1) household PASS HHI=0.94
(2) establishment BHP HHI=0.59
(3) region BHP HHI=0.40

Notes: The HHI for the household level is calculated from the PASS data, the HHI for the establishment level is
calculated from the IAB-Establishment Panel, and the HHI for the region level is calculated from the PASS data.
Source: own calculations.

For the household level, we use the PASS, which is a household survey that collects data on
each household member via a personal interview (see Trappmann et al., 2013). Hence, we
observe the number of household members for each household in the data. From this infor-
mation, we draw household sizes until the total number of individuals in these households
sums to the 10,000 individuals in our original sample.12 The average number of employees
per household is 1.26 across all bootstrap samples, where the minimum is 1 and the maxi-
mum is 4. On average, the 10,000 individuals in each data set are assigned to 7,936 house-
holds.

For the establishment level, we use the BHP of 2014, which is an establishment-level data
source that coversall establishments inGermanywithat leastone legal employee (seeSchmucker
etal., 2016). Since the informationon thenumberof employees is included forall establishment-
level observations, we randomly draw establishment sizes until the 10,000 individuals of our
original data sample are assigned to one of the establishments. This sampling of realistic
establishment size distributions yields an average establishment size of 11.73 employees per
establishment, where theminimum is 1 and themaximum ranges between 281 and 7964 em-
ployees, depending on the bootstrap sample.

For the regional aggregation, we use a slightly di�erent approach since most regions in Ger-
many have more that 10,000 individuals, and it is quite unlikely that all individuals of a re-
gion would participate in a survey. Instead, we fix the number of regions to 141, which is the

12 In some cases, there is a residual household if the last household draw does not exactly sum up to 10,000
individuals but instead exceeds 10,000 individuals. For example, if 998 individuals are already assigned to U
household and household U+1 with 3 household members is drawn, this residual household would instead be
assigned 2 household members such that the total number of individuals is exactly 10,000.
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number of distinct labor market regions suggested by Kosfeld/Werner (2012). We assign the
10,000 individuals of our initial data sample to these regions according to the regions’ true
size distribution observed from the BHP, resulting in an average number of 71 individuals per
region.
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B. Aggregating to higher-level units:
Assumed dummy

In Figure 14, we show the results of a simulation in which we use a dummy treatment vari-
able, while setting the data generating process to a continuous relationship between depen-
dent variable and treatment (whichwe call assumeddummy). As before, we aggregate at the
household, firm and region levels with varying levels of segregation of minimumwage work-
ers into higher-level units. A�er aggregation, the size of the bias depends on both the error
term distribution and on the level of segregation. It is possible that high levels of segregation
within regions and firms yield an upward bias in the treatment e�ect. For small unit sizes,
such as households, such an outcome is unlikely.

Figure 14.: Using a dummy treatment variable when a continuous treatment variable is appropri-
ate.
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Note: Estimated treatment e�ect bias for the scenarios summarized in Table 4 using the dummy treatment
variable while a continuous treatment variable would be appropriate.
Source: own calculations and illustrations.
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C. Measurement error in monthly wages
and working hours

While the Integrated Employment Biographies are commonly used among researchers both
fromGermanyand internationally, thenovel data set of reportedworkinghours from theGer-
man Statutory Accident Insurance are widely unknown. In Germany, the Statutory Accident
Insurance is part of the social security net. It is a mandatory insurance scheme that provides
compensation for accidents and illnesses su�eredby insured employees during their insured
working time. We can link the data to the IEB data for the years 2010 to 2014 via identical
social security numbers in both data sources. Similar to the Integrated Employment Biogra-
phies that is reported to German Federal Employment Agency, the spells of the administra-
tive working hours are reported in the course of mandatory employer reports to the German
Statutory Accident Insurance. These data on hours weremandatory only in the years 2010 to
2014, andbymeansof the identical social insurancenumbers, the job-specific informationon
hours canbemergedwith the employment spells of the IEB. Before 2010 anda�er 2014, firms
typically reported working hours directly to the German Statutory Accident Insurance.

Figure 15.: Measurement error inmonthlywages andworking hours in the Integrated Employment
Biographies.
Scatter plot of monthly wages (le� panel) and scatter plot of working hours (right panel).
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Note: Scatter plot of logmonthly wages (le� panel) and log working hours (right panel), where the PASS survey
data is on the vertical axis and ADMIN (social security data) is on the horizontal axis.
Source: own calculations and illustrations.

While this is the first time, researchers haveanadministratively collectedestimate for individ-
ual working hours linked to the Integrated Employment Biographies and, thus, can compute
hourlywages, themeasurementof this variablewill still be far fromperfect. Most importantly,
there are still inherent di�erences between contractual and actual hours worked in the data,
that we are not able to quantify. Moreover, firms are allowed to submit an estimate of the
hours worked as well, as many firms have no way of recording the hours of their workforce.

IAB-Discussion Paper 11|2020 48



This means there is still measurement error in the hourly wages that we can not control for.
There is, however, moremeasurement error if we only take employees working full-time and
assume a 40-hour work week. Hence, we expect the empirical distribution of hourly wages
to be a significant improvement over past contributions.
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